TWI559382B - Semiconductor device and method of fabricating the same - Google Patents
Semiconductor device and method of fabricating the same Download PDFInfo
- Publication number
- TWI559382B TWI559382B TW103145440A TW103145440A TWI559382B TW I559382 B TWI559382 B TW I559382B TW 103145440 A TW103145440 A TW 103145440A TW 103145440 A TW103145440 A TW 103145440A TW I559382 B TWI559382 B TW I559382B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- thickness
- conductor
- semiconductor device
- conductor layer
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
Description
本發明是有關於一種半導體元件及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same.
隨著半導體元件的積體化,為了達到高密度以及高效能的目標,在製造半導體元件時,傾向形成向上堆疊的結構,以更有效利用晶圓面積。因此,具有高深寬比(high aspect ratio)的半導體結構經常出現在小尺寸元件中。舉例而言,上述半導體結構例如是包括高深寬比的溝渠。 With the integration of semiconductor elements, in order to achieve high density and high performance, when manufacturing semiconductor elements, it tends to form an upward stacked structure to more effectively utilize the wafer area. Therefore, semiconductor structures having a high aspect ratio are often found in small-sized components. For example, the above semiconductor structure is, for example, a trench including a high aspect ratio.
一般而言,在製造上述元件時包括將導體層填入高深寬比的溝渠。然而,由於導體層本身的溝填(gap filling)能力不佳,因此容易在溝渠中形成分散不均的孔洞(void),造成半導體元件在電性測試時有不良的影響。並且,上述孔洞會使得溝渠兩旁產生不平衡的應力,造成溝渠之間的半導體結構產生微變形(microbending),進而導致後續微影製程上對準(alignment)的困難度增加。因此,如何避免在高深寬比的溝渠中產生孔洞,以及防止半導體結構產生微變形的現象,為當前所需研究的課題。 In general, the fabrication of the above components involves filling the conductor layer with a trench having a high aspect ratio. However, since the gap filling ability of the conductor layer itself is not good, it is easy to form voids which are unevenly dispersed in the trench, which causes the semiconductor element to have an adverse effect on the electrical test. Moreover, the above-mentioned holes may cause unbalanced stress on both sides of the ditch, causing microbending of the semiconductor structure between the trenches, thereby increasing the difficulty of alignment on the subsequent lithography process. Therefore, how to avoid the occurrence of holes in the high aspect ratio trench and prevent the micro-deformation of the semiconductor structure is the subject of current research.
本發明提供一種半導體元件的製造方法,可有效避免在將導體材料填入高深寬比的溝渠時形成分散不均的孔洞。 The present invention provides a method of manufacturing a semiconductor device, which can effectively prevent pores that are unevenly dispersed when a conductor material is filled in a trench having a high aspect ratio.
本發明提供一種半導體元件的製造方法,包括:在基底上形成多個鰭狀結構以及進行至少2次循環製程,以形成第一導體層。上述鰭狀結構之間具有溝渠。上述每一循環製程包括:沉積製程以及蝕刻製程。沉積製程係在上述溝渠中填入第一導體材料層。上述第一導體材料層覆蓋上述鰭狀結構的頂部以及側壁。蝕刻製程係移除部分上述第一導體材料層。上述第一導體層的第一厚度調整至小於上述第一導體層的第二厚度。上述第一厚度為位於上述鰭狀結構的上部側壁的上述第一導體層的厚度,上述第二厚度為位於上述鰭狀結構的下部側壁的上述第一導體層的厚度。 The present invention provides a method of fabricating a semiconductor device, comprising: forming a plurality of fin structures on a substrate and performing at least two cycles to form a first conductor layer. There is a ditch between the fin structures. Each of the above cyclic processes includes a deposition process and an etching process. The deposition process fills the trenches with a first layer of conductive material. The first layer of conductor material covers the top and sidewalls of the fin structure. The etching process removes a portion of the first layer of conductor material. The first thickness of the first conductor layer is adjusted to be smaller than the second thickness of the first conductor layer. The first thickness is a thickness of the first conductor layer located on an upper sidewall of the fin structure, and the second thickness is a thickness of the first conductor layer located on a lower sidewall of the fin structure.
在本發明的一實施例中,在進行上述循環製程之後更包括:在上述溝渠中填入第二導體材料層。 In an embodiment of the invention, after the performing the cyclic process, the method further comprises: filling the trench with a second layer of conductive material.
在本發明的一實施例中,進行上述循環製程後,上述第一導體層的厚度由上述鰭狀結構的下部側壁至上述鰭狀結構的上部側壁遞減。 In an embodiment of the invention, after the cyclic process, the thickness of the first conductor layer decreases from a lower sidewall of the fin structure to an upper sidewall of the fin structure.
在本發明的一實施例中,進行上述循環製程後,上述第一導體層的表面與上述基底的表面之間的第一夾角小於上述鰭狀結構的側壁與上述基底的表面之間的第二夾角。 In an embodiment of the invention, after the cyclic process, a first angle between a surface of the first conductor layer and a surface of the substrate is smaller than a second between a sidewall of the fin structure and a surface of the substrate Angle.
本發明提供一種半導體元件,包括:基底、多個鰭狀結構以及第一導體層。上述鰭狀結構位於上述基底上。上述第一導體層覆蓋上述鰭狀結構的側壁。上述第一導體層的第一厚度小於上述第一導體層的第二厚度。上述第一厚度為位於上述鰭狀結構的上部側壁的上述第一導體層的厚度,上述第二厚度為位於上述鰭狀結構的下部側壁的上述第一導體層的厚度。 The present invention provides a semiconductor device comprising: a substrate, a plurality of fin structures, and a first conductor layer. The fin structure is located on the substrate. The first conductor layer covers a sidewall of the fin structure. The first thickness of the first conductor layer is smaller than the second thickness of the first conductor layer. The first thickness is a thickness of the first conductor layer located on an upper sidewall of the fin structure, and the second thickness is a thickness of the first conductor layer located on a lower sidewall of the fin structure.
在本發明的一實施例中,每一鰭狀結構包括:條狀層;以及電荷儲存層,覆蓋上述條狀層的頂部以及側壁。 In an embodiment of the invention, each of the fin structures includes: a strip layer; and a charge storage layer covering the top and sidewalls of the strip layer.
在本發明的一實施例中,每一鰭狀結構包括:堆疊層;以及電荷儲存層。每一堆疊層包括交互堆疊的至少一第二導體層以及至少一介電層。電荷儲存層,覆蓋上述堆疊層的頂部以及側壁。 In an embodiment of the invention, each of the fin structures includes: a stacked layer; and a charge storage layer. Each stacked layer includes at least one second conductor layer and at least one dielectric layer that are alternately stacked. A charge storage layer covers the top and sidewalls of the stacked layers.
