TWI555524B - Walking assist system of robot - Google Patents

Walking assist system of robot Download PDF

Info

Publication number
TWI555524B
TWI555524B TW103115566A TW103115566A TWI555524B TW I555524 B TWI555524 B TW I555524B TW 103115566 A TW103115566 A TW 103115566A TW 103115566 A TW103115566 A TW 103115566A TW I555524 B TWI555524 B TW I555524B
Authority
TW
Taiwan
Prior art keywords
robot
unit
arm
control unit
force
Prior art date
Application number
TW103115566A
Other languages
Chinese (zh)
Other versions
TW201540281A (en
Inventor
宋開泰
吳京叡
江信毅
林昭宇
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW103115566A priority Critical patent/TWI555524B/en
Publication of TW201540281A publication Critical patent/TW201540281A/en
Application granted granted Critical
Publication of TWI555524B publication Critical patent/TWI555524B/en

Links

Description

機器人的行動輔助系統 Robotic mobility aid system

本發明是有關於一種機器人系統,且特別是有關於一種具有至少二機械臂之機器人的行動輔助系統。 The present invention relates to a robotic system, and more particularly to a mobility aid system for a robot having at least two robotic arms.

歐洲核准專利公開號2361734提出一種輪椅用作步行輔助型機器人,其傳動部分配備一個驅動馬達和車輪上安裝的框架。支架沿著導軌可以直線向上和向下移動,結合設計為使用者的外骨骼降低身體,增強肌肉力量,或幫助行走或康復。然而,此設計只為單一行動輔助功能,卻無其他整合功能。 European Approved Patent Publication No. 2361734 proposes a wheelchair for use as a walking assist type robot, the transmission portion of which is provided with a drive motor and a frame mounted on the wheel. The stent can be moved up and down along the guide rails, combined with the user's exoskeleton to lower the body, increase muscle strength, or help walk or recover. However, this design is only a single action aid, but no other integration features.

中國專利公開號202397747提出一種協助老人與協助殘障機器人,利用所提出的三角連動輪,能夠在任何路況下行走,其功能包括來訪客人識別、識別物品抓取、輔助行走、物品搬運等等。然而,此專利並無提及如何輔助使用者,若是為機器人自主導引,就失去使用者靈活改變方向的意義。 Chinese Patent Publication No. 202397747 proposes an assisting elderly and assisting disabled robot, which can walk in any road condition by using the proposed triangular interlocking wheel, and its functions include visitor identification, item grabbing, assist walking, item handling and the like. However, this patent does not mention how to assist the user. If the robot is guided autonomously, it loses the meaning of the user's flexible direction change.

中國專利公開號202015325提出一種帶觸滑覺傳感器的多功能助老助行機器人,根據觸滑覺傳感器偵測的信號來對使用者的行為或狀態進行判斷並輔助。此專利雖可實現摔倒趨勢的及 時檢測,然而,此設計也只為單一行動輔助功能所設計,並無其他功能加入整合。 Chinese Patent Publication No. 202015325 proposes a multifunctional assisted walking robot with a touch-slip sensor that judges and assists the behavior or state of the user according to the signal detected by the touch-slip sensor. Although this patent can achieve the tendency of falling, Time detection, however, this design is only designed for a single mobile accessibility feature, and no other features are added to the integration.

在過去文獻(“Dual-arm Service Robots for Mobile Operation in Indoor Environment,”in Proceeding of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 2012, pp.1898-1903)中,Qi等人提出一種機器人,其是利用立體視覺系統以及本身雙機械手臂,以達到視覺伺服雙手抓取的任務。此外,此機器人可以自主學習未知的複雜的家庭環境,建立分層地圖,並結合動態對象追蹤策略演算法達到動態導航的功能。然而,此機器人並無結合輔助使用者行走的功能。 In the past document ("Dual-arm Service Robots for Mobile Operation in Indoor Environment," in Proceeding of the 2012 IEEE International Conference on Mechatronics and Automation, Chengdu, China, 2012, pp. 1898-1903), Qi et al. The robot, which utilizes the stereo vision system and its own dual robotic arm, achieves the task of visual servoing both hands. In addition, the robot can independently learn the unknown complex home environment, establish a hierarchical map, and combine dynamic object tracking strategy algorithms to achieve dynamic navigation. However, this robot does not have the function of assisting the user to walk.

在另一過去文獻(“Development of smart mobile walker for elderly and disabled,”in Proceeding of the 2013 IEEE The 22nd IEEE International Symposium on Robot and Human Interactive Communication Gyeongju, Korea, August 26-29, 2013, pp. 300-301)中,Yuk等人提出一種行動輔助機器人設計,使用力感測器量測使用者外力,藉此順應使用者意向前進。雖然此系統另外具有坐姿到站立的支持機制,然而,此設計也只為一行動輔助功能所設計,並無其他功能加入整合。 In another past document ("Development of smart mobile walker for elderly and disabled," in Proceeding of the 2013 IEEE The 22nd IEEE International Symposium on Robot and Human Interactive Communication Gyeongju, Korea, August 26-29, 2013, pp. 300- In 301), Yuk et al. proposed a motion-assisted robot design that uses a force sensor to measure the user's external force to follow the user's intention. Although this system additionally has a sitting-to-stand support mechanism, this design is designed for only one mobile assistant function, and no other functions are added to the integration.

本發明提供一種機器人的行動輔助系統,其中機器人具有雙機械臂用以抓取物品,且此雙機械臂還可結合成扶持之把 手,使機器人本體轉變為一台行走輔具而提供使用者行走上的輔助。如此一來,同一個機器人上可兼具抓取與行走輔助的功能。 The invention provides a motion assisting system for a robot, wherein the robot has a double mechanical arm for grasping articles, and the double mechanical arms can also be combined into a support The hand transforms the robot body into a walking aid to provide assistance for the user to walk. In this way, the same robot can have both the functions of grabbing and walking assistance.

本發明提出一種機器人的行動輔助系統,其中機器人具有第一機械臂以及第二機械臂。此行動輔助系統包括接收單元、抓取模式模組、行走輔助模式模組以及控制單元。接收單元用以接收命令。抓取模式模組用以執行抓取模式。行走輔助模式模組用以執行行走輔助模式。控制單元耦接於接收單元,並根據命令控制抓取模式模組執行抓取模式或行走輔助模式模組執行行走輔助模式。其中,當抓取模式模組執行抓取模式時,抓取模式模組將第一機械臂與第二機械臂之間的雙臂環扣機構,進行解除環扣。當行走輔助模式模組執行行走輔助模式時,行走輔助模式模組將第一機械臂與第二機械臂之間的雙臂環扣機構,進行環扣鎖固。 The invention provides a motion assistance system for a robot, wherein the robot has a first robot arm and a second robot arm. The mobility assistance system includes a receiving unit, a grab mode module, a walking assist mode module, and a control unit. The receiving unit is configured to receive a command. The capture mode module is used to execute the capture mode. The walking assist mode module is used to execute the walking assist mode. The control unit is coupled to the receiving unit, and controls the grab mode module to execute the grab mode or the travel assist mode module to execute the walking assist mode according to the command. Wherein, when the capture mode module executes the capture mode, the capture mode module releases the double-loop buckle mechanism between the first robot arm and the second robot arm to release the buckle. When the walking assist mode module executes the walking assist mode, the walking assist mode module locks the two-armed buckle mechanism between the first robot arm and the second robot arm.

基於上述,在本發明的機器人的行動輔助系統中,行動輔助系統可配合使用者的需求轉換操作模式,執行抓取模式或行走輔助模式。當行動輔助系統執行抓取模式時,機器人可透過第一機械臂及第二機械臂來進行取物遞物的任務。另一方面,當使用者需要行走輔助時,行動輔助系統會轉換成執行行走輔助模式,此時第一機械臂及第二機械臂上的環扣機構將會環扣以提供使用者攙扶。如此一來,本發明可實現在同一個機器人上同時具有協助取物遞物及行走輔助的功能。 Based on the above, in the action assisting system of the robot of the present invention, the action assisting system can switch the operation mode in accordance with the user's demand, and execute the grasping mode or the walking assist mode. When the motion assisting system performs the grab mode, the robot can perform the task of picking objects through the first robot arm and the second robot arm. On the other hand, when the user needs the walking assistance, the mobility assistance system will switch to the execution of the walking assistance mode, at which time the buckle mechanism on the first robot arm and the second robot arm will buckle to provide user assistance. In this way, the invention can realize the functions of assisting the object delivery and the walking assistance on the same robot at the same time.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉 實施例,並配合所附圖式作詳細說明如下。 In order to make the above features and advantages of the present invention more apparent, the following is a special The embodiments are described in detail below in conjunction with the drawings.

10‧‧‧機器人 10‧‧‧ Robot

102‧‧‧左右機械臂 102‧‧‧ about the arm

10a‧‧‧局部 10a‧‧‧Local

12、14、16、18‧‧‧區塊 Blocks 12, 14, 16, 18‧‧

12a、12b‧‧‧路徑 12a, 12b‧‧ Path

20‧‧‧雙臂環扣機構 20‧‧ ‧ arms buckle mechanism

220‧‧‧右機械臂 220‧‧‧Right arm

222‧‧‧右機械臂環扣機構 222‧‧‧Right arm ring mechanism

224a‧‧‧小圓柱機構 224a‧‧‧Small cylindrical mechanism

224b‧‧‧大圓柱機構 224b‧‧‧ Large cylindrical mechanism

240‧‧‧左機械臂 240‧‧‧ left arm

242‧‧‧左機械臂環扣機構 242‧‧‧ Left mechanical arm buckle mechanism

244a‧‧‧小凹槽 244a‧‧‧ small groove

244b‧‧‧大凹槽 244b‧‧‧ large groove

250‧‧‧力矩感測單元 250‧‧‧ torque sensing unit

400‧‧‧行動輔助系統 400‧‧‧Aids assisted system

405‧‧‧影像擷取單元 405‧‧‧Image capture unit

410‧‧‧接收單元 410‧‧‧ Receiving unit

420‧‧‧控制單元 420‧‧‧Control unit

430‧‧‧抓取模式模組 430‧‧‧Grab mode module

440‧‧‧行走輔助模式模組 440‧‧‧Travel assist mode module

450‧‧‧位移控制單元 450‧‧‧Displacement Control Unit

460‧‧‧里程計 460‧‧‧ odometer

503‧‧‧特徵點資料庫 503‧‧‧Feature point database

504‧‧‧定位與地圖建立單元 504‧‧‧Location and map building unit

505‧‧‧擴展卡爾曼濾波器 505‧‧‧Extended Kalman Filter

506‧‧‧路徑追蹤控制單元 506‧‧‧Path Tracking Control Unit

508‧‧‧物體偵測單元 508‧‧‧ object detection unit

510‧‧‧抓取路徑規畫單元 510‧‧‧Grab path planning unit

602‧‧‧力感測單元 602‧‧‧ force sensing unit

603‧‧‧力前處理單元 603‧‧‧Pre-treatment unit

6032‧‧‧低通濾波單元 6032‧‧‧Low Pass Filter Unit

6034‧‧‧力補償單元 6034‧‧‧ force compensation unit

6036‧‧‧座標轉換單元 6036‧‧‧Coordinate conversion unit

604‧‧‧順應性運動控制單元 604‧‧‧ compliant motion control unit

606‧‧‧光測距單元 606‧‧‧Light ranging unit

608‧‧‧障礙物閃避控制單元 608‧‧‧ obstacle dodge control unit

610‧‧‧速度融合控制單元 610‧‧‧Speed Fusion Control Unit

M1~M5‧‧‧輔助模式 M1~M5‧‧‧Assist mode

O‧‧‧中心 O‧‧ Center

P‧‧‧使用者 P‧‧‧ users

R1~R9‧‧‧區域 R1~R9‧‧‧ area

S1‧‧‧影像資訊 S1‧‧‧Image Information

S2‧‧‧深度資訊 S2‧‧‧In-depth information

S302~S310‧‧‧雙臂環扣機構的環扣鎖固流程各步驟 S302~S310‧‧‧ Each step of the buckle locking process of the double-arm buckle mechanism

