TWI558819B - Nickel alloy sputtering target and nickel alloy layer - Google Patents

Nickel alloy sputtering target and nickel alloy layer Download PDF

Info

Publication number
TWI558819B
TWI558819B TW105102091A TW105102091A TWI558819B TW I558819 B TWI558819 B TW I558819B TW 105102091 A TW105102091 A TW 105102091A TW 105102091 A TW105102091 A TW 105102091A TW I558819 B TWI558819 B TW I558819B
Authority
TW
Taiwan
Prior art keywords
nickel alloy
target
atomic percent
alloy target
equal
Prior art date
Application number
TW105102091A
Other languages
Chinese (zh)
Other versions
TW201726936A (en
Inventor
唐志文
林致維
羅尚賢
Original Assignee
光洋應用材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光洋應用材料科技股份有限公司 filed Critical 光洋應用材料科技股份有限公司
Priority to TW105102091A priority Critical patent/TWI558819B/en
Application granted granted Critical
Publication of TWI558819B publication Critical patent/TWI558819B/en
Priority to MYPI2017700185A priority patent/MY182002A/en
Priority to SG10201700458WA priority patent/SG10201700458WA/en
Publication of TW201726936A publication Critical patent/TW201726936A/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

鎳合金靶材及鎳合金層Nickel alloy target and nickel alloy layer

本創作關於一種磁記錄媒體之靶材及材料,尤指一種可適用於垂直式磁記錄媒體之晶種層的鎳合金靶材及鎳合金層。The present invention relates to a target and material for a magnetic recording medium, and more particularly to a nickel alloy target and a nickel alloy layer which are applicable to a seed layer of a vertical magnetic recording medium.

隨著人們對於磁記錄媒體之資訊儲存容量的需求越來越高,如何提升磁記錄媒體的記錄品質一直是業者積極開發的研究課題。根據磁頭磁化的方向,現有技術之磁記錄媒體可區分為水平式磁記錄媒體及垂直式磁記錄媒體。其中,水平式磁記錄媒體之記錄密度已發展至極限;因此,現有技術轉而投入垂直式磁記錄媒體之研究,透過細化記錄單元及疊設垂直式層狀結構,進一步提升磁記錄媒體之記錄密度。As people's demand for information storage capacity of magnetic recording media is increasing, how to improve the recording quality of magnetic recording media has been a research topic actively developed by the industry. The magnetic recording medium of the prior art can be classified into a horizontal magnetic recording medium and a vertical magnetic recording medium according to the direction of magnetization of the magnetic head. Among them, the recording density of the horizontal magnetic recording medium has been developed to the limit; therefore, the prior art has turned into the research of the vertical magnetic recording medium, and the magnetic recording medium is further improved by refining the recording unit and stacking the vertical layered structure. Record the density.

一般垂直式磁記錄媒體之層狀結構由下至上包含基板、附著層、軟磁層(soft underlayer)、晶種層(seed layer)、中間層(intermediate layer)、磁記錄層(magnetic recording layer)、覆蓋層以及潤滑層。The layered structure of a general vertical magnetic recording medium includes a substrate, an adhesion layer, a soft underlayer, a seed layer, an intermediate layer, a magnetic recording layer, and a bottom layer. Cover layer and lubricating layer.

為確保晶種層獲得面心立方(face-centered cubic,FCC)之結晶結構,現有技術多半選用鎳作為晶種層之主要成分;然而,利用鎳靶材所濺鍍而成之晶種層卻存在晶粒粗大、粒徑尺寸變異較大等問題,致使沉積在晶種層上的磁記錄層也存在晶粒粗大、粒徑尺寸不均勻之缺陷,而難以具體提升磁記錄媒體的記錄密度。In order to ensure that the seed layer obtains the crystal structure of face-centered cubic (FCC), most of the prior art uses nickel as the main component of the seed layer; however, the seed layer sputtered by the nickel target is There are problems such as coarse grain size and large variation in particle size size, so that the magnetic recording layer deposited on the seed layer also has defects of coarse crystal grains and uneven particle size, and it is difficult to specifically increase the recording density of the magnetic recording medium.

有鑒於此,目前仍需設法細緻化鎳金屬層的晶粒尺寸,同時均勻化鎳金屬層之晶粒粒徑分佈,使鎳金屬層能適用於垂直式磁記錄媒體中並作為一晶種層使用。In view of this, it is still necessary to try to refine the grain size of the nickel metal layer, and at the same time homogenize the grain size distribution of the nickel metal layer, so that the nickel metal layer can be applied to a vertical magnetic recording medium and serve as a seed layer. use.

本創作一目的在於細緻化及均勻化鎳合金靶材之晶粒粒徑,藉此令該鎳合金靶材所濺鍍而成之鎳合金層亦具有晶粒細緻化及均勻化之效果。The purpose of this creation is to refine and homogenize the grain size of the nickel alloy target, whereby the nickel alloy layer sputtered by the nickel alloy target also has the effect of grain refinement and homogenization.

本創作另一目的在於控制鎳合金靶材由單一FCC相所組成,藉此令該鎳合金靶材所濺鍍而成之鎳合金層亦由單一FCC相所組成。Another purpose of the present invention is to control the nickel alloy target to be composed of a single FCC phase, whereby the nickel alloy layer sputtered by the nickel alloy target is also composed of a single FCC phase.

為達成前述目的,本創作提供一種鎳合金靶材,該鎳合金靶材包括鎳及細化金屬,以該鎳合金靶材之原子總數為基準,該細化金屬之含量大於或等於5原子百分比且小於或等於15原子百分比,所述細化金屬含有錸。In order to achieve the foregoing object, the present invention provides a nickel alloy target comprising nickel and a refined metal, and the content of the refined metal is greater than or equal to 5 atomic percent based on the total number of atoms of the nickel alloy target. And less than or equal to 15 atomic percent, the refined metal contains cerium.

據此,藉由在鎳合金靶材中添加適量的錸,不僅能確保該鎳合金靶材由單一FCC相所組成,更能有利於細緻化及均勻化鎳合金靶材之晶粒粒徑,使該鎳合金靶材的平均晶粒粒徑小於100微米,晶粒粒徑均勻度達20%以下。Accordingly, by adding an appropriate amount of bismuth to the nickel alloy target, not only can the nickel alloy target be composed of a single FCC phase, but also the fineness and uniformization of the grain size of the nickel alloy target can be facilitated. The average grain size of the nickel alloy target is less than 100 μm, and the grain size uniformity is 20% or less.

於該鎳合金靶材中,作為細化金屬之錸的含量可大於或等於5原子百分比且小於或等於10原子百分比。In the nickel alloy target, the content of the ruthenium as the refining metal may be greater than or equal to 5 atomic percent and less than or equal to 10 atomic percent.

依據本創作,除了前述錸可作為其中一種細化金屬外,該細化金屬更包含有:釕(Ru)、鎢(W)、鉭(Ta)、鈮(Nb)、鉬(Mo)、鈦(Ti)或其組合。較佳的,該細化金屬除了錸更包含有釕、鎢或其組合。According to the present invention, in addition to the foregoing niobium as one of the refining metals, the refining metal further includes: ruthenium (Ru), tungsten (W), tantalum (Ta), niobium (Nb), molybdenum (Mo), titanium. (Ti) or a combination thereof. Preferably, the refining metal comprises niobium, tungsten or a combination thereof in addition to niobium.

於一實施態樣中,細化金屬可為錸及鎳之組合;錸及鎢之組合;錸、鎳及鎢之組合,但並非僅限於此。於此實施態樣中,以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,其中錸之含量大於0原子百分比且小於或等於10原子百分比;較佳的,以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,其中錸之含量大於0原子百分比且小於或等於8原子百分比。In one embodiment, the refining metal may be a combination of niobium and nickel; a combination of niobium and tungsten; a combination of niobium, nickel, and tungsten, but is not limited thereto. In this embodiment, the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target, wherein the content of cerium is greater than 0 atomic percent and less than Or equal to 10 atomic percent; preferably, the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target, wherein the content of cerium is greater than 0 atom Percentage and less than or equal to 8 atomic percent.

於另一實施態樣中,所述細化金屬係由錸所組成。於此實施態樣中,以該鎳合金靶材之原子總數為基準,錸之含量大於6原子百分比且小於或等於8原子百分比。In another embodiment, the refined metal is composed of tantalum. In this embodiment, the content of ruthenium is greater than 6 atomic percent and less than or equal to 8 atomic percent based on the total number of atoms of the nickel alloy target.

較佳的,該鎳合金靶材更包括有鐵,以該鎳合金靶材之原子總數為基準,鐵之含量可大於0原子百分比且小於或等於30原子百分比。較佳的,鐵之含量可大於或等於15原子百分比且小於或等於30原子百分比;更佳的,鐵之含量可大於或等於25原子百分比且小於或等於30原子百分比。Preferably, the nickel alloy target further comprises iron, and the iron content may be greater than 0 atomic percent and less than or equal to 30 atomic percent based on the total number of atoms of the nickel alloy target. Preferably, the iron content may be greater than or equal to 15 atomic percent and less than or equal to 30 atomic percent; more preferably, the iron content may be greater than or equal to 25 atomic percent and less than or equal to 30 atomic percent.

較佳的,以該鎳合金靶材之原子總數為基準,錸之含量大於或等於5原子百分比且小於或等於8原子百分比,且鐵之含量大於或等於15原子百分比且小於或等於28原子百分比。Preferably, the content of cerium is greater than or equal to 5 atomic percent and less than or equal to 8 atomic percent based on the total number of atoms of the nickel alloy target, and the iron content is greater than or equal to 15 atomic percent and less than or equal to 28 atomic percent. .

於又一實施態樣中,該鎳合金靶材更包括有鐵,細化金屬可為錸及鎳之組合;錸及鎢之組合;錸、鎳及鎢之組合,但並非僅限於此。於此實施態樣中,以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於5原子百分比且小於或等於15原子百分比,錸之含量大於或等於5原子百分比且小於或等於10原子百分比,鐵之含量係如上所述。In still another embodiment, the nickel alloy target further comprises iron, the refined metal may be a combination of niobium and nickel; a combination of niobium and tungsten; a combination of niobium, nickel and tungsten, but is not limited thereto. In this embodiment, the total content of the refined metal is greater than 5 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target, and the germanium content is greater than or equal to 5 atomic percent and less than or Equal to 10 atomic percent, the iron content is as described above.

於再一實施態樣中,該鎳合金靶材更包括有鐵,細化金屬係由錸所組成。於此實施態樣中,以該鎳合金靶材之原子總數為基準,錸之含量大於或等於5原子百分比且小於10原子百分比,而鐵之含量亦如上所述。In still another embodiment, the nickel alloy target further comprises iron, and the refined metal system is composed of tantalum. In this embodiment, the content of ruthenium is greater than or equal to 5 atomic percent and less than 10 atomic percent based on the total number of atoms of the nickel alloy target, and the iron content is also as described above.

較佳的,所述鎳合金靶材之相組成係由面心立方結晶結構所組成,故能有利於濺鍍形成應用於垂直式記錄媒體之晶種層。Preferably, the phase composition of the nickel alloy target is composed of a face-centered cubic crystal structure, so that the seed layer applied to the vertical recording medium can be favorably formed by sputtering.

較佳的,所述之鎳合金靶材的平均晶粒粒徑係小於或等於100微米。相較於現有技術之純鎳靶材,本創作能具體解決靶材晶粒粗大之問題,故利用本創作之鎳合金靶材所濺鍍而成之鎳合金層能適用於垂直式記錄媒體中,從而提升其記錄密度。Preferably, the nickel alloy target has an average grain size of less than or equal to 100 microns. Compared with the pure nickel target of the prior art, the present invention can specifically solve the problem of coarse grain of the target, so the nickel alloy layer sputtered by the nickel alloy target of the present invention can be applied to the vertical recording medium. , thereby increasing its recording density.

為達成前述目的,本創作另提供一種鎳合金層,其係由如前述各種鎳合金靶材所濺鍍而成。具體而言,該鎳合金層包括鎳及細化金屬,以該鎳合金層之原子總數為基準,該細化金屬之含量大於或等於5原子百分比且小於或等於15原子百分比,所述細化金屬含有錸。To achieve the foregoing objects, the present invention further provides a nickel alloy layer which is sputtered from various nickel alloy targets as described above. Specifically, the nickel alloy layer includes nickel and a refined metal, and the content of the refined metal is greater than or equal to 5 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy layer, the refinement The metal contains antimony.

據此,藉由控制鎳合金層之組成,該鎳合金層能適用於作為垂直式磁記錄媒體之晶種層,從而提升垂直式磁記錄媒體之記錄密度。Accordingly, by controlling the composition of the nickel alloy layer, the nickel alloy layer can be applied to a seed layer as a vertical magnetic recording medium, thereby increasing the recording density of the vertical magnetic recording medium.

於該鎳合金層中,作為細化金屬之錸的含量可大於或等於5原子百分比且小於或等於10原子百分比。In the nickel alloy layer, the content of the ruthenium as the refining metal may be greater than or equal to 5 atomic percent and less than or equal to 10 atomic percent.

於一實施態樣中,細化金屬可為錸及鎳之組合;錸及鎢之組合;錸、鎳及鎢之組合,但並非僅限於此。於此實施態樣中,以該鎳合金層之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,其中錸之含量大於0原子百分比且小於或等於10原子百分比;較佳的,以該鎳合金層之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,其中錸之含量大於0原子百分比且小於或等於8原子百分比。In one embodiment, the refining metal may be a combination of niobium and nickel; a combination of niobium and tungsten; a combination of niobium, nickel, and tungsten, but is not limited thereto. In this embodiment, the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy layer, wherein the content of cerium is greater than 0 atomic percent and less than or Is equal to 10 atomic percent; preferably, the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy layer, wherein the content of cerium is greater than 0 atomic percent and Less than or equal to 8 atomic percent.

於另一實施態樣中,所述細化金屬係由錸所組成。於此實施態樣中,以該鎳合金層之原子總數為基準,錸之含量大於6原子百分比且小於或等於8原子百分比。In another embodiment, the refined metal is composed of tantalum. In this embodiment, the content of ruthenium is greater than 6 atomic percent and less than or equal to 8 atomic percent based on the total number of atoms of the nickel alloy layer.

較佳的,該鎳合金層更包括有鐵,以該鎳合金層之原子總數為基準,鐵之含量可大於0原子百分比且小於或等於30原子百分比。較佳的,鐵之含量可大於或等於15原子百分比且小於或等於30原子百分比;更佳的,鐵之含量可大於或等於25原子百分比且小於或等於30原子百分比。Preferably, the nickel alloy layer further comprises iron, and the iron content may be greater than 0 atomic percent and less than or equal to 30 atomic percent based on the total number of atoms of the nickel alloy layer. Preferably, the iron content may be greater than or equal to 15 atomic percent and less than or equal to 30 atomic percent; more preferably, the iron content may be greater than or equal to 25 atomic percent and less than or equal to 30 atomic percent.

較佳的,以該鎳合金層之原子總數為基準,錸之含量大於或等於5原子百分比且小於或等於8原子百分比,且鐵之含量大於或等於15原子百分比且小於或等於28原子百分比。Preferably, the content of cerium is greater than or equal to 5 atomic percent and less than or equal to 8 atomic percent based on the total number of atoms of the nickel alloy layer, and the iron content is greater than or equal to 15 atomic percent and less than or equal to 28 atomic percent.

於又一實施態樣中,該鎳合金層更包括有鐵,細化金屬可為錸及鎳之組合;錸及鎢之組合;錸、鎳及鎢之組合,但並非僅限於此。於此實施態樣中,以該鎳合金層之原子總數為基準,該細化金屬之總含量大於5原子百分比且小於或等於15原子百分比,錸之含量大於或等於5原子百分比且小於或等於10原子百分比,鐵之含量係如上所述。In still another embodiment, the nickel alloy layer further comprises iron, the refined metal may be a combination of niobium and nickel; a combination of niobium and tungsten; and a combination of niobium, nickel and tungsten, but is not limited thereto. In this embodiment, the total content of the refined metal is greater than 5 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy layer, and the germanium content is greater than or equal to 5 atomic percent and less than or equal to 10 atomic percent, the iron content is as described above.

於再一實施態樣中,該鎳合金層更包括有鐵,細化金屬係由錸所組成。於此實施態樣中,以該鎳合金層之原子總數為基準,錸之含量大於或等於5原子百分比且小於10原子百分比,而鐵之含量亦如上所述。In still another embodiment, the nickel alloy layer further comprises iron, and the refined metal system is composed of tantalum. In this embodiment, the content of ruthenium is greater than or equal to 5 atomic percent and less than 10 atomic percent based on the total number of atoms of the nickel alloy layer, and the iron content is also as described above.

較佳的,所述鎳合金層之相組成係由面心立方結晶結構所組成,故能有利於濺鍍形成應用於垂直式記錄媒體之晶種層。Preferably, the phase composition of the nickel alloy layer is composed of a face-centered cubic crystal structure, so that the seed layer applied to the vertical recording medium can be favorably formed by sputtering.

較佳的,所述之鎳合金層的平均晶粒粒徑係小於或等於100微米。相較於現有技術之晶種層,本創作能具體解決以往晶種層晶粒粗大之問題,從而提升垂直式磁記錄媒體的記錄密度。Preferably, the nickel alloy layer has an average grain size of less than or equal to 100 microns. Compared with the seed layer of the prior art, the present invention can specifically solve the problem of coarse grain of the seed layer in the prior art, thereby improving the recording density of the vertical magnetic recording medium.

為驗證鎳合金靶材之組成對其晶粒粒徑尺寸與均勻性及相組成之影響,以下列舉數種具有不同組成之鎳合金靶材作為實施例,說明本創作之實施方式,另結合其他鎳合金靶材作為比較例,說明各實施例與比較例之特性差異;熟習此技藝者可經由本說明書之內容輕易地了解本創作所能達成之優點與功效,並且於不悖離本創作之精神下進行各種修飾與變更,以施行或應用本創作之內容。In order to verify the influence of the composition of the nickel alloy target on its grain size and uniformity and phase composition, several nickel alloy targets with different compositions are listed below as examples to illustrate the implementation of the present invention, and other combinations. The nickel alloy target is used as a comparative example to explain the difference in characteristics between the examples and the comparative examples. Those skilled in the art can easily understand the advantages and effects of the present invention through the contents of the present specification, and do not deviate from the creation. Various modifications and changes are made in the spirit to implement or apply the content of this creation.

實施例Example 11 and 22 : Ni-ReNi-Re 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳及錸原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例1及2之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Re靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, an appropriate amount of nickel and tantalum raw materials were weighed and mixed, and vacuum induction melting method was used in a vacuum environment of 5×10 -2 Torr, a temperature of 1750 ° C, and Under the reaction condition that the temperature is higher than the temperature of 100 ° C, the wire-cutting and computer numerical control (CNC) lathe processing is followed, and the round-shaped nickel alloy targets of the examples 1 and 2 are obtained. A 165 mm, 4 mm thick pie-shaped target, referred to as Ni-Re target).

如下表1所示,實施例1及2之鎳合金靶材(簡稱Ni-Re靶材)的組成係由如aNi-b1Re之通式所示;a及b1依序代表鎳及錸相對於鎳合金靶材之原子總數的含量比例,其單位為原子百分比 (at%)。As shown in Table 1 below, the compositions of the nickel alloy targets of Examples 1 and 2 (abbreviated as Ni-Re targets) are represented by the general formula of aNi-b1Re; a and b1 sequentially represent nickel and rhodium relative to nickel. The content ratio of the total number of atoms of the alloy target, the unit of which is atomic percentage (at%).

實施例Example 33 to 55 : Ni-Re-WNi-Re-W 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、錸及鎢原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例3至5之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Re-W靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, weigh and mix the appropriate amount of nickel, tantalum and tungsten raw materials, and use vacuum induction melting method to pour in a vacuum environment of 5×10 -2 Torr and 1750 °C. Under the reaction conditions of temperature and temperature above 100 °C, the wire-cutting and computer numerical control (CNC) lathe processing is followed, and the round-shaped nickel alloy targets of Examples 3 to 5 are obtained. (Circular-shaped target with a diameter of 165 mm and a thickness of 4 mm, referred to as Ni-Re-W target).

如下表1所示,實施例3至5之Ni-Re-W靶材的組成係由如aNi-b1Re-b2W之通式所示;a、b1及b2依序代表鎳、錸及鎢相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the compositions of the Ni-Re-W targets of Examples 3 to 5 are represented by the general formula of aNi-b1Re-b2W; a, b1 and b2 sequentially represent nickel, ruthenium and tungsten relative to The content ratio of the total number of atoms of the nickel alloy target, the unit of which is at%.

實施例Example 66 : Ni-Re-RuNi-Re-Ru 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、錸及釕原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例6之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Re-Ru靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, weigh and mix the appropriate amount of nickel, niobium and tantalum raw materials, and use vacuum induction melting method in a vacuum environment of 5×10 -2 Torr and pouring at 1750 °C. Under the reaction conditions of temperature and temperature above 100 °C, the wire-cutting and computer numerical control (CNC) lathe processing is followed, and the round-shaped nickel alloy target of Example 6 is obtained. A 165 mm, 4 mm thick pie-shaped target, referred to as Ni-Re-Ru target).

如下表1所示,實施例6之Ni-Re-Ru靶材的組成係由如aNi-b1Re-b3Ru之通式所示;a、b1及b3依序代表鎳、錸及釕相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the composition of the Ni-Re-Ru target of Example 6 is represented by the general formula of aNi-b1Re-b3Ru; a, b1 and b3 sequentially represent nickel, ruthenium and iridium relative to the nickel alloy. The content ratio of the total number of atoms of the target, the unit of which is at%.

實施例Example 77 : Ni-Re-W-RuNi-Re-W-Ru 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、錸、鎢及釕原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例7之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Re-W-Ru靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, the appropriate amount of nickel, tantalum, tungsten and niobium materials were weighed and mixed, and vacuum induction melting method was used in a vacuum environment of 5×10 -2 Torr, 1750 ° C. Under the reaction conditions of the pouring temperature and the holding temperature higher than the pouring temperature of 100 ° C, the wire cutting and computer numerical control (CNC) lathe processing is followed, and the round cake-shaped nickel alloy target of the embodiment 7 is obtained. (A round pie-shaped target with a diameter of 165 mm and a thickness of 4 mm, referred to as Ni-Re-W-Ru target for short).

如下表1所示,實施例7之Ni-Re-W-Ru靶材的組成係由如aNi-b1Re-b2W-b3Ru之通式所示;a、b1、b2、b3依序代表鎳、錸、鎢及釕相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the composition of the Ni-Re-W-Ru target of Example 7 is represented by the general formula of aNi-b1Re-b2W-b3Ru; a, b1, b2, and b3 sequentially represent nickel and ruthenium. The ratio of the content of tungsten and rhenium to the total number of atoms of the nickel alloy target is in%.

實施例Example 88 to 1010 : Ni-Fe-ReNi-Fe-Re 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、鐵及錸原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例8至10之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Fe-Re靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, weigh and mix the appropriate amount of nickel, iron and tantalum raw materials, and use vacuum induction melting method in a vacuum environment of 5×10 -2 Torr and pouring at 1750 °C. Under the reaction conditions of temperature and temperature above 100 ° C, the wire-cutting and computer numerical control (CNC) lathe processing is followed, and the round-shaped nickel alloy targets of Examples 8 to 10 are obtained. (Circular-shaped target with a diameter of 165 mm and a thickness of 4 mm, referred to as Ni-Fe-Re target).

如下表1所示,實施例8至10之Ni-Fe-Re靶材的組成係由如aNi-cFe-b1Re之通式所示;a、b1及c依序代表鎳、錸及鐵相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the compositions of the Ni-Fe-Re targets of Examples 8 to 10 are represented by the general formula of aNi-cFe-b1Re; a, b1 and c sequentially represent nickel, ruthenium and iron relative to The content ratio of the total number of atoms of the nickel alloy target, the unit of which is at%.

實施例Example 1111 and 1212 : Ni-Fe-Re-W-RuNi-Fe-Re-W-Ru 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、鐵、錸、鎢及釕原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例11及12之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Fe-Re-W-Ru靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, the appropriate amount of nickel, iron, bismuth, tungsten and antimony materials were weighed and mixed, and vacuum induction melting method was used in a vacuum environment of 5×10 -2 Torr, 1750. Under the reaction conditions of °C and the holding temperature of 100 °C, the wire cutting and computer numerical control (CNC) lathe processing were carried out, and the round cakes of Examples 11 and 12 were obtained. Nickel alloy target (a round pie-shaped target with a diameter of 165 mm and a thickness of 4 mm, referred to as Ni-Fe-Re-W-Ru target).