在本發明的一實施例中,上述半導體元件更包括:第二導體層,覆蓋上述第一導體層的表面以及上述電荷儲存層的頂部。 In an embodiment of the invention, the semiconductor device further includes a second conductor layer covering a surface of the first conductor layer and a top portion of the charge storage layer.
在本發明的一實施例中,上述第一導體層的厚度由上述鰭狀結構的下部側壁至上述鰭狀結構的上部側壁遞減。 In an embodiment of the invention, the thickness of the first conductor layer is decreased from a lower sidewall of the fin structure to an upper sidewall of the fin structure.
在本發明的一實施例中,上述第一導體層的表面與上述基底的表面之間的第一夾角小於上述鰭狀結構的側壁與上述基底的表面之間的第二夾角。 In an embodiment of the invention, a first angle between a surface of the first conductor layer and a surface of the substrate is smaller than a second angle between a sidewall of the fin structure and a surface of the substrate.
本發明又提供一種半導體元件的製造方法,包括:在基底上形成多個鰭狀結構,上述鰭狀結構之間具有溝渠;在上述溝渠中填入導體層,上述導體層包括多數個導體材料層,且覆蓋上 述鰭狀結構的頂部以及側壁;以及將至少一導體材料層的第一厚度調整至小於上述導體材料層的第二厚度,其中上述第一厚度為位於上述鰭狀結構的上部側壁的上述導體材料層的厚度,上述第二厚度為位於上述鰭狀結構的下部側壁的上述導體材料層的厚度。 The invention further provides a method for fabricating a semiconductor device, comprising: forming a plurality of fin structures on a substrate, wherein the fin structures have a trench therebetween; and filling the conductor layer in the trench, the conductor layer comprising a plurality of conductive material layers And covered a top portion of the fin structure and a sidewall; and adjusting a first thickness of the at least one layer of the conductor material to be less than a second thickness of the conductor material layer, wherein the first thickness is the conductor material located on an upper sidewall of the fin structure The thickness of the layer, the second thickness being the thickness of the conductor material layer located on the lower sidewall of the fin structure.
在本發明的一實施例中,將上述第一厚度與上述第二厚度之間的差值調整至大於1Å且小於10Å。 In an embodiment of the invention, the difference between the first thickness and the second thickness is adjusted to be greater than 1 Å and less than 10 Å.
在本發明的一實施例中,上述導體材料層的厚度由上述鰭狀結構的下部側壁至上述鰭狀結構的上部側壁遞減。 In an embodiment of the invention, the thickness of the conductor material layer is decreased from a lower sidewall of the fin structure to an upper sidewall of the fin structure.
在本發明的一實施例中,上述導體材料層的表面與上述基底的表面之間的第一夾角小於上述鰭狀結構的側壁與上述基底的表面之間的第二夾角。 In an embodiment of the invention, the first angle between the surface of the conductive material layer and the surface of the substrate is smaller than a second angle between the sidewall of the fin structure and the surface of the substrate.
基於上述,本發明藉由使覆蓋鰭狀結構側壁的第一導體材料層的第一厚度(位於鰭狀結構的上部側壁的第一導體材料層的厚度)小於導體材料層的第二厚度(位於上述鰭狀結構的下部側壁的上述第一導體材料層的厚度),可有效避免在將導體材料填入高深寬比的溝渠時形成分散不均的孔洞,進而改善半導體元件的電性表現。 Based on the above, the present invention is characterized in that the first thickness of the first conductive material layer covering the sidewall of the fin structure (the thickness of the first conductive material layer on the upper sidewall of the fin structure) is smaller than the second thickness of the conductive material layer (located The thickness of the first conductive material layer on the lower sidewall of the fin structure can effectively avoid the formation of unevenly dispersed holes when filling the conductor material into the trench of high aspect ratio, thereby improving the electrical performance of the semiconductor device.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
10‧‧‧基底 10‧‧‧Base
12、12a、16、16a‧‧‧介電層 12, 12a, 16, 16a‧‧‧ dielectric layer
14、14a、32b、38、40a‧‧‧導體層 14, 14a, 32b, 38, 40a‧‧‧ conductor layer
18、18a‧‧‧堆疊層 18, 18a‧‧‧Stacking
20、20a‧‧‧硬罩幕層 20, 20a‧‧‧ hard mask layer
22、22a‧‧‧電荷儲存層 22, 22a‧‧‧ charge storage layer
32、40、32a‧‧‧導體材料層 32, 40, 32a‧‧‧ conductor material layer
38a‧‧‧條狀層 38a‧‧‧ Strip
50‧‧‧圖案化的光阻層 50‧‧‧ patterned photoresist layer
100、200、300、400‧‧‧半導體元件 100, 200, 300, 400‧‧‧ semiconductor components
101、201‧‧‧鰭狀結構 101, 201‧‧‧Fin structure
A-A’‧‧‧線 A-A’‧‧‧ line
C‧‧‧轉角部 C‧‧‧ Corner
D1、D2‧‧‧方向 D1, D2‧‧‧ direction
T‧‧‧溝渠 T‧‧‧ Ditch
t1‧‧‧厚度 T1‧‧‧ thickness
t2‧‧‧厚度 T2‧‧‧ thickness
θ1‧‧‧夾角 Θ1‧‧‧ angle
θ2‧‧‧夾角 Θ2‧‧‧ angle
θ3‧‧‧夾角 Θ3‧‧‧ angle
圖1A為依照本發明的一實施例所繪示的半導體元件的上視示意圖。 FIG. 1A is a top view of a semiconductor device in accordance with an embodiment of the invention.
圖1B為沿圖1A之A-A’線所繪示的半導體元件的剖面示意圖。 Fig. 1B is a schematic cross-sectional view of the semiconductor device taken along line A-A' of Fig. 1A.
圖2為依照本發明的另一實施例所繪示的半導體元件的剖面示意圖。 2 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.
圖3A至圖3F為依照本發明的一實施例所繪示的半導體元件的製造方法的剖面示意圖。 3A-3F are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the invention.
圖4A至圖4B為依照本發明的另一實施例所繪示的半導體元件的製造方法的剖面示意圖。 4A-4B are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with another embodiment of the present invention.
圖1A為依照本發明的一實施例所繪示的半導體元件的上視示意圖。圖1B為沿圖1A之A-A’線所繪示的半導體元件的剖面示意圖。 FIG. 1A is a top view of a semiconductor device in accordance with an embodiment of the invention. Fig. 1B is a schematic cross-sectional view of the semiconductor device taken along line A-A' of Fig. 1A.