S312~S322‧‧‧雙臂環扣機構的解除環扣流程各步驟 S312~S322‧‧‧Steps of lifting the buckle mechanism of the double-arm buckle mechanism

S5042、S5044、S5046、S512、S514、S516、S518、S520、S522‧‧‧步驟 S5042, S5044, S5046, S512, S514, S516, S518, S520, S522‧‧

S702~S716‧‧‧本實驗例行動輔助系統所執行的各步驟 S702~S716‧‧‧Steps performed by the mobile assistant system of this experimental example

圖1A是依照本發明的一實施例的機器人的行動輔助系統示意圖。 1A is a schematic diagram of a mobile assistance system of a robot in accordance with an embodiment of the present invention.

圖1B與圖1C為說明改變機器人形體上的造形的示意圖。 1B and 1C are schematic views illustrating changes in the shape of the robot body.

圖2A是圖1B與圖1C的機器人的局部放大圖。 2A is a partial enlarged view of the robot of FIGS. 1B and 1C.

圖2B至圖2D依序為環扣鎖固的示意圖。 2B to 2D are schematic views of the buckle fastening in sequence.

圖3A是依照本發明的一實施例機器人解除/環扣雙臂環扣機構的示意圖。 3A is a schematic view of a robot release/looping double-arm buckle mechanism in accordance with an embodiment of the present invention.

圖3B至圖3C是依照本發明的一實施例的雙臂環扣機構的動作流程圖。 3B to 3C are flowcharts showing the action of the double arm buckle mechanism according to an embodiment of the present invention.

圖4是依照本發明的一實施例的一種行動輔助系統方塊圖。 4 is a block diagram of a mobile assistance system in accordance with an embodiment of the present invention.

圖5A是依照本發明的一實施例的抓取模式模組的方塊圖。 5A is a block diagram of a capture mode module in accordance with an embodiment of the present invention.

圖5B為說明本發明一實施例的全向式移動同時定位與地圖建立的示意圖。 FIG. 5B is a schematic diagram illustrating omnidirectional mobile simultaneous positioning and map establishment according to an embodiment of the present invention. FIG.

圖5C為說明本發明一實施例的視覺伺服抓取的示意圖。 Figure 5C is a schematic diagram showing visual servo capture in accordance with an embodiment of the present invention.

圖6A是依照本發明的一實施例的行走輔助模式模組的方塊圖。 6A is a block diagram of a walking assist mode module in accordance with an embodiment of the present invention.

圖6B是依照本發明的一實施例的行走輔助模式模組運作的示意圖。 6B is a schematic diagram of the operation of the walking assist mode module in accordance with an embodiment of the present invention.

圖6C為說明本發明的一實施例的行走意圖估測方法的示意圖。 Fig. 6C is a schematic view showing a walking intention estimating method according to an embodiment of the present invention.

圖6D依照本發明的一實施例的光感測範圍的示意圖。 Figure 6D is a schematic illustration of a light sensing range in accordance with an embodiment of the present invention.

圖7為本實驗例行動輔助系統所執行的各步驟流程圖。 Figure 7 is a flow chart showing the steps performed by the action assistance system of the experimental example.

圖8(a)至圖11(i)為本實驗例行動輔助系統所執行的情境影像。 8(a) to 11(i) are scene images executed by the motion assistance system of the experimental example.

圖12為本實驗例機器人的行走路徑示意圖。 Fig. 12 is a schematic view showing the walking path of the robot of the experimental example.

本實施例的機器人具有第一機械臂以及第二機械臂。為了方便說明,本實施例的機器人具有右機械臂以及左機械臂。其中,右機械臂以及左機械臂可以環扣鎖固以及解除環扣,藉以執行機器人不同的運作。此外,本實施例中右機械臂以及左機械臂中的設計為舉例說明,在其他實施例中,右機械臂以及左機械臂的設計也可交換。為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The robot of this embodiment has a first robot arm and a second robot arm. For convenience of explanation, the robot of the embodiment has a right arm and a left arm. Among them, the right arm and the left arm can be buckled and released, so as to perform different operations of the robot. Furthermore, the design of the right and left robots in this embodiment is illustrated as an example, and in other embodiments, the design of the right and left arms may also be interchanged. The above described features and advantages of the invention will be apparent from the following description.

圖1A是依照本發明的一實施例的機器人的行動輔助系統示意圖。請參照圖1A,本實施例的機器人的行動輔助系統具有兩種操作模式,分別為抓取模式及行走輔助模式。其中,機器人的,右機械臂以及左機械臂上分別具有雙臂環扣機構,而機器人可因應使用者的需求(如區塊12),藉由左右機械臂的變形而改變機器人形體上的造形(如區塊14),來轉換機器人的操作模式,例 如抓取模式(如區塊16)或行走輔助模式(如區塊18),進而達成個別任務。 1A is a schematic diagram of a mobile assistance system of a robot in accordance with an embodiment of the present invention. Referring to FIG. 1A, the mobile assistant system of the present embodiment has two operation modes, namely a grab mode and a walking assist mode. Wherein, the robot, the right arm and the left arm respectively have a double-arm buckle mechanism, and the robot can change the shape of the robot body by deformation of the left and right robot arms according to the needs of the user (such as the block 12). (eg block 14), to convert the operating mode of the robot, for example For example, a grab mode (such as block 16) or a travel assist mode (such as block 18), to achieve individual tasks.

舉例來說,圖1B與圖1C為說明改變機器人形體上的造形的示意圖。當使用者命令機器人取物品或遞物品時,此時機器人會轉換成抓取模式來達成,其中機器人10的左右機械臂102為分離,如圖1B所示。當使用者需要機器人行走協助時,機器人則變換成行走輔助模式來輔助使用者行走,其中機器人10的左右機械臂102環扣,以供使用者P攙扶,如圖1C所示。此外,機器人10的左右機械臂102分別包括上手臂以及下手臂,且左右機械臂102的自由度分別設計為6自由度,因此,左右機械臂102分別可靈活地轉動及抓取物品。此外,機器人10的底座配置有四輪全向式移動(steer-and-drive)平台,其可提供機器人10全向式旋轉及行走。 For example, FIG. 1B and FIG. 1C are schematic diagrams illustrating changes in the shape of the robot body. When the user instructs the robot to take the item or deliver the item, the robot will now switch to the grab mode to achieve, wherein the left and right robot arms 102 of the robot 10 are separated, as shown in FIG. 1B. When the user needs the robot to assist, the robot changes to the walking assist mode to assist the user to walk. The left and right robot arms 102 of the robot 10 are buckled for the user to assist, as shown in FIG. 1C. In addition, the left and right robot arms 102 of the robot 10 respectively include an upper arm and a lower arm, and the degrees of freedom of the left and right robot arms 102 are respectively designed to be 6 degrees of freedom, so that the left and right robot arms 102 can flexibly rotate and grasp articles, respectively. In addition, the base of the robot 10 is provided with a four-wheel steer-and-drive platform that provides omnidirectional rotation and walking of the robot 10.

底下將先介紹機器人的雙臂環扣機構,再詳細說明機器人的行動輔助系統如何搭配雙臂環扣機構來轉換機器人的操作模式。 The robot's dual-arm buckle mechanism will be introduced below, and then the robot's mobility aid system will be described in detail how to adapt the robot's operation mode with the double-arm buckle mechanism.

圖2A是圖1B與圖1C的機器人10的局部10a之放大圖。請參照圖2A,機器人的雙臂環扣機構20具有右機械臂環扣機構222(斜線繪示)以及左機械臂環扣機構242(斜線繪示),其中右機械臂環扣機構222配置於右機械臂220上,左機械臂環扣機構242配置於左機械臂240上。 FIG. 2A is an enlarged view of a portion 10a of the robot 10 of FIGS. 1B and 1C. Referring to FIG. 2A, the two-arm buckle mechanism 20 of the robot has a right arm ring mechanism 222 (slanted line) and a left arm ring mechanism 242 (slanted line), wherein the right arm ring mechanism 222 is disposed on On the right arm 220, the left arm ring mechanism 242 is disposed on the left arm 240.

在行走輔助模式時,機器人之雙臂環扣機構20會變形為 一個類似於握把的構型,以提供使用者行走時之扶持。進一步而言,此時的右機械臂環扣機構222會做為扣環,其形狀是以兩個圓柱機構,即小圓柱機構224a與大圓柱機構224b所組成。半徑較小的小圓柱機構224a的功用是在與左機械臂環扣機構242結合時,使右機械臂220與左機械臂240在X軸方向(如圖2B所示)做固定,使左右機械臂(即右機械臂220與左機械臂240)不會前後移動,半徑較大的大圓柱機構224b則是對於Z軸方向(如圖2B所示)做固定,使左右機械臂不會造成上下移動。 In the walking assist mode, the robot's arm buckle mechanism 20 is deformed into A configuration similar to the grip to provide support for the user while walking. Further, the right arm ring mechanism 222 at this time is used as a buckle, and its shape is composed of two cylindrical mechanisms, that is, a small cylindrical mechanism 224a and a large cylindrical mechanism 224b. The function of the small cylindrical mechanism 224a having a small radius is to fix the right arm 220 and the left arm 240 in the X-axis direction (as shown in FIG. 2B) when combined with the left arm ring mechanism 242, so that the left and right machines are The arm (ie, the right arm 220 and the left arm 240) does not move back and forth, and the large cylindrical mechanism 224b having a larger radius is fixed for the Z-axis direction (as shown in FIG. 2B) so that the left and right arms do not cause up and down. mobile.

