TWI557437B - Stereo camera apparatus, self-calibration apparatus and method for calibrating - Google Patents
Stereo camera apparatus, self-calibration apparatus and method for calibrating Download PDFInfo
- Publication number
- TWI557437B TWI557437B TW101149879A TW101149879A TWI557437B TW I557437 B TWI557437 B TW I557437B TW 101149879 A TW101149879 A TW 101149879A TW 101149879 A TW101149879 A TW 101149879A TW I557437 B TWI557437 B TW I557437B
- Authority
- TW
- Taiwan
- Prior art keywords
- image capturing
- image
- optical axis
- control module
- capturing units
- Prior art date
Links
Landscapes
- Studio Devices (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
Description
本揭露是有關於一種攝像裝置、一種校正裝置與一種校正方法,且特別是有關於一種立體攝像裝置、一種自動校正裝置與一種校正方法。 The present disclosure relates to an image pickup apparatus, a correction apparatus, and a correction method, and more particularly to a stereo camera apparatus, an automatic correction apparatus, and a correction method.
隨著近年來3D(3 dimensional)立體電影的熱門以及賣座,立體數位影像的消費需求亦日益增加。目前主要的立體數位影像除了透過電腦合成以及平面轉立體(2D to 3D)的轉換之外,以立體攝影機實際拍攝立體影像已逐漸成為主流趨勢之一。一般而言,立體攝影機實際拍攝是利用兩台以上的攝影機進行立體影像的取像拍攝。隨著立體數位影像的消費需求增加,各式各樣的立體攝影機以及拍攝器材如雨後春筍般面世。目前常見的立體攝影機主要可分為兩大架構:並排式架構(side-by-side rig)以及鏡組半反射架構(Mirror rig)。 With the popularity and popularity of 3D (3 dimensional) stereoscopic movies in recent years, the demand for stereoscopic digital images has also increased. At present, in addition to computer synthesis and 2D to 3D conversion, the main stereoscopic digital image has become one of the mainstream trends in stereoscopic imaging. In general, the actual shooting of a stereo camera is to take a stereo image by two or more cameras. With the increasing consumer demand for stereoscopic digital images, a wide variety of stereo cameras and shooting equipment have sprung up. The current common stereo cameras can be divided into two major architectures: side-by-side rig and mirror rig.
詳細而言,立體影像的立體感是基於人的兩眼具有一定視差所產生,由於人的兩眼主要是沿著水平方向排列,換言之,有效的立體影像視差為水平方向的視差,因此,人工的立體影像中不應存在太過明顯的垂直方向或其他方向的視差,以避免人眼觀看人工的立體影像時由於水平方向以外的視差使得雙眼無法良好對焦而影響立體影像品質,甚至可能會產生暈眩或是不適感。目前,在拍攝立體 影像之前,立體攝影機需經過手工校正過程以使得立體攝影機中的多個攝影鏡頭首先被良好的對齊(align),然後再依照拍攝拍攝需求來對應調整各個攝影鏡頭間的距離與方向。然而,由於目前主流的方式是採用人工的方式校正,一般而言,經驗老到的校正技師需花費2至3小時左右方能校正一次,而拍攝一部立體電影通常會有超過200個鏡頭,換言之,一部電影花在校正上的時間與金錢十分可觀,因此校正的時間越長,除了可能造成金錢上的重大損失之外,更可能造成劇組人員的拍攝壓力(如電影巨星的檔期因素或特殊國家的允許拍攝時間限制)。因此,如何提供快速且準確的立體攝影機校正方式已成為目前亟待解決的問題之一。 In detail, the stereoscopic effect of the stereoscopic image is generated based on the fact that the two eyes of the person have a certain parallax, since the two eyes of the person are mainly arranged in the horizontal direction, in other words, the effective stereoscopic image parallax is the parallax in the horizontal direction, therefore, the artificial There should be no obvious vertical or other directions of parallax in the stereoscopic image, so as to avoid the stereoscopic image quality caused by the blindness of the horizontal direction due to the parallax outside the horizontal direction when the human eye views the artificial stereo image, and may even affect the quality of the stereo image. Produces dizziness or discomfort. Currently, shooting stereo Before the image, the stereo camera needs to undergo a manual correction process so that the plurality of photographic lenses in the stereo camera are first aligned well, and then the distance and direction between the photographic lenses are adjusted correspondingly according to the shooting requirements. However, since the current mainstream method is to use manual correction, in general, an experienced calibration technician takes about 2 to 3 hours to correct once, and a stereo movie usually has more than 200 shots. In other words, the time and money spent on a movie is very impressive. Therefore, the longer the correction is, the more likely it is to cause significant financial damage, and it is more likely to cause pressure on the crew (such as the movie star’s schedule factor or Allowable shooting time limits for special countries). Therefore, how to provide a fast and accurate stereo camera correction method has become one of the urgent problems to be solved.
本揭露提出一種立體攝像裝置,包括一取像裝置、一光軸控制模組以及一運算模組。取像裝置適於取得一立體影像,取像裝置包括多個取像單元。光軸控制模組耦接至取像裝置。運算模組耦接至取像裝置與光軸控制模組,其中運算模組根據立體影像計算出一校正條件,光軸控制模組根據校正條件調整取像裝置中這些取像單元的取像光軸方向,在經過光軸控制模組的調整之後,這些取像單元的取像光軸對齊。 The present disclosure provides a stereo camera device including an image capture device, an optical axis control module, and an arithmetic module. The image capturing device is adapted to obtain a stereoscopic image, and the image capturing device comprises a plurality of image capturing units. The optical axis control module is coupled to the image capturing device. The operation module is coupled to the image capturing device and the optical axis control module, wherein the computing module calculates a correction condition according to the stereo image, and the optical axis control module adjusts the image capturing light of the image capturing units in the image capturing device according to the correction condition. In the axial direction, after the adjustment of the optical axis control module, the image axes of the image capturing units are aligned.
本揭露提出一種立體攝像裝置的校正方法,包括:以多個取像單元擷取多個影像訊號;對這些影像訊號執行一 對齊誤差運算,並計算出這些影像訊號間的一誤差值;判斷誤差值是否高於一閾值;以及若誤差值高於閾值,則執行修正誤差值的一對齊步驟以修正這些取像單元的位置與取像光軸方向,再重新對這些影像訊號執行一對齊誤差運算,直到誤差值低於閾值為止,若誤差值低於閾值,則完成校正。 The present disclosure provides a method for correcting a stereo camera device, including: capturing a plurality of image signals by using multiple image capturing units; performing one on the image signals Aligning the error operation and calculating an error value between the image signals; determining whether the error value is higher than a threshold; and if the error value is higher than the threshold, performing an alignment step of correcting the error value to correct the position of the image capturing unit And the direction of the image optical axis, and then perform an alignment error operation on the image signals until the error value is lower than the threshold. If the error value is lower than the threshold, the correction is completed.
本揭露提出一種自動校正裝置,適於自動校正多個取像單元的位置與取像光軸的方向,自動校正裝置包括一光軸控制模組以及一運算模組。光軸控制模組耦接至這些取像單元。光軸控制模組包括多個載台(stage)以安裝這些取像單元。運算模組耦接至這些取像單元與光軸控制模組。其中,運算模組根據這些取像單元所擷取的多個影像計算出一校正條件,光軸控制模組根據校正條件調整這些載台並帶動調整這些取像單元的取像光軸方向,在經過光軸控制模組調整後,這些取像單元的取像光軸對齊。 The present disclosure provides an automatic correction device adapted to automatically correct the position of a plurality of image capturing units and the direction of the image capturing optical axis. The automatic correcting device includes an optical axis control module and an arithmetic module. The optical axis control module is coupled to the image capturing units. The optical axis control module includes a plurality of stages to mount the image taking units. The computing module is coupled to the image capturing unit and the optical axis control module. The calculation module calculates a correction condition according to the plurality of images captured by the image capturing unit, and the optical axis control module adjusts the stages according to the correction condition and drives the direction of the image capturing optical axis of the image capturing unit to be adjusted. After being adjusted by the optical axis control module, the image axes of the image capturing units are aligned.