請參照圖1A以及圖1B,半導體元件100包括基底10、圖案化的介電層12a、多個鰭狀結構101、多個導體層32b以及多個導體層40a。基底10可包括半導體材料、絕緣體材料、導體材料或上述材料的任意組合。基底10的材質例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組 中的至少一種物質所構成的材質或任何適合用於本發明製程的物理結構。基底10包括單層結構或多層結構。此外,也可使用絕緣層上矽(silicon on insulator,SOI)基底。基底10例如是矽或矽化鍺。 1A and 1B, the semiconductor device 100 includes a substrate 10, a patterned dielectric layer 12a, a plurality of fin structures 101, a plurality of conductor layers 32b, and a plurality of conductor layers 40a. Substrate 10 can comprise a semiconductor material, an insulator material, a conductor material, or any combination of the foregoing. The material of the substrate 10 is, for example, selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. A material composed of at least one of the materials or any physical structure suitable for use in the process of the present invention. The substrate 10 includes a single layer structure or a multilayer structure. In addition, a silicon on insulator (SOI) substrate can also be used. The substrate 10 is, for example, tantalum or niobium.
圖案化的介電層12a位於基底10上。介電層12a包括氧化物、氮化物、氮氧化物或是介電常數小於4的低介電常數材料。在一實施例中,介電層12a例如是底氧化層(bottom oxide layer,BOX)。介電層12a的厚度例如是介於3000Å至4000Å之間。 The patterned dielectric layer 12a is located on the substrate 10. The dielectric layer 12a includes an oxide, a nitride, an oxynitride or a low dielectric constant material having a dielectric constant of less than 4. In an embodiment, the dielectric layer 12a is, for example, a bottom oxide layer (BOX). The thickness of the dielectric layer 12a is, for example, between 3,000 Å and 4,000 Å.
多個鰭狀結構101位於介電層12a上。每一鰭狀結構101沿著第一方向D1延伸。相鄰兩個鰭狀結構101之間具有溝渠T。溝渠T可以是任意長度、寬度、形狀的溝渠。溝渠T可為寬溝渠或窄溝渠。在一實施例中,溝渠T的寬度例如是介於200Å至300Å之間;深度例如是介於5000Å至6000Å間。換言之,溝渠T具有較大的深寬比。在一實施例中,溝渠T的深寬比例如是介於16至30之間。溝渠T的剖面可為任意形狀,例如是V型、U型、菱形或其組合,但本發明不以此為限。 A plurality of fin structures 101 are located on the dielectric layer 12a. Each fin structure 101 extends along a first direction D1. There is a trench T between two adjacent fin structures 101. The trench T can be a trench of any length, width, shape. The trench T can be a wide trench or a narrow trench. In one embodiment, the width of the trench T is, for example, between 200 Å and 300 Å; and the depth is, for example, between 5,000 Å and 6,000 Å. In other words, the trench T has a large aspect ratio. In an embodiment, the aspect ratio of the trench T is, for example, between 16 and 30. The cross section of the trench T may be any shape, for example, a V-shape, a U-shape, a diamond shape, or a combination thereof, but the invention is not limited thereto.
每一鰭狀結構101例如是包括堆疊層18a以及電荷儲存層22a。每一堆疊層18a包括交互堆疊的至少一導體層14a以及至少一介電層16a。在一實施例中,導體層14a位於介電層12a上,且介電層16a位於導體層14a上,但本發明不以此為限。在另一實施例中,介電層16a也可以是位於介電層12a上。導體層14a與介電層16a相互交替的往基底10上方堆疊,以形成堆疊層18a。 在幾何形狀方面,每一鰭狀結構101的側壁與基底10的表面之間的夾角θ2例如是大於85.0度,且小於89.9度。另一方面,每一堆疊層18a的轉角部C可以具有一弧度。介電層16a可與介電層12a的材料相同或相異。介電層16a的材料可以包括氧化物、氮化物、氮氧化物或是介電常數小於4的低介電常數材料。介電層16a的厚度例如是介於300Å至500Å之間。導體層14a的材料包括未摻雜的半導體或是經摻雜的半導體,例如是多晶矽或是摻雜的多晶矽。導體層14a的厚度例如是介於200Å至300Å之間。在一實施例中,導體層14a例如是做為半導體元件100的位元線或字元線。另外,在此實施例中,鰭狀結構101例如是在由彼此相互交替的多晶矽層及氧化層所構成的堆疊層18a上具有電荷儲存層22a。 Each of the fin structures 101 includes, for example, a stacked layer 18a and a charge storage layer 22a. Each stacked layer 18a includes at least one conductor layer 14a and at least one dielectric layer 16a that are alternately stacked. In one embodiment, the conductor layer 14a is located on the dielectric layer 12a, and the dielectric layer 16a is located on the conductor layer 14a, but the invention is not limited thereto. In another embodiment, the dielectric layer 16a may also be on the dielectric layer 12a. The conductor layer 14a and the dielectric layer 16a are alternately stacked above the substrate 10 to form a stacked layer 18a. In terms of geometry, the angle θ2 between the sidewall of each fin structure 101 and the surface of the substrate 10 is, for example, greater than 85.0 degrees and less than 89.9 degrees. On the other hand, the corner portion C of each of the stacked layers 18a may have a curvature. The dielectric layer 16a may be the same as or different from the material of the dielectric layer 12a. The material of the dielectric layer 16a may include an oxide, a nitride, an oxynitride or a low dielectric constant material having a dielectric constant of less than 4. The thickness of the dielectric layer 16a is, for example, between 300 Å and 500 Å. The material of the conductor layer 14a includes an undoped semiconductor or a doped semiconductor such as polysilicon or doped polysilicon. The thickness of the conductor layer 14a is, for example, between 200 Å and 300 Å. In an embodiment, the conductor layer 14a is, for example, a bit line or a word line as the semiconductor element 100. Further, in this embodiment, the fin structure 101 has, for example, a charge storage layer 22a on the stacked layer 18a composed of a polysilicon layer and an oxide layer which alternate with each other.
請繼續參照圖1A以及圖1B,每一鰭狀結構101可以選擇性地更包括硬罩幕層20a。硬罩幕層20a例如是位於鰭狀結構101的最上層,但本發明不以此為限。硬罩幕層20a可為單層或多層。硬罩幕層20a的材料例如是氧化矽、氮化矽或其他具有高楊氏模數(Young’s modulus)的材料。硬罩幕層20a的厚度例如是介於4000Å至5000Å之間。 1A and 1B, each of the fin structures 101 may optionally further include a hard mask layer 20a. The hard mask layer 20a is, for example, located at the uppermost layer of the fin structure 101, but the invention is not limited thereto. The hard mask layer 20a may be a single layer or a plurality of layers. The material of the hard mask layer 20a is, for example, tantalum oxide, tantalum nitride or other material having a high Young's modulus. The thickness of the hard mask layer 20a is, for example, between 4,000 Å and 5,000 Å.
