TWI559451B - Three-dimensional memory and method for manufacturing the same - Google Patents

Three-dimensional memory and method for manufacturing the same Download PDF

Info

Publication number
TWI559451B
TWI559451B TW103139462A TW103139462A TWI559451B TW I559451 B TWI559451 B TW I559451B TW 103139462 A TW103139462 A TW 103139462A TW 103139462 A TW103139462 A TW 103139462A TW I559451 B TWI559451 B TW I559451B
Authority
TW
Taiwan
Prior art keywords
source region
source
dimensional memory
region
forming
Prior art date
Application number
TW103139462A
Other languages
Chinese (zh)
Other versions
TW201618236A (en
Inventor
蕭逸璿
陳威臣
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103139462A priority Critical patent/TWI559451B/en
Publication of TW201618236A publication Critical patent/TW201618236A/en
Application granted granted Critical
Publication of TWI559451B publication Critical patent/TWI559451B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

三維記憶體及其製造方法 Three-dimensional memory and manufacturing method thereof

本發明是關於記憶體及其製造方法,特別是關於三維記憶體及其製造方法。 The present invention relates to a memory and a method of fabricating the same, and more particularly to a three-dimensional memory and a method of fabricating the same.

典型的薄膜電晶體可藉由提供電洞來提高通道電位而進行抹除。在傳統的平面結構中,基板可扮演提供電洞的角色。相對於此,在三維結構(例如三維反及快閃記憶體)中,薄膜電晶體可能未直接接觸基板,因此不容易自基板得到電洞。提供電洞至這類薄膜電晶體的一種方法是藉由閘極引發汲極洩漏(gate-induced drain leakage,GIDL)來產生電洞。然而,此種方法容易受到局部電場的影響,並需要較長的時間來提供足量的電洞。此外,GIDL應力可能損壞閘極氧化物,並惡化可靠度。另一種方法是使用p型源極來取代n型源極。然而,在讀取使用p型源極的薄膜電晶體時,會發生壓降(voltage drop)。 A typical thin film transistor can be erased by providing a hole to increase the channel potential. In a conventional planar structure, the substrate can play the role of providing a hole. In contrast, in a three-dimensional structure (for example, a three-dimensional inverse and a flash memory), the thin film transistor may not directly contact the substrate, and thus it is not easy to obtain a hole from the substrate. One way to provide holes to such thin film transistors is to create holes by gate-induced drain leakage (GIDL). However, this method is susceptible to local electric fields and takes a long time to provide a sufficient number of holes. In addition, GIDL stress can damage the gate oxide and deteriorate reliability. Another method is to use a p-type source instead of an n-type source. However, when reading a thin film transistor using a p-type source, a voltage drop occurs.

在本說明書中,提供能解決上述問題的新式結構。在本說明書中,亦提供其製造方法。 In the present specification, a new structure that solves the above problems is provided. In the present specification, a manufacturing method thereof is also provided.

根據一實施例,提供一種三維記憶體。此種三維記 憶體包括一薄膜電晶體。此一薄膜電晶體具有分開設置的一源極區及一汲極區。源極區包括一第一源極區及一第二源極區,第二源極區設置於第一源極區與汲極區之間。第一源極區為p型摻雜,第二源極區為n型摻雜,汲極區為n型摻雜。 According to an embodiment, a three-dimensional memory is provided. Such three-dimensional The memory layer includes a thin film transistor. The thin film transistor has a source region and a drain region which are separately disposed. The source region includes a first source region and a second source region, and the second source region is disposed between the first source region and the drain region. The first source region is p-type doped, the second source region is n-type doped, and the drain region is n-type doped.