為讓本揭露之上述特徵能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above features of the present disclosure more apparent, the following embodiments are described in detail with reference to the accompanying drawings.
圖1是本揭露之一實施例中的立體攝像裝置的示意圖,請參照圖1,在本實施例中,立體攝像裝置100可包括一取像裝置110、一光軸控制模組120以及一運算模組130。取像裝置110適於取得一立體影像。並且,取像裝置 110可包括多個取像單元。舉例來說如圖1中所繪示,取像裝置110包括取像單元110A與取像單元110B,且取像單元110A與取像單元110B並排(side-by-side)。然而,本揭露不限於此,在其他實施例中,取像裝置110可包括更多個取像單元。在本實施例中,光軸控制模組120可耦接至取像裝置110。舉例而言,如圖1所繪示,光軸控制模組120的數量亦可為二個。其中,光軸控制模組120A與光軸控制模組120B可分別耦接並控制取像單元110A與取像單元110B,藉此以分別控制取像單元110A與取像單元110B。然而,在其他實施例中,光軸控制模組120的數量亦可撘配取像單元的數量,而不限於2個。並且,運算模組130可耦接至取像裝置110與光軸控制模組120。其中,運算模組130可根據立體影像計算出一校正條件,光軸控制模組120並可根據校正條件自動地調整取像裝置110中取像單元110A與取像單元110B的取像光軸XA與取像光軸XB的方向,直到滿足校正條件為止。其中,校正條件的詳細細節將於後續述之。舉例而言,在本實施例中,光軸控制模組120可控制取像單元110A與取像單元110B的前後位置(X軸)、高低位置(Z軸)、翻轉角(roll)以及傾角(pitch)。並且,光軸控制模組120亦可控制取像單元110A與取像單元110B水平間距(inter-axial,即沿著圖1中的Y軸方向)與偏轉角(convergence)。 1 is a schematic diagram of a stereo camera device according to an embodiment of the present disclosure. Referring to FIG. 1 , in the embodiment, the stereo camera device 100 can include an image capture device 110 , an optical axis control module 120 , and an operation. Module 130. The image capturing device 110 is adapted to acquire a stereoscopic image. And the image capturing device 110 can include a plurality of imaging units. For example, as shown in FIG. 1 , the image capturing device 110 includes an image capturing unit 110A and an image capturing unit 110B , and the image capturing unit 110A and the image capturing unit 110B are side-by-side. However, the disclosure is not limited thereto, and in other embodiments, the image capturing device 110 may include more image capturing units. In this embodiment, the optical axis control module 120 can be coupled to the imaging device 110. For example, as shown in FIG. 1 , the number of optical axis control modules 120 may also be two. The optical axis control module 120A and the optical axis control module 120B can respectively couple and control the image capturing unit 110A and the image capturing unit 110B, thereby controlling the image capturing unit 110A and the image capturing unit 110B, respectively. However, in other embodiments, the number of optical axis control modules 120 may also be matched to the number of image units, and is not limited to two. Moreover, the computing module 130 can be coupled to the image capturing device 110 and the optical axis control module 120. The calculation module 130 can calculate a correction condition according to the stereo image, and the optical axis control module 120 can automatically adjust the imaging optical axis XA of the image capturing unit 110A and the image capturing unit 110B in the image capturing device 110 according to the correction condition. The direction of the image optical axis XB is taken until the correction condition is satisfied. Among them, the details of the correction conditions will be described later. For example, in the embodiment, the optical axis control module 120 can control the front and rear position (X axis), the high and low position (Z axis), the roll angle, and the tilt angle of the image capturing unit 110A and the image capturing unit 110B ( Pitch). Moreover, the optical axis control module 120 can also control the horizontal spacing (inter-axial, that is, along the Y-axis direction in FIG. 1) and the yaw angle of the image capturing unit 110A and the image capturing unit 110B.
其中,在經過光軸控制模組120的調整之後,取像單元110A的取像光軸XA與取像單元110B的取像光軸XB 對齊。舉例而言,在本實施例中,圖1實施例中所述的光軸對齊亦即為取像光軸XA與取像光軸XB在空間中彼此平行且至少位於同一水平面上(例如圖1中的X-Y軸平面上),換言之,取像單元110A的取像光軸XA與取像單元110B的取像光軸XB在經過光軸控制模組120的校正之後,取像單元110A與取像單元110B彼此間在傾角(pitch)、偏轉角(yaw)以及翻轉角(roll)的方向上的誤差降至最低。進一步而言,取像光軸XA與取像光軸XB在水平方向與垂直方向上對齊。更進一步而言,在本實施例中,取像光軸XA與取像光軸XB位於同一水平面上。在本實施例中,傾角例如為取像單元110A以Y軸為軸轉動時所產生的取像光軸XA的角度變化,偏轉角例如為取像單元110A以Z軸為軸轉動時所產生的取像光軸XA的角度變化,並且翻轉角例如為取像單元110A以X軸為軸轉動時所產生的取像光軸XA的角度變化。藉此,在實際拍攝時,由於取像光軸XA與取像光軸XB平行且位於同一水平面上,與人的兩眼視物的機制相似,因此,拍攝者可簡單的依照拍攝立體影像所需的影像深度大小(空間感)與凹凸感(立體感)來對應調整取像單元110A取像單元110B之間的水平間距(inter-axial distance)的距離d與水平收斂程度(convergence)(即偏轉角θ),而可避免垂直方向上或是角度上(傾角與翻轉角)的誤差造成拍攝失敗或是影像讓觀賞者感到不適的現象。同時,由於取像單元110A取像單元110B可被光軸控制模組120自動地控制,而可節省下人工校正 所耗費的大量時間,從而節省拍攝成本,並增進拍攝效率。 After the adjustment by the optical axis control module 120, the image capturing optical axis XA of the image capturing unit 110A and the imaging optical axis XB of the image capturing unit 110B are taken. Align. For example, in the embodiment, the optical axis alignment described in the embodiment of FIG. 1 is that the imaging optical axis XA and the imaging optical axis XB are parallel to each other in space and at least on the same horizontal plane (for example, FIG. 1 In the XY axis plane of the image capturing unit 110A, in other words, the image capturing optical axis XA of the image capturing unit 110A and the image capturing optical axis XB of the image capturing unit 110B are corrected by the optical axis control module 120, and the image capturing unit 110A and the image capturing unit are taken. The errors in the directions of the pitch, the yaw, and the roll of the units 110B are minimized. Further, the image taking optical axis XA and the taking optical axis XB are aligned in the horizontal direction and the vertical direction. Further, in the present embodiment, the image capturing optical axis XA and the imaging optical axis XB are located on the same horizontal plane. In the present embodiment, the tilt angle is, for example, an angle change of the image taking optical axis XA generated when the image capturing unit 110A rotates on the Y axis. The deflection angle is, for example, generated when the image capturing unit 110A rotates on the Z axis. The angle change of the image optical axis XA is taken, and the flip angle is, for example, an angle change of the image taking optical axis XA generated when the image capturing unit 110A is rotated about the X axis. Therefore, in the actual shooting, since the image capturing optical axis XA is parallel to the image capturing optical axis XB and located on the same horizontal plane, the mechanism of the two eyes is similar to that of the human eye, and therefore, the photographer can simply follow the stereoscopic image. The required image depth size (space sense) and the concavity feeling (stereoscopic sense) correspond to the distance d and the horizontal convergence degree of the inter-axial distance between the image capturing unit 110A and the image capturing unit 110B (ie, the convergence). The deflection angle θ) avoids the phenomenon that the vertical direction or the angle (inclination angle and flip angle) causes the shooting to fail or the image is uncomfortable to the viewer. At the same time, since the image capturing unit 110A can be automatically controlled by the optical axis control module 120, the manual correction can be saved. It takes a lot of time, which saves shooting costs and improves shooting efficiency.