電荷儲存層22a覆蓋堆疊層18a的側壁、硬罩幕層20a的側壁以及硬罩幕層20a的頂部。電荷儲存層22a的材料包括氧化物、氮化物或其組合。具體而言,電荷儲存層22a的材料包括氮化矽、氧化矽或其組合。電荷儲存層22a可以是單層或多層。 在一實施例中,電荷儲存層22a例如是單層的氧化矽層。在另一實施例中,電荷儲存層22a例如是由氧化層/氮化層/氧化層(Oxide-Nitride-Oxide,ONO)所構成的複合層。電荷儲存層22a的厚度例如是介於200Å至300Å之間。 The charge storage layer 22a covers the sidewall of the stacked layer 18a, the sidewall of the hard mask layer 20a, and the top of the hard mask layer 20a. The material of the charge storage layer 22a includes an oxide, a nitride, or a combination thereof. Specifically, the material of the charge storage layer 22a includes tantalum nitride, tantalum oxide, or a combination thereof. The charge storage layer 22a may be a single layer or a plurality of layers. In an embodiment, the charge storage layer 22a is, for example, a single layer of ruthenium oxide layer. In another embodiment, the charge storage layer 22a is, for example, a composite layer composed of an oxide layer/nitride layer/Oxide (ONO). The thickness of the charge storage layer 22a is, for example, between 200 Å and 300 Å.
導體層32b位於溝渠T中的電荷儲存層22a上,且覆蓋電荷儲存層22a的部分側壁。換言之,導體層32b覆蓋每一鰭狀結構101的側壁。導體層32b可為單層或多層。值得注意的是,導體層32b的第一厚度t1小於導體層32b的第二厚度t2。第一厚度t1指的是為位於鰭狀結構101的上部側壁的導體層32b的厚度,第二厚度t2指的是位於鰭狀結構101的下部側壁的導體層32b的厚度。另外,於導體層32b為多層結構時,第一厚度t1以及第二厚度t2所指的是多層導體層的厚度總和。也就是說,只要至少一層導體層具有如下的厚度分佈即可:位於鰭狀結構101的上部側壁的導體層的厚度小於位於鰭狀結構101的下部側壁的導體層的厚度。在一實施例中,每一層導體層均具有上述厚度分佈。在一實施例中,導體層32b的厚度由每一鰭狀結構101的下部側壁至每一鰭狀結構101的上部側壁遞減。在一實施例中,第一厚度t1與第二厚度t2之間的差值大於1Å且小於10Å,但本發明並不限於此。在另一實施例中,導體層32b的表面與基底10的表面之間的夾角θ1小於每一鰭狀結構101的側壁與基底10的表面之間的夾角θ2。每一導體層32b沿著第二方向D2延伸。第二方向D2與第一方向D1不同。第二方向D2例如是與第一方向D1正交。 每一導體層32b位於溝渠T中且覆蓋鰭狀結構101的部分側壁。導體層32b的材料例如是多晶矽、摻雜的多晶矽、金屬材料或其組合。摻雜的多晶矽例如是N+摻雜多晶矽或P+摻雜多晶矽。導體層32b的厚度例如是介於10Å至50Å之間。 The conductor layer 32b is located on the charge storage layer 22a in the trench T and covers a portion of the sidewall of the charge storage layer 22a. In other words, the conductor layer 32b covers the sidewall of each fin structure 101. The conductor layer 32b may be a single layer or a plurality of layers. It is to be noted that the first thickness t1 of the conductor layer 32b is smaller than the second thickness t2 of the conductor layer 32b. The first thickness t1 refers to the thickness of the conductor layer 32b located at the upper sidewall of the fin structure 101, and the second thickness t2 refers to the thickness of the conductor layer 32b located at the lower sidewall of the fin structure 101. Further, when the conductor layer 32b has a multilayer structure, the first thickness t1 and the second thickness t2 refer to the sum of the thicknesses of the multilayer conductor layers. That is, as long as at least one layer of the conductor layer has a thickness distribution in which the thickness of the conductor layer located on the upper side wall of the fin structure 101 is smaller than the thickness of the conductor layer located on the lower side wall of the fin structure 101. In an embodiment, each of the conductor layers has the above thickness distribution. In an embodiment, the thickness of the conductor layer 32b is diminished from the lower sidewall of each fin structure 101 to the upper sidewall of each fin structure 101. In an embodiment, the difference between the first thickness t1 and the second thickness t2 is greater than 1 Å and less than 10 Å, but the invention is not limited thereto. In another embodiment, the angle θ1 between the surface of the conductor layer 32b and the surface of the substrate 10 is smaller than the angle θ2 between the sidewall of each fin structure 101 and the surface of the substrate 10. Each conductor layer 32b extends along a second direction D2. The second direction D2 is different from the first direction D1. The second direction D2 is, for example, orthogonal to the first direction D1. Each conductor layer 32b is located in the trench T and covers a portion of the sidewall of the fin structure 101. The material of the conductor layer 32b is, for example, polycrystalline germanium, doped polycrystalline germanium, metallic material or a combination thereof. The doped polysilicon is, for example, an N+ doped polysilicon or a P+ doped polysilicon. The thickness of the conductor layer 32b is, for example, between 10 Å and 50 Å.
導體層40a位於鰭狀結構101的電荷儲存層22a上,且延伸到溝渠T之中,與導體層32b電性連接。導體層40a的材料例如是多晶矽、摻雜的多晶矽、金屬材料或其組合。導體層40a沿著第二方向D2延伸。摻雜的多晶矽例如是N+摻雜多晶矽或P+摻雜多晶矽。導體層40a的厚度例如是介於1000Å至1400Å之間。 The conductor layer 40a is located on the charge storage layer 22a of the fin structure 101 and extends into the trench T to be electrically connected to the conductor layer 32b. The material of the conductor layer 40a is, for example, polycrystalline germanium, doped polycrystalline germanium, metallic material or a combination thereof. The conductor layer 40a extends along the second direction D2. The doped polysilicon is, for example, an N+ doped polysilicon or a P+ doped polysilicon. The thickness of the conductor layer 40a is, for example, between 1000 Å and 1400 Å.