根據另一實施例,提供一種三維記憶體的製造方法。此種方法包括下列步驟。首先,在一基板上形成由交替層疊之複數導電層及複數絕緣層構成的一堆疊。形成三維記憶體的一薄膜電晶體的一源極區。此一步驟包括:形成穿過堆疊的一穿孔;在穿孔的側壁上形成一n型摻雜層;以及填充一p型摻雜材料至穿孔中n型摻雜層上。形成薄膜電晶體之與所述源極區彼此分開的一汲極區。此一步驟包括:形成分別連接至堆疊之導電層的一系列穿孔;以及填充一n型摻雜材料至此系列穿孔中。 According to another embodiment, a method of fabricating a three-dimensional memory is provided. This method includes the following steps. First, a stack of a plurality of electrically conductive layers and a plurality of insulating layers alternately stacked is formed on a substrate. A source region of a thin film transistor forming a three-dimensional memory. The step includes forming a via through the stack, forming an n-type doped layer on the sidewall of the via, and filling a p-type dopant material onto the n-doped layer in the via. A drain region of the thin film transistor and the source regions are separated from each other. This step includes: forming a series of vias respectively connected to the conductive layers of the stack; and filling an n-type dopant material into the series of vias.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

102‧‧‧薄膜電晶體 102‧‧‧film transistor

104‧‧‧源極區 104‧‧‧ source area

106‧‧‧汲極區 106‧‧‧Bungee Area

108‧‧‧第一源極區 108‧‧‧First source region

110‧‧‧第二源極區 110‧‧‧Second source area

112‧‧‧位元線 112‧‧‧ bit line

114‧‧‧字元線 114‧‧‧ character line

116‧‧‧汲極觸點 116‧‧‧汲 contact

118A‧‧‧源極觸點 118A‧‧‧Source contact

118B‧‧‧源極觸點 118B‧‧‧Source contact

202‧‧‧基板 202‧‧‧Substrate

204‧‧‧埋層 204‧‧‧buried layer

206‧‧‧導電層 206‧‧‧ Conductive layer

208‧‧‧絕緣層 208‧‧‧Insulation

210‧‧‧堆疊 210‧‧‧Stacking

212‧‧‧穿孔 212‧‧‧Perforation

214‧‧‧n型摻雜層 214‧‧‧n-type doped layer

216‧‧‧p型摻雜材料 216‧‧‧p-type doping material

218‧‧‧穿孔 218‧‧‧Perforation

220‧‧‧絕緣層 220‧‧‧Insulation

222‧‧‧n型摻雜材料 222‧‧‧n type doping material

224‧‧‧位元線 224‧‧‧ bit line

226‧‧‧溝槽 226‧‧‧ trench

228‧‧‧氧化物-氮化物-氧化物結構 228‧‧‧Oxide-nitride-oxide structure

230‧‧‧導電材料 230‧‧‧Electrical materials

232‧‧‧字元線 232‧‧‧ character line

236‧‧‧源極觸點 236‧‧‧ source contact

238‧‧‧汲極觸點 238‧‧‧汲 contacts

D‧‧‧汲極區 D‧‧‧Bungee Area

L1‧‧‧第一源極區的長度 L 1 ‧‧‧ Length of the first source region

L2‧‧‧第二源極區的長度 L 2 ‧‧‧ Length of the second source region

Lt‧‧‧源極區的總長度 L t ‧‧‧ total length of the source region

S‧‧‧源極區 S‧‧‧ Source Area

第1A-1C圖繪示根據一實施例的三維記憶體的一部分。 1A-1C illustrate a portion of a three-dimensional memory in accordance with an embodiment.

第2A-2B圖顯示根據一實施例的範例及比較例的特性。 2A-2B are diagrams showing the characteristics of an example and a comparative example according to an embodiment.

第3圖顯示根據一實施例的範例及比較例的特性。 Figure 3 shows the characteristics of an example and a comparative example according to an embodiment.

第4A-11B圖繪示根據一實施例的三維記憶體的製造方法。 4A-11B illustrate a method of fabricating a three-dimensional memory according to an embodiment.

請參照第1A-1C圖,其繪示根據一實施例的三維記 憶體的一部分,其中第1B及1C圖為第1A圖中的A部分的放大圖。此一三維記憶體包括一薄膜電晶體102。為易於敘述及製圖,圖式中的三維記憶體係繪製成三維反及快閃記憶體(3D NAND flash memory),且薄膜電晶體102可用於一記憶胞,作為記憶胞電晶體。然而,本發明可適用於其他種包括薄膜電晶體的三維記憶體及其他用途的薄膜電晶體。 Please refer to FIG. 1A-1C, which illustrates a three-dimensional representation according to an embodiment. A part of the memory, in which the 1B and 1C are enlarged views of the portion A in the 1A. The three-dimensional memory includes a thin film transistor 102. For ease of description and drawing, the three-dimensional memory system in the drawing is drawn into a 3D NAND flash memory, and the thin film transistor 102 can be used for a memory cell as a memory cell. However, the present invention is applicable to other types of thin film transistors including a three-dimensional memory of a thin film transistor and other uses.

