TWI556570B - Measuring device for property of solar cell and measuring method using the same - Google Patents

Measuring device for property of solar cell and measuring method using the same Download PDF

Info

Publication number
TWI556570B
TWI556570B TW104133486A TW104133486A TWI556570B TW I556570 B TWI556570 B TW I556570B TW 104133486 A TW104133486 A TW 104133486A TW 104133486 A TW104133486 A TW 104133486A TW I556570 B TWI556570 B TW I556570B
Authority
TW
Taiwan
Prior art keywords
solar cell
light
measuring device
illuminance
measuring
Prior art date
Application number
TW104133486A
Other languages
Chinese (zh)
Other versions
TW201714400A (en
Inventor
龍彥先
許書宗
吳登峻
蔡閔安
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104133486A priority Critical patent/TWI556570B/en
Priority to CN201510756004.7A priority patent/CN106571776B/en
Priority to US14/965,893 priority patent/US9866171B2/en
Application granted granted Critical
Publication of TWI556570B publication Critical patent/TWI556570B/en
Publication of TW201714400A publication Critical patent/TW201714400A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

太陽能電池特性的量測裝置及使用其之量測方法 Solar cell characteristic measuring device and measuring method using same

本發明是有關於一種太陽能電池特性的量測裝置及使用其之量測方法,且特別是有關於一種太陽能電池特性的量測裝置及使用其之量測方法。 The present invention relates to a measuring device for solar cell characteristics and a measuring method using the same, and in particular to a measuring device for solar cell characteristics and a measuring method using the same.

太陽能電池可將光能轉換成電能。在使用太陽能電池前須先了解太陽能電池的特性,以提供適當的電氣訊號給太陽能電池而獲得對應的照度及/或發光色溫。因此,如何精確地獲得太陽能電池的特性曲線是本技術領域業者努力的方向之一。 Solar cells convert light energy into electrical energy. Before using a solar cell, it is necessary to understand the characteristics of the solar cell to provide an appropriate electrical signal to the solar cell to obtain a corresponding illuminance and/or illuminating color temperature. Therefore, how to accurately obtain the characteristic curve of the solar cell is one of the efforts of the industry.

因此,本發明提出一種量測裝置及應用其之量測方法,可獲得精確的太陽能電池特性曲線。 Therefore, the present invention provides a measuring device and a measuring method using the same, which can obtain an accurate solar cell characteristic curve.

根據本發明之一實施例,提出一種量測裝置。量測裝置用以量測一太陽能電池的特性。量測裝置包括數種光源、一回授控制模組及一電源量測單元。各光源的色光係相異,且各光源包括數個對稱配置的發光元件。回授控制模組用以控制此些發 光元件所發射光線的一照度。回授控制模組用以判斷照度的不穩定性是否小於一第一預設比例。若照度的不穩定性小於第一預設比例,電源量測單元在該照度下量測太陽能電池的特性。 According to an embodiment of the invention, a measuring device is proposed. The measuring device is used to measure the characteristics of a solar cell. The measuring device comprises a plurality of light sources, a feedback control module and a power measuring unit. The color lights of the respective light sources are different, and each light source includes a plurality of symmetrical light emitting elements. Feedback control module to control these hair An illuminance of light emitted by an optical component. The feedback control module is configured to determine whether the instability of the illumination is less than a first preset ratio. If the instability of the illuminance is less than the first predetermined ratio, the power supply measuring unit measures the characteristics of the solar battery under the illuminance.

根據本發明之另一實施例,提出一種量測方法。量測方法用以量測一太陽能電池的特性。量測方法包括以下步驟。提供一量測裝置,其中量測裝置包括數種光源、一回授控制模組及一電源量測單元。回授控制模組以回授控制的方式,控制光線的一照度;判斷照度的不穩定性是否小於一第一預設比例;以及,若照度的不穩定性小於第一預設比例,在該照度下量測太陽能電池的特性。 According to another embodiment of the present invention, a measurement method is proposed. The measurement method is used to measure the characteristics of a solar cell. The measurement method includes the following steps. A measuring device is provided, wherein the measuring device comprises a plurality of light sources, a feedback control module and a power measuring unit. The feedback control module controls an illuminance of the light in a feedback control manner; determines whether the illuminance instability is less than a first preset ratio; and if the illuminance instability is less than the first preset ratio, The characteristics of the solar cell are measured under illumination.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