導體層40a與導體層32b例如是共同做為半導體元件100的字元線或位元線。值得注意的是,當導體層40a與導體層32b例如是做為半導體元件100的字元線時,位於鰭狀結構101中的導體層14a則做為位元線。同理,當導體層40a與導體層32b例如是做為半導體元件100的位元線時,位於鰭狀結構101中的導體層14a則做為字元線。 The conductor layer 40a and the conductor layer 32b are, for example, a word line or a bit line which are collectively used as the semiconductor element 100. It is to be noted that when the conductor layer 40a and the conductor layer 32b are, for example, word lines as the semiconductor element 100, the conductor layer 14a located in the fin structure 101 is used as a bit line. Similarly, when the conductor layer 40a and the conductor layer 32b are, for example, bit lines of the semiconductor element 100, the conductor layer 14a located in the fin structure 101 is used as a word line.
雖然上述實施例中例示了由堆疊層18a以及電荷儲存層22a構成鰭狀結構101的情況,但本發明的半導體元件並不限於此,以下將會再列舉另一實施例以說明這一點。另外,在以下的說明中將會省略類似於上述實施例的流程以及構件的說明。 Although the case where the fin structure 101 is constituted by the stacked layer 18a and the charge storage layer 22a is exemplified in the above embodiment, the semiconductor element of the present invention is not limited thereto, and another embodiment will be listed below to explain this point. In addition, the description of the flow and the components similar to the above embodiment will be omitted in the following description.
圖2為依照本發明的另一實施例所繪示的半導體元件的剖面示意圖。 2 is a cross-sectional view of a semiconductor device in accordance with another embodiment of the present invention.
請同時參照圖1 A、圖1B以及圖2,與上述實施例不同 的是,本發明的另一實施例的半導體元件200與上述半導體元件100相似,但每一鰭狀結構201包括條狀層38a以及電荷儲存層22a。條狀層38a不包括上述的介電層16a,而是由導體材料所構成。導體材料層例如是多晶矽、摻雜的多晶矽、金屬材料或其組合。摻雜的多晶矽例如是N+摻雜多晶矽或P+摻雜多晶矽。電荷儲存層22a覆蓋條狀層38a的頂部以及側壁。 Please refer to FIG. 1A, FIG. 1B and FIG. 2 simultaneously, which is different from the above embodiment. The semiconductor device 200 of another embodiment of the present invention is similar to the above-described semiconductor device 100, but each of the fin structures 201 includes a strip layer 38a and a charge storage layer 22a. The strip layer 38a does not include the dielectric layer 16a described above, but is composed of a conductor material. The layer of conductor material is, for example, polycrystalline germanium, doped polycrystalline germanium, metallic materials or a combination thereof. The doped polysilicon is, for example, an N+ doped polysilicon or a P+ doped polysilicon. The charge storage layer 22a covers the top and side walls of the strip layer 38a.
以下將針對本發明的半導體元件的製造方法進行說明。 Hereinafter, a method of manufacturing a semiconductor device of the present invention will be described.
圖3A至圖3F為依照本發明的一實施例所繪示的半導體元件的製造方法的剖面示意圖。 3A-3F are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the invention.
請參照圖3A,提供基底10。基底10的材料如上所述,於此不再加以贅述。接著,在基底10上形成介電層12。介電層12的材料及厚度如同上文中說明介電層12a的部分所述。介電層12的形成方法例如是熱氧化法或化學氣相沈積法。 Referring to Figure 3A, a substrate 10 is provided. The material of the substrate 10 is as described above and will not be described herein. Next, a dielectric layer 12 is formed on the substrate 10. The material and thickness of the dielectric layer 12 are as described above for the portion of the dielectric layer 12a. The method of forming the dielectric layer 12 is, for example, a thermal oxidation method or a chemical vapor deposition method.
然後,在介電層12上形成多個堆疊層18。具體而言,形成堆疊層18的步驟例如是形成交互堆疊的導體層14以及介電層16。每一堆疊層18的形成方法包括先在介電層12上形成導體層14,再於導體層14上形成介電層16,但本發明不以此為限。在另一實施例中,形成堆疊層18的方法包括在介電層12上依序形成多數個導體層14以及多數個介電層16。導體層14的材料及厚度如同上文中說明導體層14a的部分所述。導體層14的形成方法包括化學氣相沈積法。介電層16的材料及厚度如同上文中說明介電層16a的部分所述。介電層16的形成方法例如是熱氧化法或化學 氣相沈積法。 Then, a plurality of stacked layers 18 are formed on the dielectric layer 12. Specifically, the step of forming the stacked layer 18 is, for example, forming the electrically stacked conductor layer 14 and the dielectric layer 16. The method of forming each of the stacked layers 18 includes forming the conductive layer 14 on the dielectric layer 12 and forming the dielectric layer 16 on the conductive layer 14, but the invention is not limited thereto. In another embodiment, a method of forming stacked layers 18 includes sequentially forming a plurality of conductor layers 14 and a plurality of dielectric layers 16 on dielectric layer 12. The material and thickness of the conductor layer 14 are as described above for the portion of the conductor layer 14a. The method of forming the conductor layer 14 includes a chemical vapor deposition method. The material and thickness of the dielectric layer 16 are as described above for the portion of the dielectric layer 16a. The method of forming the dielectric layer 16 is, for example, thermal oxidation or chemistry. Vapor deposition method.
之後,在最上層的堆疊層18上形成硬罩幕層20。硬罩幕層20的材料及厚度如同上文中說明硬罩幕層20a的部分所述。形成硬罩幕層20的方法包括化學氣相沈積法或有機金屬化學氣相沈積法(MOCVD)。接著,於硬罩幕層20上形成圖案化的光阻層50。 Thereafter, a hard mask layer 20 is formed on the uppermost stacked layer 18. The material and thickness of the hard mask layer 20 are as described above in the section of the hard mask layer 20a. The method of forming the hard mask layer 20 includes chemical vapor deposition or organometallic chemical vapor deposition (MOCVD). Next, a patterned photoresist layer 50 is formed on the hard mask layer 20.
請同時參照圖3A以及圖3B,以圖案化的光阻層50為罩幕並進行蝕刻,以在基底10上形成多個堆疊層18a,並在堆疊層18a之間形成多數個溝渠T。對半導體元件200進行蝕刻的方法包括以圖案化的光阻層50為罩幕,對硬罩幕層20進行蝕刻,以將圖案化的光阻層50的圖案轉移至硬罩幕層20。蝕刻的方式包括非等向性蝕刻,例如是乾式蝕刻法。乾式蝕刻法可以是濺鍍蝕刻、反應性離子蝕刻等。接著,移除圖案化的光阻層50。然後,以圖案化的硬罩幕層20a為罩幕,對多個介電層16、多個導體層14以及介電層12進行蝕刻,以在基底10上形成多個堆疊層18a。此外,每一堆疊層18a的側壁與基底10的表面之間的夾角θ3例如是大於85.0度,且小於89.9度。另一方面,亦可使每一堆疊層18a的轉角部C具有一弧度。 Referring to FIG. 3A and FIG. 3B simultaneously, the patterned photoresist layer 50 is used as a mask and etched to form a plurality of stacked layers 18a on the substrate 10, and a plurality of trenches T are formed between the stacked layers 18a. The method of etching the semiconductor device 200 includes etching the hard mask layer 20 with the patterned photoresist layer 50 as a mask to transfer the pattern of the patterned photoresist layer 50 to the hard mask layer 20. The etching method includes an anisotropic etching such as a dry etching method. The dry etching method may be sputtering etching, reactive ion etching, or the like. Next, the patterned photoresist layer 50 is removed. Then, the plurality of dielectric layers 16, the plurality of conductor layers 14, and the dielectric layer 12 are etched with the patterned hard mask layer 20a as a mask to form a plurality of stacked layers 18a on the substrate 10. Further, the angle θ3 between the side wall of each stacked layer 18a and the surface of the substrate 10 is, for example, greater than 85.0 degrees and less than 89.9 degrees. On the other hand, the corner portion C of each of the stacked layers 18a may have a curvature.
然後,請參照圖3C,於基底10上形成電荷儲存層22。以形成鰭狀結構101。電荷儲存層22沿著堆疊層18a的頂面及側壁共形地形成。換言之,電荷儲存層22覆蓋堆疊層18a的頂部以及側壁。電荷儲存層22的材料及厚度如前述。電荷儲存層22的 形成方法例如是化學氣相沈積法或熱氧化法。 Then, referring to FIG. 3C, a charge storage layer 22 is formed on the substrate 10. To form the fin structure 101. The charge storage layer 22 is conformally formed along the top surface and sidewalls of the stacked layer 18a. In other words, the charge storage layer 22 covers the top and sidewalls of the stacked layer 18a. The material and thickness of the charge storage layer 22 are as described above. Charge storage layer 22 The formation method is, for example, a chemical vapor deposition method or a thermal oxidation method.
請參照圖3C~圖3E,進行至少2次的循環製程,例如是2次至10次,以在溝渠T中形成單層或多層的導體層32a。在本說明書中,所謂進行1次的循環製程指的是進行一次沉積製程以及一次蝕刻製程。更具體地說,請參照圖3C,沉積製程指的是在溝渠T中填入導體材料層32(如圖3D所示),導體材料層32是共形地形成在電荷儲存層22上。在一實施例中,導體材料層32的材料例如是多晶矽、摻雜的多晶矽、金屬材料或其組合。沉積製程可以是原子層沈積製程或化學氣相沉積製程。 Referring to FIGS. 3C to 3E, at least two cycles of the process, for example, two to ten times, are performed to form a single or multiple conductor layer 32a in the trench T. In the present specification, the so-called one-time cycle process refers to performing one deposition process and one etching process. More specifically, referring to FIG. 3C, the deposition process refers to filling the trench T with a layer of conductive material 32 (as shown in FIG. 3D) that is conformally formed on the charge storage layer 22. In an embodiment, the material of the conductive material layer 32 is, for example, polycrystalline germanium, doped polycrystalline germanium, metallic material, or a combination thereof. The deposition process can be an atomic layer deposition process or a chemical vapor deposition process.
請參照圖3D與圖3E,循環製程指的蝕刻製程指的是移除部分導體材料層32,以不均勻地削減導體材料層32的厚度。在進行至少2次的循環製程之後,所形成的導體層32a的第一厚度t1會小於導體層32a的第二厚度t2。第一厚度t1指的是為位於鰭狀結構101的上部側壁的導體層32a的厚度,第二厚度t2指的是位於鰭狀結構101的下部側壁的導體層32a的厚度。蝕刻製程可包括等向性蝕刻製程或非等向性蝕刻製程。另外,於導體層32a為多層結構時,第一厚度t1以及第二厚度t2所指的是在不同位置之多層導體材料層的厚度總和。也就是說,只要導體層32a中的至少一層導體材料層具有如下的厚度分佈即可:位於鰭狀結構101的上部側壁的導體材料層的厚度小於位於鰭狀結構101的下部側壁的導體材料層的厚度。在一實施例中,導體層32a中的每一層導體材料層均具有上述厚度分佈。在一實施例中,位於電荷儲存 層22的頂部上的導體材料層32以及電荷儲存層22的一部分亦被移除。在一實施例中,上述的蝕刻製程中電荷儲存層22的頂部被圓化,因此在進行上述蝕刻製程後,電荷儲存層22a的頂部呈現圓弧狀,有利於在後續的製程中將導體材料層填入於溝渠中,進而避免形成分散不均的孔洞。 Referring to FIGS. 3D and 3E, the etching process refers to removing a portion of the conductor material layer 32 to unevenly reduce the thickness of the conductor material layer 32. After at least 2 cycles of the cycle, the first thickness t1 of the formed conductor layer 32a is less than the second thickness t2 of the conductor layer 32a. The first thickness t1 refers to the thickness of the conductor layer 32a located at the upper sidewall of the fin structure 101, and the second thickness t2 refers to the thickness of the conductor layer 32a located at the lower sidewall of the fin structure 101. The etching process can include an isotropic etching process or an anisotropic etching process. Further, when the conductor layer 32a has a multilayer structure, the first thickness t1 and the second thickness t2 refer to the sum of thicknesses of the plurality of layers of the conductor material at different positions. That is, as long as at least one layer of the conductor material in the conductor layer 32a has a thickness distribution in which the thickness of the conductor material layer located on the upper sidewall of the fin structure 101 is smaller than the conductor material layer located on the lower sidewall of the fin structure 101. thickness of. In one embodiment, each of the layers of conductor material in conductor layer 32a has the thickness profile described above. In an embodiment, located in charge storage The layer of conductor material 32 on top of layer 22 and a portion of charge storage layer 22 are also removed. In an embodiment, the top of the charge storage layer 22 is rounded in the etching process. Therefore, after the etching process is performed, the top of the charge storage layer 22a has an arc shape, which is favorable for the conductor material in the subsequent process. The layers are filled in the trenches to avoid the formation of unevenly dispersed holes.
在一示範實施例中,導體層32a的厚度由鰭狀結構101的下部側壁至鰭狀結構101的上部側壁遞減。在另一示範實施例中,重複進行循環製程,以使第一厚度t1與第二厚度t2之間具有差值,此差值大於1Å且小於10Å,但本發明並不限於此。在另一實施例中,導體層32a的表面與基底10的表面之間的夾角θ1小於每一鰭狀結構101的側壁與基底10的表面之間的夾角θ2。 In an exemplary embodiment, the thickness of the conductor layer 32a is diminished from the lower sidewall of the fin structure 101 to the upper sidewall of the fin structure 101. In another exemplary embodiment, the cyclic process is repeated such that there is a difference between the first thickness t1 and the second thickness t2, the difference being greater than 1 Å and less than 10 Å, but the invention is not limited thereto. In another embodiment, the angle θ1 between the surface of the conductor layer 32a and the surface of the substrate 10 is smaller than the angle θ2 between the sidewall of each fin structure 101 and the surface of the substrate 10.
接著,請參照圖3F,在鰭狀結構101的電荷儲存層22a的頂部以及導體層32a的表面上形成導體材料層40。導體材料層40填滿溝渠T並與導體層32a電性連接。導體材料層40的材料例如是多晶矽、摻雜的多晶矽、金屬材料或其組合。摻雜的多晶矽例如是N+摻雜多晶矽或P+摻雜多晶矽。形成導體材料層40的方法包括化學氣相沈積法。在一實施例中,亦可對所形成的導體層32a與導體材料層40進行熱處理,以使導體層32a與導體材料層40中的孔洞擴散至外部或聚集在溝渠T的頂部。進行上述熱處理的方式例如是快速使所形成的導體層32a與導體材料層40升溫至800℃~1100℃並立即冷卻至25℃~100℃,或者是加熱至600℃~1000℃後持溫1小時~24小時。升溫的速率例如是300℃/ 小時~500℃/小時。熱處理的環境例如是在氫氣氣氛下。升溫的方式例如是使用雷射脈衝進行加熱。 Next, referring to FIG. 3F, a conductor material layer 40 is formed on the top of the charge storage layer 22a of the fin structure 101 and the surface of the conductor layer 32a. The conductor material layer 40 fills the trench T and is electrically connected to the conductor layer 32a. The material of the conductor material layer 40 is, for example, polycrystalline germanium, doped polycrystalline germanium, metallic material or a combination thereof. The doped polysilicon is, for example, an N+ doped polysilicon or a P+ doped polysilicon. A method of forming the conductor material layer 40 includes a chemical vapor deposition method. In an embodiment, the formed conductor layer 32a and the conductor material layer 40 may also be heat treated to diffuse the holes in the conductor layer 32a and the conductor material layer 40 to the outside or to gather on top of the trench T. The method of performing the above heat treatment is, for example, rapidly heating the formed conductor layer 32a and the conductor material layer 40 to 800 ° C to 1100 ° C and immediately cooling to 25 ° C to 100 ° C, or heating to 600 ° C to 1000 ° C and holding the temperature 1 Hours ~ 24 hours. The rate of temperature rise is, for example, 300 ° C / Hours ~ 500 ° C / hour. The heat treatment environment is, for example, under a hydrogen atmosphere. The method of raising the temperature is, for example, heating using a laser pulse.
接著,請同時參照圖1A、圖1B以及圖3F,圖案化導體層32a、導體材料層40,以在基底10上形成多個導體層32b、多個導體層40a。每一導體層32b延伸的方向與鰭狀結構101延伸的方向不同,例如是互相垂直。每一導體層32b位於溝渠T中且覆蓋鰭狀結構101的部分側壁。每一導體層40a位於鰭狀結構101的電荷儲存層22a上,且延伸到溝渠T之中,同時亦覆蓋導體層32b的表面。每一導體層40a也覆蓋鰭狀結構101頂面上的電荷儲存層22a。 Next, referring to FIG. 1A, FIG. 1B, and FIG. 3F, the conductor layer 32a and the conductor material layer 40 are patterned to form a plurality of conductor layers 32b and a plurality of conductor layers 40a on the substrate 10. Each of the conductor layers 32b extends in a direction different from the direction in which the fin structures 101 extend, for example, perpendicular to each other. Each conductor layer 32b is located in the trench T and covers a portion of the sidewall of the fin structure 101. Each of the conductor layers 40a is located on the charge storage layer 22a of the fin structure 101 and extends into the trench T while also covering the surface of the conductor layer 32b. Each of the conductor layers 40a also covers the charge storage layer 22a on the top surface of the fin structure 101.
值得注意的是,由於本發明是利用循環製程先在鰭狀結構側壁上形成上薄下厚的導體層32a,以降低溝渠的深寬比,因此,後續在形成導體材料層40較容易填入於溝渠,因此相較於習知直接在溝渠填入導體材料層的元件,本發明的半導體元件300較不容易於溝渠T中產生孔洞。 It is to be noted that since the present invention utilizes a cyclic process to form a thin and thick conductor layer 32a on the sidewall of the fin structure to reduce the aspect ratio of the trench, the subsequent formation of the conductor material layer 40 is easier to fill. In the trench, the semiconductor device 300 of the present invention is less likely to create voids in the trench T than the conventional components that directly fill the conductor material layer in the trench.
雖然上述實施例中例示了由堆疊層18a以及電荷儲存層22a構成鰭狀結構101的情況,但本發明的半導體元件的製造方法並不限於此,以下將會再列舉另一實施例以說明這一點。另外,在以下的說明中將會省略類似於上述實施例的流程以及構件的說明。 Although the case where the fin structure 101 is constituted by the stacked layer 18a and the charge storage layer 22a is exemplified in the above embodiment, the method of manufacturing the semiconductor device of the present invention is not limited thereto, and another embodiment will be listed below to explain this. a little. In addition, the description of the flow and the components similar to the above embodiment will be omitted in the following description.
圖4A至圖4B為依照本發明的另一實施例所繪示的半導體元件的剖面示意圖。 4A-4B are schematic cross-sectional views of a semiconductor device in accordance with another embodiment of the present invention.
請參照圖4A,與上述實施例不同的是,本發明的另一實施例的半導體元件400的製造方法與上述半導體元件300的製造方法相似,但在基底10上形成介電層12之後會在介電層12上形成導體層38而不形成上述的介電層16。導體層38的材料如同上文中說明條狀層38a的部分所述,故於此不再贅述。形成導體層38的方法包括化學氣相沈積法。之後,在導體層38上形成硬罩幕層20,並於硬罩幕層20上形成圖案化的光阻層50。 Referring to FIG. 4A, unlike the above embodiment, the method of fabricating the semiconductor device 400 of another embodiment of the present invention is similar to the method for fabricating the semiconductor device 300 described above, but after the dielectric layer 12 is formed on the substrate 10, A conductor layer 38 is formed on the dielectric layer 12 without forming the dielectric layer 16 described above. The material of the conductor layer 38 is as described above in the section of the strip layer 38a, and thus will not be described again. The method of forming the conductor layer 38 includes a chemical vapor deposition method. Thereafter, a hard mask layer 20 is formed on the conductor layer 38, and a patterned photoresist layer 50 is formed on the hard mask layer 20.