薄膜電晶體102具有分開設置的一源極區104及一汲極區106。源極區104包括一第一源極區108及一第二源極區110,第二源極區110設置於第一源極區108與汲極區106之間。第一源極區108的長度為L1,第二源極區110的長度為L2,源極區104的總長度為Lt。在一範例中,Lt等於0.3微米。第一源極區108為p型摻雜,第二源極區110為n型摻雜,汲極區106為n型摻雜。 The thin film transistor 102 has a source region 104 and a drain region 106 which are separately disposed. The source region 104 includes a first source region 108 and a second source region 110. The second source region 110 is disposed between the first source region 108 and the drain region 106. The length of the first source region 108 is L 1 , the length of the second source region 110 is L 2 , and the total length of the source region 104 is L t . In one example, L t is equal to 0.3 microns. The first source region 108 is p-type doped, the second source region 110 is n-type doped, and the drain region 106 is n-type doped.

由於源極區104包括p型第一源極區108,因此提供了一個穩定且快速的電洞來源。不像只使用p型源極的例子,源極區104也包括n型第二源極區110。因此,在讀取根據實施例的薄膜電晶體102時,不會發生壓降。此外,也能避免透過使用GIDL所產生的電洞所帶來的缺點,例如不穩定、耗時、結構損壞等等。 Since the source region 104 includes the p-type first source region 108, a stable and fast source of holes is provided. Unlike the example in which only the p-type source is used, the source region 104 also includes the n-type second source region 110. Therefore, when the thin film transistor 102 according to the embodiment is read, a pressure drop does not occur. In addition, the disadvantages caused by the use of holes generated by GIDL, such as instability, time consuming, structural damage, etc., can also be avoided.

三維記憶體還可包括一源極觸點及一汲極觸點116。在一實施例中,如第1B圖所示,源極觸點118A同時連接第一源極區108及第二源極區110。在另一實施例中,如第1C圖所示,源極觸點118B只連接第一源極區108,不連接第二源極區110。在這二個實施例中,第二源極區110的長度L2可等於或小 於0.02微米。汲極觸點116連接汲極區106。 The three-dimensional memory can also include a source contact and a drain contact 116. In one embodiment, as shown in FIG. 1B, the source contact 118A simultaneously connects the first source region 108 and the second source region 110. In another embodiment, as shown in FIG. 1C, the source contact 118B is only connected to the first source region 108 and not to the second source region 110. In both embodiments, the length L 2 of the second source region 110 may be equal to or less than 0.02 microns. The drain contact 116 is connected to the drain region 106.

三維記憶體還可包括一基板(如第4B圖所示)、一位元線112及一字元線114,位元線112設置在基板上,字元線114設置在基板上並正交於位元線112。源極區104及汲極區106可沿著位元線112設置,且未直接接觸基板。 The three-dimensional memory may further include a substrate (as shown in FIG. 4B), a bit line 112 and a word line 114. The bit line 112 is disposed on the substrate, and the word line 114 is disposed on the substrate and orthogonal to Bit line 112. Source region 104 and drain region 106 may be disposed along bit line 112 and are not in direct contact with the substrate.