另一方面,左機械臂環扣機構242配置有扣環的凹槽244,主要設計成兩段半圓形凹槽,上方較大半徑的大凹槽244b為緩衝用,讓右機械臂環扣機構222上的小圓柱機構224a以較平滑的方式套入下方較小半徑的小凹槽244a,使得左右機械臂在X軸方向被鎖定。值得一提的是,小凹槽244a中還設計有一個半徑與右機械臂環扣機構222上的大圓柱機構224b半徑相同的圓形內部凹槽(未繪示),也就是此內部凹槽可符合大圓柱機構224b的大小。而此設計主要用意是使得左右機械臂利用一個平行於左右機械臂的下手臂的位移,能夠將右機械臂環扣機構222上的大圓柱機構224b與此圓形內部凹槽做固定。此時,由於小凹槽244a之半徑小於右機械臂環扣機構222的大圓柱機構224b之半徑,所以使得左右機械臂在Z軸方向能夠固定,以完成兩段式鎖定的概念,使左右機械臂成為一個穩固的輔助握把。圖2B至圖2D依序為上述環扣鎖固的示意圖,用以表示左右機械臂進行雙臂環扣機 構的鎖固,而圖2D至圖2B分別為解除環扣的示意圖,用以表示左右機械臂恢復到雙臂獨立運作的狀態。 On the other hand, the left mechanical arm buckle mechanism 242 is provided with a groove 244 of the buckle, which is mainly designed as two semi-circular grooves, and the large groove 244b with a larger radius above is used for buffering, so that the right mechanical arm buckle The small cylindrical mechanism 224a on the mechanism 222 is nested in a relatively smooth manner into the small groove 244a of the lower radius, so that the left and right robot arms are locked in the X-axis direction. It is worth mentioning that the small groove 244a is also designed with a circular inner groove (not shown) having the same radius as the large cylindrical mechanism 224b on the right arm ring mechanism 222, that is, the inner groove. It can conform to the size of the large cylindrical mechanism 224b. The main purpose of this design is to enable the left and right robot arms to fix the large cylindrical mechanism 224b on the right mechanical arm buckle mechanism 222 with the circular inner groove by using a displacement of the lower arm parallel to the left and right mechanical arms. At this time, since the radius of the small groove 244a is smaller than the radius of the large cylindrical mechanism 224b of the right arm ring mechanism 222, the left and right arms can be fixed in the Z-axis direction to complete the concept of two-stage locking, so that the left and right machinery The arm becomes a solid auxiliary grip. 2B to 2D are a schematic view of the above-mentioned ring buckle locking, which is used to indicate that the left and right mechanical arms perform a double-arm ring fastening machine. The structure is locked, and FIG. 2D to FIG. 2B are respectively schematic diagrams of releasing the buckle to indicate that the left and right mechanical arms are restored to the state in which the arms are independently operated.

圖3A是依照本發明的一實施例機器人解除/環扣雙臂環扣機構的示意圖。圖3B和圖3C是依照本發明的一實施例的雙臂環扣機構的動作流程圖,其中步驟S302~S310表示雙臂環扣機構的環扣鎖固流程,步驟S312~S320表示雙臂環扣機構的解除環扣流程。 3A is a schematic view of a robot release/looping double-arm buckle mechanism in accordance with an embodiment of the present invention. FIG. 3B and FIG. 3C are flowcharts showing the operation of the double-armed buckle mechanism according to an embodiment of the present invention, wherein steps S302-S310 represent a loop fastening process of the double-arm buckle mechanism, and steps S312-S320 represent a double-armed ring. The buckle mechanism of the buckle mechanism.

請參照圖2A、圖3A與圖3B,步驟S302中,右機械臂220與左機械臂240分別為分離的狀態。步驟S304中,行動輔助系統會根據一個預設的環扣緩衝點來規劃右機械臂220與左機械臂240的移動路徑。詳細而言,本實施例是以右機械臂220基準,其中預設的緩衝點是設置在右機械臂環扣機構222之圓柱機構的下緣。在此,由於本實施例的力與力矩感測單元250(於後詳述)是設計在右機械臂220上方(但不限於此),因此考慮到簡化計算的施力,故將緩衝點設定這個位置,且將右機械臂220以上下手臂成90度的正L形方式設置。而左機械臂240平行於右機械臂220,使得左機械臂環扣機構242的大凹槽244b與右臂的小圓柱機構224a對準,運動方式則以設卡式座標點為路徑點的方式使機器人左右機械臂之逆向運動學進行移動,藉以在左右機械臂不互相碰觸的情況下到達環扣緩衝點。 Referring to FIG. 2A, FIG. 3A and FIG. 3B, in step S302, the right robot arm 220 and the left robot arm 240 are separated from each other. In step S304, the mobility assistance system plans the movement path of the right robot arm 220 and the left robot arm 240 according to a preset buckle buffer point. In detail, the present embodiment is based on the right robot arm 220, wherein the preset buffer point is the lower edge of the cylindrical mechanism disposed at the right arm ring mechanism 222. Here, since the force and torque sensing unit 250 (described later in detail) of the present embodiment is designed above (but not limited to) the right robot arm 220, the buffer point is set in consideration of simplifying the calculation of the biasing force. This position is set in a positive L-shaped manner in which the right arm 220 is 90 degrees above and below the arm. The left arm 240 is parallel to the right arm 220, so that the large groove 244b of the left arm ring mechanism 242 is aligned with the small cylindrical mechanism 224a of the right arm, and the movement mode is a way of setting the card coordinate point as a path point. The reverse kinematics of the left and right robot arms are moved to reach the buckle buffer point when the left and right robot arms do not touch each other.

接著,如步驟S306所示,行動輔助系統會進行環扣鎖定之調整。詳細而言,行動輔助系統根據右機械臂環扣機構222及 左機械臂環扣機構242的相互位置定義出環扣鎖定點的相對位置,其中行動輔助系統會利用各自由度角度來控制進行微調的動作。此動作可分成兩個步驟,首先,右機械臂環扣機構222相對於左機械臂環扣機構242是在正上方的位置,因此行動輔助系統會先調整左機械臂240,使得左右機械臂在X軸方向上固定(如步驟S307),再微調右機械臂環扣機構222及左機械臂環扣機構242使其左右機械臂在Z軸方向上得以固定(如步驟S308)。當然,本實施例並不限制步驟S307與步驟S308的先後順序。此時,行動輔助系統即完成左右機械臂的環扣鎖固(如步驟S310) Then, as shown in step S306, the mobility assistance system performs the adjustment of the buckle lock. In detail, the mobility assistance system is based on the right mechanical arm buckle mechanism 222 and The mutual position of the left mechanical arm buckle mechanism 242 defines the relative position of the buckle locking points, wherein the mobility assistance system utilizes the respective degrees of angle to control the fine-tuning action. This action can be divided into two steps. First, the right mechanical arm buckle mechanism 222 is directly above the left mechanical arm buckle mechanism 242, so the mobility assistance system first adjusts the left robot arm 240 so that the left and right robot arms are The X-axis direction is fixed (step S307), and the right arm ring mechanism 222 and the left arm ring mechanism 242 are fine-tuned so that the left and right arms are fixed in the Z-axis direction (step S308). Of course, this embodiment does not limit the sequence of steps S307 and S308. At this time, the action assisting system completes the buckle locking of the left and right robot arms (step S310)

至於的解除環扣流程,請參照圖3A與圖3C,行動輔助系統解除環扣的方式與行動輔助系統鎖固環扣的流程相反,也就是說,首先,左右機械臂為環扣鎖固狀態(步驟S312)。接著,行動輔助系統會進行環扣解除鎖固之調整(步驟S314),其中包括將左右機械臂在Z軸方向上解除鎖定(步驟S315)以及左右機械臂在X軸方向上解除鎖定(步驟S316)。類似地,本實施例並不限制步驟S315與步驟S316的先後順序。之後,行動輔助系統會規劃路以將左右機械臂分開(步驟S318),以使左右機械臂從環扣鎖固狀態回到解除環扣狀態,也就是左機械臂與右機械臂回到分離的狀態(步驟S320)。 As for the process of releasing the buckle, please refer to FIG. 3A and FIG. 3C. The manner in which the motion assisting system releases the buckle is opposite to the flow of the locking system of the motion assisting system, that is, first, the left and right arms are locked by the buckle. (Step S312). Next, the mobility assistance system performs adjustment of the buckle release lock (step S314), including unlocking the left and right robot arms in the Z-axis direction (step S315) and unlocking the left and right robot arms in the X-axis direction (step S316). ). Similarly, the present embodiment does not limit the order of steps S315 and S316. After that, the mobility assistance system will plan the road to separate the left and right robot arms (step S318), so that the left and right robot arms return from the buckle lock state to the release buckle state, that is, the left and right armes are separated back. Status (step S320).

底下將詳細說明機器人的行動輔助系統如何搭配雙臂環扣機構來轉換機器人的操作模式。 The robot's mobility aid system will be described in detail below to match the armrest mechanism to convert the robot's operating mode.

圖4是依照本發明的一實施例的一種行動輔助系統方塊 圖。請參照圖4,行動輔助系統400包括接收單元410、控制單元420、抓取模式模組430及行走輔助模式模組440,這些單元及模組的功能詳細說明如下。 4 is a mobile assisted system block in accordance with an embodiment of the present invention. Figure. Referring to FIG. 4, the mobile assistant system 400 includes a receiving unit 410, a control unit 420, a grab mode module 430, and a walking assist mode module 440. The functions of these units and modules are described in detail below.

接收單元410可接收使用者下達的命令,使控制單元420執行抓取模式模組430或行走輔助模式模組440。在本實施例中,使用者所下達的命令例如是令機器人執行抓取模式的命令,或者令機器人執行行走輔助模式的命令。此命令可以多種形式呈現,例如,使用者可透過語音方式呼叫機器人抓取物品或提供輔助功能,而機器人可透過語音辨識模組將使用者的語音傳給接收單元410,以使控制單元420執行對應的操作。或者,使用者也可透過電子裝置(例如平板電腦、手機、電腦等)來發送訊號給接收單元410,進而使控制單元420執行對應的操作。 The receiving unit 410 can receive a command issued by the user, and cause the control unit 420 to execute the grab mode module 430 or the walking assist mode module 440. In the present embodiment, the command issued by the user is, for example, a command for causing the robot to execute the grab mode, or a command for the robot to execute the walking assist mode. The command can be presented in various forms. For example, the user can call the robot to capture the item or provide an auxiliary function by voice, and the robot can transmit the voice of the user to the receiving unit 410 through the voice recognition module, so that the control unit 420 performs Corresponding operation. Alternatively, the user can send a signal to the receiving unit 410 through an electronic device (for example, a tablet computer, a mobile phone, a computer, etc.), thereby causing the control unit 420 to perform a corresponding operation.

