TWI556574B - Charge module, driving circuit, and operating method of the driving circuit - Google Patents

Charge module, driving circuit, and operating method of the driving circuit Download PDF

Info

Publication number
TWI556574B
TWI556574B TW102118257A TW102118257A TWI556574B TW I556574 B TWI556574 B TW I556574B TW 102118257 A TW102118257 A TW 102118257A TW 102118257 A TW102118257 A TW 102118257A TW I556574 B TWI556574 B TW I556574B
Authority
TW
Taiwan
Prior art keywords
voltage
charging
width modulation
modulation signal
pulse width
Prior art date
Application number
TW102118257A
Other languages
Chinese (zh)
Other versions
TW201445882A (en
Inventor
曾冠仁
Original Assignee
原景科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 原景科技股份有限公司 filed Critical 原景科技股份有限公司
Priority to TW102118257A priority Critical patent/TWI556574B/en
Publication of TW201445882A publication Critical patent/TW201445882A/en
Application granted granted Critical
Publication of TWI556574B publication Critical patent/TWI556574B/en

Links

Description

充電模組、驅動電路及驅動電路的操作方法 Charging module, driving circuit and operating method of driving circuit

本案是有關於一種電子電路。特別是有關於一種驅動電路、其充電模組,以及應用於驅動電路的操作方法。 This case is about an electronic circuit. In particular, it relates to a driving circuit, a charging module thereof, and an operating method applied to the driving circuit.

隨著電子的快速進展,各種驅動電路已被廣泛地應用在人們的生活當中。 With the rapid development of electronics, various drive circuits have been widely used in people's lives.

一般而言,驅動電路包括功率金氧半場效電晶體(power metal oxide semiconductor filed-effect transistor,power MOSFET),功率金氧半場效電晶體用以根據控制電壓啟動,以令一驅動電流得以通過功率金氧半場效電晶體,以驅動相應的元件(例如是作為室內外照明設備的發光二極體模組或電子裝置的背光模組等)。在實作上,由於功率金氧半場效電晶體的閘極端存在耦合電容,故功率金氧半場效電晶體的啟動速度將因而受限。如此一來,當驅動電路執行發光二極體模組的高頻調光操作時,將造成誤差或偏移,並進一步導致調光操作的不準確以及驅動電路的不穩定。 Generally, the driving circuit includes a power metal oxide semiconductor filed-effect transistor (power MOSFET), and the power metal oxide half field effect transistor is used to start according to the control voltage, so that a driving current can pass the power. The gold-oxygen half-field effect transistor is used to drive the corresponding components (for example, a light-emitting diode module for indoor and outdoor lighting devices or a backlight module of an electronic device, etc.). In practice, since the coupling capacitance of the power MOS half-effect transistor has a coupling capacitance, the starting speed of the power MOS half-effect transistor will be limited. As a result, when the driving circuit performs the high-frequency dimming operation of the LED module, errors or offsets are caused, and the inaccuracy of the dimming operation and the instability of the driving circuit are further caused.

是以,一種具有高啟動速度的驅動電路當被提出。 Therefore, a driving circuit having a high starting speed is proposed.

本發明的一態樣為一種充電模組。根據本發明一實施例,該充電模組用以預充(pre-charge)一控制節點至一預充電壓,使得在一控制模組輸出一控制電壓的情形下,一驅動模組根據由該控制電壓與該預充電壓加總的一閘極電壓啟動。該充電模組包括一第一開關、一充電開關以及一第二開關。該第一開關用以提供一第一電壓至一操作節點。該充電開關用以相應於該操作節點的該第一電壓開啟,以充電該控制節點。該第二開關用以根據該閘極電壓提供一第二電壓至該操作節點。在該閘極電壓大於一預設電壓的情形下,該第二開關提供該第二電壓至該操作節點,以令該充電開關關閉,以停止充電該控制節點。 One aspect of the invention is a charging module. According to an embodiment of the invention, the charging module is configured to pre-charge a control node to a pre-charge voltage, so that when a control module outputs a control voltage, a driving module is configured according to the The control voltage is initiated with the pre-charge voltage plus a total gate voltage. The charging module includes a first switch, a charging switch and a second switch. The first switch is configured to provide a first voltage to an operating node. The charging switch is configured to be turned on corresponding to the first voltage of the operating node to charge the control node. The second switch is configured to provide a second voltage to the operating node according to the gate voltage. In the case that the gate voltage is greater than a predetermined voltage, the second switch provides the second voltage to the operating node to turn off the charging switch to stop charging the control node.

本發明的另一態樣為一種驅動電路。根據本發明一實施例,該驅動電路包括一充電模組、一驅動模組、一感測模組以及一控制模組。該充電模組用以預充一控制節點至一預充電壓。該驅動模組用以根據由一控制電壓與該預充電壓加總的一閘極電壓啟動,以使一驅動電流得以通過該驅動模組。該感測模組用以接收該驅動電流,並根據該驅動電流輸出一回授電壓。該控制模組用以接收一參考電壓、該回授電壓以及一脈衝寬度調變訊號,並用以根據該參考電壓、該回授電壓以及該脈衝寬度調變訊號,輸出該控制電壓至該驅動模組。 Another aspect of the invention is a drive circuit. According to an embodiment of the invention, the driving circuit comprises a charging module, a driving module, a sensing module and a control module. The charging module is configured to pre-charge a control node to a pre-charge voltage. The driving module is configured to be activated according to a gate voltage connected by a control voltage and the pre-charge voltage to enable a driving current to pass through the driving module. The sensing module is configured to receive the driving current and output a feedback voltage according to the driving current. The control module is configured to receive a reference voltage, the feedback voltage, and a pulse width modulation signal, and output the control voltage to the driving mode according to the reference voltage, the feedback voltage, and the pulse width modulation signal. group.

本發明的另一態樣為一種應用於一驅動電路的操作方法。根據本發明一實施例,該操作方法包括預充一控制節點至一預充電壓;根據一參考電壓、一回授電壓以及一脈衝寬度調變訊號,產生一控制電壓;根據由一控制電壓與該預充電壓加總的一閘極電壓啟動一驅動模組,以使一驅動電流得以通過該驅動模組;以及根據該驅動電流產生該回授電壓。 Another aspect of the invention is an operational method applied to a drive circuit. According to an embodiment of the invention, the operating method includes pre-charging a control node to a pre-charge voltage; generating a control voltage according to a reference voltage, a feedback voltage, and a pulse width modulation signal; The pre-charge voltage adds a total gate voltage to activate a driving module to enable a driving current to pass through the driving module; and generate the feedback voltage according to the driving current.

綜上所述,透過應用上述一實施例,可實現一種充電模組。而藉由透過充電模組預充控制節點至預充電壓的操作,可令具備此一充電模組的驅動電路具有高啟動速度。 In summary, by applying the above embodiment, a charging module can be implemented. By pre-charging the control node to the pre-charge voltage through the charging module, the driving circuit provided with the charging module can have a high starting speed.