第2A-2B圖顯示根據一實施例的範例及其比較例在讀取根據範例及比較例的薄膜電晶體時的特性。在示於第2A圖的範例中,源極觸點118A同時連接p型的第一源極區108及n型的第二源極區110。在示於第2B圖的比較例中,源極觸點118B只連接p型的第一源極區108。在示於第2A圖的範例及示於第2B圖的比較例中,Lt皆等於0.3微米,L1及L2皆等於0.15微米。在比較例中,由於在讀取時,第一源極區108與第二源極區110之間的p-n接面係反向偏壓,因此ID電流是由能帶間的穿隧所主導,並強烈地受到Vd偏壓所影響。而在源極觸點118A亦連接至n型源極區的範例中,ID-VG曲線表現出n型通道讀取的典型特性。 2A-2B shows characteristics of an example according to an embodiment and a comparative example thereof when reading thin film transistors according to the examples and comparative examples. In the example shown in FIG. 2A, the source contact 118A is simultaneously connected to the p-type first source region 108 and the n-type second source region 110. In the comparative example shown in FIG. 2B, the source contact 118B is only connected to the p-type first source region 108. In the example shown in Fig. 2A and the comparative example shown in Fig. 2B, L t is equal to 0.3 μm, and both L 1 and L 2 are equal to 0.15 μm. In the comparative example, since the pn junction between the first source region 108 and the second source region 110 is reverse biased during reading, the I D current is dominated by tunneling between the energy bands. And strongly affected by the Vd bias. In the example where source contact 118A is also connected to the n-type source region, the I D -V G curve exhibits typical characteristics of n-channel read.

第3圖顯示根據一實施例的範例及其比較例在抹除根據範例及比較例的薄膜電晶體時的特性。在所有的範例及比較例中,Lt皆等於0.3微米。當n型的第二源極區110的長度夠短,例如等於或小於0.02微米,p型的第一源極區108所提供的電洞可更輕鬆且快速地通過第二源極區110。因此,可進一步地改善抹除速度。根據一實施例,源極觸點可同時連接p型的第一源極區108及n型的第二源極區110二者。或者,根據另一實施例,源極觸點可以只連接p型的第一源極區108。 Fig. 3 is a view showing characteristics of an exemplary embodiment and a comparative example thereof when erasing the thin film transistors according to the examples and the comparative examples, according to an embodiment. In all of the examples and comparative examples, L t was equal to 0.3 μm. When the length of the n-type second source region 110 is sufficiently short, for example, equal to or less than 0.02 microns, the holes provided by the p-type first source region 108 can pass through the second source region 110 more easily and quickly. Therefore, the erasing speed can be further improved. According to an embodiment, the source contact can simultaneously connect both the p-type first source region 108 and the n-type second source region 110. Alternatively, according to another embodiment, the source contact may only be connected to the p-type first source region 108.

現在請參照第4A-11B圖,其繪示根據一實施例的三維記憶體的製造方法,其中以「B」所標示的圖式為沿著以「A」所標示的圖式中的B-B’線的剖面圖。首先,如第4A及4B圖所示,提供一基板202,並在基板202形成由交替層疊之複數導電層206及複數絕緣層208構成的一堆疊210。在一實施例中,一埋層204可形成於基板202與堆疊210之間。 Referring now to FIGS. 4A-11B, there is illustrated a method of fabricating a three-dimensional memory according to an embodiment, wherein the pattern indicated by "B" is along the B- in the pattern indicated by "A". A cross-sectional view of the B' line. First, as shown in FIGS. 4A and 4B, a substrate 202 is provided, and a stack 210 of a plurality of electrically conductive layers 206 and a plurality of insulating layers 208 alternately stacked is formed on the substrate 202. In an embodiment, a buried layer 204 may be formed between the substrate 202 and the stack 210.

形成三維記憶體的一薄膜電晶體的一源極區S,如第5A-6B圖所示。請參照第5A及5B圖,形成穿過堆疊210的一穿孔212。請參照第6A及6B圖,在穿孔212的側壁上形成一n型摻雜層214,並填充一p型摻雜材料216至穿孔212中n型摻雜層214上。在一實施例中,n型摻雜層214的厚度可等於或小於0.02微米。 A source region S of a thin film transistor forming a three-dimensional memory is shown in Figures 5A-6B. Referring to Figures 5A and 5B, a perforation 212 is formed through the stack 210. Referring to FIGS. 6A and 6B, an n-type doping layer 214 is formed on the sidewall of the via 212 and a p-type dopant material 216 is filled into the n-doped layer 214 of the via 212. In an embodiment, the thickness of the n-type doped layer 214 may be equal to or less than 0.02 microns.