控制單元420耦接於接收單元410。控制單元420可為硬體及軟體所實現的功能模組。所述硬體可包括中央處理器、晶片組、微處理器等具有運算功能的硬體設備或上述硬體設備的組合,而軟體則可以是作業系統、驅動程式等等。在此,控制單元420可接收來接收單元410所接收的命令,以控制抓取模式模組430或行走輔助模式模組440執行對應的運作。也就是說,當接收單元410接收使用者所下達的執行抓取模式的命令時,控制單元420可根據此命令抓取模式模組430開始執行;另一方面,當接收單元410接收使用者所下達的執行行走輔助模式的命令,控制單元420可根據此命令行走輔助模式模組440開始執行。 The control unit 420 is coupled to the receiving unit 410. The control unit 420 can be a functional module implemented by hardware and software. The hardware may include a hardware device having a computing function such as a central processing unit, a chipset, a microprocessor, or a combination of the foregoing hardware devices, and the software may be an operating system, a driver, or the like. Here, the control unit 420 can receive the command received by the receiving unit 410 to control the capture mode module 430 or the walking assistance mode module 440 to perform a corresponding operation. That is, when the receiving unit 410 receives the command issued by the user to execute the capture mode, the control unit 420 can start executing according to the command capture mode module 430; on the other hand, when the receiving unit 410 receives the user The command to execute the walking assist mode is issued, and the control unit 420 can start executing the walking assist mode module 440 according to the command.

舉例來說,當使用者下達的訊號為執行抓取模式的命令時,其中此命令可包括物體及物體之位置等資訊,因此抓取模式模組430會開始執行,以讓機器人根據此命令行走到目標物體之位置,以抓取目標物體。另一方面,當使用者下達的訊號為執行行走輔助模式的命令時,行走輔助模式模組440開始執行,以讓機器人根據此命令,將機器人的雙臂環扣來提供使用者攙扶的功能,且機器人還可同時根據使用者行走的速度和週遭環境調整機器人的移動速度,藉以輔助使用者行走。 For example, when the signal issued by the user is a command to execute the capture mode, wherein the command may include information such as the position of the object and the object, the capture mode module 430 starts to execute, so that the robot can walk according to the command. Go to the position of the target object to grab the target object. On the other hand, when the signal issued by the user is a command to execute the walking assist mode, the walking assist mode module 440 starts to execute, so that the robot buckles the arms of the robot according to the command to provide the user's support function. Moreover, the robot can simultaneously adjust the moving speed of the robot according to the speed at which the user walks and the surrounding environment, thereby assisting the user to walk.

底下將搭配圖5A至圖6B來分別詳細說明抓取模式模組430與行走輔助模式模組440的運作。 The operation of the grab mode module 430 and the walking assist mode module 440 will be described in detail below with reference to FIGS. 5A-6B.

當使用者下達的命令為執行抓取模式的命令時,抓取模式模組430會開始執行,且此時機器人的左右機械臂會切換成解除環扣狀態。 When the command issued by the user is a command to execute the capture mode, the capture mode module 430 starts to execute, and at this time, the left and right robot arms of the robot are switched to release the buckle state.

圖5A是依照本發明的一實施例的抓取模式模組430的方塊圖。請先參照圖5A,抓取模式模組430包括定位與地圖建立單元504、路徑追蹤控制單元506、物體偵測單元508及抓取路徑規畫單元510。此外,抓取模式模組430還可連接於影像擷取單元405、位移控制單元450以及里程計460。為了方便說明,抓取模式模組430的運作大致可分為兩大部分,分別為全向式移動同時定位與地圖建立以及視覺抓取,但本實施例並不限制於此兩大部分。在本實施例中,抓取模式模組430會根據影像擷取單元405、定位與地圖建立單元504、路徑追蹤控制單元506、物體偵測單元 508及抓取路徑規畫單元510、位移控制單元450以及里程計460,建立機器人所在的地圖資訊以及機器人在此地圖資訊中的位置,接著移動到目標物體上,並偵測目標物體的角度,以決定出抓取目標物體的抓取路徑,最後令機器人的左右機械臂執行抓取動作,詳細說明如下。 FIG. 5A is a block diagram of a capture mode module 430 in accordance with an embodiment of the present invention. Referring to FIG. 5A first, the capture mode module 430 includes a positioning and map establishing unit 504, a path tracking control unit 506, an object detecting unit 508, and a grab path planning unit 510. In addition, the capture mode module 430 can also be coupled to the image capture unit 405, the displacement control unit 450, and the odometer 460. For convenience of description, the operation of the capture mode module 430 can be roughly divided into two parts, namely, omnidirectional movement simultaneous positioning and map establishment and visual capture, but the embodiment is not limited to these two parts. In this embodiment, the capture mode module 430 is based on the image capturing unit 405, the positioning and map establishing unit 504, the path tracking control unit 506, and the object detecting unit. 508 and the grab path planning unit 510, the displacement control unit 450, and the odometer 460, establish map information of the robot and the position of the robot in the map information, then move to the target object, and detect the angle of the target object. In order to determine the grabbing path of the target object, and finally the left and right robot arms of the robot perform the grabbing action, as described in detail below.

全向式移動同時定位與地圖建立的運作:圖5B為說明本發明一實施例的全向式移動同時定位與地圖建立的示意圖。請參照圖5A與圖5B,影像擷取單元405用以擷取影像資訊S1以及深度資訊S2,其中影像擷取單元405例如是Kinect RGB-D攝影裝置或其他具有影像擷取功能的電子裝置,且例如是設置在機器人的頭部。接著,定位與地圖建立單元504會接收影像擷取單元405所擷取的影像資訊S1和深度資訊S2,據以根據影像資訊S1和深度資訊S2來達成全向式移動同時定位與地圖建立(Simultaneous Localization and Mapping,SLAM)之功能。詳細而言,定位與地圖建立單元504可採用加速穩健特徵(Speeded Up Robust Features,SURF)演算法,從影像資訊S1以及深度資訊S2的RGB-D資訊中擷取環境之多個特徵點(步驟S5042),並根據特徵點資料庫503內的資料來對這些特徵點進行比對(步驟S5044),以計算三維特徵位置,以及透過座標系的轉換使特徵點與機器人狀態結合,進而估測機器人的姿態(步驟S5046)。由於機器人之運動模型和視覺系統是非線性的,因此定位與地圖建立單元504還會利用擴展卡爾曼濾波器(Extended Kalman Filter,EKF)505結合影像資訊和預估系統的狀態。更進一步而言,擴展卡爾曼濾波器505會用前一時刻根據里程計460所估測得到的機器人之狀態向量與特徵點狀態向量以及觀測而得的特徵點狀態向量作為輸入,修正機器人狀態向量並更新特徵點資料庫503,同時輸出機器人姿態到路徑追蹤控制單元506。之後,路徑追蹤控制單元506會根據機器人姿態輸出運動命令於位移控制單元450,而位移控制單元450將會根據此運動命令控制機器人之移動。 The operation of omnidirectional mobile simultaneous positioning and map establishment: FIG. 5B is a schematic diagram illustrating omnidirectional mobile simultaneous positioning and map establishment according to an embodiment of the present invention. 5A and 5B, the image capturing unit 405 is configured to capture the image information S1 and the depth information S2, wherein the image capturing unit 405 is, for example, a Kinect RGB-D camera or other electronic device having an image capturing function. And for example, it is placed at the head of the robot. Then, the positioning and map establishing unit 504 receives the image information S1 and the depth information S2 captured by the image capturing unit 405, so as to achieve omnidirectional movement simultaneous positioning and map establishment according to the image information S1 and the depth information S2 (Simultaneous) Localization and Mapping, SLAM). In detail, the positioning and map establishing unit 504 can use the Speeded Up Robust Features (SURF) algorithm to extract multiple feature points of the environment from the RGB-D information of the image information S1 and the depth information S2 (steps) S5042), and comparing the feature points according to the data in the feature point database 503 (step S5044), to calculate the three-dimensional feature position, and transforming the feature point with the robot state through the conversion of the coordinate system, thereby estimating the robot The posture (step S5046). Since the motion model and the vision system of the robot are nonlinear, the positioning and map establishing unit 504 also utilizes an extended Kalman filter (Extended Kalman Filter, EKF) 505 combines image information and predicts the status of the system. Further, the extended Kalman filter 505 corrects the robot state vector by using the state vector and the feature point state vector estimated by the odometer 460 and the observed feature point state vector as inputs at the previous moment. The feature point database 503 is updated, and the robot gesture is output to the path tracking control unit 506. Thereafter, the path tracking control unit 506 outputs a motion command to the displacement control unit 450 according to the robot attitude, and the displacement control unit 450 will control the movement of the robot according to the motion command.