100‧‧‧驅動電路 100‧‧‧ drive circuit

110‧‧‧驅動模組 110‧‧‧Drive Module

120‧‧‧感測模組 120‧‧‧Sensor module

130‧‧‧控制模組 130‧‧‧Control Module

140‧‧‧充電模組 140‧‧‧Charging module

141‧‧‧邏輯單元 141‧‧‧Logical unit

142‧‧‧單擊脈衝產生器 142‧‧‧Click pulse generator

1422‧‧‧反相器 1422‧‧‧Inverter

1424‧‧‧反相器 1424‧‧‧Inverter

1426‧‧‧反或閘 1426‧‧‧Anti-gate

400‧‧‧操作方法 400‧‧‧How to operate

SW1-SW7‧‧‧開關 SW1-SW7‧‧‧ switch

M‧‧‧電晶體 M‧‧‧O crystal

R‧‧‧電阻 R‧‧‧resistance

C‧‧‧耦合電容 C‧‧‧Coupling capacitor

VG‧‧‧控制節點 VG‧‧‧ control node

Q‧‧‧操作節點 Q‧‧‧Operation node

VDD‧‧‧第一電壓 VDD‧‧‧first voltage

VSS‧‧‧第二電壓 VSS‧‧‧second voltage

VREF‧‧‧參考電壓 VREF‧‧‧reference voltage

VFB‧‧‧回授電壓 VFB‧‧‧ feedback voltage

PWM‧‧‧脈衝寬度調變訊號 PWM‧‧‧ pulse width modulation signal

VP‧‧‧單擊脈衝 VP‧‧‧click pulse

IBP‧‧‧操作訊號 IBP‧‧‧ operation signal

CH‧‧‧控制訊號 CH‧‧‧ control signal

I‧‧‧驅動電流 I‧‧‧ drive current

S1-S4‧‧‧步驟 S1-S4‧‧‧ steps

S11a-S14a‧‧‧步驟 S11a-S14a‧‧‧Steps

S11b-S17b‧‧‧步驟 S11b-S17b‧‧‧Steps

L‧‧‧端點 L‧‧‧ endpoint

第1圖為根據本發明一實施例所繪示的驅動電路的示意圖;第2a圖為根據本發明一實施例所繪示的充電模組的示意圖;第2b圖為根據本發明另一實施例所繪示的充電模組的示意圖;第3a圖為根據本發明一實施例所繪示的單擊脈衝產生器的示意圖;第3b圖為根據本發明一實施例所繪示的第3a圖中的單擊脈衝產生器的示意圖; 第4圖為根據本發明一實施例所繪示的操作方法的流程圖;第5a圖為根據本發明一實施例所繪示的操作方法的細部流程圖;以及第5b圖為根據本發明另一實施例所繪示的操作方法的細部流程圖。 1 is a schematic diagram of a driving circuit according to an embodiment of the invention; FIG. 2a is a schematic diagram of a charging module according to an embodiment of the invention; FIG. 2b is a diagram of another embodiment of the invention according to another embodiment of the invention A schematic diagram of a charging module is shown; FIG. 3a is a schematic diagram of a click pulse generator according to an embodiment of the invention; FIG. 3b is a diagram 3a according to an embodiment of the invention. Schematic diagram of a click pulse generator; 4 is a flowchart of an operation method according to an embodiment of the present invention; FIG. 5a is a detailed flowchart of an operation method according to an embodiment of the present invention; and FIG. 5b is a diagram according to another embodiment of the present invention; A detailed flow chart of the method of operation illustrated in an embodiment.

以下將以圖式及詳細敘述清楚說明本揭示內容之精神,任何所屬技術領域中具有通常知識者在瞭解本揭示內容之較佳實施例後,當可由本揭示內容所教示之技術,加以改變及修飾,其並不脫離本揭示內容之精神與範圍。 The spirit and scope of the present disclosure will be apparent from the following description of the preferred embodiments of the present disclosure. Modifications do not depart from the spirit and scope of the disclosure.

關於本文中所使用之『第一』、『第二』、…等,並非特別指稱次序或順位的意思,亦非用以限定本案,其僅為了區別以相同技術用語描述的元件或操作。 The use of the terms "first", "second", ", etc." as used herein does not specifically mean the order or the order, and is not intended to limit the present invention. It is merely to distinguish between elements or operations described in the same technical terms.

關於本文中所使用之『電性連接』,可指二或多個元件相互直接作實體或電性接觸,或是相互間接作實體或電性接觸,而『電性連接』還可指二或多個元件相互操作或動作。 "Electrical connection" as used herein may mean that two or more elements are in direct physical or electrical contact with each other, or indirectly in physical or electrical contact with each other, and "electrical connection" may also mean two or Multiple components operate or act upon each other.

本發明的一實施態樣為一種驅動電路,為使敘述清楚,以下段落將以發光二極體模組的電流槽(current sink)電路為例進行說明,然而本發明不以此為限。 One embodiment of the present invention is a driving circuit. For the sake of clarity, the following paragraphs will be described by taking a current sink circuit of the LED module as an example, but the invention is not limited thereto.

第1圖為根據本發明一實施例所繪示的驅動電路100的示意圖。驅動電路100可包括驅動模組110、感測模 組120、控制模組130以及充電模組140。在本實施例中,驅動模組110可電性連接感測模組120、控制模組130、充電模組140以及用以電性連接發光二極體模組(未繪示)的端點L。感測模組120可電性連接控制模組130。控制模組130可電性連接充電模組140。 FIG. 1 is a schematic diagram of a driving circuit 100 according to an embodiment of the invention. The driving circuit 100 can include a driving module 110 and a sensing module The group 120, the control module 130 and the charging module 140. In this embodiment, the driving module 110 can be electrically connected to the sensing module 120, the control module 130, the charging module 140, and the end point L for electrically connecting the LED module (not shown). . The sensing module 120 can be electrically connected to the control module 130. The control module 130 can be electrically connected to the charging module 140.

在本實施例中,驅動模組110可包括電晶體M(例如是功率金氧半場效電晶體)。此外,在第1圖中,電晶體M雖表示為N型電晶體,然而本領域通常知識者可輕易將N型電晶體置換為P型電晶體,故電晶體M的型態不以第1圖中所示為限。感測模組120可包括電阻R。控制模組130可以一或多個放大器實現。電晶體M可電性連接於端點L與電阻R之間,且電晶體M的閘極端(即控制節點VG)可電性連接控制模組130與充電模組140。此外,電晶體M的閘極端可電性連接耦合電容C(未繪示)。電阻R可連接於電晶體M與第二電壓VSS之間。 In this embodiment, the driving module 110 may include a transistor M (for example, a power MOS field effect transistor). In addition, in the first figure, although the transistor M is represented as an N-type transistor, a person skilled in the art can easily replace the N-type transistor with a P-type transistor, so the type of the transistor M is not the first. The limits shown are shown in the figure. The sensing module 120 can include a resistor R. Control module 130 can be implemented with one or more amplifiers. The transistor M can be electrically connected between the terminal L and the resistor R, and the gate terminal of the transistor M (ie, the control node VG) can be electrically connected to the control module 130 and the charging module 140. In addition, the gate terminal of the transistor M can be electrically connected to the coupling capacitor C (not shown). The resistor R can be connected between the transistor M and the second voltage VSS.