形成所述薄膜電晶體之一汲極區D,如第7A-7B圖所示。汲極區D與源極區S彼此分開。形成分別連接至堆疊210之導電層206的一系列穿孔218。可在穿孔218的側壁上形成一絕緣層220。接著蝕刻以移除多餘的材料,並填充一n型摻雜材料222至此系列穿孔218中。 One of the drain regions D of the thin film transistor is formed as shown in Figures 7A-7B. The drain region D and the source region S are separated from each other. A series of perforations 218 are formed that are respectively connected to the conductive layer 206 of the stack 210. An insulating layer 220 may be formed on the sidewalls of the vias 218. Etching is then performed to remove excess material and fill an n-type dopant material 222 into the series of vias 218.

形成位元線224及字元線232,如第8A-10B圖所示。請參照第8A及8B圖,圖案化堆疊210,以形成複數位元線224,其由溝槽226所分開。源極區S及汲極區D分別至少穿過複數位元線224之一堆疊的一部分。請參照第9A及9B圖,在位元線224之間的溝槽226的側壁上形成一氧化物-氮化物-氧化物(ONO)結構228,並填充一導電材料230(例如多晶矽)至溝槽226中。請參照第10A及10B圖,藉由圖案化導電材料230形成複數 字元線232。 Bit line 224 and word line 232 are formed as shown in Figures 8A-10B. Referring to FIGS. 8A and 8B, the stack 210 is patterned to form a plurality of bit lines 224 that are separated by trenches 226. The source region S and the drain region D respectively pass through at least a portion of one of the plurality of bit lines 224. Referring to FIGS. 9A and 9B, an oxide-nitride-oxide (ONO) structure 228 is formed on the sidewalls of the trenches 226 between the bit lines 224, and a conductive material 230 (eg, polysilicon) is filled into the trenches. In the slot 226. Referring to FIGS. 10A and 10B, a plurality of patterned conductive materials 230 are formed. Word line 232.

形成源極區S、汲極區D、位元線224及字元線232的順序可彼此交換。接著,請參照第11A及11B圖,形成一源極觸點236及複數汲極觸點238。在一實施例中,源極觸點236同時連接p型摻雜材料216及n型摻雜層214。或者,在另一實施例中,源極觸點236連接p型摻雜材料216,但不連接n型摻雜層214。汲極觸點238連接所述系列穿孔218中之n型摻雜材料222。 The order in which the source region S, the drain region D, the bit line 224, and the word line 232 are formed may be exchanged with each other. Next, referring to FIGS. 11A and 11B, a source contact 236 and a plurality of gate contacts 238 are formed. In an embodiment, the source contact 236 is simultaneously connected to the p-type dopant material 216 and the n-type doping layer 214. Alternatively, in another embodiment, source contact 236 is connected to p-type dopant material 216 but not to n-type doped layer 214. The drain contact 238 connects the n-type dopant material 222 in the series of vias 218.

根據上述的方法,可輕易地建造根據實施例之其中提供有穩定且快速的電洞來源的三維記憶體。然而,此一方法只供解釋之用,也可實施其他建造根據實施例的三維記憶體的製造方法。 According to the above method, a three-dimensional memory in which a stable and fast source of holes is provided according to an embodiment can be easily constructed. However, this method is for explanation only, and other methods of manufacturing the three-dimensional memory according to the embodiment can be implemented.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

102‧‧‧薄膜電晶體 102‧‧‧film transistor

104‧‧‧源極區 104‧‧‧ source area

106‧‧‧汲極區 106‧‧‧Bungee Area

108‧‧‧第一源極區 108‧‧‧First source region

110‧‧‧第二源極區 110‧‧‧Second source area

112‧‧‧位元線 112‧‧‧ bit line

114‧‧‧字元線 114‧‧‧ character line

116‧‧‧汲極觸點 116‧‧‧汲 contact

L1‧‧‧第一源極區的長度 L 1 ‧‧‧ Length of the first source region

L2‧‧‧第二源極區的長度 L 2 ‧‧‧ Length of the second source region

Lt‧‧‧源極區的總長度 L t ‧‧‧ total length of the source region

Claims (10)