請參照圖4B,以圖案化的光阻層50為罩幕並進行蝕刻,以在基底10上形成多個條狀層38a,並在條狀層38a之間形成多個溝渠T。對半導體元件400進行蝕刻的方法已於上述實施例中詳述,故於此不再贅述。 Referring to FIG. 4B, the patterned photoresist layer 50 is used as a mask and etched to form a plurality of strip layers 38a on the substrate 10, and a plurality of trenches T are formed between the strip layers 38a. The method of etching the semiconductor device 400 has been described in detail in the above embodiments, and thus will not be described again.
請同時參照圖2以及圖4B,之後的形成電荷儲存層22a以形成多個鰭狀結構201的步驟、形成導體材料層32、40的步驟以及削減導體材料層32的厚度的步驟及其細節皆已於上述實施例的說明中詳述,故於此不再贅述。 Referring to FIG. 2 and FIG. 4B simultaneously, the subsequent steps of forming the charge storage layer 22a to form the plurality of fin structures 201, the steps of forming the conductive material layers 32, 40, and the steps of reducing the thickness of the conductive material layer 32 are as follows. It has been described in detail in the description of the above embodiments, and thus will not be described again.
綜上所述,本發明在鰭狀結構的側壁形成上薄下厚的第一導體材料層,使得後續形成的第二導體材料層具有較好的溝填性,因此,可有效避免在將導體材料填入高深寬比的溝渠時形成分散不均的孔洞,進而改善半導體元件的電性表現。 In summary, the present invention forms a thin and thick first conductor material layer on the sidewall of the fin structure, so that the subsequently formed second conductor material layer has better trench filling property, and therefore, the conductor can be effectively avoided. When the material is filled into a trench having a high aspect ratio, a hole that is unevenly dispersed is formed, thereby improving the electrical performance of the semiconductor device.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍 當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of protection of the present invention It is subject to the definition of the scope of the patent application attached.
10‧‧‧基底 10‧‧‧Base
12a、16a‧‧‧介電層 12a, 16a‧‧‧ dielectric layer
14a、32b、40a‧‧‧導體層 14a, 32b, 40a‧‧‧ conductor layer
18a‧‧‧堆疊層 18a‧‧‧Stacking
20a‧‧‧硬罩幕層 20a‧‧‧hard mask layer
22a‧‧‧電荷儲存層 22a‧‧‧Charge storage layer
100‧‧‧半導體元件 100‧‧‧Semiconductor components
101‧‧‧鰭狀結構 101‧‧‧Fin structure
C‧‧‧轉角部 C‧‧‧ Corner
T‧‧‧溝渠 T‧‧‧ Ditch
t1‧‧‧厚度 T1‧‧‧ thickness
t2‧‧‧厚度 T2‧‧‧ thickness
θ1‧‧‧夾角 Θ1‧‧‧ angle
θ2‧‧‧夾角 Θ2‧‧‧ angle
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103145440A TWI559382B (en) | 2014-12-25 | 2014-12-25 | Semiconductor device and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103145440A TWI559382B (en) | 2014-12-25 | 2014-12-25 | Semiconductor device and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201624547A TW201624547A (en) | 2016-07-01 |
TWI559382B true TWI559382B (en) | 2016-11-21 |
Family
ID=56984832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103145440A TWI559382B (en) | 2014-12-25 | 2014-12-25 | Semiconductor device and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI559382B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100163926A1 (en) * | 2008-12-29 | 2010-07-01 | Hudait Mantu K | Modulation-doped multi-gate devices |
US20100233873A1 (en) * | 2009-03-11 | 2010-09-16 | International Business Machines Corporation | Method of forming a semiconductor device using a sacrificial uniform vertical thickness spacer structure |
TW201230252A (en) * | 2010-11-19 | 2012-07-16 | Micron Technology Inc | A double gated 4F2 DRAM CHC cell and methods of fabricating the same |
TW201436222A (en) * | 2012-12-21 | 2014-09-16 | Intel Corp | Nonplanar III-N transistors with compositionally graded semiconductor channels |
-
2014
- 2014-12-25 TW TW103145440A patent/TWI559382B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100163926A1 (en) * | 2008-12-29 | 2010-07-01 | Hudait Mantu K | Modulation-doped multi-gate devices |
US20100233873A1 (en) * | 2009-03-11 | 2010-09-16 | International Business Machines Corporation | Method of forming a semiconductor device using a sacrificial uniform vertical thickness spacer structure |
TW201230252A (en) * | 2010-11-19 | 2012-07-16 | Micron Technology Inc | A double gated 4F2 DRAM CHC cell and methods of fabricating the same |
TW201436222A (en) * | 2012-12-21 | 2014-09-16 | Intel Corp | Nonplanar III-N transistors with compositionally graded semiconductor channels |
Also Published As
Publication number | Publication date |
---|---|
TW201624547A (en) | 2016-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI648774B (en) | Semiconductor devices and methods for forming the same | |
US10777664B2 (en) | Epitaxy source/drain regions of FinFETs and method forming same | |
TWI480982B (en) | Vertical memory cell | |
US11495494B2 (en) | Methods for reducing contact depth variation in semiconductor fabrication | |
TWI572019B (en) | Vertical channel structure | |
CN106531797A (en) | Semiconductor device and manufacturing method thereof | |
TWI440138B (en) | Memory and manufacturing method thereof | |
TWI635573B (en) | Memory device and method of manufacturing the same | |
US9337209B1 (en) | Semiconductor device and method of fabricating the same | |
TWI615949B (en) | Three-dimensional memory device and method of forming the same | |
TWI559382B (en) | Semiconductor device and method of fabricating the same | |
TWI572017B (en) | Memory device and method of forming the same | |
TWI618224B (en) | Memory structure and manufacturing method there | |
CN106340518A (en) | Storage element and manufacturing method thereof | |
TWI550873B (en) | Semiconductor device and method of fabricating the same | |
KR20200036698A (en) | Semiconductor finfet device and method | |
CN105826312B (en) | Semiconductor element and its manufacturing method | |
JP2010272675A (en) | Semiconductor storage device | |
TWI552336B (en) | Higher aspect ratio structure of semiconductor device | |
TWI559446B (en) | Semiconductor device and method of fabricating the same | |
TWI569372B (en) | Semiconductor device and manufacturing method thereof | |
CN105826321B (en) | Semiconductor element and its manufacturing method | |
JP2022022191A (en) | Epitaxy region including large area for contact plug | |
TW202347623A (en) | Method for forming memory device | |
TW202044557A (en) | Semiconductor device |