詳細而言,光軸控制模組120可包括驅動控制器122以及多個驅動器125,驅動控制器122可驅動這些驅動器125以改變取像單元110A與取像單元110B的位置以及取像光軸XA與取像光軸XB的方向。舉例而言,在本實施例中,驅動控制器122與驅動器125例如可分別包括對應取像單元110A的驅動控制器122A與驅動器125A,以及包括對應取像單元110B的驅動控制器122A與驅動器125B。並且,這些驅動器125亦可包括能夠正向或反向線性運動的精密馬達以及其相關的驅動機構件,在驅動控制器122的控制下,可用以驅動以改變取像單元110A與取像單元110B的位置與角度(如前述之X軸、Y軸以及Z軸立體座標空間中的位置,以及傾角、偏轉角以及翻轉角的角度方向,換言之,在本實施例中各取像單元例如可由六個驅動器125分別控制各個位置與角度方向),然而本揭露不以此為限。此外,光軸控制模組120亦可包括多個載台(stage)如圖1中的載台PTA以及載台PTB,以分別對應安裝取像單元110A與取像單元110B。在本實施例中,載台PTA與PTB例如為可鎖固取像單元110A與取像單元110B的平台,然而,在其他實施例中,載台PTA與PTB亦可實施為其他型態如支撐臂或支架等適於安裝固定載台PTA與PTA的裝置,本發明不以此為限。 In detail, the optical axis control module 120 may include a drive controller 122 and a plurality of drivers 125, and the drive controller 122 may drive the drivers 125 to change the position of the image capturing unit 110A and the image capturing unit 110B and the image capturing optical axis XA. And the direction of the image optical axis XB. For example, in the embodiment, the driving controller 122 and the driver 125 may respectively include a driving controller 122A and a driver 125A corresponding to the image capturing unit 110A, and a driving controller 122A and a driver 125B including the corresponding image capturing unit 110B. . Moreover, these drivers 125 may also include a precision motor capable of linear motion in forward or reverse directions and associated driver components, which may be driven to change the image taking unit 110A and the image capturing unit 110B under the control of the drive controller 122. The position and angle (such as the position in the X-axis, the Y-axis, and the Z-axis stereo coordinate space, and the inclination direction, the deflection angle, and the angular direction of the flip angle, in other words, in the embodiment, each image capturing unit can be, for example, six. The driver 125 controls the respective positions and angular directions), but the disclosure is not limited thereto. In addition, the optical axis control module 120 may further include a plurality of stages such as the stage PTA and the stage PTB in FIG. 1 to respectively respectively mount the image capturing unit 110A and the image capturing unit 110B. In this embodiment, the stages PTA and PTB are, for example, platforms for locking the image capturing unit 110A and the image capturing unit 110B. However, in other embodiments, the stages PTA and PTB may be implemented in other types such as support. The arm or the bracket is suitable for mounting the device for fixing the stage PTA and the PTA, and the invention is not limited thereto.
進一步而言,圖1實施例中的立體攝像裝置100所包括的光軸控制模組120以及運算模組130亦可形成一自動 校正裝置100’,並可依照拍攝需求撘配各式不同的攝像裝置,如立體攝像裝置的架構可為立體攝影機、雙攝影機、雙數位相機或等任何立體訊號產生裝置,然本發明不以此為限。藉此,在實際拍攝上可依照拍攝的場地或環境(如極地、深海、沙漠或太空等)更換不同的攝像裝置,可具有極佳的拍攝彈性,並亦具有與立體攝像裝置100相似之自動校正功效。 Further, the optical axis control module 120 and the computing module 130 included in the stereo camera device 100 in the embodiment of FIG. 1 may also form an automatic The calibration device 100' can be equipped with various different imaging devices according to the shooting requirements. For example, the stereo camera device can be a stereo camera, a dual camera, a dual digital camera or any stereo signal generating device, but the present invention does not Limited. Therefore, in actual shooting, different camera devices can be replaced according to the shooting site or environment (such as polar, deep sea, desert or space), which can have excellent shooting flexibility and also has an automatic similar to the stereo camera device 100. Corrective effect.
更詳細而言,在本實施例中,這些驅動器125可來回運動以使這些取像單元110A與取像單元110B的位置與取像光軸XA與取像光軸XB的方向趨近定位。舉例而言,圖2繪示出圖1實施例中的驅動器的定位過程示意圖,請參照圖1與圖2,其中,以取像單元110A為例,當取像單元110A尚未校正時,取像光軸XA位於光軸XA0的方向上。若取像單元110A的取像光軸XA欲根據前述之校正條件定位至X軸方向時,驅動器125會以Z軸為轉動軸使取像單元110A轉動,進而驅動取像光軸XA由光軸XA0的方向先移動到光軸XA1的方向上,接著驅動器125再使取像單元110A轉動,進而驅動光軸XA1再移動到光軸XA2的方向上,其中,第一次的轉動角度θ 1大於第二次的轉動角度θ 2,並且在經過這兩次轉動之後,取像光軸XA與X軸的方向更接近平行。接著,驅動器125再驅動取像單元110A轉動,進而驅動光軸XA2移動到光軸XA3的方向上,而後,驅動器125再驅使取像單元110A轉動,進而驅動光軸XA3再移動到X軸的方向上,其中,第三次的轉 動角度θ 3大於第四次的轉動角度θ 4,並且在經過這兩次轉動之後,取像光軸XA與X軸的方向相較於前幾次轉動更接近平行,如此可反覆上述過程直到取像光軸XA與X軸的方向趨近平行。換言之,驅動器125可重覆進行數次來回轉動以使得取像光軸XA與X軸實質上平行。在本實施例中,轉動的次數僅用於舉例說明本實施例,本揭露不以此為限。此外,取像裝置110中的各取像單元亦可藉由此一機制趨近定位。進一步而言,光軸控制模組120可在調整取像單元110A與取像單元110B後固定取像單元110A與取像單元110B的位置。藉此,可進一步確保校正後的取像單元110A與取像單元110B能維持,而不致輕易改變。 In more detail, in the present embodiment, the drivers 125 are movable back and forth to position the positions of the image capturing unit 110A and the image capturing unit 110B and the direction of the image capturing optical axis XA and the image capturing optical axis XB. For example, FIG. 2 is a schematic diagram showing a positioning process of the driver in the embodiment of FIG. 1. Referring to FIG. 1 and FIG. 2, taking the image capturing unit 110A as an example, when the image capturing unit 110A has not been corrected, the image capturing unit is taken. The optical axis XA is located in the direction of the optical axis XA 0 . If the image capturing optical axis XA of the image capturing unit 110A is to be positioned in the X-axis direction according to the aforementioned correction condition, the driver 125 rotates the image capturing unit 110A with the Z axis as the rotating axis, thereby driving the image capturing optical axis XA from the optical axis. The direction of XA 0 is first moved to the direction of the optical axis XA 1 , and then the driver 125 rotates the image capturing unit 110A to drive the optical axis XA 1 and then move to the direction of the optical axis XA 2 , wherein the first rotation The angle θ 1 is larger than the second rotation angle θ 2 , and after the two rotations, the direction of the image optical axis XA and the X axis is closer to parallel. Then, the driver 125 drives the image capturing unit 110A to rotate, thereby driving the optical axis XA 2 to move in the direction of the optical axis XA 3 , and then the driver 125 drives the image capturing unit 110A to rotate, thereby driving the optical axis XA 3 and then moving to the X. In the direction of the axis, wherein the third rotation angle θ 3 is greater than the fourth rotation angle θ 4 , and after the two rotations, the direction of the image optical axis XA and the X axis is compared with the previous The rotation is closer to parallel, so that the above process can be repeated until the direction of the image optical axis XA and the X axis are parallel. In other words, the driver 125 can be repeatedly rotated back and forth several times such that the image capturing optical axis XA is substantially parallel to the X axis. In this embodiment, the number of rotations is only used to illustrate the embodiment, and the disclosure is not limited thereto. In addition, each image capturing unit in the image capturing device 110 can be positioned closer by this mechanism. Further, the optical axis control module 120 can fix the positions of the image capturing unit 110A and the image capturing unit 110B after adjusting the image capturing unit 110A and the image capturing unit 110B. Thereby, it can be further ensured that the corrected image capturing unit 110A and the image capturing unit 110B can be maintained without being easily changed.