一種三維記憶體,包括:一薄膜電晶體,具有分開設置的一源極區及一汲極區,其中該源極區包括一第一源極區及一第二源極區,該第二源極區設置於該第一源極區與該汲極區之間,且其中該第一源極區為p型摻雜、該第二源極區為n型摻雜、該汲極區為n型摻雜;其中該源極區及該汲極區分別至少穿過複數位元線之一堆疊的一部分。 A three-dimensional memory comprising: a thin film transistor having a source region and a drain region separately disposed, wherein the source region includes a first source region and a second source region, the second source a polar region is disposed between the first source region and the drain region, and wherein the first source region is p-type doped, the second source region is n-type doped, and the drain region is n Type doping; wherein the source region and the drain region respectively pass through at least a portion of one of the plurality of bit lines. 如請求項1之三維記憶體,更包括:一源極觸點,同時連接該第一源極區及該第二源極區;以及一汲極觸點,連接該汲極區。 The three-dimensional memory of claim 1, further comprising: a source contact connecting the first source region and the second source region; and a drain contact connecting the drain region. 如請求項1之三維記憶體,更包括:一源極觸點,連接該第一源極區,但不連接該第二源極區;以及一汲極觸點,連接該汲極區。 The three-dimensional memory of claim 1, further comprising: a source contact connecting the first source region but not connecting the second source region; and a drain contact connecting the drain region. 如請求項3之三維記憶體,其中該第二源極區的長度等於或小於0.02微米。 The three-dimensional memory of claim 3, wherein the length of the second source region is equal to or less than 0.02 microns. 如請求項1之三維記憶體,其中該第二源極區的長度等於或小於0.02微米。 The three-dimensional memory of claim 1, wherein the length of the second source region is equal to or less than 0.02 microns. 如請求項1之三維記憶體,更包括:一基板;以及一位元線,設置在該基板上;其中該源極區及該汲極區係沿著該位元線設置,且未直接接觸該基板。 The three-dimensional memory of claim 1, further comprising: a substrate; and a bit line disposed on the substrate; wherein the source region and the drain region are disposed along the bit line and are not in direct contact The substrate. 一種三維記憶體的製造方法,包括:在一基板上形成由交替層疊之複數導電層及複數絕緣層構成的一堆疊;形成該三維記憶體的一薄膜電晶體的一源極區,包括:形成穿過該堆疊的一穿孔;在該穿孔的側壁上形成一n型摻雜層;及填充一p型摻雜材料至該穿孔中該n型摻雜層上;以及形成該薄膜電晶體之與該源極區彼此分開的一汲極區,包括:形成分別連接至該堆疊之該些導電層的一系列穿孔;及填充一n型摻雜材料至該系列穿孔中。 A method for manufacturing a three-dimensional memory, comprising: forming a stack of a plurality of electrically conductive layers and a plurality of insulating layers alternately stacked on a substrate; forming a source region of a thin film transistor of the three-dimensional memory, comprising: forming Passing through a via of the stack; forming an n-type doped layer on the sidewall of the via; and filling a p-type dopant material onto the n-type doped layer in the via; and forming a bond between the thin film transistor A drain region separated from each other by the source regions includes: forming a series of vias respectively connected to the conductive layers of the stack; and filling an n-type dopant material into the series of vias. 如請求項7之三維記憶體的製造方法,更包括:形成同時連接該p型摻雜材料及該n型摻雜層的一源極觸點;以及形成連接該系列穿孔中之該n型摻雜材料的複數汲極觸點。 The method of manufacturing the three-dimensional memory of claim 7, further comprising: forming a source contact that simultaneously connects the p-type dopant material and the n-type doped layer; and forming the n-type dopant in the series of vias The complex bungee contact of the miscellaneous material. 如請求項7之三維記憶體的製造方法,更包括:形成連接該p型摻雜材料但不連接該n型摻雜層的一源極觸點;以及形成連接該系列穿孔中之該n型摻雜材料的複數汲極觸點。 The method of fabricating the three-dimensional memory of claim 7, further comprising: forming a source contact connecting the p-type doping material but not connecting the n-type doped layer; and forming the n-type connected to the series of through holes A plurality of dipole contacts of the doped material. 如請求項7之三維記憶體的製造方法,其中該n型摻雜層的厚度等於或小於0.02微米。 A method of manufacturing a three-dimensional memory according to claim 7, wherein the thickness of the n-type doped layer is equal to or smaller than 0.02 μm.
TW103139462A 2014-11-14 2014-11-14 Three-dimensional memory and method for manufacturing the same TWI559451B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103139462A TWI559451B (en) 2014-11-14 2014-11-14 Three-dimensional memory and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103139462A TWI559451B (en) 2014-11-14 2014-11-14 Three-dimensional memory and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TW201618236A TW201618236A (en) 2016-05-16
TWI559451B true TWI559451B (en) 2016-11-21