10‧‧‧太陽能電池 10‧‧‧ solar cells

100‧‧‧量測裝置 100‧‧‧Measurement device

110‧‧‧容置部 110‧‧‧Receipt Department

120‧‧‧燈座 120‧‧‧ lamp holder

120b‧‧‧下表面 120b‧‧‧lower surface

130、140‧‧‧光源 130, 140‧‧‧ light source

131‧‧‧第一光源 131‧‧‧First light source

1311‧‧‧發光元件 1311‧‧‧Lighting elements

132‧‧‧第二光源 132‧‧‧second light source

133‧‧‧第三光源 133‧‧‧ Third light source

134‧‧‧第四光源 134‧‧‧fourth light source

135‧‧‧第五光源 135‧‧‧ fifth light source

136‧‧‧第六光源 136‧‧‧ sixth light source

150‧‧‧載板 150‧‧‧ Carrier Board

150u‧‧‧上表面 150u‧‧‧ upper surface

160‧‧‧回授控制模組 160‧‧‧Feedback control module

161‧‧‧光感測器 161‧‧‧Light sensor

162‧‧‧回授控制器 162‧‧‧Responsible controller

163‧‧‧照度均勻性計算器 163‧‧‧ illuminance uniformity calculator

170‧‧‧電源量測單元 170‧‧‧Power Measurement Unit

a、b、c、d、e、f‧‧‧點 a, b, c, d, e, f‧‧ points

C1、C2、C3、C4‧‧‧曲線 C1, C2, C3, C4‧‧‧ curves

C5、C6‧‧‧線性方程式 C5, C6‧‧‧ linear equation

e(t)‧‧‧誤差訊號 e(t)‧‧‧ error signal

FF‧‧‧填充因數 FF‧‧‧fill factor

Isc‧‧‧短路電流 Isc‧‧‧Short-circuit current

L1‧‧‧光線 L1‧‧‧Light

M0‧‧‧初始照度 M 0 ‧‧‧ initial illuminance

Ma‧‧‧照度平均值 M a ‧ ‧ illuminance average

Mav‧‧‧照度不均勻性 M av ‧‧‧ illuminance unevenness

Mmax‧‧‧最大照度值 M max ‧‧‧maximum illumination value

Mmin‧‧‧最小照度值 M min ‧‧‧ minimum illumination value

Mt‧‧‧照度不穩定性 M t ‧‧‧illuminance instability

r(t)‧‧‧初始值 r(t)‧‧‧ initial value

R1‧‧‧區域 R1‧‧‧ area

S1‧‧‧封閉空間 S1‧‧‧closed space

S110至S150‧‧‧步驟 S110 to S150‧‧‧ steps

Sd‧‧‧照度標準差 S d ‧‧‧ illuminance standard deviation

t0、t1、t2‧‧‧時間點 t 0 , t 1 , t 2 ‧‧‧ points

t‧‧‧時間區間 t ‧‧‧ time interval

u(t)‧‧‧輸入訊號 u(t)‧‧‧ Input signal

第1圖繪示依照本發明一實施例之量測方法的流程圖。 FIG. 1 is a flow chart showing a measurement method according to an embodiment of the invention.

第2圖繪示依照本發明一實施例之量測裝置的示意圖。 2 is a schematic view of a measuring device according to an embodiment of the invention.

第3圖繪示第2圖之燈座與光源的底視圖。 Figure 3 is a bottom view of the lamp holder and the light source of Figure 2.

第4A圖繪示使用第2圖之量測裝置界定一區域的示意圖。 Figure 4A is a schematic view showing the use of the measuring device of Figure 2 to define an area.

第4B圖繪示第4A圖之量測裝置的俯視圖(未繪示燈座及光源)。 FIG. 4B is a top view of the measuring device of FIG. 4A (the lamp holder and the light source are not shown).

第5A圖繪示使用第2圖之量測裝置控制光源之照度的示意圖。 FIG. 5A is a schematic diagram showing the illumination of the light source controlled by the measuring device of FIG. 2.

第5B圖繪示第5A圖之量測裝置的俯視圖(未繪示燈座及光源)。 FIG. 5B is a top view of the measuring device of FIG. 5A (the lamp holder and the light source are not shown).

第6圖繪示第2圖之回授控制器的功能方塊圖。 Figure 6 is a block diagram showing the function of the feedback controller of Figure 2.

第7圖繪示第5A圖之光源所發出光線的照度變化圖。 Figure 7 is a graph showing changes in illuminance of light emitted by the light source of Figure 5A.

第8圖繪示第5A圖之太陽能電池之電壓與電流關係的特性曲線圖。 Fig. 8 is a graph showing the relationship between the voltage and current of the solar cell of Fig. 5A.

第9圖繪示第5A圖之太陽能電池之照度與短路電流關係的特性曲線圖。 Fig. 9 is a graph showing the relationship between the illuminance and the short-circuit current of the solar cell of Fig. 5A.

第10圖繪示第5A圖之太陽能電池之溫度與填充因數關係的特性曲線圖。 Figure 10 is a graph showing the relationship between the temperature and the fill factor of the solar cell of Figure 5A.

第1圖繪示依照本發明一實施例之量測方法的流程圖。 FIG. 1 is a flow chart showing a measurement method according to an embodiment of the invention.

在步驟S110中,提供量測裝置100。 In step S110, the measuring device 100 is provided.

請參照第2及3圖,第2圖繪示依照本發明一實施例之量測裝置100的示意圖,第3圖繪示第2圖之燈座120與光源130的底視圖。量測裝置100包括容置部110、燈座120、數種光源130、光源140、載板150、回授控制模組160及電源量測單元170。 Please refer to FIGS. 2 and 3 . FIG. 2 is a schematic diagram of a measuring device 100 according to an embodiment of the invention. FIG. 3 is a bottom view of the lamp holder 120 and the light source 130 of FIG. 2 . The measuring device 100 includes a receiving portion 110, a socket 120, a plurality of light sources 130, a light source 140, a carrier 150, a feedback control module 160, and a power measuring unit 170.

量測裝置100用以量測太陽能電池10的特性。太陽能電池10設於載板150的上表面150u。太陽能電池10電連接於電源量測單元170,電源量測單元(Source Measurement Unit,SMU)170可依據太陽能電池10的電氣訊號計算太陽能電池10的各種特性,如電壓與電流特性曲線、照度與短路電流特性曲線、 溫度與填充因數(Fill Factor,FF)特性曲線或其它特性。 The measuring device 100 is used to measure the characteristics of the solar cell 10. The solar cell 10 is provided on the upper surface 150u of the carrier 150. The solar cell 10 is electrically connected to the power measuring unit 170. The source measuring unit (SMU) 170 can calculate various characteristics of the solar cell 10 according to the electrical signals of the solar cell 10, such as voltage and current characteristic curves, illuminance and short circuit. Current characteristic curve, Temperature and fill factor (FF) characteristics or other characteristics.

容置部110設於燈座120與載板150之間。容置部110、燈座120與載板150形成一封閉空間S1,其中光源130可設於封閉空間S1內,可減少或甚至避免光源130所發出光線的漏光量。一實施例中,容置部110可呈封閉環狀,其剖面可以是圓形、多邊形或其它外形。 The accommodating portion 110 is disposed between the socket 120 and the carrier 150. The accommodating portion 110, the lamp holder 120 and the carrier 150 form a closed space S1. The light source 130 can be disposed in the closed space S1 to reduce or even avoid the amount of light leakage from the light source 130. In one embodiment, the receiving portion 110 can be in a closed loop shape, and the cross section can be circular, polygonal or other shape.

燈座120可受控於回授控制模組160,使設於燈座120上的光源130可受到回授控制模組160的控制。 The lamp holder 120 can be controlled by the feedback control module 160 so that the light source 130 disposed on the lamp holder 120 can be controlled by the feedback control module 160.

光源130設於燈座120的下表面120b。各光源130可以是符合室內或戶外照明的標準光源,如符合國際照明委員會所制定的ISO/CIE 8995-1、北美照明協會IESNA、英國BS EN 12464-1、德國prEN 12464-1、日本JIS Z0125-2007、新加坡SS531-2006、澳洲AS/NZS 1680-2006、美國ASHARE90.1-2007等的光源。具體來說,各光源130可以是發出色溫6500K的D65光源(可模擬藍天日光)、色溫7500K的D75光源(可模擬北方平均太陽光)、色溫5000K的D50光源(可模擬自然太陽光)、色溫4000K的TL84光源(可模擬歐洲商店燈光)、色溫4100K的D65光源(可模擬藍天日光)、色溫6500K的CWF光源(可模擬美國商店燈光)、色溫3000K的U30光源(可模擬另一種美國商店燈光)、色溫3500K的U35光源(可模擬指定的商店燈光)、色溫2700K的F光源(可模擬家庭酒店暖色燈光)或色溫2856K的白熱(Incandescent)光源(可模擬展示廳投射燈)。 The light source 130 is disposed on the lower surface 120b of the socket 120. Each light source 130 may be a standard light source for indoor or outdoor lighting, such as ISO/CIE 8995-1, North American Lighting Association IESNA, British BS EN 12464-1, German prEN 12464-1, Japan JIS Z0125. -2007, Singapore SS531-2006, Australia AS/NZS 1680-2006, US ASHARE90.1-2007 and other light sources. Specifically, each light source 130 may be a D65 light source (simulating blue sky daylight) with a color temperature of 6500K, a D75 light source with a color temperature of 7500K (which can simulate the northern average sunlight), a D50 light source with a color temperature of 5000K (which can simulate natural sunlight), and a color temperature. 4000K TL84 light source (can simulate European store lighting), D65 light source with color temperature 4100K (simulating blue sky daylight), CWF light source with color temperature of 6500K (can simulate American store lighting), U30 light source with color temperature 3000K (can simulate another American store lighting) ), U35 light source with color temperature of 3500K (can simulate the designated store lighting), F light source with color temperature of 2700K (can simulate the warm light of family hotel) or white light (Incandescent) light source with color temperature of 2856K (can simulate the projection lamp of the exhibition hall).

各光源130可以發出不同色溫的可見光,例如是可發出介於2700K至7500K之間的一色溫的可見光,然亦可為其它色光範圍。此外,另一光源140設於燈座120的中心位置上,其可發出不可見光,例如是紫外光源。 Each of the light sources 130 can emit visible light of different color temperatures, for example, visible light that can emit a color temperature between 2700K and 7500K, but can also be other color light ranges. In addition, another light source 140 is disposed at a central position of the socket 120, which emits invisible light, such as an ultraviolet light source.

光源130可以是點光源或線光源。數個光源130的至少一者可以是點光源,而其它者可以是線光源。例如,光源130可包含第一光源131、第二光源132、第三光源133、第四光源134、第五光源135及第六光源136,其中第一光源131、第二光源132、第三光源133、第四光源134、第五光源135與第六光源136可以是點光源,而第三光源133及第六光源136可為點光源。 Light source 130 can be a point source or a line source. At least one of the plurality of light sources 130 may be a point source, and the others may be line sources. For example, the light source 130 may include a first light source 131, a second light source 132, a third light source 133, a fourth light source 134, a fifth light source 135, and a sixth light source 136, wherein the first light source 131, the second light source 132, and the third light source 133. The fourth light source 134, the fifth light source 135, and the sixth light source 136 may be point light sources, and the third light source 133 and the sixth light source 136 may be point light sources.

此外,各光源130包括數個對稱配置的發光元件。以第一光源131舉例來說,其包括數個對稱配置的發光元件1311,此些發光元件1311相對燈座120的中心位置呈對稱配置。由於各光源130的數個發光元件對稱設置,因此可增加整體照光均勻性。 In addition, each light source 130 includes a plurality of symmetrical light emitting elements. For example, the first light source 131 includes a plurality of symmetrically arranged light-emitting elements 1311 that are symmetrically disposed with respect to a central position of the socket 120. Since a plurality of light-emitting elements of the respective light sources 130 are symmetrically arranged, overall illumination uniformity can be increased.

回授控制模組160包括光感測器161、回授控制器162及照度均勻性計算器163,其中光感測器161可設於封閉空間S1內且可偵測光源130的發光元件所發射的光線L1的照度,回授控制器162可控制數個光源130之至少一者發出光線,而照度均勻性計算器163可依據光感測器161的照度偵測訊號界定符合特定照度均勻性的一區域。回授控制器162可控制照度穩定性。此外,回授控制器162及/或照度均勻性計算器163可以是半 導體電路、軟體及/或韌體,二者可以整合或個別配置。此外,回授控制器162與照度均勻性計算器163可設於桌上型電腦、伺服器、筆記型電腦或其它類型的電子裝置。 The feedback control module 160 includes a photo sensor 161, a feedback controller 162, and an illuminance uniformity calculator 163. The photo sensor 161 can be disposed in the enclosed space S1 and can detect the emission of the light emitting element of the light source 130. The illuminance of the light ray L1, the feedback controller 162 can control at least one of the plurality of light sources 130 to emit light, and the illuminance uniformity calculator 163 can define the uniformity of illumination according to the illuminance detection signal of the light sensor 161. An area. The feedback controller 162 can control the illumination stability. In addition, the feedback controller 162 and/or the illuminance uniformity calculator 163 may be half Conductor circuits, software and/or firmware, both of which can be integrated or individually configured. In addition, the feedback controller 162 and the illuminance uniformity calculator 163 can be provided on a desktop computer, a server, a notebook computer, or other types of electronic devices.

在步驟S120中,照度均勻性計算器163可界定光源130之發光元件所發射的光線L1的照度不均勻性小於第二預設比例的區域R1,其中第二預設比例例如是1%或其它合適比例值。 In step S120, the illuminance uniformity calculator 163 may define a region R1 in which the illuminance unevenness of the light ray L1 emitted by the illuminating element of the light source 130 is smaller than the second preset ratio, wherein the second preset ratio is, for example, 1% or other. The appropriate ratio value.

舉例來說,請參照第4A及4B圖,第4A圖繪示使用第2圖之量測裝置100界定區域R1的示意圖,第4B圖繪示第4A圖之量測裝置100的俯視圖(未繪示燈座120及光源130)。數個光感測器161可以陣列形式排列在載板150的上表面150u,此些光感測器161可電連接照度均勻性計算器163。然後,各光感測器161將偵測到的光線L1的照度偵測訊號傳送給照度均勻性計算器163。照度均勻性計算器163依據此些光感測器161的照度偵測訊號去計算照度不均勻性Mav小於第二預設比例的區域R1的範圍。 For example, please refer to FIG. 4A and FIG. 4B, FIG. 4A is a schematic diagram showing the region R1 defined by the measuring device 100 of FIG. 2, and FIG. 4B is a top view of the measuring device 100 of FIG. 4A (not shown) The lamp holder 120 and the light source 130). The plurality of photo sensors 161 may be arranged in an array on the upper surface 150u of the carrier 150, and the photo sensors 161 may be electrically connected to the illuminance uniformity calculator 163. Then, each photo sensor 161 transmits the detected illuminance detection signal of the light L1 to the illuminance uniformity calculator 163. The illuminance uniformity calculator 163 calculates the range of the region R1 in which the illuminance unevenness M av is smaller than the second preset ratio according to the illuminance detection signals of the photo sensors 161 .

本實施例之照度不均勻性Mav的計算公式如下式(1)。式(1)中,Mmax表示區域R1內的最大照度值,Mmin表示區域R1內的最小照度值。 The calculation formula of the illuminance unevenness M av of the present embodiment is as follows (1). In the formula (1), M max represents the maximum illuminance value in the region R1, and M min represents the minimum illuminance value in the region R1.

在步驟S130中,可以回授控制的方式,控制光源130所發射光線L1的照度,使照度穩定性小於一第一預設比 例,以增加量測裝置100所量得的太陽能電池特性的精確度。此處的”精確度”係指本發明實施例之量測裝置100所量得的太陽能電池特性曲線能精確地反應太陽能電池10本身固有特性。以下進一步說明。 In step S130, the illuminance of the light L1 emitted by the light source 130 can be controlled in a manner of feedback control, so that the illuminance stability is less than a first preset ratio. For example, to increase the accuracy of the solar cell characteristics measured by the measuring device 100. The "accuracy" herein means that the solar cell characteristic curve measured by the measuring device 100 of the embodiment of the present invention can accurately reflect the inherent characteristics of the solar cell 10 itself. Further explanation below.

請參照第5A及5B圖,第5A圖繪示使用第2圖之量測裝置100控制光源130之照度的示意圖,第5B圖繪示第5A圖之量測裝置100的俯視圖(未繪示燈座120及光源130)。本步驟中,可將太陽能電池10及光感測器161設於區域R1內。由於區域R1的照度不均勻性Mav小於第二預設比例,因此可增加電源量測單元170量測太陽能電池10的特性的精確度。 Please refer to FIG. 5A and FIG. 5B , FIG. 5A is a schematic diagram showing the illumination of the light source 130 by using the measuring device 100 of FIG. 2 , and FIG. 5B is a top view of the measuring device 100 of FIG. 5A ( the light is not shown) Seat 120 and light source 130). In this step, the solar cell 10 and the photo sensor 161 can be disposed in the region R1. Since the illuminance unevenness M av of the region R1 is smaller than the second predetermined ratio, the accuracy with which the power supply measuring unit 170 measures the characteristics of the solar cell 10 can be increased.

第6圖繪示第2圖之回授控制器162的功能方塊圖。回授控制器162以回授控制的方式,控制此些發光元件所發射光線L1的照度不穩定性小於一第一預設比例,以增加電源量測單元170量測太陽能電池10的特性的精確度,其中第一預設比例例如是1%或其它合適比例值。 FIG. 6 is a functional block diagram of the feedback controller 162 of FIG. 2. The feedback controller 162 controls the illumination instability of the light L1 emitted by the light-emitting elements to be less than a first predetermined ratio in a manner of feedback control to increase the accuracy of the power measurement unit 170 for measuring the characteristics of the solar battery 10. Degree, wherein the first predetermined ratio is, for example, 1% or other suitable ratio value.

本實施例中,回授控制器162例如是比例-積分-微分(proportional-integral-differential,PID)控制器,其由比例單元、積分單元和微分單元組成,其分別通過Kp、Ki及Kd三個參數設定。本實施例中,回授控制器162是5參數的PID控制器。例如,回授控制器162的參數除了上述Kp、Ki及Kd三個參數外,更包含Td及Ti參數,其中參數Td等於Kd/Kp(Kd與Kp的商或比值),而參數Ti等於Kp/Ki(Kd與Ki的商或比值)。第6圖的回授控制 器162可以輸出訊號u(t),以控制光源130的發光照度,其中輸出訊號u(t)、誤差訊號e(t)與5參數的關係如下式(2)。 In this embodiment, the feedback controller 162 is, for example, a proportional-integral-differential (PID) controller, which is composed of a proportional unit, an integral unit, and a differential unit, which respectively pass Kp, Ki, and Kd. Parameter settings. In this embodiment, the feedback controller 162 is a 5-parameter PID controller. For example, the parameters of the feedback controller 162 include Td and Ti parameters in addition to the above three parameters Kp, Ki and Kd, wherein the parameter Td is equal to Kd/Kp (the quotient or ratio of Kd and Kp), and the parameter Ti is equal to Kp. /Ki (the quotient or ratio of Kd to Ki). Feedback control of Figure 6 The 162 can output a signal u(t) to control the illuminance of the light source 130. The relationship between the output signal u(t) and the error signal e(t) and the 5 parameter is as follows (2).

由於5參數的設計,可減小光線L1的照度不穩定性,如此可彌補光感測器161的感測誤差。進一步地說,一般而言,光感測器161都有一定的感測誤差。感測誤差愈小的,電路設計愈複雜且成本愈高;反之則電路設計較簡單且成本較低。由於本發明實施例的量測裝置100透過回授控制將照度不穩定性控制在一預設比例下,因此即使採用感測誤差量大的光感測器161,仍可使所量得的太陽能電池10的特性的精確度維持在一容許誤差範圍內。 Due to the design of the 5-parameter, the illuminance instability of the light ray L1 can be reduced, so that the sensing error of the photo sensor 161 can be compensated. Further, in general, the photo sensor 161 has a certain sensing error. The smaller the sensing error, the more complicated the circuit design and the higher the cost; otherwise, the circuit design is simpler and the cost is lower. Since the measuring device 100 of the embodiment of the present invention controls the illuminance instability to a predetermined ratio through the feedback control, even if the photo sensor 161 having a large amount of sensing error is used, the measured solar energy can be obtained. The accuracy of the characteristics of the battery 10 is maintained within a tolerance range.

第7圖繪示第5A圖之光源130所發出光線的照度變化圖。曲線CI表示光線L1的照度隨時間的變化趨勢。在時間點t0時,輸入回授控制器162的初始值為r(t),使光源130發出初始照度為M0的光線L1。由於回授控制器162持續接收光感測器161的照度偵測訊號,因此可以回授控制方式,依據最新的照度偵測訊號,控制光線L1的照度往更穩定方向發展。例如,透過回授控制方式,光線L1的照度從時間點t0至時間點t1的期間係逐漸穩定。一實施例中,時間點t0至時間點t1的期間約20分鐘至30分鐘。在回授控制下,時間點t1之後的照度不穩定性Mt小於第一預設比例,如此可增加電源量測單元170量測太陽能電 池10的特性的精確度。 FIG. 7 is a diagram showing changes in illuminance of light emitted by the light source 130 of FIG. 5A. The curve CI represents the tendency of the illuminance of the ray L1 to change with time. At the time point t 0 , the initial value of the input feedback controller 162 is r(t), so that the light source 130 emits the light ray L1 whose initial illuminance is M 0 . Since the feedback controller 162 continuously receives the illumination detection signal of the photo sensor 161, the control mode can be fed back, and the illumination of the light L1 is controlled to develop in a more stable direction according to the latest illumination detection signal. For example, the illumination of the light ray L1 is gradually stabilized from the time point t 0 to the time point t 1 by the feedback control method. In one embodiment, the period from time point t 0 to time point t 1 is about 20 minutes to 30 minutes. Under the feedback control, the illuminance instability M t after the time point t 1 is smaller than the first preset ratio, so that the accuracy of the power measurement unit 170 to measure the characteristics of the solar cell 10 can be increased.

本實施例之照度不穩定性Mt的計算公式如下式(3)。式(3)中,Sd表示區域R1內一時間區間的照度標準差(Standard Deviation),而Ma表示區域R1內該時間區間的照度平均值。例如,時間點t2的照度不穩定性Mt為時間區間△t內的照度標準差Sd與照度平均值Ma的商值,其中時間區間△t例如是從時間點t2往前追溯的一段時間,其可以是十分鐘或任意時間區間。 The calculation formula of the illuminance instability M t of the present embodiment is as follows (3). In the formula (3), S d represents the standard illumination region R1 of a time interval difference (Standard Deviation), and M a represents the average value of illuminance in the time interval region R1. For example, the time point t2 illumination instability M t is the quotient of the standard illuminance and the illuminance difference between the average value S d M a in the time interval △ t, where △ t time interval, for example, farther back from the time point t2 period Time, which can be ten minutes or any time interval.

此外,由於本發明實施例之量測裝置100採用回授控制方式自動調整光源130所發出光線L1的照度,因此不需手動調整光源照度,且不需透過調整太陽能電池10與光源130之間距的方式來調整照度。 In addition, since the measuring device 100 of the embodiment of the present invention automatically adjusts the illuminance of the light L1 emitted by the light source 130 by using the feedback control mode, it is not necessary to manually adjust the illuminance of the light source, and it is not necessary to adjust the distance between the solar cell 10 and the light source 130. Way to adjust the illumination.

在步驟S140中,回授控制器162判斷照度不穩定性Mt是否小於第一預設比例,若是,進入步驟S150;若否,回到步驟S130,直到照度不穩定性Mt控制在小於第一預設比例。 In step S140, the feedback controller 162 determines whether the illuminance instability M t is less than the first preset ratio, and if so, proceeds to step S150; if not, returns to step S130 until the illuminance instability M t is controlled to be less than a preset ratio.

在步驟S150中,電源量測單元170在照度不穩定性Mt小於第一預設比例下,量測太陽能電池10的特性,如電壓與電流關係曲線、照度與短路電流關係曲線及/或溫度與填充係數關係曲線。 In step S150, the power supply measuring unit 170 measures the characteristics of the solar cell 10, such as a voltage-current relationship curve, an illuminance and a short-circuit current relationship curve, and/or temperature, when the illuminance instability Mt is less than the first predetermined ratio. Curve with the fill factor.

第8圖繪示第5A圖之太陽能電池10之電壓與電流關係的特性曲線圖。曲線C2係使用第5A圖之量測裝置100所量 測出太陽能電池10的電壓與電流的特性曲線。由於本發明實施例的量測裝置100的設計,使光線L1的照度不穩定性小於第一預設比例及/或照度不均勻性小於第二預設比例,因此在不同時間(或不同量測批次)所量測的數條曲線趨勢大致上一致或重疊,如曲線C2。相較之下,若光線L1的照度不穩定性大於第一預設比例及/或照度不均勻性變化大於第一預設比例,則不同時間所量測的數條曲線都會不一致,如一個時間點量得曲線C3,而另一時間點卻量得不同的曲線C4。 Fig. 8 is a graph showing the relationship between voltage and current of the solar cell 10 of Fig. 5A. Curve C2 is measured using the measuring device 100 of FIG. 5A A characteristic curve of the voltage and current of the solar cell 10 is measured. Due to the design of the measuring device 100 of the embodiment of the present invention, the illuminance instability of the light ray L1 is less than the first preset ratio and/or the illuminance unevenness is less than the second preset ratio, so at different times (or different measurements) The trend of several curves measured by the batch is roughly the same or overlap, as curve C2. In contrast, if the illuminance instability of the light ray L1 is greater than the first preset ratio and/or the illuminance non-uniformity change is greater than the first preset ratio, the plurality of curves measured at different times will be inconsistent, such as a time. The point is measured by the curve C3, while the other time point is measured by the different curve C4.

第9圖繪示第5A圖之太陽能電池10之照度與短路電流Isc關係的特性曲線圖。第9圖的點a、b及c係使用第5A圖之量測裝置100所量測出太陽能電池10的特性點。點a、b及c表示太陽能電池10在同一溫度下,太陽能電池10的短路電流Isc隨照度變化的趨勢。在不同照度下,各點的短路電流Isc不同。例如,以點a來說,在照度為50勒克斯(lux)的光線L1的照射下,太陽能電池10的短路電流約為0.08毫安培(mA);以點b來說,在照度為200 lux的光線L1的照射下,太陽能電池10的短路電流約為0.21mA;以點c來說,在照度為1000 lux的光線L1的照射下,太陽能電池10的短路電流約為0.83mA。透過多項式擬合曲線的數學方法,可獲得點a、b及c的線性方程式C5,此線性方程式C5可視為太陽能電池10的照度與短路電流特性曲線。 Fig. 9 is a graph showing the relationship between the illuminance of the solar cell 10 of Fig. 5A and the short-circuit current Isc. Points a, b, and c in Fig. 9 measure the characteristic points of the solar cell 10 using the measuring device 100 of Fig. 5A. Points a, b, and c indicate the tendency of the short-circuit current Isc of the solar cell 10 to vary with illumination at the same temperature of the solar cell 10. The short-circuit current Isc at each point is different under different illumination levels. For example, in the case of point a, the short-circuit current of solar cell 10 is about 0.08 milliamperes (mA) under illumination of light illuminance Llux of 50 lux; at point b, the illumination is 200 lux. Under the irradiation of the light beam L1, the short-circuit current of the solar cell 10 is about 0.21 mA; at point c, the short-circuit current of the solar cell 10 is about 0.83 mA under the irradiation of the light L1 having an illuminance of 1000 lux. By the mathematical method of fitting the curve by polynomial, the linear equation C5 of points a, b and c can be obtained, and the linear equation C5 can be regarded as the illuminance and short-circuit current characteristic curve of the solar cell 10.

在另一實施例中,第5A圖的載板150可以是溫控板,例如,載板150具有加熱器及冷卻器,其可透過加熱及/或冷 卻方式,控制太陽能電池10的溫度。由於載板150可控制太陽能電池10的溫度維持在一溫度值或變化至另一溫度值。 In another embodiment, the carrier 150 of FIG. 5A may be a temperature control panel. For example, the carrier 150 has a heater and a cooler, which are permeable to heat and/or cold. However, the temperature of the solar cell 10 is controlled. Since the carrier 150 can control the temperature of the solar cell 10 to be maintained at a temperature value or to another temperature value.

透過載板150的溫控,可獲得太陽能電池10的溫度與填充因數的特性曲線,以下以第10圖進一步說明。 A characteristic curve of the temperature and the filling factor of the solar cell 10 can be obtained by temperature control of the carrier 150, which will be further described below with reference to FIG.

第10圖繪示第5A圖之太陽能電池10之溫度與填充因數關係的特性曲線圖。第10圖的點d、e及f係使用第5A圖之量測裝置100所量測出太陽能電池10的特性點。點d、e及f表示同一種光源130且同一照度下,太陽能電池10的填充因數FF隨溫度變化的趨勢。在不同溫度下,各點的填充因數FF不同。例如,以點d來說,在太陽能電池10的溫度為攝氏15度時,太陽能電池10的填充因數約為44.5%;以點e來說,在太陽能電池10的溫度為攝氏26度下,太陽能電池10的填充因數約為45.7%;以點f來說,在太陽能電池10的溫度為攝氏35度下,太陽能電池10的填充因數約為46.2%。透過多項式擬合曲線的數學方法,可獲得點d、e及f的線性方程式C6,此線性方程式C6可視為太陽能電池10的溫度與填充因數特性曲線。 Fig. 10 is a graph showing the relationship between the temperature and the filling factor of the solar cell 10 of Fig. 5A. Points d, e, and f of Fig. 10 are used to measure the characteristic points of the solar cell 10 using the measuring device 100 of Fig. 5A. Points d, e, and f represent the same type of light source 130 and the filling factor FF of the solar cell 10 changes with temperature under the same illuminance. At different temperatures, the fill factor FF of each point is different. For example, in the case of point d, when the temperature of the solar cell 10 is 15 degrees Celsius, the filling factor of the solar cell 10 is about 44.5%; at the point e, when the temperature of the solar cell 10 is 26 degrees Celsius, the solar energy The fill factor of the battery 10 is about 45.7%; at point f, the fill factor of the solar cell 10 is about 46.2% at a temperature of the solar cell 10 of 35 degrees Celsius. A linear equation C6 of points d, e, and f can be obtained by a mathematical method of fitting a curve by a polynomial, and the linear equation C6 can be regarded as a temperature and fill factor characteristic curve of the solar cell 10.

在步驟S150的執行過程中,回授控制器162仍採用回授控制方法,持續地將照度不穩定性Mt控制在第一預設比例內,以維持所量測之太陽能電池10的特性的精確度。 During the execution of step S150, the feedback controller 162 still uses the feedback control method to continuously control the illuminance instability Mt within the first predetermined ratio to maintain the accuracy of the measured solar cell 10 characteristics. degree.

綜合上述,由於本發明實施例的量測裝置採用回授控制方法自動控制光源所發出光線的照度,因此不需手動調整光源照度,也不需藉由改變光源與太陽能電池之間距的方式來調整 照度,且可提升所獲得的太陽能電池特性的精確度。 In summary, since the measuring device of the embodiment of the present invention automatically controls the illuminance of the light emitted by the light source by using the feedback control method, it is not necessary to manually adjust the illuminance of the light source, and it is not necessary to adjust the distance between the light source and the solar battery. Illuminance, and the accuracy of the obtained solar cell characteristics can be improved.

綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10‧‧‧太陽能電池 10‧‧‧ solar cells

100‧‧‧量測裝置 100‧‧‧Measurement device

110‧‧‧容置部 110‧‧‧Receipt Department

120‧‧‧燈座 120‧‧‧ lamp holder

120b‧‧‧下表面 120b‧‧‧lower surface

130‧‧‧光源 130‧‧‧Light source

150‧‧‧載板 150‧‧‧ Carrier Board

150u‧‧‧上表面 150u‧‧‧ upper surface

160‧‧‧回授控制模組 160‧‧‧Feedback control module

161‧‧‧光感測器 161‧‧‧Light sensor

162‧‧‧回授控制器 162‧‧‧Responsible controller

163‧‧‧照度均勻性計算器 163‧‧‧ illuminance uniformity calculator

170‧‧‧電源量測單元 170‧‧‧Power Measurement Unit

Claims (16)

一種量測裝置,用以量測一太陽能電池的特性,該量測裝置包括:複數種光源,各該種光源的色光係相異,且各該種光源包括複數個對稱配置的發光元件;一回授控制模組,用以控制該些發光元件所發射之一光線的一照度及判斷該照度的不穩定性是否小於一第一預設比例;以及一電源量測單元,若該照度的不穩定性小於該第一預設比例,該電源量測單元在該照度下量測該太陽能電池的特性。 A measuring device for measuring characteristics of a solar cell, the measuring device comprising: a plurality of light sources, each of the light sources having different color light systems, and each of the light sources comprises a plurality of symmetrically arranged light emitting elements; a feedback control module for controlling an illuminance of one of the light emitted by the illuminating elements and determining whether the illuminance instability is less than a first predetermined ratio; and a power measuring unit, if the illuminance is not The stability is less than the first predetermined ratio, and the power measuring unit measures the characteristics of the solar cell under the illumination. 如申請專利範圍第1項所述之量測裝置,其中該第一預設比例係1%。 The measuring device according to claim 1, wherein the first preset ratio is 1%. 如申請專利範圍第1項所述之量測裝置,其中該回授控制模組包括:一回授控制器;以及一光感測器,用以偵測該光線的該照度。 The measuring device of claim 1, wherein the feedback control module comprises: a feedback controller; and a light sensor for detecting the illumination of the light. 如申請專利範圍第3項所述之量測裝置,其中該回授控制器係一比例-積分-微分(PID)控制器。 The measuring device of claim 3, wherein the feedback controller is a proportional-integral-derivative (PID) controller. 如申請專利範圍第4項所述之量測裝置,其中該PID控 制器的參數數量係5個。 The measuring device according to claim 4, wherein the PID control The number of parameters of the controller is five. 如申請專利範圍第1項所述之量測裝置,其中該太陽能電池位於該些光源的下方的一區域,該照度於該區域內的一不均勻性小於一第二預設比例。 The measuring device of claim 1, wherein the solar cell is located in an area below the light source, and an unevenness of the illuminance in the area is less than a second predetermined ratio. 如申請專利範圍第6項所述之量測裝置,其中該第二預設比例係1%。 The measuring device of claim 6, wherein the second predetermined ratio is 1%. 如申請專利範圍第1項所述之量測裝置,更包括:一燈座,該些光源設於該燈座上;一載板,用以承載該太陽能電池;以及一容置部,位於該燈座與該載板之間且用以容置該些光源及該太陽能電池。 The measuring device of claim 1, further comprising: a lamp holder, wherein the light sources are disposed on the lamp holder; a carrier plate for carrying the solar cell; and a receiving portion located at the The lamp holder is disposed between the lamp holder and the carrier plate for receiving the light source and the solar cell. 如申請專利範圍第8項所述之量測裝置,其中該載板係溫度控制板。 The measuring device of claim 8, wherein the carrier is a temperature control panel. 一種量測方法,用以量測一太陽能電池的特性,該量測方法包括:提供一如申請專利範圍第1項所述之量測裝置;該回授控制模組以回授控制的方式,控制該些發光元件所發 射之一光線的一照度;該回授控制模組判斷該照度的不穩定性是否小於一第一預設比例;以及若該照度的不穩定性小於該第一預設比例,該電源量測單元在該照度下量測該太陽能電池的特性。 A measuring method for measuring characteristics of a solar cell, the measuring method comprising: providing a measuring device as described in claim 1 of the patent application; the feedback control module is in a feedback control manner, Controlling the light-emitting elements Shooting an illumination of a light; the feedback control module determines whether the instability of the illumination is less than a first preset ratio; and if the instability of the illumination is less than the first preset ratio, the power measurement The unit measures the characteristics of the solar cell under the illumination. 如申請專利範圍第10項所述之量測方法,其中該第一預設比例係1%。 The measuring method according to claim 10, wherein the first preset ratio is 1%. 如申請專利範圍第10項所述之量測方法,更包括:界定該照度的不均勻性小於一第二預設比例的一區域;其中,於量測該太陽能電池的特性的步驟中,該太陽能電池係位於該區域內。 The measuring method of claim 10, further comprising: defining an area in which the unevenness of the illuminance is less than a second predetermined ratio; wherein, in the step of measuring characteristics of the solar cell, The solar cell is located in this area. 如申請專利範圍第12項所述之量測方法,其中該第二預設比例係1%。 The measuring method according to claim 12, wherein the second preset ratio is 1%. 如申請專利範圍第10項所述之量測方法,其中該回授控制模組包括:一回授控制器;以及一光感測器,用以偵測該光線的該照度。 The measurement method of claim 10, wherein the feedback control module comprises: a feedback controller; and a light sensor for detecting the illumination of the light. 如申請專利範圍第14項所述之量測方法,其中該回授控制器係一PID控制器。 The measuring method of claim 14, wherein the feedback controller is a PID controller. 如申請專利範圍第15項所述之量測方法,其中該PID控制器的參數數量係5個。 The measuring method according to claim 15, wherein the number of parameters of the PID controller is five.
TW104133486A 2015-10-13 2015-10-13 Measuring device for property of solar cell and measuring method using the same TWI556570B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW104133486A TWI556570B (en) 2015-10-13 2015-10-13 Measuring device for property of solar cell and measuring method using the same
CN201510756004.7A CN106571776B (en) 2015-10-13 2015-11-09 Measuring device for solar cell characteristics and measuring method using same
US14/965,893 US9866171B2 (en) 2015-10-13 2015-12-10 Measuring device for property of photovoltaic device and measuring method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104133486A TWI556570B (en) 2015-10-13 2015-10-13 Measuring device for property of solar cell and measuring method using the same

Publications (2)

Publication Number Publication Date
TWI556570B true TWI556570B (en) 2016-11-01
TW201714400A TW201714400A (en) 2017-04-16

Family

ID=57851473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104133486A TWI556570B (en) 2015-10-13 2015-10-13 Measuring device for property of solar cell and measuring method using the same

Country Status (2)

Country Link
CN (1) CN106571776B (en)
TW (1) TWI556570B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328041B2 (en) * 1972-08-09 1978-08-11
US7411408B2 (en) * 2005-06-17 2008-08-12 Nisshinbo Industries, Inc. Measurement method using solar simulator
CN102621073A (en) * 2012-03-02 2012-08-01 北京卓立汉光仪器有限公司 Spectral response value measurement system and method for solar cell
CN102575987B (en) * 2009-08-31 2014-07-09 弗劳恩霍弗实用研究促进协会 Method for measuring a semiconductor structure, which is a solar cell or a precursor of a solar cell
CN102830364B (en) * 2012-08-27 2015-09-30 英利能源(中国)有限公司 A kind of measuring method of generating electricity on two sides solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201402252Y (en) * 2009-04-28 2010-02-10 上海建科检验有限公司 Simulative sunlight irradiation device used for detecting curtain wall performance
CN102005149A (en) * 2010-11-03 2011-04-06 西安福安创意咨询有限责任公司 Light intensity test method of photovoltaic panel
CN102360061B (en) * 2011-07-22 2013-07-03 中国科学院宁波材料技术与工程研究所湖州新能源产业创新中心 Solar simulator
EP2824434A1 (en) * 2013-07-12 2015-01-14 Applied Materials Italia S.R.L. System and method for calibrating a light source for simulating a spectrum of solar radiation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328041B2 (en) * 1972-08-09 1978-08-11
US7411408B2 (en) * 2005-06-17 2008-08-12 Nisshinbo Industries, Inc. Measurement method using solar simulator
CN102575987B (en) * 2009-08-31 2014-07-09 弗劳恩霍弗实用研究促进协会 Method for measuring a semiconductor structure, which is a solar cell or a precursor of a solar cell
CN102621073A (en) * 2012-03-02 2012-08-01 北京卓立汉光仪器有限公司 Spectral response value measurement system and method for solar cell
CN102830364B (en) * 2012-08-27 2015-09-30 英利能源(中国)有限公司 A kind of measuring method of generating electricity on two sides solar cell

Also Published As

Publication number Publication date
CN106571776B (en) 2018-12-28
TW201714400A (en) 2017-04-16
CN106571776A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
US9345090B2 (en) Lighting system and method for controlling a light intensity and a color temperature of light in a room
US8708560B2 (en) Method and apparatus for adjusting the color properties or the photometric properties of an LED illumination device
US11723127B2 (en) Solid state lighting systems and associated methods of operation and manufacture
EP1922905B1 (en) Digitally controlled luminaire system
JP6276783B2 (en) Photodetection system and method for calibrating a photodetection device
EP1701589B1 (en) Electric circuit and method for monitoring a temperature of a light emitting diode
JP2013524523A (en) LED controller that compensates for die-to-die variation and temperature drift
US8737731B2 (en) Method and apparatus for correcting light
KR20100037209A (en) Instrument and method for measuring total luminous flux of luminous elements
JP6303057B1 (en) Light receiving device and compensation method for light receiving device
US9860957B1 (en) CCT tuning daylighting system and method based on luminosity measurements
JP2005011628A (en) Lighting device and light source adjustment method of lighting device
TWI556570B (en) Measuring device for property of solar cell and measuring method using the same
JP5775996B2 (en) Lighting apparatus, lighting control method, and lighting control program
US20110115404A1 (en) Method and device for determining calibration data for an led light source while taking into consideration the barrier layer temperature
KR101639387B1 (en) method and apparatus for compensating light
US9866171B2 (en) Measuring device for property of photovoltaic device and measuring method using the same
EP2721905B1 (en) Robust daylight integration with the aid of coded light.
KR101529833B1 (en) Method and appratus for generating reference light
US20100060198A1 (en) LED Lamp and Method for Producing a LED Lamp
Pavlov et al. Stand for Measuring Correlated Color Temperature
RU115889U1 (en) REFERENCE MONOCHROME LED
RU115890U1 (en) REFERENCE REFERENCE SOURCE BASED ON WHITE LED
WO2023203404A1 (en) Method for detecting and processing photometric parameters of lighting devices, and corresponding computer program product and controller
KR20130055899A (en) Led lighting apparatus improved rendering and that method