此外,請繼續參照圖1,在本實施例中,運算模組130可更包括一訊號擷取單元132、一運算單元134以及一指令訊號輸出單元136。訊號擷取單元132可接收取像單元110A與110B所分別取得的影像。運算單元134耦接至訊號擷取單元132。舉例而言,運算單元134可為電腦、現場可程式邏輯閘陣列(Field Programmable Gate Array,FPGA)或是嵌入式系統板,然而本揭露不以此為限。其中,運算單元134可根據取像單元110A與110B所分別取得的影像之間的特徵與對應關係計算出校正條件。指令訊號輸出單元136可將校正條件轉換為一控制訊號輸出至光軸控制模組120。 In addition, referring to FIG. 1 , in the embodiment, the computing module 130 further includes a signal capturing unit 132 , an operation unit 134 , and an instruction signal output unit 136 . The signal capturing unit 132 can receive the images respectively obtained by the image capturing units 110A and 110B. The computing unit 134 is coupled to the signal capturing unit 132. For example, the computing unit 134 can be a computer, a Field Programmable Gate Array (FPGA), or an embedded system board. However, the disclosure is not limited thereto. The calculation unit 134 can calculate the correction condition according to the feature and the correspondence between the images respectively acquired by the image capturing units 110A and 110B. The command signal output unit 136 can convert the correction condition into a control signal output to the optical axis control module 120.
圖3繪示出圖1實施例中的立體攝像裝置的校正示意 圖,圖4A與圖4B分別繪示出圖3中的各取像單元在校正前分別拍攝到的影像,圖4C繪示出圖4A與圖4B影像的差異影像,圖4D繪示出經過校正後,各取像單元分別拍攝到的影像之間的差異影像,請參照圖1至圖4B,在本實施例中,在取像裝置110中的取像單元110A以及取像單元110B尚未校正時,可利用擺設於取像裝置110前方的一近物體NJ與一遠物體FJ來校正取像單元110A以及取像單元110B。其中,近物體NJ與取像裝置110的距離比遠物體FJ與取像裝置110的距離更近,並且近物體NJ可包含多個特徵點RG用以校正取像裝置110,而遠物體FJ可以是包含明顯特徵的參考物,並不可包含近物體NJ以及特徵點RG的特徵影像(亦即,近物體NJ與遠物體FJ的特徵不可過於相似以免造成校正上的錯誤)。舉例而言,在本實施例中,近物體NJ例如是利用擺放於一支架M上的多個特徵點RG所構成的一九點校正板而遠物體FJ可具有棋盤格紋。其中,取像單元110A以及取像單元110B除了可分別拍攝到近物體NJ上的多個特徵點RG的影像之外,亦可透過近物體NJ九點校正板之間的空隙拍攝到位於近物體NJ後方的遠物體FJ,如圖3所繪示。在本實施例中,取像單元110A的取像光軸XA以及取像單元110B的取像光軸XB在校正前所拍攝到的影像分別如圖4A與圖4B所繪示,並且,將圖4A與圖4B的影像相減可得到如圖4C的差異影像。 FIG. 3 is a schematic diagram showing the correction of the stereo camera device in the embodiment of FIG. 1. 4A and FIG. 4B respectively illustrate images captured by each of the image capturing units of FIG. 3 before correction, FIG. 4C illustrates difference images of the images of FIGS. 4A and 4B, and FIG. 4D illustrates corrections. Referring to FIG. 1 to FIG. 4B, in the present embodiment, when the image capturing unit 110A and the image capturing unit 110B in the image capturing device 110 have not been corrected, the image capturing unit 110A and the image capturing unit 110B are not corrected. The image capturing unit 110A and the image capturing unit 110B can be corrected by using a near object NJ and a far object FJ disposed in front of the image capturing device 110. Wherein, the distance between the near object NJ and the image capturing device 110 is closer than the distance between the far object FJ and the image capturing device 110, and the near object NJ may include a plurality of feature points RG for correcting the image capturing device 110, and the far object FJ may It is a reference object containing obvious features, and may not include the near object NJ and the feature image of the feature point RG (that is, the features of the near object NJ and the far object FJ may not be too similar to avoid a correction error). For example, in the present embodiment, the near object NJ is, for example, a nine-point correction plate composed of a plurality of feature points RG placed on a holder M, and the far object FJ may have a checkerboard pattern. The image capturing unit 110A and the image capturing unit 110B can capture the images of the plurality of feature points RG on the near object NJ, respectively, and can also capture the near objects through the gap between the near-object NJ nine-point calibration plates. The far object FJ behind the NJ is as shown in FIG. In the present embodiment, the image taken by the image capturing optical axis XA of the image capturing unit 110A and the image capturing optical axis XB of the image capturing unit 110B are corrected as shown in FIGS. 4A and 4B, respectively. 4A is subtracted from the image of FIG. 4B to obtain a difference image as shown in FIG. 4C.
由於取像單元110A以及取像單元110B尚未校正,因 此在各方向上的位置與角度方向都有可能存在差異,進而反應在所擷取的影像上。請參照圖4C,其中這些特徵點RG與棋盤格紋(即遠物體FJ的影像)並未對齊且有垂直與水平方向的誤差。換言之,在本實施例中,圖4C所繪示的這些由於取像單元110A以及取像單元110B在各方向上的位置與角度方向之差異所造成的差異影像的斑紋明顯程度,即可依此推算出本實施例中的校正條件。舉例而言,在本實施例中,運算模組130可根據立體影像(亦即圖4A與圖4B中繪示的影像)的差異影像(亦即如圖4C中所繪示),計算出將此差異影像中的斑紋明顯程度(例如斑紋的粗細)降至最低時,取像光軸XA與取像光軸XB在位置與角度方向上需要改變的程度,即為本實施例中的校正條件。而後,光軸控制模組120並可根據校正條件自動地調整取像裝置110中取像單元110A與取像單元110B的取像光軸XA與取像光軸XB的方向,直到滿足校正條件,亦即使圖4C中的差異影像的斑紋近乎消失為止,如圖4D所繪示。如此,可確保取像單元110A與取像單元110B在方向與角度上都已被良好的校正,而可避免拍攝失敗,如圖1實施例中所述,在此不再贅述。 Since the image capturing unit 110A and the image capturing unit 110B have not been corrected, There may be differences between the position and the angular direction in all directions, and thus in the captured image. Referring to FIG. 4C, the feature points RG are not aligned with the checkerboard pattern (ie, the image of the far object FJ) and have vertical and horizontal errors. In other words, in the present embodiment, the difference in the image of the difference image caused by the difference between the position and the angular direction of the image capturing unit 110A and the image capturing unit 110B in FIG. 4C can be The correction conditions in this embodiment are derived. For example, in the embodiment, the computing module 130 can calculate the difference image (that is, as shown in FIG. 4C ) according to the difference image of the stereo image (that is, the image shown in FIG. 4A and FIG. 4B ). When the degree of the speckle in the difference image (for example, the thickness of the speckle) is minimized, the degree of the image optical axis XA and the image capturing optical axis XB need to be changed in the positional and angular directions, that is, the correction condition in this embodiment. . Then, the optical axis control module 120 can automatically adjust the direction of the imaging optical axis XA and the imaging optical axis XB of the image capturing unit 110A and the image capturing unit 110B in the image capturing device 110 according to the correction condition until the correction condition is satisfied. Also, even if the speckle of the difference image in FIG. 4C is almost disappeared, as shown in FIG. 4D. In this way, it can be ensured that the image capturing unit 110A and the image capturing unit 110B are well corrected in both direction and angle, and the shooting failure can be avoided, as described in the embodiment of FIG. 1 , and details are not described herein again.