Family

ID=56509062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139462A TWI559451B (en) 2014-11-14 2014-11-14 Three-dimensional memory and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI559451B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623088B (en) * 2016-11-28 2018-05-01 旺宏電子股份有限公司 THREE-DIMENSIONAL SEMICONDUCTOR DEVICE AND METHOD for FormING THE SAME

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047754A (en) * 2018-09-19 2020-03-26 東芝メモリ株式会社 Semiconductor storage device
TWI737114B (en) * 2019-02-27 2021-08-21 王振志 Transistor, three dimensional memory device including such transistor and method of fabricating such memory device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816460A (en) * 2006-09-14 2008-04-01 Samsung Electronics Co Ltd NAND flash memory device with 3-dimensionally arranged memory cell transistors
US20100059811A1 (en) * 2008-09-10 2010-03-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing same
TW201135928A (en) * 2010-04-02 2011-10-16 Taiwan Semiconductor Mfg High voltage semiconductor transistor and method for fabricating the same
US20130320424A1 (en) * 2012-06-04 2013-12-05 SK Hynix Inc. Semiconductor device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816460A (en) * 2006-09-14 2008-04-01 Samsung Electronics Co Ltd NAND flash memory device with 3-dimensionally arranged memory cell transistors
US20100059811A1 (en) * 2008-09-10 2010-03-11 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device and method for manufacturing same
TW201135928A (en) * 2010-04-02 2011-10-16 Taiwan Semiconductor Mfg High voltage semiconductor transistor and method for fabricating the same
US20130320424A1 (en) * 2012-06-04 2013-12-05 SK Hynix Inc. Semiconductor device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623088B (en) * 2016-11-28 2018-05-01 旺宏電子股份有限公司 THREE-DIMENSIONAL SEMICONDUCTOR DEVICE AND METHOD for FormING THE SAME

Also Published As

Publication number Publication date
TW201618236A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
US8461003B2 (en) Method for fabricating 3D-nonvolatile memory device
US9917096B2 (en) Semiconductor memory device and method for manufacturing same
KR102008738B1 (en) Semiconductor devices and methods of manufacturing the same
US8507973B2 (en) Non-volatile memory device and method for fabricating the same
US7842594B2 (en) Semiconductor device and method for fabricating the same
JP2010182751A (en) Nonvolatile semiconductor storage and method of manufacturing the same
JP2013115272A (en) Semiconductor device and method of manufacturing the same
US10283519B2 (en) Three dimensional NAND string memory device
JP2015056642A (en) Semiconductor memory device
TWI698004B (en) Semiconductor memory device
US9214470B2 (en) Non-volatile memory device with vertical memory cells and method for fabricating the same
US9985039B2 (en) Semiconductor device and method of manufacturing the same
JP2013055204A (en) Semiconductor memory device
JP2015060874A (en) Nonvolatile semiconductor storage device
JPWO2015104947A1 (en) Semiconductor device, memory circuit, and manufacturing method of semiconductor device
TWI559451B (en) Three-dimensional memory and method for manufacturing the same
TWI669806B (en) Semiconductor memory device and method of manufacturing same
KR100723476B1 (en) Scalable two transistor memory cell and method of fabricating the same
US9318501B2 (en) Methods and structures for split gate memory cell scaling with merged control gates
US9536893B2 (en) Three-dimensional memory and method for manufacturing the same
JP2014096479A (en) Semiconductor device and manufacturing method of the same
JP2013183138A (en) Semiconductor device and method of manufacturing the same
TW201624626A (en) Semiconductor device and manufacturing method of the same
KR100763918B1 (en) Non-volatile memory device and method of fabricating the same
JP2015079865A (en) Semiconductor device and manufacturing method of the same