如下表1所示,實施例11及12之Ni-Fe-Re-W-Ru靶材的組成係由如aNi-cFe-b1Re-b2W-b3Ru之通式所示;a、b1、b2、b3及c依序代表鎳、錸、鎢、釕及鐵相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the compositions of the Ni-Fe-Re-W-Ru targets of Examples 11 and 12 are represented by the general formula of aNi-cFe-b1Re-b2W-b3Ru; a, b1, b2, b3 And c sequentially represents the content ratio of nickel, ruthenium, tungsten, ruthenium and iron relative to the total number of atoms of the nickel alloy target, and the unit is at%.

實施例Example 1313 to 1515 : Ni-Fe-Re-RuNi-Fe-Re-Ru 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、鐵、錸及釕原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例13至15之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Fe-Re-Ru靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, weigh and mix the appropriate amount of nickel, iron, bismuth and antimony materials, using vacuum induction melting method, in a vacuum environment of 5 × 10 -2 Torr, 1750 ° C Under the reaction conditions of the pouring temperature and the holding temperature higher than the pouring temperature of 100 ° C, the wire cutting and computer numerical control (CNC) lathe processing is followed, and the round cake-shaped nickel alloys of Examples 13 to 15 are obtained. Target (a round pie-shaped target with a diameter of 165 mm and a thickness of 4 mm, abbreviated as Ni-Fe-Re-Ru target).

如下表1所示,實施例13至15之Ni-Fe-Re-Ru靶材的組成係由如aNi-cFe-b1Re-b3Ru之通式所示;a、b1、b3及c依序代表鎳、錸、釕及鐵相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the compositions of the Ni-Fe-Re-Ru targets of Examples 13 to 15 are represented by the general formula of aNi-cFe-b1Re-b3Ru; a, b1, b3 and c represent nickel in sequence. The ratio of the content of yttrium, lanthanum and iron to the total number of atoms of the nickel alloy target is in%.

實施例Example 1616 to 21twenty one : Ni-Fe-Re-WNi-Fe-Re-W 靶材Target

根據如下表1所示之鎳合金靶材的組成,秤取並混合適量的鎳、鐵、錸及鎢原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,後續以線切割與電腦數值控制(computer numerical control,CNC)車床加工,即製得實施例16至21之圓餅形鎳合金靶材(直徑165 mm、厚度4 mm之圓餅形靶材,簡稱Ni-Fe-Re-W靶材)。 According to the composition of the nickel alloy target shown in Table 1 below, the appropriate amount of nickel, iron, tantalum and tungsten raw materials were weighed and mixed, and vacuum induction melting method was used in a vacuum environment of 5×10 -2 Torr, 1750 ° C. Under the reaction conditions of the pouring temperature and the holding temperature higher than the pouring temperature of 100 ° C, the wire-cutting and computer numerical control (CNC) lathe processing is followed, and the round-shaped nickel alloys of Examples 16 to 21 are obtained. Target (a round pie-shaped target with a diameter of 165 mm and a thickness of 4 mm, referred to as Ni-Fe-Re-W target).

如下表1所示,實施例16至21之Ni-Fe-Re-W靶材的組成係由如aNi-cFe-b1Re-b2W之通式所示;a、b1、b2及c依序代表鎳、錸、鎢及鐵相對於鎳合金靶材之原子總數的含量比例,其單位為at%。As shown in Table 1 below, the compositions of the Ni-Fe-Re-W targets of Examples 16 to 21 are represented by the general formula of aNi-cFe-b1Re-b2W; a, b1, b2 and c represent nickel in sequence. The ratio of the content of yttrium, tungsten, and iron to the total number of atoms of the nickel alloy target is in%.

比較例Comparative example 11 :純鎳靶材: pure nickel target

本比較例未含任何細化金屬(如:錸、釕或鎢),而係單獨使用鎳作為原料,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,形成初錠;後續以線切割與電腦數值控制車床加工,獲得比較例1之圓餅形純鎳靶材。 This comparative example does not contain any refining metal (such as lanthanum, cerium or tungsten), but uses nickel as a raw material alone, in a vacuum environment of 5 × 10 -2 Torr, a pouring temperature of 1750 ° C and a holding temperature higher than Under the reaction conditions of pouring temperature of 100 ° C, the initial ingot was formed; followed by wire cutting and computer numerical control lathe processing to obtain the round-shaped pure nickel target of Comparative Example 1.

比較例Comparative example 22 and 33 : Ni-ReNi-Re 靶材Target

比較例2及3之鎳合金靶材(簡稱Ni-Re靶材)係用於與實施例1及2之Ni-Re靶材相比較;比較例2及3之Ni-Re靶材係大致上採用如實施例1及2之方法所製得,該等比較例與實施例1及2之區別在於,比較例2及3之Ni-Re靶材的組成中,錸相對於鎳合金靶材之原子總數的含量比例超出6 at%至8 at%之範圍,其具體組成如下表1所示。The nickel alloy targets of Comparative Examples 2 and 3 (abbreviated as Ni-Re targets) were used for comparison with the Ni-Re targets of Examples 1 and 2; the Ni-Re targets of Comparative Examples 2 and 3 were substantially According to the methods of Examples 1 and 2, the comparative examples are different from Examples 1 and 2 in that the composition of the Ni-Re target of Comparative Examples 2 and 3 is relative to the nickel alloy target. The content ratio of the total number of atoms exceeds the range of 6 at% to 8 at%, and the specific composition thereof is shown in Table 1 below.

比較例Comparative example 44 : Ni-FeNi-Fe 靶材Target

本比較例未含任何細化金屬,而係混合使用鎳及鐵作為原料,利用真空感應熔煉法,於5×10 -2托耳之真空環境、1750°C之澆溫以及持溫高於澆溫100°C之反應條件下,形成初錠;後續以線切割與電腦數值控制車床加工,獲得比較例4之圓餅形Ni-Fe靶材。 This comparative example does not contain any refining metal, but uses nickel and iron as raw materials in combination, and uses vacuum induction melting method in a vacuum environment of 5×10 -2 Torr, a pouring temperature of 1750 ° C, and a holding temperature higher than that of pouring. Under the reaction conditions of temperature 100 ° C, the initial ingot was formed; followed by wire cutting and computer numerical control lathe processing to obtain the round pie-shaped Ni-Fe target of Comparative Example 4.

比較例Comparative example 55 : Ni-Re-WNi-Re-W 靶材Target

比較例5之鎳合金靶材(簡稱Ni-Re-W靶材)係用於與實施例3至5之Ni-Re-W靶材相比較;比較例5之Ni-Re-W靶材係大致上採用如實施例3至5之方法所製得,該比較例與實施例3至5之區別在於,比較例5之Ni-Re-W靶材的組成中,錸相對於鎳合金靶材之原子總數的含量比例超出8 at%,其具體組成如下表1所示。The nickel alloy target of Comparative Example 5 (abbreviated as Ni-Re-W target) was used for comparison with the Ni-Re-W targets of Examples 3 to 5; the Ni-Re-W target of Comparative Example 5 was used. It is roughly obtained by the methods as in Examples 3 to 5, which is different from Examples 3 to 5 in that the composition of the Ni-Re-W target of Comparative Example 5 is relative to the nickel alloy target. The proportion of the total number of atoms exceeds 8 at%, and its specific composition is shown in Table 1 below.

比較例Comparative example 66 : Ni-Re-RuNi-Re-Ru 靶材Target

比較例6之鎳合金靶材(簡稱Ni-Re-Ru靶材)係用於與實施例6之Ni-Re-Ru靶材相比較;比較例6之Ni-Re-Ru靶材係大致上採用如實施例6之方法所製得,該比較例與實施例6之區別在於,比較例6之Ni-Re-Ru靶材的組成中,錸相對於鎳合金靶材之原子總數的總含量比例超出8 at%,其具體組成如下表1所示。The nickel alloy target of Comparative Example 6 (abbreviated as Ni-Re-Ru target) was used for comparison with the Ni-Re-Ru target of Example 6; the Ni-Re-Ru target of Comparative Example 6 was substantially The difference was obtained by the method of Example 6, which differs from Example 6 in that the total content of lanthanum relative to the total number of atoms of the nickel alloy target in the composition of the Ni-Re-Ru target of Comparative Example 6. The ratio exceeds 8 at%, and its specific composition is shown in Table 1 below.

比較例Comparative example 77 : Ni-Re-W-RuNi-Re-W-Ru 靶材Target

比較例7之鎳合金靶材(簡稱Ni-Re-W-Ru靶材)係用於與實施例6之Ni-Re-W-Ru靶材相比較;比較例7之Ni-Re-W-Ru靶材係大致上採用如實施例7之方法所製得,該比較例與實施例7之區別在於,比較例7之Ni-Re-W-Ru靶材的組成中,錸、鎢及釕相對於鎳合金靶材之原子總數的總含量比例已超出15 at%,其具體組成如下表1所示。The nickel alloy target of Comparative Example 7 (abbreviated as Ni-Re-W-Ru target) was used for comparison with the Ni-Re-W-Ru target of Example 6; Ni-Re-W- of Comparative Example 7 The Ru target was roughly prepared by the method of Example 7, which differs from Example 7 in that the composition of the Ni-Re-W-Ru target of Comparative Example 7, tantalum, tungsten and rhenium The ratio of the total content of the total number of atoms relative to the nickel alloy target has exceeded 15 at%, and the specific composition thereof is shown in Table 1 below.

比較例Comparative example 88 and 99 : Ni-Fe-ReNi-Fe-Re 靶材Target

比較例8及9之鎳合金靶材(簡稱Ni-Fe-Re靶材)係用於與實施例8至10之Ni-Fe-Re靶材相比較;比較例8及9之Ni-Fe-Re靶材係大致上採用如實施例8至10所述之方法所製得,該等比較例與實施例8至10之區別在於,比較例7及8之Ni-Fe-Re靶材的組成中,錸相對於鎳合金靶材之原子總數的含量比例已超出8 at%,其具體組成如下表1所示。The nickel alloy targets of Comparative Examples 8 and 9 (abbreviated as Ni-Fe-Re targets) were used for comparison with the Ni-Fe-Re targets of Examples 8 to 10; Ni-Fe- of Comparative Examples 8 and 9 The Re target system was roughly prepared by the methods as described in Examples 8 to 10, and the comparative examples were different from Examples 8 to 10 in the composition of the Ni-Fe-Re targets of Comparative Examples 7 and 8. In the middle, the content ratio of lanthanum to the total number of atoms of the nickel alloy target has exceeded 8 at%, and the specific composition thereof is shown in Table 1 below.

比較例Comparative example 1010 and 1111 : Ni-Fe-Re-W-RuNi-Fe-Re-W-Ru 靶材Target

比較例10及11之鎳合金靶材(簡稱Ni-Fe-Re-W-Ru靶材)係用於與實施例11及12之Ni-Fe-Re-W-Ru靶材相比較;比較例10及11之Ni-Fe-Re-W-Ru靶材係大致上採用如實施例11至12所述之方法所製得,該等比較例與實施例11及12之區別在於,比較例10及11之Ni-Fe-Re-W-Ru靶材的組成中,錸、鎢及釕相對於鎳合金靶材之原子總數的總含量已超出15 at%,其具體組成如下表1所示。The nickel alloy targets of Comparative Examples 10 and 11 (abbreviated as Ni-Fe-Re-W-Ru target) were used for comparison with the Ni-Fe-Re-W-Ru targets of Examples 11 and 12; Comparative Examples The Ni-Fe-Re-W-Ru target of 10 and 11 was prepared substantially by the methods as described in Examples 11 to 12, and the comparative examples were different from Examples 11 and 12 in Comparative Example 10 In the composition of the Ni-Fe-Re-W-Ru target of 11 and 11, the total content of lanthanum, tungsten and lanthanum relative to the total number of atoms of the nickel alloy target has exceeded 15 at%, and the specific composition thereof is shown in Table 1 below.