視覺抓取的運作:圖5C為說明本發明一實施例的視覺伺服抓取的示意圖。請參照圖5A與圖5C,物體偵測單元508會以影像擷取單元405所擷取到的影像資訊S1做為輸入,對其環境的影像進行切割,且將影像資訊的影像畫面切割成XY平面與YZ平面(步驟S512)。此切割後的XY平面與YZ平面不但能夠描述環境中的物體,也可由影像擷取單元405所得影像來找出整張圖中的特徵點並進行比對,縮小成比對切割後XY平面與YZ平面內的特徵點因此更可加速比對目標物體的時間。此外,物體偵測單元508還可根據切割後XY平面與YZ平面內的特徵點,定義目標物體所處位置周圍的安全區域(步驟S514),換言之,機器人可在此安全區域內適當移動以抓取目標物體,而不會觸碰其他非目標物體。另一方面,物體偵測單元508還會將機器人所觀察的影像與特徵點資料庫503中目標物體的特徵點進行比對以偵測目標物體(步驟 S516),進而找到一個可以代表目標物體的參考點並偵測此目標物體的姿態。如此一來,物體偵測單元508即可根據目標物體的姿態而偵測目標物體之抓取角度(步驟S518)。最後,抓取路徑規畫單元510可根據物體偵測單元508之輸出,來規劃抓取目標物體的路徑(步驟S520),據以產生控制左右機械臂抓取目標物體的控制命令(步驟S522)。此外,在上述步驟S512~S522中,抓取模式模組430還會不斷修正影像擷取單元405與目標物體的相對位置,使左右機械臂的手爪部位最後到達預定的姿態與位置並抓取目標物體,藉以完成自主式抓取的任務。 Operation of Visual Grab: FIG. 5C is a schematic diagram illustrating visual servo capture in accordance with an embodiment of the present invention. Referring to FIG. 5A and FIG. 5C, the object detecting unit 508 uses the image information S1 captured by the image capturing unit 405 as an input, cuts the image of the environment, and cuts the image image of the image information into XY. The plane and the YZ plane (step S512). The XY plane and the YZ plane after the cutting can not only describe the objects in the environment, but also the images obtained by the image capturing unit 405 to find and compare the feature points in the whole picture, and reduce the XY plane and the YZ plane after the comparison. The feature points inside are therefore more likely to speed up the comparison of the target object. In addition, the object detecting unit 508 can also define a safety area around the position where the target object is located according to the feature points in the XY plane and the YZ plane after cutting (step S514), in other words, the robot can appropriately move in the safe area to grasp Take the target object without touching other non-target objects. On the other hand, the object detecting unit 508 also compares the image observed by the robot with the feature points of the target object in the feature point database 503 to detect the target object (steps) S516), thereby finding a reference point that can represent the target object and detecting the posture of the target object. In this way, the object detecting unit 508 can detect the grab angle of the target object according to the posture of the target object (step S518). Finally, the grab path planning unit 510 can plan the path of the grab target object according to the output of the object detecting unit 508 (step S520), thereby generating a control command for controlling the left and right robot arm to grab the target object (step S522). . In addition, in the above steps S512-S522, the capture mode module 430 continuously corrects the relative position of the image capturing unit 405 and the target object, so that the claw portions of the left and right robot arms finally reach the predetermined posture and position and grab. The target object, in order to complete the task of autonomous capture.

當使用者下達的命令為執行行走輔助模式的命令時,行走輔助模式模組440開始執行,且機器人的左右機械臂會從解除環扣的狀態轉變成環扣鎖固的狀態。 When the command issued by the user is a command to execute the walking assist mode, the walking assist mode module 440 starts to execute, and the left and right robot arms of the robot are changed from the state in which the buckle is released to the state in which the buckle is locked.

圖6A是依照本發明的一實施例的行走輔助模式模組440的方塊圖。圖6B是依照本發明的一實施例的行走輔助模式模組440運作的示意圖。請參照圖6A與圖6B,行走輔助模式模組440可包括力感測單元602、順應性運動控制單元604、光測距單元606、障礙物閃避控制單元608以及速度融合控制單元610,其中行走輔助模式模組440也可連接於位移控制單元450以及里程計460。 FIG. 6A is a block diagram of a walking assist mode module 440 in accordance with an embodiment of the present invention. FIG. 6B is a schematic diagram of the operation of the walking assist mode module 440 in accordance with an embodiment of the present invention. Referring to FIG. 6A and FIG. 6B, the walking assistance mode module 440 may include a force sensing unit 602, a compliance motion control unit 604, a light ranging unit 606, an obstacle dodge control unit 608, and a speed fusion control unit 610, wherein walking The auxiliary mode module 440 can also be coupled to the displacement control unit 450 and the odometer 460.

力感測單元602用以感測施力於機器人上左右機械臂的力資訊,例如感測到的施力與力矩,其中力感測單元602是設置在機器人的右機械臂與其手肘的交接處。在本實施例中,機器人 之移動是以使用者的施力與其所感測的力矩來做為判斷資料的輸入,當力感測單元602感測力與力矩而獲得力資訊後,為了考慮到判斷資料上的穩定度與準確性,行走輔助模式模組440還可透過一個力前處理單元603來進行力資訊的前處理,其中力前處理單元603包括低通濾波單元6032、力補償單元6034以及座標轉換單元6036。 The force sensing unit 602 is configured to sense force information applied to the left and right mechanical arms on the robot, such as the sensed force and moment, wherein the force sensing unit 602 is disposed at the intersection of the right arm of the robot and the elbow thereof. At the office. In this embodiment, the robot The movement is based on the user's urging force and the torque sensed by the user as the input of the judgment data. When the force sensing unit 602 senses the force and the moment to obtain the force information, in order to consider the stability and accuracy of the judgment data. The walking assistance mode module 440 can also perform pre-processing of the force information through a force pre-processing unit 603. The force pre-processing unit 603 includes a low-pass filtering unit 6032, a force compensation unit 6034, and a coordinate conversion unit 6036.

詳細而言,低通濾波單元6032會將力感測單元602感測到的力資料做濾波動作。由於力感測單元602是設置在機器人的右機械臂的上下手臂的交接處,力感測單元602所感測到的力資訊會受到下手臂重量的影響,所以力前處理單元603還會透過力補償單元6034將下手臂重量造成力感測單元602的初始重力扣除,以利於在使用者施力的判斷上有清楚的劃分。 In detail, the low-pass filtering unit 6032 performs a filtering operation on the force data sensed by the force sensing unit 602. Since the force sensing unit 602 is disposed at the intersection of the upper and lower arms of the right arm of the robot, the force information sensed by the force sensing unit 602 is affected by the weight of the lower arm, so the force pre-processing unit 603 also transmits the force. The compensation unit 6034 causes the lower arm weight to cause the initial gravity deduction of the force sensing unit 602 to facilitate clear division of the user's force determination.

由於機器人在環扣鎖固狀態下,是以機器人的左右機械臂與機器人本身平舉成近90度,且上手臂與下手臂成90度交互於機器人之胸前的方式,因此力前處理單元603還會透過座標轉換單元6036推導力轉換矩陣,以將力資訊從力感測單元602所感測到的座標系,轉換成機器人本身之座標系,進而將此轉換過後的力資訊應用到順應性運動控制單元604來做為使用者意圖之判斷。 Since the robot is locked in the buckle state, the left and right robot arms of the robot are nearly 90 degrees flat with the robot itself, and the upper arm and the lower arm are 90 degrees to interact with the chest of the robot, so the force pre-processing unit The 603 also derives the force conversion matrix through the coordinate conversion unit 6036 to convert the force information from the coordinate system sensed by the force sensing unit 602 into the coordinate system of the robot itself, and then applies the converted force information to the compliance. The motion control unit 604 serves as a judgment of the user's intention.

由於力感測單元602會感測到使用者作用於右機械臂上的施力,且當使用者對機器人左右機械臂上做前後推拉時,都會伴隨者轉矩的產生,而這些使用者的施力或轉矩容易影響到使用 者行走或轉彎意圖上的判斷,因此,行走輔助模式模組440的順應性運動控制單元604還會進行行走意圖估測,其例如是以三個力資訊的差值(即機器人本身之座標系X軸方向上及Y軸方向上力的變化量以及力矩變化量)來做為輸入,以計算並判斷使用者之意圖。為了方便說明,本實施例將使用者之意圖區分種五種輔助模式,分別為直進、水平移動、右斜45度角移動、左斜45度角移動以及原地旋轉。須說明的是,本實施例並不限制這五種輔助模式,在其他實施例中,也可區分為更多種或較少種輔助模式。 Since the force sensing unit 602 senses the force applied by the user on the right arm, and when the user pushes back and forth on the left and right arms of the robot, the torque is generated, and the users Force or torque is easy to affect the use The walking or turning intention is determined. Therefore, the compliance motion control unit 604 of the walking assist mode module 440 also performs the walking intention estimation, which is, for example, the difference of the three force information (ie, the coordinate system of the robot itself). The amount of change in force in the X-axis direction and the Y-axis direction and the amount of change in torque are used as inputs to calculate and judge the intention of the user. For convenience of description, the embodiment divides the user's intention into five kinds of auxiliary modes, namely, straight forward, horizontal movement, right oblique 45 degree angular movement, left oblique 45 degree angular movement, and in situ rotation. It should be noted that the present embodiment does not limit the five auxiliary modes, and in other embodiments, it may be divided into more or less auxiliary modes.

圖6C為說明本發明的一實施例的上述行走意圖估測方法的示意圖。請參照圖6C,△Fwx(即機器人本身之座標系X軸方向上力的變化量)、△Fxy(即機器人本身之座標系Y軸方向上力的變化量)及△τ wz(即機器人本身之座標系力矩變化量)是使用者目前的施力值與力感測單元偵測使用者尚未施力初始值的差值,其可由式(1)得到三個差值來作為判斷的三個輸入。 Fig. 6C is a schematic view showing the above-described walking intention estimating method according to an embodiment of the present invention. Please refer to FIG. 6C, ΔF wx (that is, the amount of change of the force in the X-axis direction of the coordinate system of the robot itself), ΔF xy (that is, the amount of change in the force in the Y-axis direction of the coordinate system of the robot itself), and Δ τ wz (ie, The coordinate value of the coordinate of the robot itself is the difference between the current force applied value of the user and the initial value of the force sensing unit that detects the user's unapplied force. It can be judged by three differences of the formula (1). Three inputs.

△Fwx=Fwx(k)-Finitial_x △Fwy=Fwy(k)-Finitial_yτ wz=τ wz(k)-τ initial_z 式(1) △ F wx = F wx (k ) -F initial_x △ F wy = F wy (k) -F initial_y △ τ wz = τ wz (k) - τ initial_z formula (1)

其中Fwx(k)、Fwy(k)τ wz(k)為目前力感測單元602所感測到的值,Finitial_x、Finitial_yτ initial_z為力感測單元602在使用者尚未施力時所感測到的初始值。 Where F wx(k) , F wy(k) and τ wz(k) are the values sensed by the current force sensing unit 602, and F initial_x , F initial_y and τ initial_z are the force sensing unit 602 not yet applied by the user. The initial value sensed by force.

具體而言,當△Fwx>0、△Fwy=0時,順應性運動控制單元604會判斷機器人是直進(輔助模式M1)、左斜45度角移動(輔 助模式M3)、右斜45度角移動(輔助模式M4)或是旋轉(輔助模式M5)。此時順應性運動控制單元604會再進一步利用△τ wz的大小來判斷並規範可能的動作,以進一步判斷機器人是將直進、左斜/右斜45度角移動或旋轉。而當△Fwx=0、△Fwy>0時,則順應性運動控制單元604會定義成水平移動(輔助模式M2)。 Specifically, when ΔF wx >0, ΔF wy =0, the compliance motion control unit 604 determines that the robot is straight forward (auxiliary mode M1), left oblique 45 degree angular movement (auxiliary mode M3), right oblique 45 Degree of angular movement (auxiliary mode M4) or rotation (auxiliary mode M5). At this time, the compliance motion control unit 604 further uses the magnitude of Δ τ wz to determine and standardize the possible actions to further determine whether the robot moves or rotates the straight forward, left oblique/right oblique 45 degrees. When ΔF wx =0 and ΔF wy >0, the compliance motion control unit 604 is defined as horizontal movement (auxiliary mode M2).