圖5A至圖5E繪示出圖3實施例中各取像光軸在校正過程中變化的示意圖,進一步而言,請先參照圖5A,在本實施例中,於校正過程中,首先利用近物體NJ使取像光軸XA與取像光軸XB對齊,換言之,即分別調整取像單元110A與取像單元110B直到分別拍攝到的影像中的特徵 點RG重疊。而後,請再參照圖5B,再利用遠物體FJ使取像光軸XA與取像光軸XB對齊,換言之,即分別調整取像單元110A與取像單元110B直到分別拍攝到的影像中的棋盤格紋重疊。然後,再利用近物體NJ使取像光軸XA與取像光軸XB對齊,如圖5C所繪示,接著,再利用遠物體FJ使取像光軸XA與取像光軸XB對齊。如此反覆利用近物體NJ與遠物體FJ對齊取像光軸XA與取像光軸XB,直到取像單元110A與取像單元110B所分別拍攝到的影像中的特徵點RG重疊並且棋盤格紋亦重疊。此時,取像單元110A與取像單元110B所分別拍攝到的影像相減所產生的差異影像可如圖4D中所繪示之近乎全黑的影像。其中,上述之校正可透過運算模組130判斷出校正條件,再由光軸控制模組120根據校正條件自動地調整取像裝置110所產生,因此可快速準確地校正立體攝像裝置100,進而能節省拍攝成本,提升拍攝效率。然而,圖4D所繪示的近乎全黑的差異影像僅用於舉例說明本實施例,在其他實施例中,亦可使用其他不同的校正條件與誤差閾值(例如差異影像中的斑紋粗細程度小於某個程度為止)。 5A to FIG. 5E are schematic diagrams showing changes in the optical axes of the imaging images in the embodiment of FIG. 3, and further, referring to FIG. 5A, in the embodiment, in the calibration process, firstly, The object NJ aligns the image capturing optical axis XA with the image capturing optical axis XB, in other words, the image capturing unit 110A and the image capturing unit 110B are respectively adjusted until the features in the separately captured images. Point RG overlaps. Then, referring to FIG. 5B again, the far object FJ is used to align the image capturing optical axis XA with the image capturing optical axis XB, in other words, the image capturing unit 110A and the image capturing unit 110B are respectively adjusted until the chessboard in the separately captured image. The plaid overlaps. Then, the near image NJ is used to align the image capturing optical axis XA with the image capturing optical axis XB, as shown in FIG. 5C, and then the far object FJ is used to align the image capturing optical axis XA with the image capturing optical axis XB. In this way, the near object NJ is aligned with the far object FJ to take the image optical axis XA and the image capturing optical axis XB until the feature points RG in the image captured by the image capturing unit 110A and the image capturing unit 110B overlap and the checkerboard pattern is also overlapping. At this time, the difference image generated by the subtraction of the images respectively captured by the image capturing unit 110A and the image capturing unit 110B may be an almost black image as illustrated in FIG. 4D. The correction can be determined by the operation module 130, and then the optical axis control module 120 automatically adjusts the image capture device 110 according to the correction condition, so that the stereo camera device 100 can be quickly and accurately corrected. Save on shooting costs and improve shooting efficiency. However, the near-black difference image shown in FIG. 4D is only used to illustrate the embodiment. In other embodiments, other different correction conditions and error thresholds may also be used (eg, the thickness of the speckle in the difference image is less than To some extent).
詳細而言,在本實施例中,可進一步指定取像單元110A(或取像單元110B)所拍攝到的影像為參考影像,再透過運算模組130利用區塊比對法(block matching)方法所計算出的校正條件由光軸控制模組120調整取像單元110B(或取像單元110A)的位置與角度方向。並且,運算模組130可計算出取像單元110B(或取像單元110A)在位置 或方向上所需要的移動量,並依照這些移動量中數值較高者優先處理,直到滿足校正條件為止,以完成校正程序。 In detail, in this embodiment, the image captured by the image capturing unit 110A (or the image capturing unit 110B) may be further designated as a reference image, and then the block matching method may be used by the computing module 130. The calculated correction condition is adjusted by the optical axis control module 120 to the position and angular direction of the image capturing unit 110B (or the image capturing unit 110A). Moreover, the operation module 130 can calculate the position of the image capturing unit 110B (or the image capturing unit 110A). Or the amount of movement required in the direction, and the higher of the values of these movements is prioritized until the correction condition is satisfied to complete the calibration procedure.
更進一步而言,請參照圖4A至圖5E,在本實施例中,取像裝置110中各個取像單元(如取像單元110A與110B)可具有六個自由度(亦即X、Y與Z軸方向上的位移以及傾角、偏轉角以及翻轉角)。然而,由於水平誤差關係到Y軸方向上的位移以及偏轉角兩個自由度,而垂直誤差則關係到Z軸方向上的位移以及傾角,因此,在校正時可依照下述之校正流程,以進一步地節省校正時間。以水平校正為例,可先調整取像單元110A與110B的水平位置,以使取像單元110A與110B所擷取到的近物體NJ的多個近物體NJ的影像對齊。然後,再調整取像單元110A與110B的偏轉角,以使取像單元110A與110B所擷取到的遠物體FJ的多個遠物體FJ的影像對齊。而後,再重複對齊近物體NJ影像與遠物體FJ影像,直到近物體NJ影像與遠物體FJ影像對齊。其中,對齊方式如圖4A至圖5E中所述,在此不再贅述。藉此,可進一步地節省水平校正所需的時間。舉例而言,在本實施例中,完整校正一次所需花費的時間約為10分鐘,藉此所節省校正時間與金錢十分可觀。 Further, referring to FIG. 4A to FIG. 5E, in the embodiment, each image capturing unit (such as the image capturing units 110A and 110B) in the image capturing device 110 can have six degrees of freedom (ie, X, Y, and Displacement in the Z-axis direction and inclination, deflection angle, and flip angle). However, since the horizontal error is related to the displacement in the Y-axis direction and the two degrees of freedom of the deflection angle, the vertical error is related to the displacement and the inclination in the Z-axis direction. Therefore, in the correction, the following correction process can be used. Further saving the correction time. Taking the horizontal correction as an example, the horizontal positions of the image capturing units 110A and 110B may be first adjusted to align the images of the plurality of close objects NJ of the near object NJ captured by the image capturing units 110A and 110B. Then, the deflection angles of the image capturing units 110A and 110B are adjusted to align the images of the plurality of far objects FJ of the far object FJ captured by the image capturing units 110A and 110B. Then, the near object NJ image and the far object FJ image are repeatedly aligned until the near object NJ image is aligned with the far object FJ image. The alignment is as described in FIG. 4A to FIG. 5E, and details are not described herein again. Thereby, the time required for the horizontal correction can be further saved. For example, in the present embodiment, the time required to complete the calibration once is about 10 minutes, whereby the correction time and money saved are considerable.
此外,垂直方向的校正亦與水平方向的校正相似,可先調整取像單元110A與110B的垂直位置,以使取像單元110A與110B所擷取到的近物體NJ的多個近物體NJ的影像對齊。然後,再調整取像單元110A與110B的傾角,以使取像單元110A與110B所擷取到的遠物體FJ的多個遠 物體FJ的影像對齊。而後,再重複對齊近物體NJ影像與遠物體FJ影像,直到近物體NJ影像與遠物體FJ影像對齊。藉此,立體攝像裝置100可被自動地校正,而能夠提升拍攝效率,節省拍攝成本。 In addition, the correction in the vertical direction is similar to the correction in the horizontal direction, and the vertical positions of the image capturing units 110A and 110B may be adjusted first to make the near objects NJ of the near object NJ captured by the image capturing units 110A and 110B. Image alignment. Then, the tilt angles of the image capturing units 110A and 110B are adjusted to make the far objects FJ captured by the image capturing units 110A and 110B far away. The image of the object FJ is aligned. Then, the near object NJ image and the far object FJ image are repeatedly aligned until the near object NJ image is aligned with the far object FJ image. Thereby, the stereo camera 100 can be automatically corrected, and the shooting efficiency can be improved, and the shooting cost can be saved.