在本實施例中,充電模組140用以預充(pre-charge)控制節點VG至預充電壓。驅動模組110用以根據由控制電壓與預充電壓加總的閘極電壓啟動,以使驅動電流I得以通過驅動模組110。驅動電流I的大小相應於閘極電壓的大小。感測模組120用以接收驅動電流I,並根據驅動電流I輸出回授電壓VFB。控制模組130用以接收參考電壓VREF、回授電壓VFB以及脈衝寬度調變訊號PWM,並用以根據參考電壓VREF、回授電壓VFB以及脈衝寬度調變訊號PWM輸出控制電壓至驅動模組110,以啟動驅動模組110, 並調整驅動電流I的大小。此外,控制模組130更用以接收一第一電壓VDD以及第二電壓VSS以進行運作。另一方面,參考電壓VREF可為固定電壓,回授電壓VFB可為變動電壓。 In this embodiment, the charging module 140 is used to pre-charge the control node VG to the pre-charge voltage. The driving module 110 is configured to start according to the total gate voltage from the control voltage and the pre-charge voltage, so that the driving current I can pass through the driving module 110. The magnitude of the drive current I corresponds to the magnitude of the gate voltage. The sensing module 120 is configured to receive the driving current I and output the feedback voltage VFB according to the driving current I. The control module 130 is configured to receive the reference voltage VREF, the feedback voltage VFB, and the pulse width modulation signal PWM, and output the control voltage to the driving module 110 according to the reference voltage VREF, the feedback voltage VFB, and the pulse width modulation signal PWM. To activate the drive module 110, And adjust the magnitude of the drive current I. In addition, the control module 130 is further configured to receive a first voltage VDD and a second voltage VSS for operation. On the other hand, the reference voltage VREF can be a fixed voltage, and the feedback voltage VFB can be a varying voltage.

藉由透過充電模組140預充控制節點VG(即預充耦合電容C)至預充電壓,在控制模組130輸出控制電壓的情形下,驅動模組110可根據由控制電壓與預充電壓加總的閘極電壓迅速啟動。如此一來,可縮減驅動模組110的啟動時間長度,而使得一種具有高啟動速度的驅動電路可被實現。 By pre-charging the control node VG (ie, the pre-charge coupling capacitor C) to the pre-charge voltage through the charging module 140, in the case that the control module 130 outputs the control voltage, the driving module 110 can be based on the control voltage and the pre-charge voltage. The summed gate voltage starts quickly. In this way, the startup time length of the driving module 110 can be reduced, so that a driving circuit with a high starting speed can be realized.

舉例而言,在啟動驅動模組110的臨界電壓為0.7V的情況下,若充電模組140可預充控制節點VG至0.5V,則控制模組130僅需將控制節點VG由0.5V充電至0.7V以啟動驅動模組110。如此一來,可縮減控制模組130啟動驅動模組110的時間長度。 For example, in the case that the threshold voltage of the driving module 110 is 0.7V, if the charging module 140 can pre-charge the control node VG to 0.5V, the control module 130 only needs to charge the control node VG by 0.5V. The drive module 110 is activated up to 0.7V. In this way, the length of time that the control module 130 activates the driving module 110 can be reduced.

第2a圖為根據本發明第一實施例所繪示的充電模組140的示意圖。在本實施例中,充電模組140可包括開關SW1、開關SW2及開關SW3。開關SW1可電性連接於第一電壓VDD與操作節點Q之間。開關SW2可電性連接於第二電壓VSS與操作節點Q之間。開關SW3可電性連接於第一電壓VDD與控制節點VG之間。 FIG. 2a is a schematic diagram of a charging module 140 according to the first embodiment of the present invention. In this embodiment, the charging module 140 can include a switch SW1, a switch SW2, and a switch SW3. The switch SW1 is electrically connected between the first voltage VDD and the operation node Q. The switch SW2 is electrically connected between the second voltage VSS and the operation node Q. The switch SW3 is electrically connected between the first voltage VDD and the control node VG.

在本實施例中,開關SW1用以接收操作訊號IBP,並根據操作訊號IBP以提供第一電壓VDD至操作節點Q。開關SW2用以決定控制節點VG上的閘極電壓是否大於一 預設電壓,並用以根據閘極電壓提供第二電壓VSS至操作節點Q。開關SW3用以相應於操作節點Q的第一電壓VDD開啟,以充電控制節點VG(即充電耦合電容C)。當注意到,在一實施例中,開關SW1可為電流源。 In this embodiment, the switch SW1 is configured to receive the operation signal IBP and provide the first voltage VDD to the operation node Q according to the operation signal IBP. The switch SW2 is used to determine whether the gate voltage on the control node VG is greater than one. The voltage is preset and used to provide a second voltage VSS to the operating node Q according to the gate voltage. The switch SW3 is turned on to turn on the first voltage VDD corresponding to the operation node Q to charge the control node VG (ie, the charge coupling capacitor C). It is noted that in an embodiment, the switch SW1 can be a current source.

此外,在一實施例中,每一開關SW1-SW3皆可包括一電晶體(例如是金屬氧化物場效電晶體)。當注意到,雖然在第2a圖中,開關SW1包括一P型電晶體,開關SW2包括一N型電晶體,且開關SW3包括一N型電晶體,然而本領域通常知識者當可輕易以N型電晶體置換P型電晶體,或以P型電晶體置換N型電晶體。因此,開關SW1-SW3中的電晶體之型態不以第2a圖中所示為限。此外,在一實施例中,預設電壓的大小可等於開關SW2中的電晶體之臨界電壓的大小,且預設電壓的大小可略小於電晶體M的臨界電壓的大小。 Moreover, in an embodiment, each of the switches SW1-SW3 may include a transistor (eg, a metal oxide field effect transistor). It is noted that although in Fig. 2a, the switch SW1 includes a P-type transistor, the switch SW2 includes an N-type transistor, and the switch SW3 includes an N-type transistor, but those skilled in the art can easily use N The type transistor replaces the P-type transistor or replaces the N-type transistor with a P-type transistor. Therefore, the type of the transistor in the switches SW1-SW3 is not limited to that shown in FIG. 2a. In addition, in an embodiment, the magnitude of the preset voltage may be equal to the magnitude of the threshold voltage of the transistor in the switch SW2, and the magnitude of the preset voltage may be slightly smaller than the threshold voltage of the transistor M.

在第一操作狀態下,在閘極電壓不大於預設電壓的情形下,開關SW2關閉。此時,開關SW1開啟並傳導第一電壓VDD至操作節點Q。開關SW3根據操作節點Q的第一電壓VDD開啟,以令控制節點VG充電,並使閘極電壓提昇。 In the first operating state, in the case where the gate voltage is not greater than the preset voltage, the switch SW2 is turned off. At this time, the switch SW1 is turned on and conducts the first voltage VDD to the operation node Q. The switch SW3 is turned on according to the first voltage VDD of the operation node Q to charge the control node VG and boost the gate voltage.

在第二操作狀態下,在閘極電壓大於預設電壓的情形下,開關SW2開啟並傳導第二電壓VSS至操作節點Q。開關SW3根據操作節點Q的第二電壓VSS關閉,以令控制節點VG停止充電,並使閘極電壓停止提昇。 In the second operating state, in the case where the gate voltage is greater than the preset voltage, the switch SW2 turns on and conducts the second voltage VSS to the operating node Q. The switch SW3 is turned off according to the second voltage VSS of the operation node Q to stop the control node VG from charging and to stop the gate voltage from rising.

透過如此的設置,控制節點VG可被充電至預充電 壓,如此一來,驅動模組110的啟動時間長度可被縮減,且一種具有高啟動速度的驅動電路可被實現。 With this setting, the control node VG can be charged to pre-charge In this way, the startup time length of the driving module 110 can be reduced, and a driving circuit with a high starting speed can be realized.

第2b圖為根據本發明另一實施例所繪示的充電模組140的示意圖。在本實施例中,與第2a圖中實施例相似的部份在此將不覆述。在本實施例中,充電模組140可更包括一邏輯單元141(例如是一及閘)以及一單擊脈衝產生器142。邏輯單元141的第一輸入端電性連接於操作節點Q,邏輯單元141的第二輸入端電性連接於單擊脈衝產生器142,且邏輯單元141的輸出端電性連接開關SW3中的電晶體的閘極端。 FIG. 2b is a schematic diagram of a charging module 140 according to another embodiment of the invention. In the present embodiment, portions similar to those in the embodiment of Fig. 2a will not be described herein. In this embodiment, the charging module 140 can further include a logic unit 141 (eg, a gate) and a click pulse generator 142. The first input end of the logic unit 141 is electrically connected to the operation node Q, the second input end of the logic unit 141 is electrically connected to the click pulse generator 142, and the output end of the logic unit 141 is electrically connected to the electricity in the switch SW3. The gate extreme of the crystal.

在此實施例中,邏輯單元141用以接收操作節點Q的第一電壓VDD或第二電壓VSS並接收單擊脈衝(one-shot pulse)VP,以根據操作節點Q的第一電壓VDD或第二電壓VSS以及單擊脈衝VP操作性地輸出充電訊號CH至開關SW3。單擊脈衝產生器142用以接收脈衝寬度調變訊號PWM,並根據脈衝寬度調變訊號PWM輸出單擊脈衝VP至邏輯單元141。 In this embodiment, the logic unit 141 is configured to receive the first voltage VDD or the second voltage VSS of the operation node Q and receive a one-shot pulse VP according to the first voltage VDD or the operation node Q. The two voltages VSS and the click pulse VP operatively output the charging signal CH to the switch SW3. The pulse generator 142 is clicked to receive the pulse width modulation signal PWM, and the click pulse VP is output to the logic unit 141 according to the pulse width modulation signal PWM.

在此實施例中,單擊脈衝VP可為脈衝訊號,此脈衝訊號係相應於脈衝寬度調變訊號PWM的正緣(positive edge)而具有高電壓準位,並在短時間(例如2μs)內拉降至低電壓準位。換言之,單擊脈衝VP的相位與脈衝寬度調變訊號PWM的相位相同,且單擊脈衝VP的工作週期(duty cycle)小於脈衝寬度調變訊號PWM的工作週期。 In this embodiment, the click pulse VP can be a pulse signal, and the pulse signal has a high voltage level corresponding to the positive edge of the pulse width modulation signal PWM, and is in a short time (for example, 2 μs). Pull down to the low voltage level. In other words, the phase of the click pulse VP is the same as the phase of the pulse width modulation signal PWM, and the duty cycle of the click pulse VP is smaller than the duty cycle of the pulse width modulation signal PWM.

在第一操作狀態下,單擊脈衝VP具有高電壓準位 且閘極電壓不大於預設電壓的期間中,此時開關SW2關閉,且開關SW1開啟並傳導第一電壓VDD至操作節點Q。邏輯單元141輸出控制訊號CH(例如是高電壓準位)至開關SW3,以令開關SW3開啟,以充電控制節點VG,以提昇閘極電壓。 In the first operating state, click pulse VP has a high voltage level And during a period in which the gate voltage is not greater than the preset voltage, the switch SW2 is turned off at this time, and the switch SW1 is turned on and conducts the first voltage VDD to the operation node Q. The logic unit 141 outputs a control signal CH (for example, a high voltage level) to the switch SW3 to turn on the switch SW3 to charge the control node VG to raise the gate voltage.

在第二操作狀態下,於閘極電壓大於預設電壓的期間中,開關SW2開啟並傳導第二電壓VSS至操作節點Q。邏輯單元141不輸出控制訊號CH,以令開關SW3關閉,以停止充電控制節點VG,並停止提昇閘極電壓。 In the second operating state, during a period in which the gate voltage is greater than the preset voltage, the switch SW2 turns on and conducts the second voltage VSS to the operating node Q. The logic unit 141 does not output the control signal CH to turn off the switch SW3 to stop the charging control node VG and stop raising the gate voltage.

在第三操作狀態下,於單擊脈衝VP具有低電壓準位的情況下,邏輯單元141不輸出控制訊號CH,以令開關SW3關閉,以停止充電控制節點VG,並停止提昇閘極電壓。 In the third operating state, in the case where the click pulse VP has a low voltage level, the logic unit 141 does not output the control signal CH to turn off the switch SW3 to stop the charging control node VG and stop raising the gate voltage.

透過如此的設置,控制節點VG可被充電至預充電壓,如此一來,驅動模組110的啟動時間長度可被縮減,且一種具有高啟動速度的驅動電路可被實現。 With such a setting, the control node VG can be charged to the precharge voltage, so that the startup time length of the drive module 110 can be reduced, and a drive circuit having a high startup speed can be realized.

此外,透過如此的設置,使控制節點VG僅在於單擊脈衝VP具有高電壓準位的情況下被充電,如此一來,可實現控制節點VG的過充保護機制。 In addition, through such setting, the control node VG is charged only when the click pulse VP has a high voltage level, so that the overcharge protection mechanism of the control node VG can be realized.

參照第3a圖與第3b圖。第3a圖為根據本發明一實施例所繪示的單擊脈衝產生器142的示意圖。單擊脈衝產生器142可包括反相器1422、反相器1424以及反或閘1426。反相器1422用以接收脈衝寬度調變訊號PWM,並用以反相(invert)脈衝寬度調變訊號PWM,以產生一反相的脈衝寬度調變訊號。反相器1424用以接收反相的脈衝寬度調變訊 號,並用以反相且延遲反相的脈衝寬度調變訊號,以產生延遲的脈衝寬度調變訊號。反或閘1426用以接收反相的脈衝寬度調變訊號以及延遲的脈衝寬度調變訊號,以根據反相的脈衝寬度調變訊號以及延遲的脈衝寬度調變訊號產生單擊脈衝VP。 Refer to Figures 3a and 3b. FIG. 3a is a schematic diagram of a click pulse generator 142 according to an embodiment of the invention. The click pulse generator 142 can include an inverter 1422, an inverter 1424, and an inverse gate 1426. The inverter 1422 is configured to receive the pulse width modulation signal PWM and invert the pulse width modulation signal PWM to generate an inverted pulse width modulation signal. Inverter 1424 is configured to receive an inverted pulse width modulation signal No., and used to invert and delay the inverted pulse width modulation signal to generate a delayed pulse width modulation signal. The inverse gate 1426 is configured to receive the inverted pulse width modulation signal and the delayed pulse width modulation signal to generate the click pulse VP according to the inverted pulse width modulation signal and the delayed pulse width modulation signal.

第3b圖為根據本發明一實施例所繪示的第3a圖中的單擊脈衝產生器142的示意圖。在本實施例中,單擊脈衝產生器142可包括反相器1422、反或閘1426以及開關SW4-SW7。單擊脈衝產生器142中各元件的連接關係可參照第3b圖中所示,在此不贅述。 FIG. 3b is a schematic diagram of the click pulse generator 142 in FIG. 3a according to an embodiment of the invention. In the present embodiment, the click pulse generator 142 may include an inverter 1422, an inverse OR gate 1426, and switches SW4-SW7. The connection relationship of each component in the pulse generator 142 can be referred to the figure shown in FIG. 3b, and details are not described herein.

透過上述的設置,單擊脈衝產生器142可被實現。 Through the above settings, the click pulse generator 142 can be implemented.

本發明的另一實施態樣為一種操作方法400。此操作方法400可應用於結構與前述第1圖中相同或類似的驅動電路。為方便說明,下述操作方法400係以第1圖所示的驅動電路100為例進行描述,但並不以第1圖的驅動電路100為限 Another embodiment of the invention is an operational method 400. This method of operation 400 can be applied to a drive circuit having the same or similar structure as in the first FIG. For convenience of description, the following operation method 400 is described by taking the driving circuit 100 shown in FIG. 1 as an example, but is not limited to the driving circuit 100 of FIG.

當注意到,在以下操作方法400中的步驟中,除非另行述明,否則並不具有特定順序。另外,以下步驟亦可能被同時執行,或者於執行時間上有所重疊 It is noted that in the steps in the following method of operation 400, there is no particular order unless otherwise stated. In addition, the following steps may be performed simultaneously or overlap in execution time.

同時參照第1圖及第4圖,第4圖為根據本發明一實施例所繪示的操作方法400的流程圖。操作方法400包括以下步驟。透過充電模組140,預充控制節點VG至預充電壓(步驟S1)。透過控制模組130,根據參考電壓VREF、一回授電壓VFB以及脈衝寬度調變訊號PWM,產生控制電壓(步驟 S2)。根據由控制電壓與預充電壓加總的閘極電壓啟動驅動模組110,以使驅動電流I得以通過驅動模組110(步驟S3)。透過感測模組120,根據驅動電流I產生回授電壓VFB(步驟S3)。 Referring to FIG. 1 and FIG. 4, FIG. 4 is a flow chart of an operation method 400 according to an embodiment of the invention. The method of operation 400 includes the following steps. The control node VG is precharged to the precharge voltage through the charging module 140 (step S1). The control module 130 generates a control voltage according to the reference voltage VREF, a feedback voltage VFB, and a pulse width modulation signal PWM (step S2). The driving module 110 is activated according to the total gate voltage added by the control voltage and the pre-charging voltage, so that the driving current I can pass through the driving module 110 (step S3). The feedback voltage VFB is generated based on the drive current I through the sensing module 120 (step S3).

透過上述的方法,可縮減驅動模組110的啟動時間長度。 Through the above method, the startup time length of the driving module 110 can be reduced.

同時參照第2a圖及第5a圖,在一實施例中,步驟S1包括以下步驟。首先,透過開關SW1,提供第一電壓VDD至一操作節點Q(步驟S11a)。接著,根據操作節點Q的第一電壓VDD開啟開關SW3,以充電控制節點VG,以提昇閘極電壓(步驟S12a)。接著,透過開關SW2,判斷閘極電壓是否大於預設電壓(步驟S13a)。若是,則透過開關SW2提供第二電壓VSS至操作節點Q,以令開關SW3關閉,以停止充電控制節點VG,以令閘極電壓停止提昇(步驟S14a)。若否,則回到步驟S12a。 Referring also to Figures 2a and 5a, in an embodiment, step S1 includes the following steps. First, the first voltage VDD is supplied to an operation node Q through the switch SW1 (step S11a). Next, the switch SW3 is turned on according to the first voltage VDD of the operation node Q to charge the control node VG to raise the gate voltage (step S12a). Next, it is determined through the switch SW2 whether the gate voltage is greater than a preset voltage (step S13a). If so, the second voltage VSS is supplied to the operation node Q through the switch SW2 to turn off the switch SW3 to stop the charging control node VG to stop the gate voltage from rising (step S14a). If no, the process returns to step S12a.

在一實施例中,步驟S14a包括一步驟,此一步驟係透過在開關SW2中的電晶體以提供第二電壓VSS至操作節點Q。上述預設電壓的大小可等於開關SW2中的電晶體的臨界電壓的大小。 In an embodiment, step S14a includes a step of transmitting a second voltage VSS to the operating node Q through the transistor in the switch SW2. The magnitude of the above preset voltage may be equal to the magnitude of the threshold voltage of the transistor in the switch SW2.

另一方面,參照第2b圖,第3a圖及第5b圖。在一實施例中,步驟S1包括以下步驟。透過開關SW1,提供第一電壓VDD至操作節點Q(步驟S11b)。透過單擊脈衝產生器142,根據脈衝寬度調變訊號PWM產生單擊脈衝VP(步驟S12b)。透過邏輯單元(例如是及閘)141,以對操作節點Q 的第一電壓VDD或第二電壓VSS以及單擊脈衝VP進行邏輯連接(logical conjunction),以操作性地產生控制訊號CH(例如是高電壓準位)(步驟S13b)。透過開關SW3判斷控制訊號CH是否產生(步驟S14b)。若否,則繼續執行步驟S14b。若是,則開關SW3開啟,以充電控制節點VG,以提昇閘極電壓(步驟S15b)。接著,透過開關SW2,判斷閘極電壓是否大於預設電壓(步驟S16b)。若是,則透過開關SW2提供第二電壓VSS至操作節點Q,以令開關SW3關閉,以停止充電控制節點VG,以令閘極電壓停止提昇(步驟S17b)。若否,則繼續執行步驟S16b。 On the other hand, refer to Fig. 2b, Fig. 3a and Fig. 5b. In an embodiment, step S1 comprises the following steps. The first voltage VDD is supplied to the operation node Q through the switch SW1 (step S11b). The click pulse VP is generated based on the pulse width modulation signal PWM by clicking the pulse generator 142 (step S12b). Through the logic unit (for example, the gate) 141, to the operation node Q The first voltage VDD or the second voltage VSS and the click pulse VP are logically coupled to operatively generate a control signal CH (for example, a high voltage level) (step S13b). It is judged by the switch SW3 whether or not the control signal CH is generated (step S14b). If no, proceed to step S14b. If so, the switch SW3 is turned on to charge the control node VG to raise the gate voltage (step S15b). Next, it is determined through the switch SW2 whether the gate voltage is greater than a preset voltage (step S16b). If so, the second voltage VSS is supplied to the operating node Q through the switch SW2 to turn off the switch SW3 to stop the charging control node VG to stop the gate voltage from rising (step S17b). If no, proceed to step S16b.

當注意到,預設電壓的相關細節可參考前一實施例,故在此不重覆。 When it is noted that the relevant details of the preset voltage can be referred to the previous embodiment, it is not repeated here.

此外,在一實施例中,單擊脈衝VP的相位與該脈衝寬度調變訊號PWM的相位相同,且單擊脈衝VP的工作週期小於脈衝寬度調變訊號PWM的工作週期。 In addition, in an embodiment, the phase of the click pulse VP is the same as the phase of the pulse width modulation signal PWM, and the duty cycle of the click pulse VP is smaller than the duty cycle of the pulse width modulation signal PWM.

再者,在一實施例中,步驟S12b可包括以下步驟。透過反相器1422,反相脈衝寬度調變訊號PWM,以產生反相的脈衝寬度調變訊號。透過反相器1424,反相且延遲反相的脈衝寬度調變訊號,以產生延遲的脈衝寬度調變訊號。透過反或閘1426,對反相的脈衝寬度調變訊號以及延遲的脈衝寬度調變訊號進行互斥操作,以操作性地產生單擊脈衝VP。 Furthermore, in an embodiment, step S12b may include the following steps. Inverting the pulse width modulation signal PWM through the inverter 1422 to generate an inverted pulse width modulation signal. Through the inverter 1424, the inverted pulse width modulation signal is inverted and delayed to generate a delayed pulse width modulation signal. The inverted pulse width modulation signal and the delayed pulse width modulation signal are mutually exclusive operation through the inverse gate 1426 to operatively generate the click pulse VP.

雖然本案已以實施例揭露如上,然其並非用以限定本案,任何熟習此技藝者,在不脫離本案之精神和範圍 內,當可作各種之更動與潤飾,因此本案之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above by way of example, it is not intended to limit the case, and anyone skilled in the art will not depart from the spirit and scope of the present invention. Within the scope of this patent, the scope of protection of this case shall be subject to the definition of the scope of the patent application.

140‧‧‧充電模組 140‧‧‧Charging module

141‧‧‧邏輯單元 141‧‧‧Logical unit

142‧‧‧單擊脈衝產生器 142‧‧‧Click pulse generator

VG‧‧‧控制節點 VG‧‧‧ control node

Q‧‧‧操作節點 Q‧‧‧Operation node

VDD‧‧‧第一電壓 VDD‧‧‧first voltage

VSS‧‧‧第二電壓 VSS‧‧‧second voltage

PWM‧‧‧脈衝寬度調變訊號 PWM‧‧‧ pulse width modulation signal

VP‧‧‧單擊脈衝 VP‧‧‧click pulse

IBP‧‧‧操作訊號 IBP‧‧‧ operation signal

CH‧‧‧控制訊號 CH‧‧‧ control signal

SW1-SW3‧‧‧開關 SW1-SW3‧‧‧ switch

Claims (18)

一種充電模組,用以預充(pre-charge)一控制節點至一預充電壓,使得在一控制模組輸出一控制電壓的情形下,一驅動模組根據由該控制電壓與該預充電壓加總的一閘極電壓啟動,其中該充電模組包括:一第一開關,用以提供一第一電壓至一操作節點;一充電開關,用以相應於該操作節點的該第一電壓開啟,以充電該控制節點;以及一第二開關,用以根據該閘極電壓提供一第二電壓至該操作節點,其中在該閘極電壓大於一預設電壓的情形下,該第二開關提供該第二電壓至該操作節點,以令該充電開關關閉,以停止充電該控制節點,其中該第二開關包括一電晶體,該預設電壓與該電晶體的臨界電壓相等。 A charging module for pre-charging a control node to a pre-charge voltage, such that in the case that a control module outputs a control voltage, a driving module is based on the pre-charge according to the control voltage The voltage is summed up by a gate voltage, wherein the charging module includes: a first switch for providing a first voltage to an operating node; and a charging switch for corresponding to the first voltage of the operating node Turning on to charge the control node; and a second switch for providing a second voltage to the operating node according to the gate voltage, wherein the second switch is when the gate voltage is greater than a predetermined voltage Providing the second voltage to the operating node to turn off the charging switch to stop charging the control node, wherein the second switch comprises a transistor, the predetermined voltage being equal to a threshold voltage of the transistor. 如請求項1所述的充電模組,更包括:一邏輯單元,用以接收該操作節點的該第一電壓或該第二電壓並接收一單擊脈衝(one-shot pulse),以根據該操作節點的該第一電壓或該第二電壓並根據該單擊脈衝操作性地輸出一充電訊號,以令該充電開關開啟。 The charging module of claim 1, further comprising: a logic unit configured to receive the first voltage or the second voltage of the operating node and receive a one-shot pulse to The first voltage or the second voltage of the operating node and operatively outputting a charging signal according to the click pulse to turn the charging switch on. 如請求項2所述的充電模組,更包括:一單擊脈衝產生器,用以根據一脈衝寬度調變訊號產 生該單擊脈衝,其中該單擊脈衝的相位與該脈衝寬度調變訊號的相位相同,且該單擊脈衝的工作週期(duty cycle)小於該脈衝寬度調變訊號的工作週期。 The charging module of claim 2, further comprising: a click pulse generator for modulating the signal according to a pulse width The click pulse is generated, wherein the phase of the click pulse is the same as the phase of the pulse width modulation signal, and the duty cycle of the click pulse is less than the duty cycle of the pulse width modulation signal. 如請求項3所述的充電模組,其中該單擊脈衝產生器包括:一第一反相器,用以接收該脈衝寬度調變訊號,並用以反相(invert)該脈衝寬度調變訊號,以產生一反相的脈衝寬度調變訊號;一第二反相器,用以接收該反相的脈衝寬度調變訊號,並用以反相且延遲該反相的脈衝寬度調變訊號,以產生一延遲的脈衝寬度調變訊號;以及一反或閘,用以接收該反相的脈衝寬度調變訊號以及該延遲的脈衝寬度調變訊號,以根據該反相的脈衝寬度調變訊號以及該延遲的脈衝寬度調變訊號產生該單擊脈衝。 The charging module of claim 3, wherein the click pulse generator comprises: a first inverter for receiving the pulse width modulation signal, and for inverting the pulse width modulation signal To generate an inverted pulse width modulation signal; a second inverter for receiving the inverted pulse width modulation signal, and for inverting and delaying the inverted pulse width modulation signal to Generating a delayed pulse width modulation signal; and an inverse OR gate for receiving the inverted pulse width modulation signal and the delayed pulse width modulation signal to modulate the signal according to the inverted pulse width and The delayed pulse width modulation signal produces the click pulse. 如請求項2所述的充電模組,其中在該單擊脈衝具有一第一電壓準位的情形下,該邏輯單元不輸出該控制訊號,以令該充電開關關閉,以停止充電該控制節點。 The charging module of claim 2, wherein the logic unit does not output the control signal when the click pulse has a first voltage level, so that the charging switch is turned off to stop charging the control node. . 如請求項2所述的充電模組,其中在該單擊脈衝具有一第二電壓準位且該控制節點的該閘極電壓不大於該預設電壓的情形下,該邏輯單元輸出該控制訊號,以令該充電開關開啟,以充電該控制節點。 The charging module of claim 2, wherein the logic unit outputs the control signal if the click pulse has a second voltage level and the gate voltage of the control node is not greater than the preset voltage So that the charging switch is turned on to charge the control node. 一種驅動電路,包括:一充電模組,用以預充一控制節點至一預充電壓;一驅動模組,用以根據由一控制電壓與該預充電壓加總的一閘極電壓啟動,以使一驅動電流得以通過該驅動模組;一感測模組,用以接收該驅動電流,並根據該驅動電流輸出一回授電壓;以及一控制模組,用以接收一參考電壓、該回授電壓以及一脈衝寬度調變訊號,並用以根據該參考電壓、該回授電壓以及該脈衝寬度調變訊號,輸出該控制電壓至該驅動模組;其中該充電模組包括:一充電開關,用以充電該控制節點;以及一第二開關,包括一電晶體,其中該第二開關用以在該閘極電壓大於一預設電壓的期間中,操作性地使該充電開關關閉,且該預設電壓與該第二開關中的該電晶體的臨界電壓相等。 A driving circuit includes: a charging module for pre-charging a control node to a pre-charging voltage; and a driving module for starting according to a gate voltage connected by a control voltage and the pre-charging voltage, So that a driving current can pass through the driving module; a sensing module is configured to receive the driving current, and output a feedback voltage according to the driving current; and a control module for receiving a reference voltage, the a voltage and a pulse width modulation signal for outputting the control voltage to the driving module according to the reference voltage, the feedback voltage, and the pulse width modulation signal; wherein the charging module comprises: a charging switch For charging the control node; and a second switch comprising a transistor, wherein the second switch is configured to operatively turn off the charging switch during the period in which the gate voltage is greater than a predetermined voltage, and The preset voltage is equal to a threshold voltage of the transistor in the second switch. 如請求項7所述的驅動電路,其中該充電模組更包括:一第一開關,電性連接於一第一電壓與一操作節點之間,其中該第一開關用以傳導該第一電壓至該操作節點,其中該充電開關電性連接於該第一電壓與該控制節點 之間,用以相應於該操作節點的該第一電壓開啟,且其中該第二開關電性連接於一第二電壓與該操作節點之間,用以在該閘極電壓大於一預設電壓的期間中,傳導該第二電壓至該操作節點,以操作性地關閉該充電開關。 The driving circuit of claim 7, wherein the charging module further comprises: a first switch electrically connected between a first voltage and an operating node, wherein the first switch is configured to conduct the first voltage To the operation node, wherein the charging switch is electrically connected to the first voltage and the control node The first voltage is turned on corresponding to the operating node, and wherein the second switch is electrically connected between a second voltage and the operating node, wherein the gate voltage is greater than a predetermined voltage. The second voltage is conducted to the operating node to operatively turn off the charging switch. 如請求項8所述的驅動電路,其中該驅動模組包括一電晶體,該預設電壓小於該驅動模組中的該電晶體的臨界電壓。 The driving circuit of claim 8, wherein the driving module comprises a transistor, and the preset voltage is smaller than a threshold voltage of the transistor in the driving module. 如請求項8所述的驅動電路,其中該充電模組更包括:一邏輯單元,用以接收該操作節點的該第一電壓或該第二電壓並接收一單擊脈衝,以根據該操作節點的該第一電壓或該第二電壓並根據該單擊脈衝操作性地輸出一充電訊號,以令該充電開關開啟。 The driving circuit of claim 8, wherein the charging module further comprises: a logic unit configured to receive the first voltage or the second voltage of the operating node and receive a click pulse to operate according to the operating node The first voltage or the second voltage operatively outputs a charging signal according to the click pulse to turn the charging switch on. 如請求項10所述的驅動電路,其中該充電模組更包括:一單擊脈衝產生器,用以根據該脈衝寬度調變訊號產生該單擊脈衝,其中該單擊脈衝的相位與該脈衝寬度調變訊號的相位相同,且該單擊脈衝的工作週期小於該脈衝寬度調變訊號的工作週期。 The driving circuit of claim 10, wherein the charging module further comprises: a click pulse generator for generating the click pulse according to the pulse width modulation signal, wherein the phase of the click pulse and the pulse The phase of the width modulation signal is the same, and the working period of the click pulse is less than the duty cycle of the pulse width modulation signal. 如請求項11所述的驅動電路,其中該單擊脈衝產 生器更包括:一第一反相器,用以接收該脈衝寬度調變訊號,並用以反相該脈衝寬度調變訊號,以產生一反相的脈衝寬度調變訊號;一第二反相器,用以接收該反相的脈衝寬度調變訊號,並用以反相且延遲該反相的脈衝寬度調變訊號,以產生一延遲的脈衝寬度調變訊號;以及一反或閘,用以接收該反相的脈衝寬度調變訊號以及該延遲的脈衝寬度調變訊號,以根據該反相的脈衝寬度調變訊號以及該延遲的脈衝寬度調變訊號產生該單擊脈衝。 The drive circuit of claim 11, wherein the click pulse is produced The generator further includes: a first inverter for receiving the pulse width modulation signal, and for inverting the pulse width modulation signal to generate an inverted pulse width modulation signal; a second inversion The device is configured to receive the inverted pulse width modulation signal, and to invert and delay the inverted pulse width modulation signal to generate a delayed pulse width modulation signal; and an inverse or gate for Receiving the inverted pulse width modulation signal and the delayed pulse width modulation signal to generate the click pulse according to the inverted pulse width modulation signal and the delayed pulse width modulation signal. 如請求項10所述的驅動電路,其中在該單擊脈衝具有一第一電壓準位的情形下,該邏輯單元不輸出該控制訊號,以令該充電開關關閉,以停止充電該控制節點。 The driving circuit of claim 10, wherein in the case that the click pulse has a first voltage level, the logic unit does not output the control signal to cause the charging switch to be turned off to stop charging the control node. 如請求項10所述的驅動電路,其中在該單擊脈衝具有一第二電壓準位且該控制節點的該閘極電壓不大於該預設電壓的情形下,該邏輯單元輸出該控制訊號,以令該充電開關開啟,以充電該控制節點。 The driving circuit of claim 10, wherein the logic unit outputs the control signal if the click pulse has a second voltage level and the gate voltage of the control node is not greater than the preset voltage. So that the charging switch is turned on to charge the control node. 一種應用於一驅動電路的操作方法,包括:預充一控制節點至一預充電壓;根據一參考電壓、一回授電壓以及一脈衝寬度調變訊 號,產生一控制電壓;根據由一控制電壓與該預充電壓加總的一閘極電壓啟動一驅動模組,以使一驅動電流得以通過該驅動模組;以及根據該驅動電流產生該回授電壓;其中預充該控制節點至該預充電壓的步驟包括:利用一充電開關以充電該控制節點;以及利用一第二開關,在該閘極電壓大於一預設電壓的期間中,操作性地關閉該充電開關,其中該預設電壓與該第二開關中的一電晶體的臨界電壓相等。 An operating method applied to a driving circuit, comprising: pre-charging a control node to a pre-charging voltage; and according to a reference voltage, a feedback voltage, and a pulse width modulation signal No. generating a control voltage; starting a driving module according to a control voltage and the pre-charging voltage plus a total gate voltage, so that a driving current can pass through the driving module; and generating the back according to the driving current The step of precharging the control node to the precharge voltage includes: charging a control node by using a charging switch; and operating by using a second switch during a period in which the gate voltage is greater than a predetermined voltage The charging switch is turned off, wherein the preset voltage is equal to a threshold voltage of a transistor in the second switch. 如請求項15所述的操作方法,其中預充該控制節點至該預充電壓的步驟包括:提供一第一電壓至一操作節點;根據該操作節點的該第一電壓開啟該充電開關,以充電該控制節點;以及判斷該閘極電壓是否大於該預設電壓;在該閘極電壓大於該預設電壓的情況下,提供一第二電壓至該操作節點,以令該充電開關關閉,以停止充電該控制節點。 The operation method of claim 15, wherein the step of precharging the control node to the precharge voltage comprises: providing a first voltage to an operation node; and turning on the charging switch according to the first voltage of the operation node, Charging the control node; and determining whether the gate voltage is greater than the preset voltage; if the gate voltage is greater than the preset voltage, providing a second voltage to the operating node to cause the charging switch to be turned off, Stop charging the control node. 如請求項16所述的操作方法,其中預充該控制節點至該預充電壓的步驟更包括:根據該脈衝寬度調變訊號產生一單擊脈衝,其中該單 擊脈衝的相位與該脈衝寬度調變訊號的相位相同,且該單擊脈衝的工作週期小於該脈衝寬度調變訊號的工作週期;透過一及閘,以對該操作節點的該第一電壓或該第二電壓並以及該單擊脈衝進行邏輯連接(logical conjunction),以操作性地產生一控制訊號;判斷該控制訊號是否產生;以及在該控制訊號產生的情形下,開啟該充電開關。 The method of claim 16, wherein the step of pre-charging the control node to the pre-charge voltage further comprises: generating a click pulse according to the pulse width modulation signal, wherein the single The phase of the pulse is the same as the phase of the pulse width modulation signal, and the duty cycle of the click pulse is less than the duty cycle of the pulse width modulation signal; and the first voltage of the operation node is The second voltage and the click pulse are logically coupled to operatively generate a control signal; determine whether the control signal is generated; and in the case where the control signal is generated, turn on the charging switch. 如請求項17所述的操作方法,其中根據該脈衝寬度調變訊號產生該單擊脈衝的步驟包括:反相該脈衝寬度調變訊號,以產生一反相的脈衝寬度調變訊號;反相且延遲該反相的脈衝寬度調變訊號,以產生一延遲的脈衝寬度調變訊號;以及透過一反或閘,對該反相的脈衝寬度調變訊號以及該延遲的脈衝寬度調變訊號進行互斥操作,以操作性地產生該單擊脈衝。 The method of claim 17, wherein the step of generating the click pulse according to the pulse width modulation signal comprises: inverting the pulse width modulation signal to generate an inverted pulse width modulation signal; And delaying the inverted pulse width modulation signal to generate a delayed pulse width modulation signal; and transmitting the inverted pulse width modulation signal and the delayed pulse width modulation signal through an inverse OR gate Mutually exclusive operations to operatively generate the click pulse.
TW102118257A 2013-05-23 2013-05-23 Charge module, driving circuit, and operating method of the driving circuit TWI556574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102118257A TWI556574B (en) 2013-05-23 2013-05-23 Charge module, driving circuit, and operating method of the driving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102118257A TWI556574B (en) 2013-05-23 2013-05-23 Charge module, driving circuit, and operating method of the driving circuit

Publications (2)

Publication Number Publication Date
TW201445882A TW201445882A (en) 2014-12-01
TWI556574B true TWI556574B (en) 2016-11-01

Family

ID=52707222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102118257A TWI556574B (en) 2013-05-23 2013-05-23 Charge module, driving circuit, and operating method of the driving circuit

Country Status (1)

Country Link
TW (1) TWI556574B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591367B (en) * 2003-01-23 2004-06-11 Via Tech Inc Regulator and related method capable of performing pre-charging
US20070241728A1 (en) * 2006-04-18 2007-10-18 Atmel Corporation Low-dropout voltage regulator with a voltage slew rate efficient transient response boost circuit
US7432758B2 (en) * 2006-11-08 2008-10-07 Elite Semiconductor Memory Technology Inc. Voltage regulator for semiconductor memory
WO2009023021A1 (en) * 2007-08-10 2009-02-19 Micron Technology, Inc. Voltage protection circuit for thin oxide transistors, and memory device and processor-based system using same
US7667442B2 (en) * 2005-03-16 2010-02-23 Ricoh Company, Ltd. Constant voltage power supply circuit and method of testing the same
US20100148742A1 (en) * 2008-12-11 2010-06-17 Nec Electronics Corporation Voltage regulator
US20110018509A1 (en) * 2009-07-27 2011-01-27 Himax Analogic, Inc. Driver, Current Regulating Circuit Thereof, and Method of Current Regulation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW591367B (en) * 2003-01-23 2004-06-11 Via Tech Inc Regulator and related method capable of performing pre-charging
US7667442B2 (en) * 2005-03-16 2010-02-23 Ricoh Company, Ltd. Constant voltage power supply circuit and method of testing the same
US20070241728A1 (en) * 2006-04-18 2007-10-18 Atmel Corporation Low-dropout voltage regulator with a voltage slew rate efficient transient response boost circuit
US7432758B2 (en) * 2006-11-08 2008-10-07 Elite Semiconductor Memory Technology Inc. Voltage regulator for semiconductor memory
WO2009023021A1 (en) * 2007-08-10 2009-02-19 Micron Technology, Inc. Voltage protection circuit for thin oxide transistors, and memory device and processor-based system using same
US20100148742A1 (en) * 2008-12-11 2010-06-17 Nec Electronics Corporation Voltage regulator
US20110018509A1 (en) * 2009-07-27 2011-01-27 Himax Analogic, Inc. Driver, Current Regulating Circuit Thereof, and Method of Current Regulation

Also Published As

Publication number Publication date
TW201445882A (en) 2014-12-01

Similar Documents

Publication Publication Date Title
US20120280733A1 (en) Adjusting circuit of duty cycle and its method
TWI283516B (en) Internal voltage generation circuit and voltage detection circuit
TWI503647B (en) Reference voltage circuit
JP5077015B2 (en) LED lighting device
JP6926982B2 (en) Power control circuit and energy harvesting device
JP3178199U (en) Fan delay control circuit
CN109617544B (en) Power-on time sequence control equipment, system and method
CN106054998B (en) Voltage generator
KR20150105809A (en) control circuit including load switch, electronic apparatus including the load switch and controlling method thereof
JPWO2003073617A1 (en) Amplitude conversion circuit
JP5862989B1 (en) Driving circuit with adjustable operation mode by external pins
US8907719B2 (en) IC circuit
TWI556574B (en) Charge module, driving circuit, and operating method of the driving circuit
TW591367B (en) Regulator and related method capable of performing pre-charging
JP2006296118A (en) Charger
US9379601B2 (en) Charge module, driving circuit, and operating method
CN104253594A (en) Charging module, driving circuit and operation method thereof
CN203573622U (en) Voltage comparison circuit and liquid crystal display comprising same
JP2006099507A5 (en)
JP5971604B2 (en) Voltage detection circuit
WO2015081628A1 (en) Circuit and method for optimizing input voltage range of ic chip
WO2019127789A1 (en) Pmic start-up timing sequence circuit and pmic start-up timing sequence determination method
TWI692200B (en) Turning-on and off reset circuit for carrier tape chip and the working method
KR101854620B1 (en) Low Voltage Power-On Reset Circuits
JP2003229747A (en) Semiconductor integrated circuit