此外,順應性運動控制單元604還會將外加施力轉化成相對應的速度命令,當使用者對輔助機器人施某一方向的推力時,機器人則可以依據推力的大小及方向來調整本身的運動來順應使用者的操作。在本實施例中,順應性運動控制單元604可透過式(2),計算出機器人所需要順應的輔助速度Vwx、Vwy、ωwz,其中Mrobot為質量係數,Irobot為轉動慣量係數,而Brobot為阻尼係數。 In addition, the compliant motion control unit 604 also converts the applied force into a corresponding speed command. When the user applies a thrust to the auxiliary robot in a certain direction, the robot can adjust the motion according to the magnitude and direction of the thrust. To comply with the user's actions. In this embodiment, the compliance motion control unit 604 can calculate the auxiliary speeds V wx , V wy , ω wz that the robot needs to conform to through the formula (2), where M robot is the mass coefficient and I robot is the moment of inertia coefficient. , and B robot is the damping coefficient.

另一方面,為了讓機器人在移動的過程中閃避障礙物而不發生碰撞,光測距單元606,例如為雷射測距儀(Laser range finder),其可以雷射光來掃描並偵測機器人周圍的物體,而得到至少一相鄰物體與機器人之間的至少一距離感測值。接著,障礙物閃避控制單元608會根據會此距離感測值輸出機器人的旋轉速度改變量。 On the other hand, in order to allow the robot to evade obstacles without collision during the movement, the optical ranging unit 606, for example, a laser range finder, can scan and detect the surroundings of the laser with laser light. The object obtains at least one distance sensing value between at least one adjacent object and the robot. Next, the obstacle dodge control unit 608 outputs the rotational speed change amount of the robot based on the distance sensed value.

具體而言,圖6D依照本發明的一實施例的光感測範圍的示意圖。請參照圖6D,光測距單元606所掃描出的區域例如是雷射光從0度掃描到180度的範圍,例如是每20度劃分為一區,因此所掃描的區域共劃分為9個區域R1~R9,其中中心O表示機器人所在的位置。在閃避障礙物時設計者使用距離資訊的範圍是從區域R3到R7,而其中正前方於區域R4、R5及R6內的距離資訊,是用以決定機器人的旋轉速度的輸出值。由於當障礙物越接近機器人時,機器人會以較大轉向的閃避行為來避開障礙物,因此經由右前方區域R3與左前方區域R7內的距離資訊,可得知右側與左側哪一側需要較大的閃避空間,據以決定機器人的前進方向。 In particular, Figure 6D is a schematic illustration of a light sensing range in accordance with an embodiment of the present invention. Referring to FIG. 6D, the area scanned by the optical ranging unit 606 is, for example, a range in which the laser light is scanned from 0 degrees to 180 degrees, for example, every 20 degrees is divided into one area, so the scanned area is divided into 9 areas. R1~R9, where the center O indicates the position of the robot. The distance information used by the designer when evading the obstacle is from the region R3 to R7, and the distance information directly in the regions R4, R5, and R6 is the output value for determining the rotational speed of the robot. Since the obstacle is closer to the obstacle when the obstacle is closer to the robot, the distance information in the right front region R3 and the left front region R7 can be used to know which side is needed on the right side and the left side. A larger dodge space is used to determine the direction of advancement of the robot.

此外,為了避免機器人遇到複雜的環境,例如左側右側先後有障礙物,且距離很近時,導致在上一個時刻因左側有障礙物選擇右轉後,但又於下一個時刻偵測到右側有障礙物,而造成機器人會忽左忽右擺盪的情況,因此,障礙物閃避控制單元608會設定當左側的距離大於右側的距離為一預設距離(例如是30cm)時,才會使機器人選擇左轉,否則使機器人選擇右轉。換言之,此預設距離是用來增加閃避障礙物行為表現的穩定度。 In addition, in order to avoid the robot encountering complex environments, such as obstacles on the left and right sides, and the distance is very close, the right side is detected at the last moment due to obstacles on the left side, but the right side is detected at the next moment. There is an obstacle, which causes the robot to swing left and right. Therefore, the obstacle dodge control unit 608 sets the robot when the distance on the left side is greater than the distance on the right side by a predetermined distance (for example, 30 cm). Choose to turn left, otherwise let the robot choose to turn right. In other words, this preset distance is used to increase the stability of the performance of the dodging obstacle.

為了考慮到機器人本身與的旋轉角的關係,障礙物閃避控制單元608會定義最小碰撞距離Lb與碰撞警戒距離Ld。詳言之,當機器人正面於區域R4、R5及R6內與障礙物之距離Lmin小於最小碰撞距離Lb時,則表示機器人的角速度ω obs須以最大旋轉角速度ω max_obs閃避,而當機器人正面與障礙物之距離Lmin介於 Lb與Ld之間時,則以式(3)的公式來設定機器人所需的角速度ωobs。此外,至於左右方向上的閃避,障礙物閃避控制單元608可透過式(4)來判斷,其中LR3及LR7分別表示右前方區域R3與左前方區域R7內的距離。式(3)及式(4)是定義逆時鐘旋轉為正值,順時鐘旋轉為負值。 In order to take into account the relationship of the rotation angle of the robot itself, the obstacle dodge control unit 608 defines a minimum collision distance L b and a collision warning distance L d . In detail, when the area in front of the robot R4, R5 and R6 are the distance to the obstacle is less than L min the smallest miss distance L b, then the angular velocity ω obs robot shall be the maximum rotational angular velocity ω max_obs dodge, and when the front of the robot is between L b and L d and L min is between the distance to the obstacle, places of formula formula (3) to set the desired angular velocity of the robot ω obs. Further, as for the dodging in the left and right direction, the obstacle dodging control unit 608 can determine by the equation (4), wherein L R3 and L R7 respectively indicate the distances in the right front region R3 and the left front region R7. Equations (3) and (4) define a counterclockwise rotation to be a positive value and a clockwise rotation to a negative value.

在行走輔助模式模組440進行行走輔助模式時,為了因應當時環境與使用者移動所需要之機器人行走輔助行為,機器人的速度包含順應性運動控制單元604與障礙物閃避控制單元608所輸出的值。 When the walking assist mode module 440 performs the walking assist mode, the speed of the robot includes the values output by the compliance motion control unit 604 and the obstacle dodge control unit 608 in order to assist the robot walking assist behavior required by the time environment and the user's movement. .

詳言之,速度融合控制單元610會將順應性運動控制單元604所輸出的角速度ω wz以及障礙物閃避控制單元608所輸出的角速度ω obs融合而成機器人之旋轉角速度,而速度融合控制單元610融合的方法為以一個權重值乘上個別的角速度,如式(5)所示。 In detail, the speed fusion control unit 610 fuses the angular velocity ω wz output by the compliance motion control unit 604 and the angular velocity ω obs output by the obstacle dodge control unit 608 to form the rotational angular velocity of the robot, and the speed fusion control unit 610. The method of fusion is to multiply a weight value by an individual angular velocity, as shown in equation (5).

ω f=(W obs ×ω obs)+((1-Wobsω wz ) 式(5) ω f =( W obs × ω obs )+((1- Wobsω wz ) (5)

其中Wobs為障礙物閃避部分的權重值,(1-Wobs)為順應 性運動部分的權重值,ω f為融合後的旋轉角速度。 Where W obs is the weight value of the obstacle dodge part, (1-W obs ) is the weight value of the compliant motion part, and ω f is the combined rotation angular velocity.

進一步而言,權重值Wobs是依據最小碰撞距離Lb以及碰撞警戒距離Ld來決定。具體而言,當機器人正面與障礙物距離Lmin小於最小碰撞距離Lb時,此時代表機器人離障礙物太近,故機器人須以最大迴避角度來閃避障礙物,也就是權重值Wobs須被設定為1。當機器人正面與障礙物距離Lmin介於最小碰撞距離Lb與碰撞警戒距離Ld之間,則會以機器人與障礙物的距離大小來調整權重值Wobs。此外,當機器人正面與障礙物距離Lmin大於碰撞警戒距離Ld時,則機器人將會以使用者意圖的命令作為主體來做控制運動命令,也就是權重值Wobs會被設定為0。此權重值的定義公式如式(6)所示。 Further, the weight value W obs is determined according to the minimum collision distance L b and the collision alert distance L d . Specifically, when the distance between the front of the robot and the obstacle L min is less than the minimum collision distance L b , the representative robot is too close to the obstacle at this time, so the robot must avoid the obstacle with the maximum avoidance angle, that is, the weight value W obs Is set to 1. When the distance between the front of the robot and the obstacle L min is between the minimum collision distance L b and the collision warning distance L d , the weight value W obs is adjusted by the distance between the robot and the obstacle. Further, when the robot with an obstacle front collision warning distance L min is greater than the distance L d, then the robot will be intended to command a user to do a control body motion commands, i.e. the weight W obs value is set to zero. The definition formula of this weight value is as shown in equation (6).

此外,速度融合控制單元610所輸出的線速度為順應性運動控制單元604之輸出(即輔助速度Vwx及Vwy),因此速度融合控制單元610融合後的融合速度Vm如式(7)表示。 In addition, the linear velocity output by the speed fusion control unit 610 is the output of the compliance motion control unit 604 (ie, the auxiliary speeds V wx and V wy ), so the fusion speed V m after the fusion of the speed fusion control unit 610 is as shown in equation (7). Said.

如此一來,行走輔助模式模組440在執行行走輔助模式時,機器人的速度將會依照速度融合控制單元610所融合出的融合速度Vm行走,因此機器人不僅提供了協助使用者行走的功能,同時還具備障礙物閃避之功能,藉以防止使用者因觸碰障礙物而跌倒。 In this way, when the walking assist mode module 440 executes the walking assist mode, the speed of the robot will travel according to the fusion speed V m merged by the speed fusion control unit 610, so that the robot not only provides the function of assisting the user to walk, At the same time, it also has the function of obstacle avoidance to prevent users from falling due to touching obstacles.

底下以一居家情境為實驗例來說明本實施例之機器人的行動輔助系統所包括的抓取模式及行走輔助模式。 The grasping mode and the walking assist mode included in the mobility assisting system of the robot of the present embodiment are described below with a home situation as an experimental example.