比較例Comparative example 1212 : Ni-Fe-Re-RuNi-Fe-Re-Ru 靶材Target

比較例12之鎳合金靶材(簡稱Ni-Fe-Re-Ru靶材)係用於與實施例13至15之Ni-Fe-Re-Ru靶材相比較;比較例12之Ni-Fe-Re-Ru靶材係大致上採用如實施例13至15所述之方法所製得,該比較例與實施例13至15之區別在於,比較例12之Ni-Fe-Re-Ru靶材的組成中,錸及釕相對於鎳合金靶材之原子總數的總含量已超出15 at%,其具體組成如下表1所示。   表1:實施例1至21之鎳合金靶材、比較例1之純鎳靶材以及比較例2至12之鎳合金靶材的組成、平均晶粒粒徑及均勻度與相組成分析結果。 <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td>   </td><td> 鎳合金靶材之組成 </td><td> 平均晶粒粒徑(μm) </td><td> 晶粒粒徑均勻度(%) </td><td> 相組成 </td></tr><tr><td> 實施例1 </td><td> 93.5Ni-6.5Re </td><td> 95.82 </td><td> 18.84% </td><td> FCC相 </td></tr><tr><td> 實施例2 </td><td> 92Ni-8Re </td><td> 89.37 </td><td> 14.33% </td><td> FCC相 </td></tr><tr><td> 實施例3 </td><td> 88Ni-8Re-4W </td><td> 61.34 </td><td> 19.36% </td><td> FCC相 </td></tr><tr><td> 實施例4 </td><td> 87Ni-5Re-8W </td><td> 59.78 </td><td> 17.11% </td><td> FCC相 </td></tr><tr><td> 實施例5 </td><td> 85Ni-7Re-8W </td><td> 58.43 </td><td> 17.74% </td><td> FCC相 </td></tr><tr><td> 實施例6 </td><td> 87Ni-8Re-5Ru </td><td> 51.09 </td><td> 19.43% </td><td> FCC相 </td></tr><tr><td> 實施例7 </td><td> 86Ni-5Re-4W-5Ru </td><td> 14.45 </td><td> 16.68% </td><td> FCC相 </td></tr><tr><td> 實施例8 </td><td> 70Ni-25Fe-5Re </td><td> 59.39 </td><td> 19.80% </td><td> FCC相 </td></tr><tr><td> 實施例9 </td><td> 74Ni-18Fe-8Re </td><td> 53.64 </td><td> 14.41% </td><td> FCC相 </td></tr><tr><td> 實施例10 </td><td> 67Ni-25Fe-8Re </td><td> 33.48 </td><td> 13.85% </td><td> FCC相 </td></tr><tr><td> 實施例11 </td><td> 61Ni-25Fe-5Re-4W-5Ru </td><td> 19.43 </td><td> 14.58% </td><td> FCC相 </td></tr><tr><td> 實施例12 </td><td> 60Ni-25Fe-6Re-4W-5Ru </td><td> 23.23 </td><td> 15.90% </td><td> FCC相 </td></tr><tr><td> 實施例13 </td><td> 62Ni-25Fe-8Re-5Ru </td><td> 18.55 </td><td> 17.69% </td><td> FCC相 </td></tr><tr><td> 實施例14 </td><td> 60Ni-25Fe-10Re-5Ru </td><td> 14.14 </td><td> 5.72% </td><td> FCC相 </td></tr><tr><td> 實施例15 </td><td> 55Ni-30Fe-5Re-10Ru </td><td> 16.52 </td><td> 17.51% </td><td> FCC相 </td></tr><tr><td> 實施例16 </td><td> 66Ni-25Fe-5Re-4W </td><td> 21.46 </td><td> 14.76% </td><td> FCC相 </td></tr><tr><td> 實施例17 </td><td> 63Ni-25Fe-8Re-4W </td><td> 28.80 </td><td> 18.34% </td><td> FCC相 </td></tr><tr><td> 實施例18 </td><td> 62Ni-25Fe-5Re-8W </td><td> 27.24 </td><td> 13.29% </td><td> FCC相 </td></tr><tr><td> 實施例19 </td><td> 60Ni-25Fe-7Re-8W </td><td> 25.89 </td><td> 13.92% </td><td> FCC相 </td></tr><tr><td> 實施例20 </td><td> 58Ni-30Fe-8Re-4W </td><td> 28.80 </td><td> 18.34% </td><td> FCC相 </td></tr><tr><td> 實施例21 </td><td> 56Ni-30Fe-10Re-4W </td><td> 14.31 </td><td> 8.85% </td><td> FCC相 </td></tr><tr><td> 比較例1 </td><td> Ni </td><td> 724.00 </td><td> 64.30% </td><td> FCC相 </td></tr><tr><td> 比較例2 </td><td> 95Ni-5Re </td><td> 131.38 </td><td> 24.77% </td><td> FCC相 </td></tr><tr><td> 比較例3 </td><td> 90Ni-10Re </td><td> 88.20 </td><td> 22.79% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例4 </td><td> 75Ni-25Fe </td><td> 385.47 </td><td> 15.85% </td><td> FCC相 </td></tr><tr><td> 比較例5 </td><td> 86Ni-10Re-4W </td><td> 46.86 </td><td> 12.68% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例6 </td><td> 85Ni-10Re-5Ru </td><td> 46.68 </td><td> 21.52% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例7 </td><td> 72Ni-10Re-8W-10Ru </td><td> 30.44 </td><td> 21.51% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例8 </td><td> 72Ni-18Fe-10Re </td><td> 41.99 </td><td> 10.73% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例9 </td><td> 65Ni-25Fe-10Re </td><td> 16.20 </td><td> 7.89% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例10 </td><td> 58Ni-25Fe-8Re-4W-5Ru </td><td> 30.83 </td><td> 18.52% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例11 </td><td> 57Ni-25Fe-5Re-8W-5Ru </td><td> 20.31 </td><td> 11.48% </td><td> FCC相和HCP相 </td></tr><tr><td> 比較例12 </td><td> 58Ni-25Fe-12Re-5Ru </td><td> 33.75 </td><td> 22.94% </td><td> FCC相和HCP相 </td></tr></TBODY></TABLE>The nickel alloy target of Comparative Example 12 (abbreviated as Ni-Fe-Re-Ru target) was used for comparison with the Ni-Fe-Re-Ru target of Examples 13 to 15; Ni-Fe- of Comparative Example 12 The Re-Ru target was roughly obtained by the method as described in Examples 13 to 15, which was different from Examples 13 to 15 in the Ni-Fe-Re-Ru target of Comparative Example 12. In the composition, the total content of lanthanum and cerium relative to the total number of atoms of the nickel alloy target has exceeded 15 at%, and the specific composition thereof is shown in Table 1 below. Table 1: Composition, average grain size, and uniformity and phase composition analysis results of the nickel alloy target of Examples 1 to 21, the pure nickel target of Comparative Example 1, and the nickel alloy target of Comparative Examples 2 to 12.         <TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td> </td><td> Composition of nickel alloy target</td><td> average crystal Particle size (μm) </td><td> Grain size uniformity (%) </td><td> Phase composition</td></tr><tr><td> Example 1 </ Td><td> 93.5Ni-6.5Re </td><td> 95.82 </td><td> 18.84% </td><td> FCC phase</td></tr><tr><td> Example 2 </td><td> 92Ni-8Re </td><td> 89.37 </td><td> 14.33% </td><td> FCC phase</td></tr><tr> <td> Example 3 </td><td> 88Ni-8Re-4W </td><td> 61.34 </td><td> 19.36% </td><td> FCC phase</td></ Tr><tr><td> Example 4 </td><td> 87Ni-5Re-8W </td><td> 59.78 </td><td> 17.11% </td><td> FCC phase< /td></tr><tr><td> Example 5 </td><td> 85Ni-7Re-8W </td><td> 58.43 </td><td> 17.74% </td>< Td> FCC phase</td></tr><tr><td> Example 6 </td><td> 87Ni-8Re-5Ru </td><td> 51.09 </td><td> 19.43% </td><td> FCC phase</td></tr><tr><td> Example 7 </td><td> 86Ni-5Re-4W-5Ru </td><td> 14.45 </ Td><td> 16.68% </td><td> FCC phase</td></tr><tr><td> Example 8 </td><td> 70Ni-25Fe-5Re </td>< Td> 59.39 </td><td> 19.80% </td><td> FCC phase</td></tr><tr><td> Example 9 </td><td> 74Ni-18Fe-8Re </td><td> 53.64 </td> <td> 14.41% </td><td> FCC phase</td></tr><tr><td> Example 10 </td><td> 67Ni-25Fe-8Re </td><td> 33.48 </td><td> 13.85% </td><td> FCC phase</td></tr><tr><td> Example 11 </td><td> 61Ni-25Fe-5Re-4W -5Ru </td><td> 19.43 </td><td> 14.58% </td><td> FCC phase</td></tr><tr><td> Example 12 </td>< Td> 60Ni-25Fe-6Re-4W-5Ru </td><td> 23.23 </td><td> 15.90% </td><td> FCC phase</td></tr><tr><td > Example 13 </td><td> 62Ni-25Fe-8Re-5Ru </td><td> 18.55 </td><td> 17.69% </td><td> FCC phase</td></ Tr><tr><td> Example 14 </td><td> 60Ni-25Fe-10Re-5Ru </td><td> 14.14 </td><td> 5.72% </td><td> FCC Phase </td></tr><tr><td> Example 15 </td><td> 55Ni-30Fe-5Re-10Ru </td><td> 16.52 </td><td> 17.51% < /td><td> FCC phase</td></tr><tr><td> Example 16 </td><td> 66Ni-25Fe-5Re-4W </td><td> 21.46 </td ><td> 14.76% </td><td> FCC phase</td></tr><tr><td> Example 17 </td><td> 63Ni-25Fe-8Re-4W </td> <td> 28.80 </td><td> 18.34% </td><td> FCC phase</td> </tr><tr><td> Example 18 </td><td> 62Ni-25Fe-5Re-8W </td><td> 27.24 </td><td> 13.29% </td><td > FCC phase</td></tr><tr><td> Example 19 </td><td> 60Ni-25Fe-7Re-8W </td><td> 25.89 </td><td> 13.92 % </td><td> FCC phase</td></tr><tr><td> Example 20 </td><td> 58Ni-30Fe-8Re-4W </td><td> 28.80 < /td><td> 18.34% </td><td> FCC phase</td></tr><tr><td> Example 21 </td><td> 56Ni-30Fe-10Re-4W </ Td><td> 14.31 </td><td> 8.85% </td><td> FCC phase</td></tr><tr><td> Comparative Example 1 </td><td> Ni < /td><td> 724.00 </td><td> 64.30% </td><td> FCC phase</td></tr><tr><td> Comparative Example 2 </td><td> 95Ni -5Re </td><td> 131.38 </td><td> 24.77% </td><td> FCC phase</td></tr><tr><td> Comparative Example 3 </td>< Td> 90Ni-10Re </td><td> 88.20 </td><td> 22.79% </td><td> FCC phase and HCP phase</td></tr><tr><td> Comparative example 4 </td><td> 75Ni-25Fe </td><td> 385.47 </td><td> 15.85% </td><td> FCC phase</td></tr><tr><td > Comparative Example 5 </td><td> 86Ni-10Re-4W </td><td> 46.86 </td><td> 12.68% </td><td> FCC phase and HCP phase</td>< /tr><tr><td> Comparative Example 6 </td><td> 85Ni-10Re-5Ru </t d><td> 46.68 </td><td> 21.52% </td><td> FCC phase and HCP phase</td></tr><tr><td> Comparative Example 7 </td><td > 72Ni-10Re-8W-10Ru </td><td> 30.44 </td><td> 21.51% </td><td> FCC phase and HCP phase</td></tr><tr><td > Comparative Example 8 </td><td> 72Ni-18Fe-10Re </td><td> 41.99 </td><td> 10.73% </td><td> FCC phase and HCP phase</td>< /tr><tr><td> Comparative Example 9 </td><td> 65Ni-25Fe-10Re </td><td> 16.20 </td><td> 7.89% </td><td> FCC phase And HCP phase</td></tr><tr><td> Comparative Example 10 </td><td> 58Ni-25Fe-8Re-4W-5Ru </td><td> 30.83 </td><td > 18.52% </td><td> FCC phase and HCP phase</td></tr><tr><td> Comparative Example 11 </td><td> 57Ni-25Fe-5Re-8W-5Ru </ Td><td> 20.31 </td><td> 11.48% </td><td> FCC phase and HCP phase</td></tr><tr><td> Comparative Example 12 </td><td > 58Ni-25Fe-12Re-5Ru </td><td> 33.75 </td><td> 22.94% </td><td> FCC phase and HCP phase</td></tr></TBODY>< /TABLE>

試驗例Test case 11 :靶材微結構: Target microstructure

本試驗例係利用光學顯微鏡觀察上述各實施例及比較例之靶材之微結構,以確認控制鎳合金靶材之組成能否達成細緻化及均勻化晶粒粒徑尺寸之效果。In this test example, the microstructures of the targets of the above respective examples and comparative examples were observed by an optical microscope to confirm whether the composition of the nickel alloy target can be controlled to achieve the effect of refining and uniformizing the grain size.

以實施例3、4、6、7及16之鎳合金靶材、比較例1之純鎳靶材、比較例2至4之鎳合金靶材所得之光學顯微鏡影像圖為示例;由圖1A至圖1E以及圖2A至圖2D之比較結果可知,控制鎳合金靶材之組成能有利於細緻化及均勻化實施例3、4、6、7及16之鎳合金靶材的晶粒粒徑尺寸,相較之下,比較例1之純鎳靶材、比較例2及4之鎳合金靶材的晶粒粒徑尺寸較為粗大,且比較例1之鎳合金靶材則存在晶粒粒徑尺寸分佈較不均勻之問題。An optical microscope image obtained by using the nickel alloy target of Examples 3, 4, 6, 7, and 16, the pure nickel target of Comparative Example 1, and the nickel alloy target of Comparative Examples 2 to 4 is taken as an example; 1E and 2A to 2D, it can be seen that controlling the composition of the nickel alloy target can facilitate the miniaturization and homogenization of the grain size of the nickel alloy target of Examples 3, 4, 6, 7, and 16. In comparison, the grain size of the pure nickel target of Comparative Example 1 and the nickel alloy target of Comparative Examples 2 and 4 was coarser, and the grain size of the nickel alloy target of Comparative Example 1 was present. The problem of uneven distribution.

簡言之,利用如實施例3、4、6、7及16之鎳合金靶材進行濺鍍製程時,所形成之鎳合金層的晶粒粒徑尺寸亦可較為細緻,且晶粒粒徑之均勻性也較佳;故當此種鎳合金層應用於垂直磁記錄媒體並作為一晶種層時,形成在該晶種層上的磁記錄層能相對獲得較細緻化且均勻化之晶粒,從而提升該垂直磁記錄媒體之記錄密度。In short, when the sputtering process is performed using the nickel alloy targets as in Examples 3, 4, 6, 7, and 16, the grain size of the formed nickel alloy layer can be finer and the grain size is The uniformity is also preferred; therefore, when such a nickel alloy layer is applied to a perpendicular magnetic recording medium and serves as a seed layer, the magnetic recording layer formed on the seed layer can relatively obtain a finer and uniform crystal. Granules, thereby increasing the recording density of the perpendicular magnetic recording medium.

試驗例Test case 22 :結晶型態: Crystalline type

本試驗例使用X光繞射儀分析實施例1至21之鎳合金靶材、比較例1之純鎳靶材以及比較例2至12之鎳合金靶材的相組成;另結合標準的FCC相鎳金屬及HCP相錸金屬的X光繞射圖譜,確認實施例1至21之鎳合金靶材、比較例1之純鎳靶材以及比較例2至12之鎳合金靶材的相組成,其結果如上表1所示。This test example uses the X-ray diffractometer to analyze the phase composition of the nickel alloy target of Examples 1 to 21, the pure nickel target of Comparative Example 1, and the nickel alloy target of Comparative Examples 2 to 12; The X-ray diffraction pattern of the nickel metal and the HCP phase bismuth metal confirmed the phase composition of the nickel alloy target of Examples 1 to 21, the pure nickel target of Comparative Example 1, and the nickel alloy target of Comparative Examples 2 to 12, The results are shown in Table 1 above.

根據標準的FCC相鎳金屬的X光繞射圖譜,其(111)面、(200)面及(220)面之特徵峰分別位在2θ為44.58°、51.89°及76.61°處;根據HCP相錸金屬的X光繞射圖譜,其(002)面、(101)面、(102)面、(103)面、(112)面及(202)面之特徵峰分別位在2θ為37.46°、40.24°、42.64°、56.05°、67.34°及75.38°處。According to the standard X-ray diffraction pattern of FCC phase nickel metal, the characteristic peaks of (111) plane, (200) plane and (220) plane are located at 2θ of 44.58°, 51.89° and 76.61°, respectively; according to HCP phase The X-ray diffraction pattern of the base metal has characteristic peaks of (002) plane, (101) plane, (102) plane, (103) plane, (112) plane and (202) plane at 2θ of 37.46°, respectively. 40.24°, 42.64°, 56.05°, 67.34° and 75.38°.

進一步參照圖式說明,請參閱圖3A所示,相較於實施例1及2之Ni-Re靶材的X光繞射圖譜,比較例3之Ni-Re靶材的X光繞射圖譜中多出HCP相的(002)面特徵峰,顯示比較例3之Ni-Re靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。Referring further to the drawings, referring to the X-ray diffraction pattern of the Ni-Re target of Examples 1 and 2, the X-ray diffraction pattern of the Ni-Re target of Comparative Example 3 is shown in FIG. 3A. The (002) surface characteristic peak of the HCP phase is more, indicating that the Ni-Re target of Comparative Example 3 is not composed of a single FCC phase, but is composed of an FCC phase and an HCP phase.

由此可見,於Ni-Re材料系統中,當錸相對於鎳合金靶材的含量比例落在6 at%至8 at%之範圍時,能確保此種鎳合金靶材(如實施例1及2)之相組成為單一FCC相,故能用於濺鍍形成單一FCC相之鎳合金層,使該鎳合金層適用於垂直式磁記錄媒體的晶種層。It can be seen that in the Ni-Re material system, when the content ratio of lanthanum to nickel alloy target falls within the range of 6 at% to 8 at%, such a nickel alloy target can be ensured (as in Example 1 and 2) The phase composition is a single FCC phase, so it can be used for sputtering to form a nickel alloy layer of a single FCC phase, and the nickel alloy layer is suitable for a seed layer of a vertical magnetic recording medium.

請再參閱圖3B所示,相較於實施例3至5之Ni-Re-W靶材的X光繞射圖譜,比較例5之Ni-Re-W靶材的X光繞射圖譜中多出HCP相中(002)面及(101)面之特徵峰,顯示比較例5之Ni-Re-W靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。再如圖3C所示,相較於實施例6之Ni-Re-Ru靶材的X光繞射圖譜,比較例6之Ni-Re-Ru靶材的X光繞射圖譜中多出HCP相中(002)面及(103)面之特徵峰,顯示比較例6之Ni-Re靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。又如圖3D所示,相較於實施例7之Ni-Re-W-Ru靶材的X光繞射圖譜,比較例7之Ni-Re-W-Ru靶材的X光繞射圖譜中多出HCP相的(101)面之特徵峰,顯示比較例7之Ni-Re-W-Ru靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。Referring to FIG. 3B again, compared with the X-ray diffraction pattern of the Ni-Re-W target of Examples 3 to 5, the X-ray diffraction pattern of the Ni-Re-W target of Comparative Example 5 is more The characteristic peaks of the (002) plane and the (101) plane in the HCP phase show that the Ni-Re-W target of Comparative Example 5 is not composed of a single FCC phase, but is composed of an FCC phase and an HCP phase. Further, as shown in FIG. 3C, the X-ray diffraction pattern of the Ni-Re-Ru target of Example 6 has an HCP phase in the X-ray diffraction pattern of the Ni-Re-Ru target of Comparative Example 6. The characteristic peaks of the middle (002) plane and the (103) plane show that the Ni-Re target of Comparative Example 6 is not composed of a single FCC phase, but is composed of an FCC phase and an HCP phase. 3D, in the X-ray diffraction pattern of the Ni-Re-W-Ru target of Comparative Example 7, compared to the X-ray diffraction pattern of the Ni-Re-W-Ru target of Example 7. The characteristic peak of the (101) plane of the HCP phase is increased, and it is shown that the Ni-Re-W-Ru target of Comparative Example 7 is not composed of a single FCC phase, but is composed of an FCC phase and an HCP phase.

綜合上述圖3B及圖3D之實驗結果顯示,不論於Ni-Re-W、Ni-Re-Ru或Ni-Re-W-Ru材料系統中,當細化金屬(如實施例3至5中所含之錸及鎢、實施例6中所含之錸及釕或者是實施例7中所含之錸、鎢及釕)相對於鎳合金靶材的總含量比例小於或等於15 at%之範圍且錸相對於鎳合金靶材的總含量比例小於或等於8 at%之範圍時,能確保此種鎳合金靶材(如實施例3至7)之相組成為單一FCC相。The results of the experiments of FIGS. 3B and 3D above show that, in the Ni-Re-W, Ni-Re-Ru or Ni-Re-W-Ru material systems, the metal is refined (as in Examples 3 to 5). The ratio of total content of niobium and tantalum contained in Example 6, and niobium and tantalum contained in Example 7 or niobium, tungsten and niobium contained in Example 7 to the nickel alloy target is less than or equal to 15 at% and When the ratio of the total content of ruthenium to the nickel alloy target is less than or equal to 8 at%, it is ensured that the phase composition of such a nickel alloy target (such as Examples 3 to 7) is a single FCC phase.

再者,請再參閱圖3F所示,相較於實施例11及12之Ni-Fe-Re-W-Ru靶材的X光繞射圖譜,比較例10至11之Ni-Fe-Re-W-Ru靶材的X光繞射圖譜中多出HCP相中(002)面特徵峰,顯示比較例10至12之Ni-Fe-Re-W-Ru靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。又如圖3G所示,相較於實施例13至15之Ni-Fe-Re-Ru靶材的X光繞射圖譜,比較例12之Ni-Fe-Re-Ru靶材的X光繞射圖譜中多出HCP相中(002)面及(112)面之特徵峰,顯示比較例12之Ni-Fe-Re-Ru靶材並非由單一FCC相所組成,而是由FCC相和HCP相所組成。再如圖3E所示,實施例8至10之Ni-Fe-Re靶材的X光繞射圖譜中僅可觀察到FCC相之特徵峰,並未發現任何對應至HCP相之特徵峰;且由實施例16至21之Ni-Fe-Re-W靶材的X光繞射圖譜(如圖3H所示)亦可觀察到類似的結果。Further, referring to FIG. 3F, the Ni-Fe-Re- of Comparative Examples 10 to 11 is compared with the X-ray diffraction patterns of the Ni-Fe-Re-W-Ru targets of Examples 11 and 12. The (002) surface characteristic peak in the HCP phase is more in the X-ray diffraction pattern of the W-Ru target, and the Ni-Fe-Re-W-Ru target of Comparative Examples 10 to 12 is not composed of a single FCC phase. It is composed of the FCC phase and the HCP phase. Further, as shown in FIG. 3G, the X-ray diffraction pattern of the Ni-Fe-Re-Ru target of Comparative Example 12 was compared with the X-ray diffraction pattern of the Ni-Fe-Re-Ru target of Examples 13 to 15. The characteristic peaks of the (002) plane and the (112) plane in the HCP phase are more in the map, indicating that the Ni-Fe-Re-Ru target of Comparative Example 12 is not composed of a single FCC phase, but is composed of FCC phase and HCP phase. Composed of. As shown in FIG. 3E, only the characteristic peaks of the FCC phase were observed in the X-ray diffraction pattern of the Ni-Fe-Re target of Examples 8 to 10, and no characteristic peak corresponding to the HCP phase was found; Similar results were observed for the X-ray diffraction pattern of the Ni-Fe-Re-W target of Examples 16 to 21 (shown in Figure 3H).

綜合上述圖3E至圖3H之實驗結果顯示,不論於Ni-Fe-Re、Ni-Fe-Re-W、Ni-Fe-Re-Ru、Ni-Fe-Re-W-Ru材料系統中,當細化金屬相對於鎳合金靶材的總含量比例小於或等於15 at%之範圍且錸相對於鎳合金靶材的總含量比例小於或等於10 at%之範圍時,能確保此種鎳合金靶材(如實施例8至21)之相組成為單一FCC相。The results of the above experiments of FIG. 3E to FIG. 3H show that, regardless of the Ni-Fe-Re, Ni-Fe-Re-W, Ni-Fe-Re-Ru, Ni-Fe-Re-W-Ru material systems, The nickel alloy target can be ensured when the ratio of the total content of the refined metal to the nickel alloy target is less than or equal to 15 at% and the ratio of the total content of lanthanum to the nickel alloy target is less than or equal to 10 at%. The phase composition of the materials (as in Examples 8 to 21) is a single FCC phase.

據此,本創作藉由控制鎳合金靶材之組成,能確保其相組成僅含有單一FCC相,而未包含有HCP相;故本創作之鎳合金靶材能用於濺鍍形成單一FCC相之鎳合金層,使該鎳合金層可適用於作為垂直式磁記錄媒體的晶種層。Accordingly, the present invention ensures that the phase composition consists of only a single FCC phase and does not contain the HCP phase by controlling the composition of the nickel alloy target; therefore, the nickel alloy target of the present invention can be used for sputtering to form a single FCC phase. The nickel alloy layer makes the nickel alloy layer suitable for use as a seed layer for a vertical magnetic recording medium.

試驗例Test case 33 :平均晶粒粒徑及晶粒粒徑均勻度: Average grain size and grain size uniformity

為再次驗證本創作之技術手段能同時細緻化及均勻化鎳合金靶材之晶粒粒徑,本試驗例係以上述各實施例及比較例之靶材為待測樣品,各待測樣品係依如下所述相同方法進行分析:In order to verify again that the technical means of the creation can simultaneously refine and homogenize the grain size of the nickel alloy target, the test examples are the samples to be tested according to the above examples and comparative examples, and each sample to be tested is Analyze in the same way as described below:

以線切割方式,於各靶材之中心、靶材之二分之一半徑(r/2)及邊緣(r)處取大小約10毫米×10毫米之試片。接著,以純水、鹽酸、硝酸及雙氧水之混合蝕刻溶液蝕刻靶材之頂面;於500倍之倍率下,使用光學顯微鏡在各試片上取10至12個不同的位置觀察各靶材之微結構,得到30至36張光學顯微鏡影像圖。A test piece having a size of about 10 mm × 10 mm was taken at the center of each target, at a half radius (r/2) of the target, and at the edge (r) by wire cutting. Next, the top surface of the target is etched with a mixed etching solution of pure water, hydrochloric acid, nitric acid, and hydrogen peroxide; at a magnification of 500 times, 10 to 12 different positions are taken on each test piece using an optical microscope to observe the microscopic targets. Structure, 30 to 36 optical microscope images were obtained.

接著,於各光學顯微鏡影像圖上畫四條截線,其中二條截線為影像圖之對角線,另外兩條截線分別為平行於長邊之中心線及平行於短邊之中心線,四條截線於各影像圖上呈米字型排列。Next, draw four cut lines on each optical microscope image, two of which are diagonal lines of the image, and the other two lines are parallel to the center line of the long side and parallel to the center line of the short side, four The cut lines are arranged in a meter shape on each image map.

接著,以此抽樣統計四條截線上的晶粒總數,再將各截線之長度除以晶粒總數得到各截線上之晶粒粒徑尺寸;然後,以前述計算得到各截線上的晶粒粒徑尺寸的數據計算所有截線之平均晶粒粒徑尺寸與其標準差。將標準差除以平均晶粒粒徑尺寸所計算而得之百分比代表正歸化之晶粒粒徑均勻度(normalized uniformity of grain size)。晶粒粒徑均勻度之百分比越大代表變異程度越嚴重,該待測樣品(靶材)之晶粒粒徑尺寸越不均勻。各實施例及比較例之靶材的平均晶粒粒徑尺寸及晶粒粒徑均勻度分析結果如上表1所示。Then, the total number of crystal grains on the four cut lines is sampled, and the length of each cut line is divided by the total number of crystal grains to obtain the grain size of each cut line; then, the grain grains on each cut line are obtained by the foregoing calculation. The diameter size data calculates the average grain size size of all the cut lines and their standard deviation. The percentage calculated by dividing the standard deviation by the average grain size size represents the normalized uniformity of grain size. The greater the percentage of grain size uniformity, the more severe the degree of variation, and the more uniform the grain size of the sample to be tested (target). The average grain size and the grain size uniformity analysis results of the targets of the respective examples and comparative examples are shown in Table 1 above.

為進一步詳細說明本試驗例之分析方法,以下選用實施例16作為示例,並結合其光學顯微鏡影像圖具體說明其分析方法:In order to further explain the analysis method of the test example, the following example 16 is taken as an example, and the analysis method thereof is specifically described in combination with the optical microscope image:

取實施例16之Ni-Fe-Re-W靶材,以線切割方式於靶材之中心、此Ni-Fe-Re-W靶材之中心、二分之一半徑及邊緣處取大小約10毫米×10毫米之試片;再於500倍之倍率下,使用光學顯微鏡觀察各試片之微結構,其結果如圖4A至圖4C所示。Take the Ni-Fe-Re-W target of Example 16 and take a wire cutting method at the center of the target, the center of the Ni-Fe-Re-W target, the radius of one half and the edge to take about 10 A test piece of mm × 10 mm; and the microstructure of each test piece was observed using an optical microscope at a magnification of 500 times, and the results are shown in Figs. 4A to 4C.

接著,以鎳合金靶材之中心試片為例,於圖3A之光學顯微鏡影像圖(觀察區域1)上畫四條截線L1、L2、L3及L4,其中截線L1、L2之長度為325微米 (µm),截線L3之長度為195 µm,截線L4之長度為260 µm;於圖3A上四條截線L1、L2、L3及L4所計算得到之晶粒總數、平均晶粒粒徑尺寸如下表2中觀察區域1所示。Next, taking the central test piece of the nickel alloy target as an example, four cut lines L1, L2, L3, and L4 are drawn on the optical microscope image (observation area 1) of FIG. 3A, wherein the lengths of the cut lines L1 and L2 are 325. Micron (μm), the length of the cut line L3 is 195 μm, the length of the cut line L4 is 260 μm; the total number of grains and the average grain size calculated from the four cut lines L1, L2, L3 and L4 in Fig. 3A The dimensions are shown in the observation area 1 in Table 2 below.

然後,於該中心試片上重複觀察其它11處位置,並經由如上述相同方法得到觀察區域2至12之量測結果。其中一觀察區域中劃出之截線L1、L2、L3及L4之長度係分別與在其他觀察區域中劃出之截線L1、L2、L3及L4之長度相同,即各觀察區域中劃出之截線L1之長度皆相同,截線L2、L3及L4亦有類似情形。Then, the other 11 positions were repeatedly observed on the center test piece, and the measurement results of the observation areas 2 to 12 were obtained by the same method as described above. The lengths of the cut lines L1, L2, L3, and L4 drawn in one of the observation areas are the same as the lengths of the cut lines L1, L2, L3, and L4 drawn in the other observation areas, that is, in the respective observation areas. The length of the cut line L1 is the same, and the cut lines L2, L3 and L4 have similar situations.

根據上述抽樣統計結果,即上述觀察區域1至12所量測得到各截線L1、L2、L3及L4上12組平均晶粒粒徑,將12組平均晶粒粒徑尺寸再次平均,得到各截線L1、L2、L3及L4上晶粒粒徑之整體平均值,其結果列於下表3所示。由各截線L1、L2、L3及L4所算得之晶粒粒徑之整體平均值計算得到實施例16之鎳合金靶材之整體中心試片的平均晶粒粒徑尺寸為21.6 µm,標準偏差為1.458,晶粒粒徑均勻度為14.81%。According to the above sampling statistics, the average grain size of 12 groups on each of the cut lines L1, L2, L3 and L4 measured by the above observation areas 1 to 12, and the average size of the 12 groups of average grain sizes are averaged again to obtain each The overall average of the grain sizes on the cut lines L1, L2, L3 and L4 is shown in Table 3 below. Calculated from the overall average of the grain sizes calculated from the respective cut lines L1, L2, L3 and L4, the average grain size of the entire central test piece of the nickel alloy target of Example 16 was 21.6 μm, the standard deviation For 1.458, the grain size uniformity was 14.81%.

之後,於鎳合金靶材之r/2試片及邊緣試片上,重複如上述中心試片之方法進行量測,得到實施例16之鎳合金靶材的整體r/2試片的平均晶粒粒徑尺寸為21.1 µm,整體邊緣試片的平均晶粒粒徑尺寸為21.5 µm。Thereafter, the method of measuring the center test piece as described above was repeated on the r/2 test piece and the edge test piece of the nickel alloy target to obtain the average grain size of the whole r/2 test piece of the nickel alloy target of Example 16. The particle size was 21.1 μm, and the average grain size of the overall edge test piece was 21.5 μm.

根據上述量測結果,整體實施例16之鎳合金靶材的平均晶粒粒徑尺寸為21.46µm,整體標準偏差為1.454,晶粒粒徑均勻度為14.76%。 <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> 觀察區域 </td><td> 截線(L1) </td><td> 截線(L2) </td><td> 截線(L3) </td><td> 截線(L4) </td></tr><tr><td> 晶粒總數 </td><td> 平均晶粒粒徑 </td><td> 晶粒總數 </td><td> 平均晶粒粒徑 </td><td> 晶粒總數 </td><td> 平均晶粒粒徑 </td><td> 晶粒總數 </td><td> 平均晶粒粒徑 </td></tr><tr><td> 1 </td><td> 14 </td><td> 23.4 µm </td><td> 19 </td><td> 16.7 µm </td><td> 8 </td><td> 25.0 µm </td><td> 9 </td><td> 30.0 µm </td></tr><tr><td> 2 </td><td> 15 </td><td> 21.9 µm </td><td> 20 </td><td> 15.9 µm </td><td> 9 </td><td> 21.9 µm </td><td> 11 </td><td> 23.4 µm </td></tr><tr><td> 3 </td><td> 15 </td><td> 21.9 µm </td><td> 15 </td><td> 21.9 µm </td><td> 10 </td><td> 19.5 µm </td><td> 10 </td><td> 25.0 µm </td></tr><tr><td> 4 </td><td> 14 </td><td> 23.4 µm </td><td> 15 </td><td> 21.9 µm </td><td> 12 </td><td> 16.7 µm </td><td> 10 </td><td> 25.0 µm </td></tr><tr><td> 5 </td><td> 13 </td><td> 25.0 µm </td><td> 14 </td><td> 23.4 µm </td><td> 12 </td><td> 15.9 µm </td><td> 12 </td><td> 21.9 µm </td></tr><tr><td> 6 </td><td> 13 </td><td> 25.0 µm </td><td> 13 </td><td> 25.0 µm </td><td> 9 </td><td> 21.9 µm </td><td> 13 </td><td> 19.5 µm </td></tr><tr><td> 7 </td><td> 15 </td><td> 21.9 µm </td><td> 15 </td><td> 21.9 µm </td><td> 9 </td><td> 21.9 µm </td><td> 16 </td><td> 16.7 µm </td></tr><tr><td> 8 </td><td> 17 </td><td> 19.5 µm </td><td> 14 </td><td> 23.4 µm </td><td> 8 </td><td> 23.4 µm </td><td> 16 </td><td> 15.9 µm </td></tr><tr><td> 9 </td><td> 19 </td><td> 16.7 µm </td><td> 13 </td><td> 25.0 µm </td><td> 9 </td><td> 21.9 µm </td><td> 12 </td><td> 21.9 µm </td></tr><tr><td> 10 </td><td> 20 </td><td> 15.9 µm </td><td> 13 </td><td> 25.0 µm </td><td> 9 </td><td> 21.9 µm </td><td> 13 </td><td> 19.5 µm </td></tr><tr><td> 11 </td><td> 15 </td><td> 21.9 µm </td><td> 15 </td><td> 21.9 µm </td><td> 9 </td><td> 21.9 µm </td><td> 11 </td><td> 23.4 µm </td></tr><tr><td> 12 </td><td> 15 </td><td> 21.9 µm </td><td> 17 </td><td> 19.5 µm </td><td> 8 </td><td> 25.0 µm </td><td> 16 </td><td> 15.9 µm </td></tr></TBODY></TABLE>表2:實施例16之鎳合金靶材的中心試片於各截線上所計算得到之晶粒總數及其平均晶粒粒徑之量測結果。   表3:將上表2中觀察區域1至12所得之量測結果,經平均後得到各截線上晶粒粒徑之整體平均值。 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 觀察區域 </td><td> 截線(L1) </td><td> 截線(L2) </td><td> 截線(L3) </td><td> 截線(L4) </td></tr><tr><td> 晶粒粒徑之整體平均值 </td><td> 21.5 µm </td><td> 21.8 µm </td><td> 21.4 µm </td><td> 21.5 µm </td></tr></TBODY></TABLE>According to the above measurement results, the average grain size of the nickel alloy target of Example 16 was 21.46 μm, the overall standard deviation was 1.454, and the grain size uniformity was 14.76%.         <TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td> observation area</td><td> section line (L1) </td><td> section Line (L2) </td><td> Section (L3) </td><td> Section (L4) </td></tr><tr><td> Total number of grains</td>< Td> average grain size </td><td> total number of grains</td><td> average grain size </td><td> total number of grains</td><td> average grain size </td><td> Total grain size </td><td> Average grain size </td></tr><tr><td> 1 </td><td> 14 </td> <td> 23.4 μm </td><td> 19 </td><td> 16.7 μm </td><td> 8 </td><td> 25.0 μm </td><td> 9 </td ><td> 30.0 μm </td></tr><tr><td> 2 </td><td> 15 </td><td> 21.9 μm </td><td> 20 </td> <td> 15.9 μm </td><td> 9 </td><td> 21.9 μm </td><td> 11 </td><td> 23.4 μm </td></tr><tr> <td> 3 </td><td> 15 </td><td> 21.9 μm </td><td> 15 </td><td> 21.9 μm </td><td> 10 </td> <td> 19.5 μm </td><td> 10 </td><td> 25.0 μm </td></tr><tr><td> 4 </td><td> 14 </td>< Td> 23.4 μm </td><td> 15 </td><td> 21.9 μm </td><td> 12 </td><td> 16.7 μm </td><td> 10 </td> <td> 25.0 μm </td></tr><tr><td> 5 </ Td><td> 13 </td><td> 25.0 μm </td><td> 14 </td><td> 23.4 μm </td><td> 12 </td><td> 15.9 μm < /td><td> 12 </td><td> 21.9 μm </td></tr><tr><td> 6 </td><td> 13 </td><td> 25.0 μm </ Td><td> 13 </td><td> 25.0 μm </td><td> 9 </td><td> 21.9 μm </td><td> 13 </td><td> 19.5 μm < /td></tr><tr><td> 7 </td><td> 15 </td><td> 21.9 μm </td><td> 15 </td><td> 21.9 μm </ Td><td> 9 </td><td> 21.9 μm </td><td> 16 </td><td> 16.7 μm </td></tr><tr><td> 8 </td ><td> 17 </td><td> 19.5 μm </td><td> 14 </td><td> 23.4 μm </td><td> 8 </td><td> 23.4 μm </ Td><td> 16 </td><td> 15.9 μm </td></tr><tr><td> 9 </td><td> 19 </td><td> 16.7 μm </td ><td> 13 </td><td> 25.0 μm </td><td> 9 </td><td> 21.9 μm </td><td> 12 </td><td> 21.9 μm </ Td></tr><tr><td> 10 </td><td> 20 </td><td> 15.9 μm </td><td> 13 </td><td> 25.0 μm </td ><td> 9 </td><td> 21.9 μm </td><td> 13 </td><td> 19.5 μm </td></tr><tr><td> 11 </td> <td> 15 </td><td> 21.9 μm </td><td> 15 </td><td> 21.9 μm </td><td> 9 </td><td> 21.9 μm </td ><td> 11 </t d><td> 23.4 μm </td></tr><tr><td> 12 </td><td> 15 </td><td> 21.9 μm </td><td> 17 </td ><td> 19.5 μm </td><td> 8 </td><td> 25.0 μm </td><td> 16 </td><td> 15.9 μm </td></tr></ TBODY></TABLE> Table 2: Measurement results of the total number of crystal grains and the average grain size of the central test piece of the nickel alloy target of Example 16 calculated on each cut line. Table 3: The measurement results obtained in the observation areas 1 to 12 in the above Table 2 were averaged to obtain the overall average value of the grain sizes on the respective cut lines.         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> observation area</td><td> section line (L1) </td><td> Cut line (L2) </td><td> Cut line (L3) </td><td> Cut line (L4) </td></tr><tr><td> Overall average grain size Value </td><td> 21.5 μm </td><td> 21.8 μm </td><td> 21.4 μm </td><td> 21.5 μm </td></tr></TBODY>< /TABLE>

如上表1所示,實施例1至21之鎳合金靶材的平均晶粒粒徑可控制在100微米以下,且其晶粒粒徑均勻度能控制在20%以下,從而達到具體細緻化及均勻化鎳合金靶材的晶粒粒徑之目的。As shown in Table 1 above, the average grain size of the nickel alloy target of Examples 1 to 21 can be controlled to be less than 100 μm, and the grain size uniformity can be controlled to be less than 20%, thereby achieving specific refinement and The purpose of homogenizing the grain size of the nickel alloy target.

具體而言,於Ni-Re材料系統中,當錸相對於鎳合金靶材的含量比例落在6 at%至8at%之範圍時,能確保實施例1及2之鎳合金靶材具有細緻化及均勻化晶粒。反觀比較例1之純鎳靶材的分析結果,比較例1因未含有任何細化金屬,故比較例1之純鎳靶材存在晶粒粗大及粒徑尺寸不均勻之缺點;又如比較例2之實驗結果,即便於鎳材料系統中添加微量的錸試圖改善純鎳靶材晶粒粗大之問題,但由於錸金屬之含量過低,故仍無法達到細緻化及均勻化鎳合金靶材之晶粒粒徑之目的;再觀比較例3之實驗結果,若錸金屬的含量過高,反而會影響鎳合金靶材的晶粒粒徑尺寸均勻性,亦不適用於濺鍍形成具有晶粒細緻化及均勻化之鎳合金層。若於鎳材料系統中添加適量的鐵,亦無法有效細緻化鎳合金靶材之晶粒粒徑,故比較例4之鎳合金靶材的平均晶粒粒徑仍高達385微米。Specifically, in the Ni-Re material system, when the content ratio of ruthenium to the nickel alloy target falls within the range of 6 at% to 8 at%, the nickel alloy target of Examples 1 and 2 can be made finer. And homogenize the grains. In contrast, the analysis results of the pure nickel target of Comparative Example 1 showed that the pure nickel target of Comparative Example 1 had the defects of coarse crystal grains and uneven particle size size because it did not contain any refining metal; 2 The experimental results show that even if a small amount of lanthanum is added to the nickel material system to improve the grain size of the pure nickel target, the content of the ruthenium metal is too low, so that the nickel alloy target can not be refined and homogenized. The purpose of grain size; again, the experimental results of Comparative Example 3, if the content of bismuth metal is too high, it will affect the grain size size uniformity of the nickel alloy target, and it is not suitable for sputtering to form crystal grains. Refined and homogenized nickel alloy layer. If an appropriate amount of iron is added to the nickel material system, and the grain size of the nickel alloy target cannot be effectively refined, the average grain size of the nickel alloy target of Comparative Example 4 is still as high as 385 μm.

此外,於Ni-Re-Ru或Ni-Re-W-Ru材料系統中,當細化金屬相對於鎳合金靶材的總含量比例落在10 at%至15 at%之範圍且錸相對於鎳合金靶材的總含量比例小於或等於8 at%之範圍時,能確保實施例6及7之鎳合金靶材獲得細緻化及均勻化晶粒。反觀比較例6及7之鎳合金靶材,由於比較例6之鎳合金靶材中錸金屬的含量過高、比較例7之鎳合金靶材中細化金屬之總含量過高,致使該等鎳合金靶材存在晶粒粒徑尺寸均勻度較差之缺點。In addition, in the Ni-Re-Ru or Ni-Re-W-Ru material system, when the total content of the refined metal relative to the nickel alloy target falls within the range of 10 at% to 15 at% and yttrium relative to nickel When the total content ratio of the alloy target is less than or equal to 8 at%, it is ensured that the nickel alloy targets of Examples 6 and 7 are refined and homogenized. In contrast, in the nickel alloy targets of Comparative Examples 6 and 7, since the content of the base metal in the nickel alloy target of Comparative Example 6 was too high, and the total content of the refined metal in the nickel alloy target of Comparative Example 7 was too high, such that Nickel alloy targets have the disadvantage of poor uniformity of grain size.

再者,於Ni-Fe-Re-Ru材料系統中,當細化金屬相對於鎳合金靶材的總含量比例落在10 at%至15 at%之範圍且錸相對於鎳合金靶材的總含量比例小於或等於10 at%之範圍時,能確保實施例13至15之鎳合金靶材獲得細緻化及均勻化晶粒。反觀比較例12,由於其細化金屬相對於鎳合金靶材的總含量已超出15 at%,且錸金屬的含量過高,故仍無法有效均勻化鎳合金靶材之晶粒粒徑。Furthermore, in the Ni-Fe-Re-Ru material system, when the total content of the refined metal relative to the nickel alloy target falls within the range of 10 at% to 15 at% and the total amount of lanthanum relative to the nickel alloy target When the content ratio is less than or equal to 10 at%, it is ensured that the nickel alloy targets of Examples 13 to 15 are refined and homogenized. In contrast, in Comparative Example 12, since the total content of the refined metal relative to the nickel alloy target exceeded 15 at%, and the content of the base metal was too high, the grain size of the nickel alloy target could not be effectively uniformized.

進一步比較實施例2、實施例3、實施例6之結果可知,當錸相對於鎳合金靶材的含量皆為8 at%時,於鎳合金靶材中添加如鎢或釕能有助於再細緻化鎳合金靶材的晶粒粒徑,使實施例3及6之鎳合金靶材的平均晶粒粒徑皆小於實施例2之鎳合金靶材的平均晶粒粒徑。同理,進一步將實施例9、10與實施例13、17及20相比較,或者將實施例8與實施例11、15、16及18相比較,亦可得到類似的實驗結果。Further comparing the results of Example 2, Example 3, and Example 6, it can be seen that when the content of lanthanum relative to the nickel alloy target is 8 at%, adding tungsten or ruthenium to the nickel alloy target can contribute to The grain size of the nickel alloy target was refined so that the average grain size of the nickel alloy targets of Examples 3 and 6 was smaller than the average grain size of the nickel alloy target of Example 2. Similarly, by further comparing Examples 9 and 10 with Examples 13, 17, and 20, or comparing Example 8 with Examples 11, 15, 16 and 18, similar experimental results were obtained.

綜合上述試驗例1至3之分析結果,藉由控制鎳合金靶材之組成,不僅能確保該鎳合金靶材之相組成僅由單一FCC相所組成,更能獲得細緻化、均勻化之晶粒粒徑;故利用此種鎳合金靶材所濺鍍而成之鎳合金層也能相應地具有單一FCC相之相組成,並且獲得細緻化且均勻化之晶粒粒徑。因此,該鎳合金層能適用於作為垂直式磁記錄媒體的晶種層,進而達到提升垂直式磁記錄媒體之記錄密度的效果。By synthesizing the analysis results of the above Test Examples 1 to 3, by controlling the composition of the nickel alloy target, it is possible to ensure not only that the phase composition of the nickel alloy target is composed of only a single FCC phase, but also a finer and uniform crystal. The particle size of the particles; therefore, the nickel alloy layer sputtered by such a nickel alloy target can also have a phase composition of a single FCC phase, and a fine and uniform crystal grain size can be obtained. Therefore, the nickel alloy layer can be applied to a seed layer as a vertical magnetic recording medium, thereby achieving an effect of improving the recording density of a vertical magnetic recording medium.

L1、L2、L3、L4‧‧‧截線L1, L2, L3, L4‧‧‧ cut lines

圖1A至圖1E依序為實施例3、4之Ni-Re-W靶材、實施例6之Ni-Re-Ru靶材、實施例7之Ni-Re-W-Ru靶材及實施例16之之Ni-Fe-Re-W靶材於二分之一半徑處所取得之試片的光學顯微鏡影像圖。 圖2A至圖2D依序為比較例1至4之鎳合金靶材於二分之一半徑處所取得之試片的光學顯微鏡影像圖。 圖3A為實施例1及2之Ni-Re靶材、比較例3之Ni-Re靶材、標準FCC相鎳金屬及標準六方最密堆積(hexagonal close-packed,HCP)相錸金屬的X光繞射圖譜。 圖3B為實施例3至5之Ni-Re-W靶材、比較例5之Ni-Re-W靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3C為實施例6之Ni-Re-Ru靶材、比較例6之Ni-Re-Ru靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3D為實施例7之Ni-Re-W-Ru靶材、比較例7之Ni-Re-W-Ru靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3E為實施例8至10之Ni-Fe-Re靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3F為實施例11及12之Ni-Fe-Re-W-Ru靶材、比較例10至11之Ni-Fe-Re-W-Ru靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3G為實施例13至15之Ni-Fe-Re-Ru靶材、比較例12之Ni-Fe-Re-Ru靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖3H為實施例16至21之Ni-Fe-Re-W靶材、標準FCC相鎳金屬及標準HCP相錸金屬的X光繞射圖譜。 圖4A至圖4C依序為實施例16之鎳合金靶材於中心、二分之一半徑及邊緣處所取得之試片的光學顯微鏡影像圖。1A to 1E are Ni-Re-W targets of Examples 3 and 4, Ni-Re-Ru target of Example 6, and Ni-Re-W-Ru target of Example 7 and examples thereof. An optical microscope image of a test piece taken at a radius of one-half of the Ni-Fe-Re-W target of 16. 2A to 2D are optical microscope images of test pieces taken at a half radius of the nickel alloy target of Comparative Examples 1 to 4. 3A is an X-ray of the Ni-Re target of Examples 1 and 2, the Ni-Re target of Comparative Example 3, the standard FCC phase nickel metal, and the standard hexagonal close-packed (HCP) phase tantalum metal. Diffraction map. 3B is an X-ray diffraction pattern of the Ni-Re-W target of Examples 3 to 5, the Ni-Re-W target of Comparative Example 5, the standard FCC phase nickel metal, and the standard HCP phase bismuth metal. 3C is an X-ray diffraction pattern of the Ni-Re-Ru target of Example 6, the Ni-Re-Ru target of Comparative Example 6, the standard FCC phase nickel metal, and the standard HCP phase bismuth metal. 3D is an X-ray diffraction pattern of the Ni-Re-W-Ru target of Example 7, the Ni-Re-W-Ru target of Comparative Example 7, the standard FCC phase nickel metal, and the standard HCP phase tantalum metal. 3E is an X-ray diffraction pattern of Ni-Fe-Re targets, standard FCC phase nickel metals, and standard HCP phase bismuth metals of Examples 8-10. 3F is a Ni-Fe-Re-W-Ru target of Examples 11 and 12, a Ni-Fe-Re-W-Ru target of Comparative Examples 10 to 11, a standard FCC phase nickel metal, and a standard HCP phase tantalum metal. X-ray diffraction pattern. 3G is an X-ray diffraction pattern of the Ni-Fe-Re-Ru target of Examples 13 to 15, the Ni-Fe-Re-Ru target of Comparative Example 12, the standard FCC phase nickel metal, and the standard HCP phase bismuth metal. . 3H is an X-ray diffraction pattern of Ni-Fe-Re-W target, standard FCC phase nickel metal, and standard HCP phase tantalum metal of Examples 16-21. 4A to 4C are optical microscope images of the test piece taken at the center, the half radius, and the edge of the nickel alloy target of Example 16.

無。no.

Claims (12)

一種鎳合金靶材,其組成包括鎳及細化金屬,以該鎳合金靶材之原子總數為基準,該細化金屬之含量大於或等於5原子百分比且小於或等於15原子百分比,所述細化金屬含有錸,該鎳合金靶材之相組成係由面心立方結晶結構所組成。 A nickel alloy target comprising nickel and a refined metal, the fine metal content being greater than or equal to 5 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target The metal contains niobium, and the phase composition of the nickel alloy target is composed of a face-centered cubic crystal structure. 如請求項1所述之鎳合金靶材,其中所述細化金屬更包含有釕、鎢、鉭、鈮、鉬、鈦或其組合。 The nickel alloy target of claim 1, wherein the refined metal further comprises tantalum, tungsten, niobium, tantalum, molybdenum, titanium or a combination thereof. 如請求項2所述之鎳合金靶材,其中以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,錸之含量大於0原子百分比且小於或等於10原子百分比。 The nickel alloy target according to claim 2, wherein the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target, and the content of the cerium is greater than 0 atomic percent and less than or equal to 10 atomic percent. 如請求項3所述之鎳合金靶材,其中以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於或等於10原子百分比且小於或等於15原子百分比,錸之含量大於0原子百分比且小於或等於8原子百分比。 The nickel alloy target according to claim 3, wherein the total content of the refined metal is greater than or equal to 10 atomic percent and less than or equal to 15 atomic percent based on the total number of atoms of the nickel alloy target, and the content of cerium is greater than 0 atomic percent and less than or equal to 8 atomic percent. 如請求項1所述之鎳合金靶材,其中該細化金屬係由錸組成,以該鎳合金靶材之原子總數為基準,錸之含量大於6原子百分比且小於或等於8原子百分比。 The nickel alloy target according to claim 1, wherein the refined metal is composed of ruthenium, and the content of ruthenium is more than 6 atomic percent and less than or equal to 8 atomic percent based on the total number of atoms of the nickel alloy target. 如請求項1至5中任一項所述之鎳合金靶材,其中該鎳合金靶材更包括有鐵,以該鎳合金靶材之原子總數為基準,鐵之含量大於0原子百分比且小於或等於30原子百分比。 The nickel alloy target according to any one of claims 1 to 5, wherein the nickel alloy target further comprises iron, and the iron content is greater than 0 atomic percentage and less than the total number of atoms of the nickel alloy target. Or equal to 30 atomic percent. 如請求項2所述之鎳合金靶材,其中該鎳合金靶材更包括有鐵,以該鎳合金靶材之原子總數為基準,該細化金屬之總含量大於5原子百分比且小於或等於15原子百分比,錸之含量大於或等於5原子百分比且小於或等於10原子百分比,鐵之含量大於0原子百分比且小於或等於30原子百分比。 The nickel alloy target according to claim 2, wherein the nickel alloy target further comprises iron, and the total content of the refined metal is greater than 5 atomic percent and less than or equal to the total number of atoms of the nickel alloy target. 15 atomic percent, the content of cerium is greater than or equal to 5 atomic percent and less than or equal to 10 atomic percent, and the iron content is greater than 0 atomic percent and less than or equal to 30 atomic percent. 如請求項7所述之鎳合金靶材,其中以該鎳合金靶材之原子總數為基準,鐵之含量大於或等於25原子百分比且小於或等於30原子百分比。 The nickel alloy target according to claim 7, wherein the content of iron is greater than or equal to 25 atomic percent and less than or equal to 30 atomic percent based on the total number of atoms of the nickel alloy target. 如請求項1所述之鎳合金靶材,其中該細化金屬係由錸組成,該鎳合金靶材更包括有鐵,以該鎳合金靶材之原子總數為基準,錸之含量大於或等於5原子百分比且小於10原子百分比,且鐵之含量大於0原子百分比且小於或等於30原子百分比。 The nickel alloy target according to claim 1, wherein the refined metal is composed of ruthenium, the nickel alloy target further comprising iron, and the content of ruthenium is greater than or equal to the total number of atoms of the nickel alloy target. 5 atomic percent and less than 10 atomic percent, and the iron content is greater than 0 atomic percent and less than or equal to 30 atomic percent. 如請求項7所述之鎳合金靶材,其中以該鎳合金靶材之原子總數為基準,錸之含量大於或等於5原子百分比且小於或等於8原子百分比,且鐵之含量大於或等於15原子百分比且小於或等於28原子百分比。 The nickel alloy target according to claim 7, wherein the content of ruthenium is greater than or equal to 5 atomic percent and less than or equal to 8 atomic percent, and the iron content is greater than or equal to 15 based on the total number of atoms of the nickel alloy target. Atomic percentage and less than or equal to 28 atomic percent. 如請求項1至5、7至10中任一項所述之鎳合金靶材,該鎳合金靶材之平均晶粒粒徑小於或等於100微米。 The nickel alloy target according to any one of claims 1 to 5, wherein the nickel alloy target has an average grain size of less than or equal to 100 μm. 一種鎳合金層,其係由如請求項1至11中任一項之鎳合金靶材所濺鍍而成。 A nickel alloy layer which is sputtered from a nickel alloy target according to any one of claims 1 to 11.
TW105102091A 2016-01-22 2016-01-22 Nickel alloy sputtering target and nickel alloy layer TWI558819B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105102091A TWI558819B (en) 2016-01-22 2016-01-22 Nickel alloy sputtering target and nickel alloy layer
MYPI2017700185A MY182002A (en) 2016-01-22 2017-01-17 Nickel-based alloy sputtering target and nickel-based alloy layer
SG10201700458WA SG10201700458WA (en) 2016-01-22 2017-01-19 Nickel-Based Alloy Sputtering Target and Nickel-Based Alloy Layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105102091A TWI558819B (en) 2016-01-22 2016-01-22 Nickel alloy sputtering target and nickel alloy layer

Publications (2)

Publication Number Publication Date
TWI558819B true TWI558819B (en) 2016-11-21
TW201726936A TW201726936A (en) 2017-08-01

Family

ID=57851673

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105102091A TWI558819B (en) 2016-01-22 2016-01-22 Nickel alloy sputtering target and nickel alloy layer

Country Status (3)

Country Link
MY (1) MY182002A (en)
SG (1) SG10201700458WA (en)
TW (1) TWI558819B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724978A (en) * 2018-07-17 2020-01-24 精工电子有限公司 Electroformed component and timepiece

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109423615B (en) * 2017-08-30 2021-02-02 光洋应用材料科技股份有限公司 Nickel-rhenium alloy target material and manufacturing method thereof
TWI659119B (en) * 2017-08-30 2019-05-11 光洋應用材料科技股份有限公司 Nickel-rhenium alloy sputtering target and method of preparing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201103999A (en) * 2009-07-22 2011-02-01 China Steel Corp Method for manufacturing nickel alloy target

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201103999A (en) * 2009-07-22 2011-02-01 China Steel Corp Method for manufacturing nickel alloy target

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724978A (en) * 2018-07-17 2020-01-24 精工电子有限公司 Electroformed component and timepiece

Also Published As

Publication number Publication date
SG10201700458WA (en) 2017-08-30
TW201726936A (en) 2017-08-01
MY182002A (en) 2021-01-18

Similar Documents

Publication Publication Date Title
Gubicza et al. Influence of severe plastic deformation on the microstructure and hardness of a CoCrFeNi high-entropy alloy: A comparison with CoCrFeNiMn
TWI558819B (en) Nickel alloy sputtering target and nickel alloy layer
JP6958819B2 (en) Sputtering target for magnetic recording media
JP3962690B2 (en) Pt-Co sputtering target
JP6526837B2 (en) Ferromagnetic sputtering target
CZ2006200A3 (en) Enhanced sputter target manufacturing method
JP4694543B2 (en) Ag-based alloy sputtering target and manufacturing method thereof
EP1811050A2 (en) Magnetic sputter targets manufactured using directional solidification
CN104903488B (en) sputtering target containing Co or Fe
JP5103462B2 (en) Ag alloy thermal diffusion control film and magnetic recording medium for thermal assist recording provided with the same
JP2004043868A (en) Sputtering target material for depositing thin film, and method for manufacturing the same
Herre et al. Rapid fabrication and interface structure of highly faceted epitaxial Ni-Au solid solution nanoparticles on sapphire
CN109423615B (en) Nickel-rhenium alloy target material and manufacturing method thereof
TW201816138A (en) Co-Fe-Nb-based sputtering target
TWI642798B (en) Sputtering target
CN113825856B (en) Ni-based sputtering target and magnetic recording medium
JP2015155573A (en) Sputtering target for magnetic recording media
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
Molnár et al. The effect of cooling rate on the microstructure and mechanical properties of NiCoFeCrGa high-entropy alloy
TW201912821A (en) Nickel-Rhenium Alloy Sputtering Target And Method of Preparing the Same
TWI778215B (en) Sputtering target
Schilling et al. Orientation of FePt nanoparticles on top of a-SiO2/Si (001), MgO (001) and sapphire (0001): effect of thermal treatments and influence of substrate and particle size
Yetik et al. Ultrathin, sputter-deposited, amorphous alloy films of ruthenium and molybdenum
JP6755910B2 (en) Co-Pt-Re based sputtering target, its manufacturing method and magnetic recording layer
CN114923906A (en) Method for rapidly screening components of high-forming-capacity amorphous alloy and positioning crystallization area