圖6是本揭露之另一實施例中的立體攝像裝置的示意圖,請參照圖1與圖6,與圖1之實施例相似,然而,在本實施例中,差異之處在於立體攝像裝置200可更包括一半穿透半反射單元BS,配置於取像單元210A與取像單元210B的取像路徑上,其中取像單元210A與取像單元210B的鏡頭光軸XA’與鏡頭光軸XB’方向不位於同一水平面上(例如不位於圖6中的XY平面上),換言之,載台PTA以及載台PTB亦不位於同一水平面上且使得取像單元210A與取像單元210B的鏡頭光軸XA’與鏡頭光軸XB’朝向不同方向。詳言之,圖6中的立體攝像裝置200為鏡式(mirror)架構。並且,取像單元210A與取像單元210B透過半穿透半反射單元BS之後所形成的取像光軸XA與取像光軸XB位於同一水平面上,藉此可達到與圖1實施例相似之功效。此外,與圖1之實施例相似,在本實施例中,光軸控制模組220所包括的二個光軸控制模組220A與220B與圖1中的光軸控制模組120A與120B具有相似之功效,驅動控制器222所包括的二個驅動控制器222A與222B亦與圖1實施例中的驅動控制器122、122A與122B具有相似之功效,多個驅動器225(包括圖6中的驅動器225A以及225B)亦與圖1中的驅動器125、125A以及125B具有相似之功 效,在此不再贅述。藉此,圖6中的立體攝像裝置200可如圖1實施例中的立體攝像裝置100可利用相似之校正流程校正,並可具有相似之功效,相關的裝置以及校正流程之詳細敘述可參照圖1至圖5E中所述,在此不再贅述。並且,在其他實施例中,立體攝像裝置的架構可為立體攝影機、雙攝影機、雙數位相機或等任何立體訊號產生裝置。並且,所生成的立體影像訊號格式亦可為並排、上下(up-and-down)、左右雙訊號或是多視角訊號等,本揭露不以此為限。 FIG. 6 is a schematic diagram of a stereo camera device according to another embodiment of the present disclosure. Referring to FIG. 1 and FIG. 6 , it is similar to the embodiment of FIG. 1 . However, in this embodiment, the difference lies in the stereo camera device 200 . The lens half-reflecting unit BS may be further disposed on the image capturing path of the image capturing unit 210A and the image capturing unit 210B, wherein the lens optical axis XA′ of the image capturing unit 210A and the image capturing unit 210B and the lens optical axis XB′ The directions are not on the same horizontal plane (for example, not on the XY plane in FIG. 6), in other words, the stage PTA and the stage PTB are not located on the same horizontal plane and the lens optical axis XA of the image capturing unit 210A and the image capturing unit 210B are caused. 'The lens optical axis XB' is oriented in different directions. In detail, the stereo camera 200 in FIG. 6 is a mirror architecture. Moreover, the image taking optical axis XA formed by the image capturing unit 210A and the image capturing unit 210B after passing through the transflective unit BS is located on the same horizontal plane as the image capturing optical axis XB, thereby achieving similarity to the embodiment of FIG. efficacy. In addition, similar to the embodiment of FIG. 1, in the embodiment, the two optical axis control modules 220A and 220B included in the optical axis control module 220 are similar to the optical axis control modules 120A and 120B in FIG. For example, the two drive controllers 222A and 222B included in the drive controller 222 also have similar functions to the drive controllers 122, 122A and 122B in the embodiment of FIG. 1, and the plurality of drivers 225 (including the drive in FIG. 6) 225A and 225B) also have similar merits as drivers 125, 125A, and 125B in FIG. Effect, no longer repeat here. Therefore, the stereo camera device 200 in FIG. 6 can be corrected by a similar calibration process as shown in the embodiment of FIG. 1 and can have similar functions. The detailed description of the related device and the calibration process can be referred to the figure. 1 to FIG. 5E, and details are not described herein again. Moreover, in other embodiments, the stereo camera device may be a stereo camera, a dual camera, a dual digital camera, or any stereo signal generating device. Moreover, the generated stereoscopic video signal format may also be side by side, up-and-down, left and right dual signals, or multi-view signals, etc., and the disclosure is not limited thereto.
此外,如圖1中所述,圖6實施例中的立體攝像裝置200所包括的光軸控制模組220以及運算模組130亦可形成一自動校正裝置200’,並可具有與圖1實施例中的自動校正裝置100’具有相似之功效,在此不再贅述。 In addition, as shown in FIG. 1 , the optical axis control module 220 and the computing module 130 included in the stereo camera device 200 of the embodiment of FIG. 6 may also form an automatic calibration device 200 ′, and may be implemented with FIG. 1 . The automatic correction device 100' in the example has similar effects and will not be described again here.
圖7繪示出本揭露之一實施例中立體攝像裝置的校正方法的流程圖,請參照圖1與圖7,在本實施例中,校正方法可用以校正圖1實施例中的立體攝像裝置100,校正方法可包括:以多個取像單元(如圖1中的取像單元110A與取像單元110B)擷取多個影像訊號(步驟S100)。對這些影像訊號執行一對齊誤差運算,並計算出這些影像訊號間的一誤差值(步驟S200)。判斷誤差值是否高於一閾值(步驟S300)。其中,若誤差值高於閾值,則執行修正誤差值的一對齊步驟以修正這些取像單元的位置與取像光軸方向(步驟S400),再重新對這些影像訊號執行一對齊誤差運算,並計算出這些影像訊號間的一誤差值(步驟S200),直到誤 差值低於閾值為止,若誤差值低於閾值,則完成校正。 FIG. 7 is a flowchart of a method for correcting a stereo camera device according to an embodiment of the present disclosure. Referring to FIG. 1 and FIG. 7 , in the embodiment, the calibration method may be used to correct the stereo camera device in the embodiment of FIG. 1 . 100. The calibration method may include: capturing a plurality of image signals by using a plurality of image capturing units (such as the image capturing unit 110A and the image capturing unit 110B in FIG. 1) (step S100). An alignment error operation is performed on the image signals, and an error value between the image signals is calculated (step S200). It is judged whether or not the error value is higher than a threshold (step S300). Wherein, if the error value is higher than the threshold value, an alignment step of correcting the error value is performed to correct the position of the image capturing unit and the direction of the image capturing optical axis (step S400), and then perform an alignment error operation on the image signals, and Calculating an error value between the image signals (step S200) until the error The difference is below the threshold, and if the error is below the threshold, the correction is completed.
詳細而言,步驟S200中的對齊誤差運算,可如圖1實施例中的運算模組130將圖4A與圖4B中所繪示之影像相減而取得圖4C差異影像的運算。而誤差值可如圖4C中棋盤格紋與特徵點RG之間未對準所產生的位置差異。並且,步驟S300中的閾值可依照拍攝者的拍攝需求所設定,在本實施例中,可為如圖4D中所繪示的近乎全黑的校正後的差異影像。由於圖4D中的閾值很小,因此差異影像中的斑紋低於此一預設的閾值時會不易察覺,差異影像看起來就像是全黑的,換言之,此時取像單元110A與取像單元110B所拍攝到的影像幾乎是重合的,然本揭露不以此為限,詳細之敘述可參照圖4A至圖4D實施例中所述,在此不再贅述。 In detail, the alignment error calculation in step S200 can be performed by the operation module 130 in the embodiment of FIG. 1 by subtracting the images illustrated in FIG. 4A and FIG. 4B to obtain the difference image of FIG. 4C. The error value may be the difference in position caused by the misalignment between the checkerboard pattern and the feature point RG in FIG. 4C. Moreover, the threshold value in step S300 can be set according to the shooting requirements of the photographer. In this embodiment, the corrected difference image that is nearly all black as shown in FIG. 4D can be used. Since the threshold in FIG. 4D is small, the speckle in the difference image is less noticeable than the preset threshold, and the difference image looks like all black, in other words, the image capturing unit 110A and the image capturing unit at this time. The image captured by the unit 110B is almost coincident. However, the disclosure is not limited thereto. For details, refer to the description in the embodiment of FIG. 4A to FIG. 4D, and details are not described herein again.
更詳細而言,對齊誤差運算可進一步地包括下列步驟:進行一特徵擷取步驟,以擷取這些影像訊號並找出這些影像訊號之間的一影像特徵。進行一特徵計算步驟,以計算出這些影像特徵的位置與資訊。進行一特徵對應步驟,以比較這些影像特徵的位置與資訊,並找出這些影像特徵之間的對應關係以推算誤差值。並且,校正方法亦可更包括利用一校正板上的多個特徵點RG的影像作為近物體NJ以進行對齊。以及利用這些影像訊號中的一影像特徵區塊作為遠物體FJ以進行對齊。舉例而言,在本實施例中,這些影像訊號例如可由圖1實施例中的訊號擷取單元132擷取,而這些所擷取到的影像訊號所包含的影像特徵 例如是圖4A至圖4D中所述之特徵點RG與遠物體FJ的棋盤格紋。運算單元134可執行特徵計算步驟以及特徵對應步驟,以推算出誤差值(亦即前述之圖4C中棋盤格紋與特徵點RG之間未對準所產生的位置差異),以利於後續之校正。 In more detail, the alignment error operation may further include the step of performing a feature extraction step to capture the image signals and find an image feature between the image signals. A feature calculation step is performed to calculate the position and information of the image features. A feature mapping step is performed to compare the position and information of the image features and find a correspondence between the image features to estimate an error value. Moreover, the correction method may further include using an image of the plurality of feature points RG on a calibration plate as the near object NJ for alignment. And using one of the image signal blocks as the far object FJ for alignment. For example, in the embodiment, the image signals can be captured by the signal capturing unit 132 in the embodiment of FIG. 1, and the image features included in the captured image signals are included. For example, the checker pattern of the feature point RG and the far object FJ described in FIGS. 4A to 4D. The operation unit 134 may perform a feature calculation step and a feature correspondence step to derive an error value (that is, a position difference generated by the misalignment between the checkerboard pattern and the feature point RG in the foregoing FIG. 4C) to facilitate subsequent correction. .
進一步而言,步驟S400的對齊步驟可包括:一水平方向對齊步驟、一垂直方向對齊步驟以及一影像對齊步驟。其中,水平方向對齊步驟為調整這些取像單元之間在水平方向上的角度誤差與距離誤差,直到小於一水平誤差閾值為止。而垂直方向對齊步驟為調整這些取像單元之間在垂直方向上的角度誤差與距離誤差,直到小於一垂直誤差閾值為止。影像對齊步驟為調整這些取像單元的光軸分別所拍攝到的影像的大小誤差與翻轉誤差,直到小於一影像對齊閾值與誤差閾值為止。其中,這些對齊步驟可由圖1實施例中的運算模組130控制光軸控制模組120執行。並且,在本實施例中,水平方向的對齊步驟與Y軸以及偏轉角相關,垂直方向的對齊步驟與Z軸以及傾角相關,而影像對齊步驟與X軸以及翻轉角相關。 Further, the aligning step of step S400 may include: a horizontal alignment step, a vertical alignment step, and an image alignment step. The horizontal alignment step is to adjust the angular error and the distance error between the image capturing units in the horizontal direction until less than a horizontal error threshold. The vertical alignment step is to adjust the angular error and the distance error between the image capturing units in the vertical direction until it is less than a vertical error threshold. The image alignment step is to adjust the size error and the flip error of the image captured by the optical axes of the image capturing units until less than an image alignment threshold and an error threshold. The alignment steps can be performed by the optical module control module 120 controlled by the computing module 130 in the embodiment of FIG. Also, in the present embodiment, the alignment step in the horizontal direction is related to the Y-axis and the deflection angle, the alignment step in the vertical direction is related to the Z-axis and the tilt angle, and the image alignment step is related to the X-axis and the flip angle.
更進一步而言,由於取像裝置110中各個取像單元(如取像單元110A與110B)可具有六個自由度(亦即X、Y與Z軸方向上的位移以及傾角、偏轉角以及翻轉角)。因水平誤差關係到Y軸方向上的位移以及偏轉角兩個自由度,而垂直誤差則關係到Z軸方向上的位移以及傾角,故在校正時可依照可參照圖4A至圖5E中所述之水平校正以及垂直校 正的校正流程步驟,在此不再贅述。 Furthermore, since each image capturing unit (such as the image capturing units 110A and 110B) in the image capturing device 110 can have six degrees of freedom (that is, displacement in the X, Y, and Z directions, and inclination, deflection angle, and flipping) angle). Since the horizontal error is related to the displacement in the Y-axis direction and the two degrees of freedom of the deflection angle, and the vertical error is related to the displacement and the inclination in the Z-axis direction, the correction can be as described with reference to FIGS. 4A to 5E. Level correction and vertical calibration The correct calibration process steps will not be described here.
綜上所述,本揭露之實施例中的立體攝像裝置與自動校正裝置可藉由取像裝置所取得的立體影像計算出一校正條件,並利用光軸控制模組調整以自動校正取像裝置中的各取像單元的X軸、Y軸以及Z軸立體座標空間中的位置,以及傾角、偏轉角以及翻轉角的角度方向。並且,本揭露之實施例中的校正方法可對所擷取到的影像訊號中的近物體的特徵點與遠物體的特徵影像做對齊誤差運算以取得影像訊號彼此間的誤差值,當誤差值大於閾值時執行對齊步驟以使誤差值降低至一閾值以下,進而可達到校正之功能。 In summary, the stereo camera device and the automatic calibration device in the embodiment of the present disclosure can calculate a correction condition by using the stereo image obtained by the image capture device, and adjust the optical axis control module to automatically correct the image capture device. The position in the X-axis, Y-axis, and Z-axis stereo coordinate space of each image capturing unit, and the angles of inclination, deflection angle, and flip angle. Moreover, the correction method in the embodiment of the present disclosure can perform an alignment error operation on the feature points of the near object and the feature image of the far object in the captured image signal to obtain an error value between the image signals, when the error value When the threshold value is greater than the threshold value, the alignment step is performed to lower the error value below a threshold value, thereby achieving the function of correction.
雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作些許之更動與潤飾,故本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 The present disclosure has been disclosed in the above embodiments, but it is not intended to limit the disclosure, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the disclosure. The scope of protection of this disclosure is subject to the definition of the scope of the patent application.
100、200‧‧‧立體攝像裝置 100, 200‧‧‧ stereo camera
100’、200’‧‧‧自動校正裝置 100', 200'‧‧‧ automatic correction device
110、210‧‧‧取像裝置 110, 210‧‧‧ image capture device
110A、110B、210A、210B‧‧‧取像單元 110A, 110B, 210A, 210B‧‧‧ image capture unit
120、120A、120B、220、220A、220B‧‧‧光軸控制模組 120, 120A, 120B, 220, 220A, 220B‧‧‧ optical axis control module
122、122A、122B、222、222A、222B‧‧‧驅動控制器 122, 122A, 122B, 222, 222A, 222B‧‧‧ drive controller
125、125A、125B、225、225A、225B‧‧‧驅動器 125, 125A, 125B, 225, 225A, 225B‧‧‧ drive
130、230‧‧‧運算模組 130, 230‧‧‧ computing module
132‧‧‧訊號擷取單元 132‧‧‧Signal capture unit
134‧‧‧運算單元 134‧‧‧ arithmetic unit
136‧‧‧指令訊號輸出單元 136‧‧‧Command signal output unit
BS‧‧‧半穿透半反射單元 BS‧‧‧transflective unit
FJ‧‧‧遠物體 FJ‧‧‧ far objects
M‧‧‧支架 M‧‧‧ bracket
NJ‧‧‧近物體 NJ‧‧‧ near objects
RG‧‧‧特徵點 RG‧‧‧ feature points
S100、S200、S300、S400‧‧‧步驟 S100, S200, S300, S400‧‧‧ steps
PTA、PTB‧‧‧載台 PTA, PTB‧‧‧ stage
XA、XB‧‧‧取像光軸 XA, XB‧‧‧ take image optical axis
XA’、XB’‧‧‧鏡頭光軸 XA’, XB’‧‧‧ lens optical axis
XA0、XA1、XA2、XA3‧‧‧光軸 XA 0 , XA 1 , XA 2 , XA 3 ‧‧‧ optical axis
θ 1、θ 2、θ 3、θ 4‧‧‧轉動角度 θ 1, θ 2, θ 3, θ 4‧‧‧ rotation angle
圖1是本揭露之一實施例中的立體攝像裝置的示意圖。 1 is a schematic diagram of a stereo camera device in an embodiment of the present disclosure.
圖2繪示出圖1實施例中的驅動器的定位過程示意圖。 2 is a schematic view showing a positioning process of the driver in the embodiment of FIG. 1.
圖3繪示出圖1實施例中的立體攝像裝置的校正示意圖。 FIG. 3 is a schematic diagram showing the correction of the stereo camera device in the embodiment of FIG. 1. FIG.
圖4A與圖4B分別繪示出圖3中的各取像單元在校正 前分別拍攝到的影像。 4A and 4B illustrate that each of the image capturing units in FIG. 3 is corrected. Previously captured images.
圖4C繪示出圖4A與圖4B影像的差異影像。 FIG. 4C illustrates a difference image of the images of FIGS. 4A and 4B.
圖4D繪示出經過校正後,各取像單元分別拍攝到的影像之間的差異影像。 FIG. 4D illustrates a difference image between images captured by each image capturing unit after being corrected.
圖5A至圖5E繪示出圖3實施例中各取像光軸在校正過程中變化的示意圖。 5A to 5E are schematic diagrams showing changes in the optical axes of the imaging images in the embodiment of FIG. 3 during the calibration process.
圖6是本揭露之另一實施例中的立體攝像裝置的示意圖。 FIG. 6 is a schematic diagram of a stereo camera device in another embodiment of the present disclosure.
圖7繪示出本揭露之一實施例中立體攝像裝置的校正方法的流程圖。 FIG. 7 is a flow chart showing a method of correcting a stereo camera device in an embodiment of the present disclosure.
100‧‧‧立體攝像裝置 100‧‧‧ Stereo camera
110‧‧‧取像裝置 110‧‧‧Image capture device
110A、110B‧‧‧取像單元 110A, 110B‧‧‧ image capture unit
120、120A、120B‧‧‧光軸控制模組 120, 120A, 120B‧‧‧ optical axis control module
122‧‧‧驅動控制器 122‧‧‧Drive Controller
125‧‧‧驅動器 125‧‧‧ drive
130‧‧‧運算模組 130‧‧‧ Computing Module
132‧‧‧訊號擷取單元 132‧‧‧Signal capture unit
134‧‧‧運算單元 134‧‧‧ arithmetic unit
136‧‧‧指令訊號輸出單元 136‧‧‧Command signal output unit
PTA、PTB‧‧‧載台 PTA, PTB‧‧‧ stage
XA、XB‧‧‧取像光軸 XA, XB‧‧‧ take image optical axis
Claims (26)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310086264.9A CN103792667B (en) | 2012-10-30 | 2013-03-18 | Stereo camera device, automatic correction device and correction method |
US13/945,931 US9445080B2 (en) | 2012-10-30 | 2013-07-19 | Stereo camera apparatus, self-calibration apparatus and calibration method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261720380P | 2012-10-30 | 2012-10-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201416713A TW201416713A (en) | 2014-05-01 |
TWI557437B true TWI557437B (en) | 2016-11-11 |
Family
ID=51293778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101149879A TWI557437B (en) | 2012-10-30 | 2012-12-25 | Stereo camera apparatus, self-calibration apparatus and method for calibrating |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI557437B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015013494B3 (en) * | 2015-10-16 | 2017-04-06 | Mühlbauer Gmbh & Co. Kg | Component handling device and method for removing components from a structured component supply and for depositing at a receiving device |
TWI579776B (en) * | 2015-10-27 | 2017-04-21 | 財團法人國家實驗研究院 | Method for determinating full scene image by using multiple image acquisiiton devices |
CN113495074A (en) * | 2020-04-07 | 2021-10-12 | 大量科技股份有限公司 | Visual inspection system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110057948A1 (en) * | 2009-09-04 | 2011-03-10 | Sony Corporation | Method and apparatus for image alignment |
US20110085788A1 (en) * | 2009-03-24 | 2011-04-14 | Vincent Pace | Stereo Camera Platform and Stereo Camera |
-
2012
- 2012-12-25 TW TW101149879A patent/TWI557437B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110085788A1 (en) * | 2009-03-24 | 2011-04-14 | Vincent Pace | Stereo Camera Platform and Stereo Camera |
US20110057948A1 (en) * | 2009-09-04 | 2011-03-10 | Sony Corporation | Method and apparatus for image alignment |
CN102013096A (en) * | 2009-09-04 | 2011-04-13 | 索尼公司 | Method and apparatus for image alignment |
Also Published As
Publication number | Publication date |
---|---|
TW201416713A (en) | 2014-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9445080B2 (en) | Stereo camera apparatus, self-calibration apparatus and calibration method | |
US6915073B2 (en) | Stereo camera and automatic convergence adjusting device | |
US9648233B2 (en) | System, device, and vehicle for recording panoramic images | |
US8662676B1 (en) | Automatic projector calibration | |
JP6022577B2 (en) | Method and apparatus for improved cropping of stereoscopic image pairs | |
US10923516B2 (en) | Image capturing device, image capturing method, image processing device, image processing method, and storage medium | |
US8408819B2 (en) | Camera holding module and device for relief shooting | |
US20120249748A1 (en) | Stereoscopic image pickup apparatus and stereoscopic image pickup method | |
US20140193144A1 (en) | Method and apparatus for multiple camera alignment and use | |
GB2388896A (en) | An apparatus for and method of aligning a structure | |
US9897817B2 (en) | System and method for inspecting misalignment between display panel and film patterned retarder | |
CN101840146A (en) | Method and device for shooting stereo images by automatically correcting parallax error | |
EP2593835A1 (en) | Variable three-dimensional camera assembly for still photography | |
US20070229978A1 (en) | Camera system | |
TWI557437B (en) | Stereo camera apparatus, self-calibration apparatus and method for calibrating | |
US20130107001A1 (en) | Distance adaptive 3d camera | |
CN103760745B (en) | A kind of unit two-shipper position solid-image photographing device and its image pickup method for the shooting that fixes | |
US20150281674A1 (en) | Stereo adapter and stereo imaging apparatus | |
JP2008003394A (en) | Camera, camera system, and position adjustment method | |
CN206741109U (en) | A kind of optics display module image generation unit rotates adjustment system | |
CN203930322U (en) | For the unit two-shipper position solid-image photographing device that fixes and take | |
CN106932917A (en) | A kind of optics display module image generation unit rotates method of adjustment and system | |
TWI725620B (en) | Omnidirectional stereo vision camera configuration system and camera configuration method | |
JP7308095B2 (en) | Stereo camera correction method and stereo camera correction device | |
KR101864450B1 (en) | Camera module and method for compensating image of the same |