圖7為本實驗例行動輔助系統所執行的各步驟流程圖。圖8(a)至圖11(i)為本實驗例行動輔助系統所執行的情境影像。請參照圖7,首先,機器人的雙臂環扣機構為解除環扣狀態(步驟S702),其中左右機械臂正常擺放,例如是回到預設姿勢。當機器人接受到使用者下達的命令(例如自飲料罐倒飲料以及遞飲料的命令)之後,如圖8(a)至圖8(b)所示,機器人會利用建立房間地圖及自我定位,並自主開始導航到目標物體的位置(步驟S704)。在此實驗例中,目標物體例如是位於桌上的飲料罐以及杯子,因此此時機器人例如是移動到桌子前。須說明的是,機器人在移動過程中還會偵測是否有障礙物,而當移動過程中有障礙物時,如圖8(c)至圖8(d)所示,機器人靠雷射測距儀進行障礙物的閃避。 Figure 7 is a flow chart showing the steps performed by the action assistance system of the experimental example. 8(a) to 11(i) are scene images executed by the motion assistance system of the experimental example. Referring to FIG. 7, first, the double arm buckle mechanism of the robot is in a state of releasing the buckle (step S702), wherein the left and right mechanical arms are normally placed, for example, returning to the preset posture. After the robot receives the command issued by the user (for example, the order to pour the beverage from the beverage can and deliver the beverage), as shown in Figures 8(a) to 8(b), the robot utilizes the establishment of the room map and self-positioning, and The navigation of the target object is started autonomously (step S704). In this experimental example, the target object is, for example, a beverage can and a cup on a table, so that the robot is, for example, moved to the front of the table. It should be noted that the robot will also detect obstacles during the movement, and when there are obstacles during the movement, as shown in Fig. 8(c) to Fig. 8(d), the robot depends on the laser ranging. The instrument performs the dodge of the obstacle.

當機器人移動到桌子前時,如圖8(e)至圖8(g)所示,機器人會偵測目標物體(也就是飲料罐及杯子)(步驟S706),例如是利用Kinect感測器擷取環境影像資訊,判斷出飲料罐的位置以及姿態,以左機械臂去抓取環境中飲料罐,再判斷出杯子的位置 以及姿態,使用右機械臂抓取杯子(步驟S708),接著,如圖8(h)所示,雙機械臂透過事先所規劃好的倒飲料路徑,將左手飲料罐內的飲料倒進右手的杯子內。當倒完飲料後,如圖8(i)所示,機器人將飲料罐放回桌上。 When the robot moves to the front of the table, as shown in Fig. 8(e) to Fig. 8(g), the robot detects the target object (i.e., the beverage can and the cup) (step S706), for example, using a Kinect sensor. Take environmental image information, determine the position and posture of the beverage can, use the left robotic arm to grab the beverage can in the environment, and then determine the position of the cup. And the posture, using the right robot arm to grab the cup (step S708), and then, as shown in FIG. 8(h), the double robot arm pours the beverage in the left hand beverage can into the right hand through the previously planned pouring beverage path. Inside the cup. When the beverage is poured, as shown in Fig. 8(i), the robot puts the beverage can back on the table.

接下來,如圖9(a)至9(f)所示,機器人導航到使用者的位置(步驟S710),將杯子遞交給使用者(步驟S712)。此時,使用者欲攙扶機器人來行走而下達對應於行走輔助模式的命令,於是機器人切換到行走輔助模式。此時,如圖10(a)至圖10(c)所示,機器人利用環扣路徑規劃策略將左右機械臂結合,使左右機械臂的雙臂環扣機構為環扣鎖固模式(步驟S714),藉此,使用者將可利用機器人的左右機械臂來作為行動輔具的扶手。 Next, as shown in FIGS. 9(a) to 9(f), the robot navigates to the position of the user (step S710), and delivers the cup to the user (step S712). At this time, the user wants to assist the robot to walk and gives a command corresponding to the walking assist mode, and the robot switches to the walking assist mode. At this time, as shown in FIG. 10( a ) to FIG. 10( c ), the robot combines the left and right mechanical arms by using the loop path planning strategy, so that the two-armed buckle mechanism of the left and right mechanical arms is in the buckle locking mode (step S714). Therefore, the user can use the left and right robot arms of the robot as the armrests of the mobility aid.

接著,如圖11(a)至圖11(i)所示,機器人可透過力/轉矩感測器得到使用者的施力,估測行走意圖並進行行走上的輔助。在輔助過程中,如果使用者沒有注意到行走路徑上有障礙物時,機器人能夠藉由雷射測距儀對障礙物做閃避的動作,協助使用者能夠安全的行走出房間(步驟S714)。之後,當使用者未透過攙扶機器人之左右機械臂來行走時,機器人之左右機械臂上的雙臂環扣機構可自動回到解除環扣模式(步驟S702),當然,在其他實驗例中,機器人之左右機械臂上的雙臂環扣機構可維持在環扣鎖固模式。 Next, as shown in FIGS. 11(a) to 11(i), the robot can obtain the user's urging force through the force/torque sensor, estimate the walking intention, and assist in walking. In the assisting process, if the user does not notice that there is an obstacle on the walking path, the robot can assist the user to safely walk out of the room by performing a dodging action on the obstacle by the laser range finder (step S714). After that, when the user does not walk through the left and right robot arms of the robot, the double arm buckle mechanism on the left and right robot arms of the robot can automatically return to the release buckle mode (step S702). Of course, in other experimental examples, The double-arm buckle mechanism on the left and right arms of the robot can be maintained in the buckle lock mode.

另須說明的是,於上述實驗例中,機器人將杯子遞交給使用者之後,若使用者沒有下達對應行走輔助模式的命令時,則 機器人之左右機械臂上的雙臂環扣機構可維持為解除環扣模式(也就是從步驟S712回到步驟S702)。此外,在上述實驗例中,整個實驗過程中機器人的行走路徑可如圖12所示,其中點狀分布即是環境中物體的特徵點,路徑12a為對應於步驟S704至步驟S714中機器人行走的路徑,而路徑12b為對應於步驟S712至步驟S716中機器人行走的路徑。由圖12可知,機器人可明確地定位所處環境的位置,移動到目標位置,並且在移動的過程中還可閃避障礙物。 It should be noted that, in the above experimental example, after the robot delivers the cup to the user, if the user does not issue a command corresponding to the walking assist mode, then The double arm buckle mechanism on the left and right robot arms of the robot can be maintained in the release buckle mode (that is, returning from step S712 to step S702). In addition, in the above experimental example, the walking path of the robot during the whole experiment can be as shown in FIG. 12, wherein the point distribution is the feature point of the object in the environment, and the path 12a corresponds to the walking of the robot in steps S704 to S714. The path 12b is a path corresponding to the walking of the robot in steps S712 to S716. As can be seen from Fig. 12, the robot can clearly locate the location of the environment, move to the target location, and can also avoid obstacles during the movement.

綜上所述,在本發明的機器人的行動輔助系統中,機器人具有第一機械臂及第二機械臂,且行動輔助系統可配合使用者的需求轉換操作模式,其經由改變第一機械臂及第二機械臂之構型,執行抓取模式及行走輔助模式。當行動輔助系統執行抓取模式時,機器人可透過具有六自由度的第一機械臂及第二機械臂來進行取物遞物的任務。另一方面,當使用者需要行走輔助時,行動輔助系統會轉換成執行行走輔助模式,並經由路徑規劃策略使左右機械臂環扣鎖固,以形成行動輔具握把提供使用者扶持。如此一來,本發明可實現在同一個機器人上同時具有協助取物遞物及行走輔助的功能。 In summary, in the motion assisting system of the robot of the present invention, the robot has a first robot arm and a second robot arm, and the motion assisting system can switch the operation mode according to the needs of the user, by changing the first robot arm and The configuration of the second robot arm performs a grab mode and a walking assist mode. When the motion assisting system performs the grab mode, the robot can perform the task of picking objects through the first robot arm and the second robot arm having six degrees of freedom. On the other hand, when the user needs walking assistance, the mobility assistance system converts to perform the walking assistance mode, and the left and right mechanical arm buckles are locked by the path planning strategy to form the mobility aid grip to provide user support. In this way, the invention can realize the functions of assisting the object delivery and the walking assistance on the same robot at the same time.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

400‧‧‧行動輔助系統 400‧‧‧Aids assisted system

410‧‧‧接收單元 410‧‧‧ Receiving unit

420‧‧‧控制單元 420‧‧‧Control unit

430‧‧‧抓取模式模組 430‧‧‧Grab mode module

440‧‧‧行走輔助模式模組 440‧‧‧Travel assist mode module

Claims (10)

一種機器人的行動輔助系統,其中該機器人具有一第一機械臂以及一第二機械臂,該行動輔助系統包括:一接收單元,接收一命令;一抓取模式模組,用以執行一抓取模式;一行走輔助模式模組,用以執行一行走輔助模式;以及一控制單元,耦接於該接收單元,並根據該命令控制該抓取模式模組執行該抓取模式或該行走輔助模式模組執行該行走輔助模式,其中當該抓取模式模組執行該抓取模式時,該抓取模式模組將該第一機械臂與該第二機械臂之間的一雙臂環扣機構,進行解除環扣,其中當該行走輔助模式模組執行該行走輔助模式時,該行走輔助模式模組將該第一機械臂與該第二機械臂之間的該雙臂環扣機構,進行環扣鎖固。 A motion assistance system for a robot, wherein the robot has a first robot arm and a second robot arm, the motion assistance system includes: a receiving unit that receives a command; and a grab mode module that performs a grab a walking assist mode module for performing a walking assist mode; and a control unit coupled to the receiving unit, and controlling the grab mode module to execute the grab mode or the walking assist mode according to the command The module executes the walking assist mode, wherein when the grab mode module executes the grab mode, the grab mode module has a two-arm loop mechanism between the first robot arm and the second robot arm And releasing the buckle, wherein when the walking assist mode module executes the walking assist mode, the walking assist mode module performs the double-arm buckle mechanism between the first robot arm and the second robot arm The buckle is locked. 如申請專利範圍第1項所述的機器人的行動輔助系統,其中該第一機械臂與該第二機械臂的自由度分別為6。 The motion assistance system of the robot of claim 1, wherein the first robot arm and the second robot arm have a degree of freedom of 6, respectively. 如申請專利範圍第1項所述的機器人的行動輔助系統,其中該第一機械臂或該第二機械臂上設置有一力感測單元。 The motion assistance system of the robot of claim 1, wherein the first robot arm or the second robot arm is provided with a force sensing unit. 如申請專利範圍第1項所述的機器人的行動輔助系統,其中該機器人的頭部設置有一影像擷取單元。 The mobile assistant system of the robot of claim 1, wherein the robot head is provided with an image capturing unit. 如申請專利範圍第1項所述的機器人的行動輔助系統,其 中該抓取模式模組包括:一定位與地圖建立單元,接收一影像擷取單元所擷取的一影像資訊與一深度資訊,並根據該影像資訊與該深度資訊執行一全向式移動同時定位與地圖建立。 A motion assisting system for a robot as described in claim 1 of the patent scope, The capture mode module includes: a positioning and map establishing unit, receiving an image information and a depth information captured by an image capturing unit, and performing an omnidirectional movement according to the image information and the depth information; Positioning and map creation. 如申請專利範圍第5項所述的機器人的行動輔助系統,其中該抓取模式模組更包括一路徑追蹤控制單元,其中該定位與地圖建立單元採用一加速穩健特徵演算法,從該影像資訊與該深度資訊中擷取多個特徵點,並根據一特徵點資料庫比對該些特徵點,以估測該機器人的姿態,以及利用一前一時刻所估測的該機器人之狀態向量與觀測而得的一特徵點狀態向量,修正該機器人之狀態向量並更新該特徵點資料庫,同時輸出該機器人的姿態至該路徑追蹤控制單元,其中該根據該機器人的姿態輸出一運動命令於一位移控制單元,使得該位移控制單元根據該運動命令控制該機器人之移動。 The action assistance system of the robot of claim 5, wherein the capture mode module further comprises a path tracking control unit, wherein the positioning and map establishing unit adopts an accelerated robust feature algorithm, from the image information Extracting a plurality of feature points from the depth information, and comparing the feature points according to a feature point database to estimate the posture of the robot, and using the state vector of the robot estimated by a previous moment Observing a feature point state vector, correcting the state vector of the robot and updating the feature point database, and simultaneously outputting the posture of the robot to the path tracking control unit, wherein the motion command is output according to the posture of the robot The displacement control unit causes the displacement control unit to control the movement of the robot according to the motion command. 如申請專利範圍第5項所述的機器人的行動輔助系統,其中該抓取模式模組更包括:一物體偵測單元,根據該影像擷取單元所擷取到的該影像資訊對一第一影像進行切割,以及根據切割後的多個第二影像定義一目標物體所屬的一安全區域,且根據該目標物體偵測該目標物體之抓取角度;以及一抓取路徑規畫單元,根據該物體偵測單元之輸出,規劃抓取該目標物體的路徑,以產生控制該第一機械臂與該第二機械臂 抓取該目標物體的一控制命令。 The action assistance system of the robot of claim 5, wherein the capture mode module further comprises: an object detection unit, according to the image information captured by the image capture unit The image is cut, and a safe area to which the target object belongs is defined according to the plurality of second images after cutting, and a grab angle of the target object is detected according to the target object; and a path planning unit is captured according to the An output of the object detecting unit, planning to capture a path of the target object to generate and control the first robot arm and the second robot arm A control command to grab the target object. 如申請專利範圍第1項所述的機器人的行動輔助系統,其中該行走輔助模式模組包括:一力感測單元,用以感測施力於該機器人上的該第一機械臂與該第二機械臂的力資訊;一順應性運動控制單元,根據該力資訊,計算該機器人需要順應的一輔助速度;一光測距單元,偵測至少一相鄰物體與該機器人之間的至少一距離感測值;一障礙物閃避控制單元,根據該距離感測值輸出該機器人所需的一角速度;以及一速度融合控制單元,將該順應性運動控制單元所輸出的該輔助速度與該障礙物閃避控制單元所輸出的該角速度,融合而成該機器人的一旋轉角速度。 The mobility assistance system of the robot of claim 1, wherein the walking assistance mode module comprises: a force sensing unit for sensing the first mechanical arm and the first force applied to the robot a force information of the second robot arm; a compliance motion control unit, based on the force information, calculating an auxiliary speed that the robot needs to conform; and an optical ranging unit detecting at least one of the at least one adjacent object and the robot a distance sensing value; an obstacle dodge control unit that outputs an angular velocity required by the robot according to the distance sensing value; and a speed fusion control unit that outputs the auxiliary speed and the obstacle by the compliance motion control unit The angular velocity output by the dodge control unit is fused to a rotational angular velocity of the robot. 如申請專利範圍第8項所述的機器人的行動輔助系統,其中該行走輔助模式模組更包括:一力前處理單元,具有一低通濾波單元、一力補償單元以及一座標轉換單元,其中該低通濾波單元將該力感測單元感測到的該力資料做濾波動作,該力補償單元將該第一機械臂或該第二機械臂其中之一的下手臂重量扣除,而該座標轉換單元將於該力感測單元上的座標系轉換成該機器人本身的座標系。 The action assistance system of the robot of claim 8, wherein the walking assistance mode module further comprises: a force pre-processing unit having a low-pass filter unit, a force compensation unit, and a standard conversion unit, wherein The low-pass filtering unit performs a filtering action on the force data sensed by the force sensing unit, and the force compensation unit deducts the weight of the lower arm of one of the first robot arm or the second robot arm, and the coordinate The conversion unit converts the coordinate system on the force sensing unit into a coordinate system of the robot itself. 如申請專利範圍第8項所述的機器人的行動輔助系統,其中該順應性運動控制單元根據該力感測單元所感測的該力資訊計算並判斷一使用者之意圖,並將該使用者之意圖區分成多個輔助模式。 The action assistance system of the robot of claim 8, wherein the compliance motion control unit calculates and determines a user's intention based on the force information sensed by the force sensing unit, and the user's The intention is to divide into multiple auxiliary modes.
TW103115566A 2014-04-30 2014-04-30 Walking assist system of robot TWI555524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103115566A TWI555524B (en) 2014-04-30 2014-04-30 Walking assist system of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103115566A TWI555524B (en) 2014-04-30 2014-04-30 Walking assist system of robot

Publications (2)

Publication Number Publication Date
TW201540281A TW201540281A (en) 2015-11-01
TWI555524B true TWI555524B (en) 2016-11-01

Family

ID=55220245

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103115566A TWI555524B (en) 2014-04-30 2014-04-30 Walking assist system of robot

Country Status (1)

Country Link
TW (1) TWI555524B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735022B (en) * 2019-08-08 2021-08-01 和碩聯合科技股份有限公司 Semantic map orienting device, method and robot

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688342B (en) 2017-03-27 2019-05-10 平安科技(深圳)有限公司 The obstruction-avoiding control system and method for robot
CN107416072B (en) * 2017-08-09 2023-03-17 安徽理工大学 Control method for omnidirectional motion and walking mechanism
TWI675269B (en) * 2018-04-02 2019-10-21 新世代機器人暨人工智慧股份有限公司 Posture switchable robot and method of adjusting posture thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016385A (en) * 1997-08-11 2000-01-18 Fanu America Corp Real time remotely controlled robot
TW201038262A (en) * 2009-04-30 2010-11-01 Univ Nat Chiao Tung Interactive caretaking robot with the functions of obstacle avoidance and decision-making based on force-sensing
TW201137808A (en) * 2010-04-27 2011-11-01 Univ Nan Kai Technology Robot operation system for taking care of elder people
CN202397747U (en) * 2011-12-08 2012-08-29 华南理工大学 Robot for helping old people and handicapped
CN202781142U (en) * 2012-07-13 2013-03-13 天津职业技术师范大学 Household the old helping robot
WO2013112907A1 (en) * 2012-01-25 2013-08-01 Adept Technology, Inc. Autonomous mobile robot for handling job assignments in a physical environment inhabited by stationary and non-stationary obstacles
TW201345677A (en) * 2011-12-07 2013-11-16 Thk Co Ltd Legged robot
CN203293206U (en) * 2013-05-16 2013-11-20 上海控江中学附属民办学校 Feeding robot

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016385A (en) * 1997-08-11 2000-01-18 Fanu America Corp Real time remotely controlled robot
TW201038262A (en) * 2009-04-30 2010-11-01 Univ Nat Chiao Tung Interactive caretaking robot with the functions of obstacle avoidance and decision-making based on force-sensing
TW201137808A (en) * 2010-04-27 2011-11-01 Univ Nan Kai Technology Robot operation system for taking care of elder people
TW201345677A (en) * 2011-12-07 2013-11-16 Thk Co Ltd Legged robot
CN202397747U (en) * 2011-12-08 2012-08-29 华南理工大学 Robot for helping old people and handicapped
WO2013112907A1 (en) * 2012-01-25 2013-08-01 Adept Technology, Inc. Autonomous mobile robot for handling job assignments in a physical environment inhabited by stationary and non-stationary obstacles
CN202781142U (en) * 2012-07-13 2013-03-13 天津职业技术师范大学 Household the old helping robot
CN203293206U (en) * 2013-05-16 2013-11-20 上海控江中学附属民办学校 Feeding robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI735022B (en) * 2019-08-08 2021-08-01 和碩聯合科技股份有限公司 Semantic map orienting device, method and robot

Also Published As

Publication number Publication date
TW201540281A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
JP6462728B2 (en) How to build a map of the probability of one of the absence and presence of obstacles in an autonomous robot
EP2952301B1 (en) Humanoid robot with collision avoidance and trajectory recovery capabilities
US9563528B2 (en) Mobile apparatus and localization method thereof
TWI558525B (en) Robot and control method thereof
US8873831B2 (en) Walking robot and simultaneous localization and mapping method thereof
Du et al. Human–manipulator interface based on multisensory process via Kalman filters
EP2590042B1 (en) Walking robot performing position recognition using several local filters and a fusion filter
EP3399378B1 (en) Moving body
TWI555524B (en) Walking assist system of robot
US10197399B2 (en) Method for localizing a robot in a localization plane
CN110554692B (en) Map information updating system
EP2236251B1 (en) Mobile robot controller
JP2003280739A (en) Autonomous moving robot used for guidance and its control method
US20220382282A1 (en) Mobility aid robot navigating method and mobility aid robot using the same
US11915523B2 (en) Engagement detection and attention estimation for human-robot interaction
Jin et al. A wearable robotic device for assistive navigation and object manipulation
JP2011235380A (en) Control device
US20230384788A1 (en) Information processing device, information processing system, information processing method, and recording medium storing program
CN116100565A (en) Immersive real-time remote operation platform based on exoskeleton robot
Bonci et al. Motion control of a smart mobile manipulator
CN117136120A (en) Robot remote operation control device, robot remote operation control system, robot remote operation control method, and program
CN117311337A (en) Manipulation system, manipulation method, and storage medium

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees