TWI557677B - 冠狀動脈阻塞風險評估方法 - Google Patents

冠狀動脈阻塞風險評估方法 Download PDF

Info

Publication number
TWI557677B
TWI557677B TW104119754A TW104119754A TWI557677B TW I557677 B TWI557677 B TW I557677B TW 104119754 A TW104119754 A TW 104119754A TW 104119754 A TW104119754 A TW 104119754A TW I557677 B TWI557677 B TW I557677B
Authority
TW
Taiwan
Prior art keywords
value
physiological signal
coronary artery
risk
artery occlusion
Prior art date
Application number
TW104119754A
Other languages
English (en)
Other versions
TW201701221A (zh
Inventor
李明義
郭彬芳
武孟餘
蔡文偉
庫瑪 沙
林文彥
張伯丞
Original Assignee
長庚大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長庚大學 filed Critical 長庚大學
Priority to TW104119754A priority Critical patent/TWI557677B/zh
Application granted granted Critical
Publication of TWI557677B publication Critical patent/TWI557677B/zh
Publication of TW201701221A publication Critical patent/TW201701221A/zh

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

冠狀動脈阻塞風險評估方法
本發明係關於冠狀動脈阻塞風險評估方法,尤指一種運用類神經網絡法計算冠狀動脈阻塞風險值之評估方法。
根據衛生署統計,心血管疾病近年來一直高居國人10大死因的第2位,於民國93年就有12861人死於心血管疾病,而且心血管疾病的可怕就在於它可能發生的猝死,在這種毫無預警的情況下,一般大眾容易忽略心臟病突發的可能。
心血管疾病種類中以冠狀動脈疾病的發作最為突然,如即使在醫學進步的美國,每年平均約有140萬人因心血管疾病而住院,其中65歲以上的每5人,就會有1位患有冠狀動脈疾病。
冠狀動脈疾病,也就是俗稱冠心症,其所產生的症狀為心絞痛。像身體所有的器官一樣,心臟也需要靠自己供給含氧血液,心臟的含氧血液靠著三條分枝的冠狀動脈供給,只要這些血管保持健康,心臟功能就能保持完整。
然而,當冠狀動脈狹窄阻斷血液對心臟的氧氣供應時,就會引起胸痛,心肌因而缺氧進而抑制心肌收縮,使心臟不能搏出正常量的血液,有時甚至會損害控制心律的傳導系統,引起心衰竭或心律不整而導致死亡。
在台灣,每年平均約有兩千名患者死於心肌梗塞,而每年罹患人口據保守估計約在九千名以上。冠狀動脈疾病的病因是由於冠狀動脈的狹窄及阻塞所造成。
冠狀動脈狹窄是由於在動脈壁的內膜下,脂性物質沈積而逐漸硬化所造成的,這種血管硬化的情形叫做粥樣硬化。粥樣硬化如被動脈的內膜覆蓋時,危害不會太大,如果內膜因某種原因發生破裂,血管病變就會迅速發展。動脈內的血液一旦與粥樣硬化斑接觸,很快就會形成血塊。
早期血塊是由黏性的血小板所組成,隨後,血中蛋白脢滲入,形成如同繩索般的纖維,使血小板更易於附著於動脈管壁而形成血塊,這種血塊,而稱之為血栓,它會完全阻塞供給心臟血液的血管,造成心臟肌肉的壞死,臨床上稱此種現象為心肌梗塞,必須立即送醫急救。
但即使患者能在黃金救命時間90分鐘內搶救回來,但患者後續也很有可能會因為心肌細胞壞死、心肌組織纖維化,導致心室壁變薄,無法承受壓力而擴大,最終仍引發心臟衰竭。更遑論有9~30%患者從有症狀至到達醫院的時間早已超過黃金90分鐘。
此外,冠狀動脈疾病的患者往往最常被延誤的部份,就是病換本身對於自身發病的徵兆毫無所覺,再加上發病時不一定剛好能被路人或家屬發現,也可能欠缺專業上的判斷,導致患者抵達醫院的時間太晚而延誤就醫。傳統醫檢技術係發展出相關電子監控技術以即時監控該使用者之冠狀動脈狀況,包括心電圖、呼吸頻率、血壓值、血氧濃度等訊號,然而,傳統醫檢技術僅可提供個別生理訊號之異常結果,無法綜合評估冠狀動脈阻塞狀況, 仍需由醫師主觀依照其個人經驗判定。
本發明係一種冠狀動脈阻塞風險評估方法,藉由量測使用者之心電訊號及其他生理訊號,透過擷取前述心電訊號及該其他生理訊號之特徵值,利用類神經網絡法之推論運算式以產生冠狀動脈阻塞風險值。
本發明之一目的,藉由類神經網絡法應用於至少兩生理訊號進行評估計算,提供醫師早期診斷冠狀動脈阻塞之風險程度。
本發明之另一目的,利用迴圈式類神經網絡學習法於冠狀動脈阻塞風險值之計算,進而提高臨床適用之可行性。
本發明之又一目的,透過常態資料庫或個人資料庫之特徵參數比對於生理訊號產生特徵值,以提高冠狀動脈阻塞風險值的準確性。
本發明係一種冠狀動脈阻塞風險評估方法,藉由生理監測裝置等接收自該使用者測得之心電圖生理訊號,又稱為第一生理訊號,以及接收至少一個第二生理訊號,該第二生理訊號包含了呼吸頻率、血壓值、血氧濃度、體溫以及汗液流量成分後,將該第一生理訊號之至少一個第一特徵值與該第二生理訊號之至少一個第二特徵值分別記錄於第一集合函數庫,以及第二集合函數庫,所述生理監測裝置於此不限,僅為提供第一生理訊號、以及至少一個第二生理訊號。
接著,本發明分別計算該第一集合函數庫以及該第二集合函數庫所對應之高度值、適合值以及正規化值。
依據前述之該高度值、該適合值及該正規化值,執行推論 運算式,該推論運算係模糊運算,而該模糊運算係依據模糊規則進行計算之方式,產生冠狀動脈阻塞風險值。
故而,關於本發明之優點與精神可以藉由以下發明詳述及附圖式解說來得到進一步的瞭解。
201‧‧‧類神經網絡
x‧‧‧冠狀動脈阻塞風險值
xd‧‧‧冠狀動脈阻塞風險期望值
第1圖顯示本發明較佳實施例之類神經網絡結合模糊運算步驟示意圖;第2圖顯示本發明較佳實施例之一種運用類神經網絡學習法計算冠狀動脈阻塞風險值之步驟示意圖。
本發明係一種冠狀動脈阻塞風險評估方法,可運用類神經網絡法(Neural network)以計算冠狀動脈阻塞風險值。
本發明之運作方法可透過第1圖之類神經網絡結合模糊運算步驟示意圖加以瞭解,應用常態資料庫(大眾均值)之異常特徵參數,建立前提參數(如第1圖所示之c,e,f),以及推論參數(如第1圖所示之g,h,i),產生如同醫師臨場應用大腦所下的專業判斷結果,能夠經過計算後得到冠狀動脈阻塞風險值。
首先,本發明透過生理監測裝置接收自該使用者測得之心電圖生理訊號,另稱為第一生理訊號,以及接收至少一個第二生理訊號,該第二生理訊號包含了呼吸頻率、血壓值、血氧濃度、體溫以及汗液流量成分後,將該第一生理訊號之至少一個第一特徵值與該第二生理訊號之至少一個第二特徵值分別記錄於第一集合函數庫,以及第二集合函數庫,而該第一集合函數庫以及該 第二集合函數庫皆係模糊集合歸屬函數庫,且該第一集合函數庫以及該第二集合函數庫具有複數個前提參數,該推論運算式具有複數個推論參數,所述生理監測裝置於此不限,僅為提供第一生理訊號以及至少一個第二生理訊號。
接著,本發明分別計算該第一集合函數庫以及該第二集合函數庫所對應之高度值、適合值以及正規化值。
依據前述之該高度值、該適合值及該正規化值,執行推論運算式,該推論運算係模糊運算,而該模糊運算係依據模糊規則進行計算之方式,最後產生冠狀動脈阻塞風險值。
依前述步驟,舉例而言,本發明之一種冠狀動脈阻塞風險評估方法係以該第一生理訊號與該第二生理訊號(血壓值、血氧濃度、體溫或汗液流量成分)之一者,劃分模糊集合歸屬函數,以計算高度值,如以下的公式:
接著利用高度值,進而計算適合值,如以下的公式:
再利用適合值,進而計算正規化值,如以下的公式:
進而藉由正規化值,進而建立模糊推論運算式,如以下的 公式:
接著,利用模糊推論運算式計算得到冠狀動脈阻塞風險值,如下式所示。舉例而言,當醫師獲知該冠狀動脈阻塞風險值x(落於0~1之間)時,可供醫師早期診斷冠狀動脈阻塞之風險程度。
此外,該第二生理訊號亦能包括血壓值、血氧濃度、體溫或汗液流量成分等多項組合,進而產生下列模糊推論運算式:
如第2圖為本發明之另一實施例之步驟示意圖(其中類神經網絡以201所標示),係一種運用迴圈式類神經網絡學習法,藉由已知一冠狀動脈阻塞風險期望值xd,而對系統進行測試,以確保該時間點計算之該冠狀動脈阻塞風險值x,與該冠狀動脈阻塞風險期望值xd之誤差(error)趨於0,其中該冠狀動脈阻塞風險值x係同於前述實施例,故不再贅述;該冠狀動脈阻塞風險期望值xd可為系統預先設置之校正參數,亦或患者前一時點記錄之該冠狀動脈阻塞風險值x。
此外,該冠狀動脈阻塞風險期望值xd亦可由醫師參照多組生理訊號(非僅限於本系統所應用之訊號),進而決定該冠狀動脈阻塞風險期望值xd。尤其,當醫師判定以本發明之冠狀動脈阻塞風險評估方法所計算之該冠狀動脈阻塞風險值x偏離其經驗判斷值時,可進而利用修正該冠狀動脈阻塞風險期望值xd,經由迴圈式類神經網絡學習法,自動將該複數個前提參數(如第1圖所示 之c,e,f)以及複數個推論參數(如第1圖所示之g,h,i)進行修正,作為下一時點(可能隔天、隔週等等)之評估使用。
本發明之另一實施例,其中將該第一生理訊號及該第二生理訊號分別對應於一常態資料庫之複數個特徵參數,對應於該第一生理訊號、第二生理訊號產生該第一特徵值以及該第二特徵值,所述之該常態資料庫係指心血管患者族群之測試資料集合。
本發明之另一實施例,其中將該第一生理訊號及該第二生理訊號分別對應於一個人資料庫之複數個特徵參數,對應於該第一生理訊號、第二生理訊號產生該第一特徵值以及該第二特徵值,所述之該個人資料庫係指該名患者於現時點前之複數個前一時點之測試資料集合。
綜上所述,本發明之一種冠狀動脈阻塞風險評估方法,可供醫師早期診斷冠狀動脈阻塞之風險程度。此外,本發明能利用該冠狀動脈阻塞風險期望值xd以進行迴圈式類神經網絡學習法之運算,得以修正該複數個前提參數、該複數個推論參數,進而提高臨床適用之可行性。再者,前述之該第一生理訊號及該第二生理訊號係能透過該常態資料庫或該個人資料庫之複數個特徵參數,提高該冠狀動脈阻塞風險值x的準確性。
以上所述僅為本發明之較佳實施例而已,並非用以限定本發明之申請專利範圍;凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含在下述之申請專利範圍內。

Claims (3)

  1. 一種冠狀動脈阻塞風險評估方法,包含下列步驟:接收一冠狀動脈阻塞風險期望值;接收自該使用者測得之一第一生理訊號以及至少一個第二生理訊號,並將該第一生理訊號之至少一個第一特徵值以及該第二生理訊號之至少一個第二特徵值分別記錄於一第一集合函數庫,以及一第二集合函數庫,其中該第一集合函數庫,以及該第二集合函數庫係一模糊集合歸屬函數庫,該第一集合函數庫,以及該第二集合函數庫具有複數個前提參數,以及複數個推論參數;將該第一生理訊號及該第二生理訊號分別對應於一常態資料庫之複數個特徵參數,產生該第一特徵值以及該第二特徵值;將該第一生理訊號及該第二生理訊號分別對應於一個人資料庫之複數個特徵參數,產生該第一特徵值以及該第二特徵值;分別計算該第一集合函數庫,以及該第二集合函數庫對應之一高度值、一適合值以及一正規化值;依據該高度值、該適合值以及該正規化值執行一推論運算式,產生一冠狀動脈阻塞風險值,其中該推論運算係一模糊運算,該模糊運算係依據至少一模糊規則以進行計算;計算該冠狀動脈阻塞風險值與該冠狀動脈阻塞風險期望值之差,產生一誤差值;以及依據該誤差值修正該複數個前提參數或及該複數個推論參數。
  2. 如申請專利範圍第1項所述之方法,其中該第一生理訊號為一心電圖訊號。
  3. 如申請專利範圍第1項所述之方法,其中該第二生理訊號係由一呼吸頻率、一血壓值、一血氧濃度以及一汗液流量成分群組中所選出。
TW104119754A 2015-06-18 2015-06-18 冠狀動脈阻塞風險評估方法 TWI557677B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104119754A TWI557677B (zh) 2015-06-18 2015-06-18 冠狀動脈阻塞風險評估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104119754A TWI557677B (zh) 2015-06-18 2015-06-18 冠狀動脈阻塞風險評估方法

Publications (2)

Publication Number Publication Date
TWI557677B true TWI557677B (zh) 2016-11-11
TW201701221A TW201701221A (zh) 2017-01-01

Family

ID=57851566

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119754A TWI557677B (zh) 2015-06-18 2015-06-18 冠狀動脈阻塞風險評估方法

Country Status (1)

Country Link
TW (1) TWI557677B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201219002A (en) * 2010-11-11 2012-05-16 E Da Hospital I Shou University Personal health risk evaluation system and method thereof
WO2013056317A1 (en) * 2011-10-19 2013-04-25 Kellogg Brown & Root Llc Photobioreactor
CN101645142B (zh) * 2008-08-04 2014-05-14 香港理工大学 用于心血管疾病和中风的风险评估的模糊系统
TW201424683A (zh) * 2012-12-19 2014-07-01 Ind Tech Res Inst 脈波與體質健康風險評估系統與方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101645142B (zh) * 2008-08-04 2014-05-14 香港理工大学 用于心血管疾病和中风的风险评估的模糊系统
TW201219002A (en) * 2010-11-11 2012-05-16 E Da Hospital I Shou University Personal health risk evaluation system and method thereof
WO2013056317A1 (en) * 2011-10-19 2013-04-25 Kellogg Brown & Root Llc Photobioreactor
TW201424683A (zh) * 2012-12-19 2014-07-01 Ind Tech Res Inst 脈波與體質健康風險評估系統與方法

Also Published As

Publication number Publication date
TW201701221A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
US9326735B2 (en) Method and apparatus for monitoring cardiac output of a patient in a home environment
Zoremba et al. Comparison of electrical velocimetry and thermodilution techniques for the measurement of cardiac output
Rusin et al. Prediction of imminent, severe deterioration of children with parallel circulations using real-time processing of physiologic data
US20080183232A1 (en) Method and system for determining cardiac function
US9706952B2 (en) System for ventricular arrhythmia detection and characterization
WO2016013684A1 (ja) 心不全の評価方法および診断装置
US10244958B2 (en) Device for measurement and evaluation of cardiac function on the basis of thoracic impedance
US9560983B2 (en) Method for creating and analyzing graphs of cardiac function in atrial fibrillation and sinus arrhythmia based on thoracic impedance measurements
US20170224232A1 (en) Measuring homeostatic risk
JP2006528023A (ja) 心拍数変動に基づいて心虚血を評価するための方法およびシステム
WO2021234616A1 (en) Method for the simulation of coronary changes and/or for the risk assessment of myocardial ischemia
D’Andrea et al. Exercise-induced atrial remodeling: the forgotten chamber
JP2005514098A (ja) 運動プロトコルを用いて心臓虚血を評価する方法およびシステム
TWI557677B (zh) 冠狀動脈阻塞風險評估方法
US20160206213A1 (en) Measuring homeostatic risk
Chang et al. Unobtrusive detection of simulated orthostatic hypotension and supine hypertension using ballistocardiogram and electrocardiogram of healthy adults
Akshay et al. Design & implementation of real time bio-signal acquisition system for quality health care services for the population of rural India
A‐Mohannadi et al. Conventional Clinical Methods for Predicting Heart Disease
JP2021176056A (ja) 医療システム及び医療情報処理装置
JP6725533B2 (ja) 血行障害測定装置
Castells et al. Data and signals for the assessment of the cardiovascular system
JP2007296365A (ja) 患者の肺血管外水分量を算定するための装置ならびにコンピュータプログラム
EP4029437A1 (en) Blood pressure estimation
Melin et al. [PP. 08.10] ARTIFICIAL INTELLIGENCE UTILIZING NEURO-FUZZY HYBRID MODEL FOR THE CLASSIFICATION OF BLOOD PRESSURE
Peng et al. Near-IR Embedded in a Physiological Signal Monitoring System.

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees