TWI555127B - Memory device and method for fabricating the same - Google Patents

Memory device and method for fabricating the same Download PDF

Info

Publication number
TWI555127B
TWI555127B TW104115496A TW104115496A TWI555127B TW I555127 B TWI555127 B TW I555127B TW 104115496 A TW104115496 A TW 104115496A TW 104115496 A TW104115496 A TW 104115496A TW I555127 B TWI555127 B TW I555127B
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor cap
trench
cap layer
semiconductor
Prior art date
Application number
TW104115496A
Other languages
Chinese (zh)
Other versions
TW201640618A (en
Inventor
李冠儒
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW104115496A priority Critical patent/TWI555127B/en
Application granted granted Critical
Publication of TWI555127B publication Critical patent/TWI555127B/en
Publication of TW201640618A publication Critical patent/TW201640618A/en

Links

Description

記憶體元件及其製作方法 Memory element and manufacturing method thereof

本揭露書是有關於一種非揮發性記憶體(non-volatile memory)元件及其製作方法。特別是有關於一種三圍的(Three-Dimension,3D)非揮發性記憶體元件及其製作方法。 The present disclosure relates to a non-volatile memory element and a method of fabricating the same. In particular, there is a three-dimension (3D) non-volatile memory element and a method of fabricating the same.

非揮發性記憶體(Non-Volatile Memory,NVM)元件,例如快閃記憶體,具有在移除電源時亦不丟失儲存於記憶單元中之資訊的特性。已廣泛運用於用於可擕式音樂播放器、移動電話、數位相機等的固態大容量存儲應用。三維非揮發性記憶體元件,例如垂直通道式(Vertical-Channel,VC)三維NAND快閃記憶體元件,具有許多層堆疊結構,可達到更高的儲存容量,更具有優異的電子特性,例如具有良好的資料保存可靠性和操作速度。 Non-Volatile Memory (NVM) components, such as flash memory, have the property of not losing information stored in the memory unit when the power is removed. It has been widely used in solid-state mass storage applications for portable music players, mobile phones, digital cameras, and the like. Three-dimensional non-volatile memory components, such as vertical-channel (VC) three-dimensional NAND flash memory components, have many layer stack structures, can achieve higher storage capacity, and have superior electronic characteristics, such as Good data retention reliability and speed of operation.

典型的三維非揮發性記憶體元件係由複數個彼此平行之絕緣層和導電層交錯堆疊而成的多層疊結構(multi-layer stacks)所構成。請參照第1圖,第1圖係根據習知技術所繪示的一種三維非揮發性記憶體元件之多層疊結構100的剖面示意圖。 其中,多層疊結構100包括至少一條溝槽101,將多層疊結構區分為複數個脊狀多層疊層(ridge-shaped stacks)102,使每一脊狀多層疊層102都具有複數條由圖案化導電層所形成的導電條帶102a。三維非揮發性記憶體元件還包括記憶材料層103和通道層104。其中,記憶材料層103位於溝槽101的側壁上;通道層104則覆蓋脊狀多層疊層102和記憶材料層103上,而在每一個導電條帶102a與記憶材料層103和通道層104三者重疊的位置,定義出複數個記憶胞105。垂直排列的記憶胞,藉由通道層104垂直串接,而形成記憶胞串列,並透過金屬接觸結構106電性連接至對應的位元線(未繪示)。其中,金屬接觸結構106形成於覆蓋在脊狀多層疊層102之頂部上的一部分通道層104上。 A typical three-dimensional non-volatile memory element is composed of a plurality of multi-layer stacks in which an insulating layer and a conductive layer which are parallel to each other are alternately stacked. Please refer to FIG. 1 . FIG. 1 is a schematic cross-sectional view of a multi-layer structure 100 of a three-dimensional non-volatile memory device according to the prior art. Wherein, the multi-layer structure 100 includes at least one trench 101, and the multi-layer structure is divided into a plurality of ridge-shaped stacks 102, so that each ridge-shaped multilayer stack 102 has a plurality of patterns A conductive strip 102a formed by a conductive layer. The three-dimensional non-volatile memory element also includes a memory material layer 103 and a channel layer 104. Wherein, the memory material layer 103 is located on the sidewall of the trench 101; the channel layer 104 covers the ridge multilayer stack 102 and the memory material layer 103, and in each of the conductive strips 102a and the memory material layer 103 and the channel layer 104 The overlapping positions define a plurality of memory cells 105. The vertically aligned memory cells are vertically connected in series to form a memory cell string and are electrically connected to corresponding bit lines (not shown) through the metal contact structure 106. Therein, a metal contact structure 106 is formed over a portion of the channel layer 104 overlying the top of the ridge multilayer stack 102.

然而,為提供元件較佳的控制效能,通道層104的厚度一般都相當薄,使得在通道層104上定義金屬接觸結構106時製程裕度(process window)相當有限(甚至不足)。再加上,通道層104一般由多晶矽所構成,會與金屬接觸結構106的阻障層形成金屬矽化物(silicide)接面,過薄的通道層104容易使金屬矽化物接面產生空隙(voids),而導致金屬接觸結構106與通道層104之間產生接觸電阻值偏高的問題。 However, to provide better control of the components, the thickness of the channel layer 104 is generally relatively thin, such that the process window is rather limited (or even insufficient) when defining the metal contact structure 106 on the channel layer 104. In addition, the channel layer 104 is generally composed of polysilicon, which forms a metal silicide junction with the barrier layer of the metal contact structure 106, and the thin via layer 104 easily causes voids in the metal germanium junction (voids) And causing a problem that the contact resistance value is high between the metal contact structure 106 and the channel layer 104.

因此,有需要提供一種更先進的記憶體元件及其製作方法,以改善習知技術所面臨的問題。 Therefore, there is a need to provide a more advanced memory component and method of making the same to improve the problems faced by conventional techniques.

根據本說明書的一實施例,提供一種記憶體元件, 其包括圖案化多層堆疊結構、半導體覆蓋層(semiconductor capping layer)、記憶材料層以及通道層。圖案化多層堆疊結構位於基材上,具有至少一條溝槽,以定義出複數個脊狀多層疊層,其中每一個脊狀多層疊層至少包括一導電條帶。半導體覆蓋層覆蓋於這些脊狀多層疊層上。記憶材料層覆蓋於溝槽的側壁上。通道層覆蓋於記憶材料層、半導體覆蓋層以及溝槽的底部上,且與半導體覆蓋層直接接觸。 According to an embodiment of the present specification, a memory component is provided, It includes a patterned multilayer stack structure, a semiconductor capping layer, a memory material layer, and a channel layer. The patterned multilayer stack structure is located on the substrate and has at least one trench to define a plurality of ridge multilayer stacks, wherein each ridge multilayer stack includes at least one conductive strip. A semiconductor cap layer overlies the ridge multilayer stack. A layer of memory material overlies the sidewalls of the trench. The channel layer overlies the memory material layer, the semiconductor cap layer, and the bottom of the trench and is in direct contact with the semiconductor cap layer.

根據本說明書的另一實施例,提供一種記憶體元件的製作方法,包括下述步驟:首先在基材上提供一多層堆疊結構。再於多層堆疊結構上形成一半導體覆蓋層。然後,圖案化多層堆疊結構和半導體覆蓋層,藉以於多層堆疊結構中形成至少一條溝槽,以定義出複數個脊狀多層疊層,並使每一個脊狀多層疊層至少包括一條導電條帶。之後,形成一記憶材料層,覆蓋半導體覆蓋層以及溝槽的側壁和底部。後續,移除位於半導體覆蓋層和溝槽之底部上的一部分記憶材料層,再形成一通道層,覆蓋記憶材料層、半導體覆蓋層以及溝槽的底部,且與半導體覆蓋層直接接觸。 According to another embodiment of the present specification, a method of fabricating a memory device is provided, comprising the steps of first providing a multilayer stack structure on a substrate. A semiconductor cap layer is formed over the multilayer stack structure. Then, the multilayer stack structure and the semiconductor cap layer are patterned, whereby at least one trench is formed in the multilayer stack structure to define a plurality of ridge multilayer stacks, and each of the ridge multilayer stacks includes at least one conductive strip . Thereafter, a layer of memory material is formed covering the semiconductor cap layer and the sidewalls and bottom of the trench. Subsequently, a portion of the memory material layer on the bottom of the semiconductor cap layer and trench is removed, and a channel layer is formed overlying the memory material layer, the semiconductor cap layer, and the bottom of the trench and in direct contact with the semiconductor cap layer.

根據上述實施例,本發明是在提供一種立體記憶體元件及其製作方法。此一立體記憶體元件的製作方法,係先在多層堆疊結構上方額外形成一半導體覆蓋層,然後再形成複數條溝槽藉以將多層堆疊結構和半導體覆蓋層區隔成複數個脊狀多層疊層。後續再於溝槽側壁上形成記憶材料層和通道層,藉以定義 出複數個記憶胞,並垂直串接成至少一個記憶胞串列。其中,半導體覆蓋層和通道層直接接觸。 According to the above embodiment, the present invention provides a three-dimensional memory element and a method of fabricating the same. The three-dimensional memory device is formed by additionally forming a semiconductor cap layer over the multi-layer stack structure, and then forming a plurality of trenches to separate the multi-layer stack structure and the semiconductor cap layer into a plurality of ridge-shaped multilayer stacks. . Subsequent formation of a memory material layer and a channel layer on the sidewalls of the trench, thereby defining A plurality of memory cells are outputted and vertically connected in series to at least one memory cell. Wherein, the semiconductor cap layer and the channel layer are in direct contact.

由於,半導體覆蓋層可以和覆蓋於多層堆疊結構頂部的通道層整合,形成厚度較大的接觸區,而使後續形成在接觸區上的金屬接觸結構能有較大的製程裕度。同時,厚度較大的接觸區,可提供較多的多晶矽,與金屬接觸結構形成晶粒結構(grains)較小的金屬矽化物層,進而減少空隙的產生,有效降低金屬接觸結構與通道層之間的接觸電阻。又由於半導體覆蓋層僅覆蓋於多層堆疊結構的頂部,並不會增加位於溝槽側壁之記憶胞的通道層厚度。因此更可兼顧元件的控制效能。 Since the semiconductor cap layer can be integrated with the channel layer covering the top of the multi-layer stack structure to form a contact region having a larger thickness, the metal contact structure subsequently formed on the contact region can have a larger process margin. At the same time, the contact area with larger thickness can provide more polycrystalline germanium, and the metal contact structure forms a metal germanide layer with smaller grain structure, thereby reducing the generation of voids and effectively reducing the metal contact structure and the channel layer. Contact resistance between. Moreover, since the semiconductor cap layer covers only the top of the multilayer stack structure, it does not increase the channel layer thickness of the memory cells located on the sidewalls of the trench. Therefore, it is possible to balance the control performance of the components.

100‧‧‧多層疊結構 100‧‧‧Multilayer structure

101‧‧‧溝槽 101‧‧‧ trench

102‧‧‧脊狀多層疊層 102‧‧‧ ridge multilayer laminate

102a‧‧‧導電條帶 102a‧‧‧ Conductive strips

103‧‧‧記憶材料層 103‧‧‧ memory material layer

104‧‧‧通道層 104‧‧‧Channel layer

105‧‧‧記憶胞 105‧‧‧ memory cells

106‧‧‧金屬接觸結構 106‧‧‧Metal contact structure

200‧‧‧立體記憶體元件 200‧‧‧Three-dimensional memory components

201‧‧‧基材 201‧‧‧Substrate

202‧‧‧半導體覆蓋層 202‧‧‧Semiconductor overlay

202a-202d‧‧‧覆蓋部分圖案化 202a-202d‧‧‧ covered part of the patterning

202f‧‧‧半導體覆蓋層的頂面 202f‧‧‧Top surface of the semiconductor overlay

203‧‧‧圖案化製程 203‧‧‧Pattern Process

204‧‧‧溝槽 204‧‧‧ trench

204a‧‧‧溝槽側壁 204a‧‧‧ trench sidewall

205‧‧‧導電條帶 205‧‧‧ Conductive strips

206‧‧‧記憶材料層 206‧‧‧ memory material layer

207‧‧‧蝕刻步驟 207‧‧‧ etching step

208‧‧‧回蝕製程 208‧‧‧ etchback process

209‧‧‧通道層 209‧‧‧channel layer

210‧‧‧多層堆疊結構 210‧‧‧Multilayer stacking structure

210a-210d‧‧‧脊狀多層疊層 210a-210d‧‧‧ ridge multilayer laminate

211-217‧‧‧導電層 211-217‧‧‧ Conductive layer

219‧‧‧晶粒界面 219‧‧‧ grain interface

220‧‧‧接觸電極 220‧‧‧Contact electrode

220a‧‧‧阻障層 220a‧‧‧ barrier layer

222‧‧‧開口 222‧‧‧ openings

221-227‧‧‧絕緣層 221-227‧‧‧Insulation

230‧‧‧介電層 230‧‧‧ dielectric layer

300‧‧‧立體記憶體元件 300‧‧‧Three-dimensional memory components

301‧‧‧半導體薄膜 301‧‧‧Semiconductor film

302‧‧‧凹室 302‧‧ ‧ alcove

303‧‧‧晶粒界面 303‧‧‧Grain interface

為了對本發明之上述實施例及其他目的、特徵和優點能更明顯易懂,特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:第1圖係根據習知技術所繪示的一種三維非揮發性記憶體元件之多層疊結構的剖面示意圖;第2圖係根據本發明的一實施例所繪示之多層堆疊結構的結構透視圖;第2A圖至第2G圖係沿著第2圖的切線S2繪示以多層堆疊結構製作立體記憶體元件的製程結構剖面圖;以及第3A圖至第3E圖係根據本發明的另一實施例所繪示之製作立體記憶體元件的製程結構剖面圖。 The above-described embodiments and other objects, features and advantages of the present invention will become more apparent and understood. FIG. 2 is a cross-sectional view showing a multi-layered structure of a three-dimensional non-volatile memory device; FIG. 2 is a perspective view showing a structure of a multi-layer stacked structure according to an embodiment of the present invention; FIGS. 2A to 2G A cross-sectional view of a process structure for fabricating a three-dimensional memory device in a multi-layer stacked structure is shown along a tangent line S2 of FIG. 2; and FIGS. 3A to 3E are diagrams showing a three-dimensional memory according to another embodiment of the present invention. A cross-sectional view of the process structure of the component.

本發明提供一種立體記憶體元件及其製作方法,可提供立體記憶體元件較大的製程裕度,來形成一金屬接觸結構,同時降低此金屬接觸結構的接觸電阻。為了對本發明之上述實施例及其他目的、特徵和優點能更明顯易懂,下文特舉數立體記憶體元件及其製作方法作為較佳實施例,並配合所附圖式作詳細說明。 The invention provides a three-dimensional memory component and a manufacturing method thereof, which can provide a large process margin of a three-dimensional memory component to form a metal contact structure and reduce the contact resistance of the metal contact structure. The above-described embodiments and other objects, features and advantages of the present invention will become more apparent and understood.

但必須注意的是,這些特定的實施案例與方法,並非用以限定本發明。本發明仍可採用其他特徵、元件、方法及參數來加以實施。較佳實施例的提出,僅係用以例示本發明的技術特徵,並非用以限定本發明的申請專利範圍。該技術領域中具有通常知識者,將可根據以下說明書的描述,在不脫離本發明的精神範圍內,作均等的修飾與變化。在不同實施例與圖式之中,相同的元件,將以相同的元件符號加以表示。 However, it must be noted that these specific embodiments and methods are not intended to limit the invention. The invention may be practiced with other features, elements, methods and parameters. The preferred embodiments are merely illustrative of the technical features of the present invention and are not intended to limit the scope of the invention. Equivalent modifications and variations will be made without departing from the spirit and scope of the invention. In the different embodiments and the drawings, the same elements will be denoted by the same reference numerals.

製作立體記憶體元件200的方法,包括下述步驟:首先在基材201上形成多層堆疊結構210。請參照第2圖和第2A圖至第2G圖,第2圖係根據本發明的一實施例所繪示之多層堆疊結構210的結構透視圖;第2A圖至第2G圖係沿著第2圖的切線S2繪示以多層堆疊結構210製作立體記憶體元件200的製程結構剖面圖。 A method of making a three-dimensional memory element 200 includes the steps of first forming a multilayer stack structure 210 on a substrate 201. Please refer to FIG. 2 and FIG. 2A to FIG. 2G. FIG. 2 is a perspective view showing the structure of the multilayer stack structure 210 according to an embodiment of the present invention; FIG. 2A to FIG. 2G are along the second line. A tangent line S2 of the figure shows a cross-sectional view of a process structure for fabricating the stereo memory element 200 in the multilayer stack structure 210.

在本發明的一些實施例中,多層堆疊結構210包括形成於基材201上的複數個導電層211-217以及複數個絕緣層 221-227。其中,絕緣層221-227與導電層211-217係沿著第2圖所繪示的Z軸方向,在基材201上彼此交錯堆疊,並且相互平行。在本實施例之中,導電層211位於多層堆疊結構210的最底層,而絕緣層227位於多層堆疊結構210的頂層。 In some embodiments of the invention, the multilayer stack structure 210 includes a plurality of conductive layers 211-217 formed on a substrate 201 and a plurality of insulating layers 221-227. The insulating layers 221-227 and the conductive layers 211-217 are staggered with each other on the substrate 201 along the Z-axis direction depicted in FIG. 2, and are parallel to each other. In the present embodiment, the conductive layer 211 is located at the bottommost layer of the multilayer stack structure 210, and the insulating layer 227 is located at the top layer of the multilayer stack structure 210.

導電層211-217可以由金屬,例如金、銅、鋁或其他金屬或合金材料,所構成。此外,導電層211-217也可以由半導體材料,例如矽、鍺或其他摻雜或無摻雜的半導體材質,所構成。在本實施例中,導電層211-217係由無摻雜多的晶矽所構成。絕緣層221-227可以由介電材料,例如矽氧化物(oxide)、矽氮化物(nitride)、矽氮氧化物(oxynitride)、矽酸鹽(silicate)或其他材料,所構成。在本發明的一些實施例中,導電層211-217和絕緣層221-227可藉由,例如低壓化學氣相沉積(Low Pressure Chemical Vapor Deposition,LPCVD)製程,製作而成。絕緣層221-227的厚度可以實質介於20奈米到40奈米之間。 Conductive layers 211-217 can be constructed of a metal such as gold, copper, aluminum or other metal or alloy materials. In addition, the conductive layers 211-217 may also be composed of a semiconductor material such as tantalum, niobium or other doped or undoped semiconductor material. In the present embodiment, the conductive layers 211-217 are composed of undoped crystals. The insulating layers 221-227 may be composed of a dielectric material such as an oxide, a nitride, an oxynitride, a silicate or the like. In some embodiments of the present invention, the conductive layers 211-217 and the insulating layers 221-227 can be fabricated by, for example, a Low Pressure Chemical Vapor Deposition (LPCVD) process. The thickness of the insulating layers 221-227 may be substantially between 20 nm and 40 nm.

之後,再於多層堆疊結構210上形成半導體覆蓋層202(如第2圖和第2A圖所繪示)。其中,半導體覆蓋層202形成於多層堆疊結構210的最頂層絕緣層227上。在本發明的一些實施例之中,半導體覆蓋層202的形成方式與導電層211-217的形成方式相同,但不以此為限。半導體覆蓋層202的材質較佳可以為多晶矽。半導體覆蓋層202的厚度,實質實質介於300Å至500Å之間。 Thereafter, a semiconductor cap layer 202 is formed on the multilayer stack structure 210 (as shown in FIGS. 2 and 2A). The semiconductor cap layer 202 is formed on the topmost insulating layer 227 of the multilayer stack structure 210. In some embodiments of the present invention, the semiconductor cap layer 202 is formed in the same manner as the conductive layers 211-217, but is not limited thereto. The material of the semiconductor cap layer 202 may preferably be polysilicon. The thickness of the semiconductor cap layer 202 is substantially between 300 Å and 500 Å.

接著,對多層堆疊結構210以及半導體覆蓋層202 進行圖案化製程203,以形成複數個脊狀多層疊層210a、210b、210c和210d以及覆蓋脊狀多層疊層210a、210b、210c和210d的圖案化半導體覆蓋層202(如第2B圖所繪示)。在本發明的一些實施例中,多層堆疊結構210和半導體覆蓋層202的圖案化製程203,包括以圖案化硬罩幕層(未繪示)為蝕刻罩幕,藉由非等向蝕刻製程(anisotropic etching process),例如反應離子蝕刻(Reactive Ion Etching,RIE)製程,對半導體覆蓋層202和多層堆疊結構210進行蝕刻。藉以在半導體覆蓋層202和多層堆疊結構210之中形成沿著Z軸方向延伸的溝槽204,將多層堆疊結構210分割成複數個沿著Y軸方向延伸的脊狀多層疊層,例如脊狀多層疊層210a、210b、210c和210d,並將基材201的一部分區域經由溝槽204曝露於外。並將半導體覆蓋層202區隔成多個彼此分離的覆蓋部分,例如覆蓋部分202a、202b、202c和202d。 Next, the multilayer stack structure 210 and the semiconductor cap layer 202 A patterning process 203 is performed to form a plurality of ridge multilayer laminates 210a, 210b, 210c, and 210d and a patterned semiconductor cap layer 202 overlying the ridge multilayer stacks 210a, 210b, 210c, and 210d (as depicted in FIG. 2B) Show). In some embodiments of the present invention, the patterning process 203 of the multilayer stack structure 210 and the semiconductor cap layer 202 includes patterning a hard mask layer (not shown) as an etch mask by an anisotropic etch process ( An anisotropic etching process, such as a reactive ion etch (RIE) process, etches the semiconductor cap layer 202 and the multilayer stack structure 210. By forming a trench 204 extending along the Z-axis direction among the semiconductor cap layer 202 and the multilayer stack structure 210, the multilayer stack structure 210 is divided into a plurality of ridge-shaped multilayer stacks extending in the Y-axis direction, such as ridges. The multilayer stacks 210a, 210b, 210c, and 210d expose a portion of the substrate 201 to the outside via the trenches 204. The semiconductor cover layer 202 is divided into a plurality of cover portions separated from each other, such as cover portions 202a, 202b, 202c, and 202d.

在本實施例中,每一脊狀多層疊層210a、210b、210c和210d都包含由一部份導電層211-217所構成的導電條帶205。圖案化半導體覆蓋層202的覆蓋部分202a、202b、202c和202d,分別覆蓋於,每一脊狀多層疊層210a、210b、210c和210d。 In the present embodiment, each of the ridge multilayer laminates 210a, 210b, 210c, and 210d includes a conductive strip 205 formed of a portion of the conductive layers 211-217. The cover portions 202a, 202b, 202c, and 202d of the patterned semiconductor cap layer 202 cover each of the ridge-like multilayer stacks 210a, 210b, 210c, and 210d, respectively.

然後,於脊狀多層疊層210a、210b、210c和210d上形成記憶材料層206,使其覆蓋於圖案化半導體覆蓋層202的覆蓋部分202a、202b、202c和202d以及溝槽204底部(即被溝槽204暴露於外的一部分基材201)和溝槽側壁204a上(如第2C圖所繪示)。在本發明的一些實施例中,記憶材料層206至少包含氧化 矽(silicon oxide)層、氮化矽(silicon nitride)層和氧化矽層的複合層(即,ONO層)。在本發明的另一些實施例中,記憶材料層206可以是一種矽氧氮氧矽(Silicon Oxide Nitric Oxide Silicon,SONOS)結構(但不以此為限)。在本實施例中,記憶材料層206可以是藉由低壓化學氣相沉積製程所製作而成的ONO複合層。 Then, a memory material layer 206 is formed over the ridge multilayer stacks 210a, 210b, 210c, and 210d to cover the covered portions 202a, 202b, 202c, and 202d of the patterned semiconductor cap layer 202 and the bottom of the trench 204 (ie, The trench 204 is exposed to a portion of the outer substrate 201) and the trench sidewalls 204a (as depicted in FIG. 2C). In some embodiments of the invention, the memory material layer 206 comprises at least oxidation A composite layer of a silicon oxide layer, a silicon nitride layer, and a ruthenium oxide layer (ie, an ONO layer). In other embodiments of the present invention, the memory material layer 206 may be a Silicon Oxide Nitric Oxide Silicon (SONOS) structure (but not limited thereto). In this embodiment, the memory material layer 206 may be an ONO composite layer fabricated by a low pressure chemical vapor deposition process.

在形成記憶材料層206之後,以對記憶材料層206進行一蝕刻步驟207,以移除覆蓋於覆蓋部分202a、202b、202c和202d上,以及覆蓋於溝槽204之底部上的一部分記憶材料層206,將圖案化半導體覆蓋層202暴露於外,並將一部分基材201再度經由溝槽204暴露於外(如第2D圖所繪示)。在本發明的一些實施例中,剩餘的記憶材料層206較佳僅位於溝槽的側壁204a之上。 After forming the memory material layer 206, an etching step 207 is performed on the memory material layer 206 to remove overlying the cover portions 202a, 202b, 202c, and 202d, and a portion of the memory material layer overlying the bottom of the trench 204. 206, exposing the patterned semiconductor cap layer 202 to the outside, and exposing a portion of the substrate 201 to the outside via the trench 204 (as depicted in FIG. 2D). In some embodiments of the invention, the remaining layer of memory material 206 is preferably located only above sidewalls 204a of the trench.

另外在本發明的一些實施例中,在移除覆蓋於覆蓋部分202a、202b、202c和202d上以及覆蓋於溝槽204底部上的一部分記憶材料層206之後,較佳可以選擇性地進行一回蝕製程208,藉以移除靠近溝槽204開口的一部分記憶材料層206,使記憶材料層206實質低於圖案化半導體覆蓋層202的頂面202f(如第2E圖所繪示)。 In addition, in some embodiments of the present invention, after removing a portion of the memory material layer 206 overlying the cover portions 202a, 202b, 202c, and 202d and overlying the bottom of the trench 204, it is preferred to selectively perform one step. The etching process 208 is performed to remove a portion of the memory material layer 206 adjacent the opening of the trench 204 such that the memory material layer 206 is substantially lower than the top surface 202f of the patterned semiconductor cap layer 202 (as depicted in FIG. 2E).

之後,再於脊狀多層疊層210a、210b、210c和210d上進行共形沉積(conformal deposition),以形成通道層209,覆蓋於記憶材料層206、圖案化半導體覆蓋層202以及溝槽204的底部上,並且使通道層209與圖案化半導體覆蓋層202的頂面202f 直接接觸(如第2F圖所繪示)。在本發明的一些實施例之中,構成通道層209的材質為半導體材質,例如較佳可以是多晶矽、鍺或其他合適的半導體材質。通道層209的厚度,實質實質介於50Å至200Å之間。在本實施例之中,通道層209和圖案化半導體覆蓋層202可皆係由多晶矽所構成,由於二者係由不同沉積製程所形成,因此通道層209和圖案化半導體覆蓋層202之間,會存在一個可藉由電子顯微鏡,例如光發射電子顯微鏡(Photoemission Electron Microscope,PEEM),觀測得到的晶粒界面(granular boundary)219。 Thereafter, conformal deposition is performed on the ridge multilayer laminates 210a, 210b, 210c, and 210d to form a channel layer 209 covering the memory material layer 206, the patterned semiconductor cap layer 202, and the trench 204. On the bottom, and the channel layer 209 and the top surface 202f of the patterned semiconductor cap layer 202 Direct contact (as shown in Figure 2F). In some embodiments of the present invention, the material constituting the channel layer 209 is a semiconductor material, and for example, it may preferably be a polysilicon, germanium or other suitable semiconductor material. The thickness of the channel layer 209 is substantially between 50 Å and 200 Å. In this embodiment, both the channel layer 209 and the patterned semiconductor cap layer 202 may be composed of polysilicon. Since the two are formed by different deposition processes, between the channel layer 209 and the patterned semiconductor cap layer 202, There will be a granular boundary 219 that can be observed by an electron microscope such as a Photoemission Electron Microscope (PEEM).

另外,在本實施例之中,由於通道層209同時覆蓋記憶材料層206、圖案化半導體覆蓋層202以及溝槽204的底部。因此,藉由通道層209,可以將圖案化半導體覆蓋層202位於脊狀多層疊層210a、210b、210c和210d頂部的覆蓋部分202a、202b、202c和202d電性導通。 In addition, in the present embodiment, the channel layer 209 simultaneously covers the memory material layer 206, the patterned semiconductor cap layer 202, and the bottom of the trench 204. Thus, by the via layer 209, the patterned portions 204a, 202b, 202c, and 202d of the patterned semiconductor cap layer 202 on top of the ridge multilayer stacks 210a, 210b, 210c, and 210d can be electrically conducted.

之後,再於通道層209上形成複數個接觸電極220,與通道層209直接接觸。在本發明的一些實施例中,接觸電極220的形成方式包含下述步驟:首先在脊狀多層疊層210a、210b、210c和210d上形成一介電層230,例如矽氧化物層。再以通道層209為蝕刻停止層,對介電層230進行蝕刻,藉以在介電層230中形成複數個開口222,將圖案化半導體覆蓋層202的覆蓋部分202a、202b、202c和202d暴露於外。後續,再於開口222中形成阻障層220a,並以金屬材料,例如金(Au)、銅(Cu)、鋁(Al)或其他合 適的金屬或合金料填充開口222,以在開口222中形成接觸電極220。後續,再經由一連串後段製程(未繪示)完成立體記憶體元件300的製備(如第2G圖所繪示)。 Thereafter, a plurality of contact electrodes 220 are formed on the channel layer 209 to be in direct contact with the channel layer 209. In some embodiments of the invention, the manner in which the contact electrode 220 is formed includes the step of first forming a dielectric layer 230, such as a tantalum oxide layer, on the ridge multilayer stacks 210a, 210b, 210c, and 210d. The channel layer 209 is used as an etch stop layer, and the dielectric layer 230 is etched to form a plurality of openings 222 in the dielectric layer 230 to expose the covered portions 202a, 202b, 202c, and 202d of the patterned semiconductor cap layer 202. outer. Subsequently, the barrier layer 220a is further formed in the opening 222, and is made of a metal material such as gold (Au), copper (Cu), aluminum (Al) or the like. A suitable metal or alloy fill fills the opening 222 to form the contact electrode 220 in the opening 222. Subsequently, the preparation of the stereo memory device 300 is completed via a series of back-end processes (not shown) (as shown in FIG. 2G).

由於,圖案化半導體覆蓋層202和通道層209皆係半導體材質,可整合成一厚度較大的接觸區,可提供定義開口222的蝕刻製程較大的製程裕度。另外,厚度較大的接觸區也可防止通道層209和阻障層220a之間所生成的金屬矽化物層產生空隙,進降低而導致接觸電極220與通道層209之間的接觸電阻值。 Since the patterned semiconductor cap layer 202 and the channel layer 209 are both made of a semiconductor material, they can be integrated into a thick contact region, which provides a process margin for defining an opening 222 with a large etching process. In addition, the contact region having a larger thickness can also prevent voids in the metal telluride layer formed between the channel layer 209 and the barrier layer 220a, and the contact resistance between the contact electrode 220 and the channel layer 209 is lowered.

請參照第3A圖至第3E圖,第3A圖至第3E圖係根據本發明的另一實施例所繪示之製作立體記憶體元件300的製程結構剖面圖。其中,製作立體記憶體元件300的方法與製作立體記憶體元件200的方法類似,差別僅在於,製作立體記憶體元件300的方法在進行蝕刻步驟207以移除一部分記憶材料層206之前,還包括選擇性地於記憶材料層206上形成一半導體薄膜301。為了簡潔描述起見,本實施例由第3A圖開始,其中第3A圖係接續第2C圖,第2C圖之前的相同製程將與以省略而不再贅述。 Referring to FIGS. 3A-3E, FIG. 3A to FIG. 3E are cross-sectional views showing a process structure for fabricating the stereo memory device 300 according to another embodiment of the present invention. The method of fabricating the stereo memory device 300 is similar to the method of fabricating the stereo memory component 200, except that the method of fabricating the stereo memory component 300 includes before performing the etching step 207 to remove a portion of the memory material layer 206. A semiconductor film 301 is selectively formed on the memory material layer 206. For the sake of brevity, the present embodiment begins with FIG. 3A, wherein FIG. 3A is continued to the 2Cth diagram, and the same process before the 2Cth embodiment will be omitted and will not be described again.

在本發明的一些實施例之中,半導體薄膜301可以是藉由低壓化學氣相沉積製程而毯覆於記憶材料層206上的半導體膜層(coating)。半導體薄膜301的材質,較佳也可以是多晶矽。半導體薄膜301的厚度實質介於100Å至300Å之間。在本實施例之中,半導體薄膜301的厚度較佳約為100Å。 In some embodiments of the invention, the semiconductor film 301 may be a semiconductor coating that is blanketed on the memory material layer 206 by a low pressure chemical vapor deposition process. The material of the semiconductor thin film 301 is preferably polycrystalline germanium. The thickness of the semiconductor film 301 is substantially between 100 Å and 300 Å. In the present embodiment, the thickness of the semiconductor thin film 301 is preferably about 100 Å.

之後,以半導體薄膜301為蝕刻停止層,對記憶材料層206進行一蝕刻步驟207,以移除於覆蓋部分202a、202b、202c和202d上,以及覆蓋於溝槽204之底部上的一部分記憶材料層206和半導體薄膜301,將位於脊狀多層疊層210a、210b、210c和210d頂部的圖案化半導體覆蓋層202暴露於外,並將一部分基材201再度經由溝槽204暴露於外(如第3B圖所繪示)。在本實施例之中,剩餘的記憶材料層206僅位於溝槽的側壁204a之上,剩餘的半導體薄膜301覆蓋於剩餘的記憶材料層206上,在溝槽的側壁204a上形成間隙壁(spacer),保護剩餘的記憶材料層206免於受到後續進行的蝕刻製程損壞。 Thereafter, the semiconductor film 301 is used as an etch stop layer, and the memory material layer 206 is subjected to an etching step 207 to be removed on the covering portions 202a, 202b, 202c, and 202d, and a portion of the memory material covering the bottom of the trench 204. The layer 206 and the semiconductor film 301 expose the patterned semiconductor cap layer 202 on top of the ridge multilayer stacks 210a, 210b, 210c, and 210d, and expose a portion of the substrate 201 to the outside via the trench 204 (eg, 3B is shown). In the present embodiment, the remaining memory material layer 206 is only located on the sidewall 204a of the trench, and the remaining semiconductor film 301 covers the remaining memory material layer 206, forming a spacer on the sidewall 204a of the trench (spacer The remaining memory material layer 206 is protected from damage by subsequent etching processes.

在移除覆蓋於覆蓋部分202a、202b、202c和202d上以及覆蓋於溝槽204底部上的一部分記憶材料層206之後,可再進行一回蝕製程208,藉以移除靠近溝槽204開口的一部分記憶材料層206,使記憶材料層206實質低於圖案化半導體覆蓋層202的頂面202f,並且在圖案化半導體覆蓋層202與半導體薄膜301之間形成複數個凹室302(如第3C圖所繪示)。 After removing a portion of the memory material layer 206 overlying the cover portions 202a, 202b, 202c, and 202d and overlying the bottom of the trench 204, an etch back process 208 can be performed to remove portions of the opening adjacent the trench 204. The memory material layer 206 is such that the memory material layer 206 is substantially lower than the top surface 202f of the patterned semiconductor cap layer 202, and a plurality of recesses 302 are formed between the patterned semiconductor cap layer 202 and the semiconductor film 301 (as shown in FIG. 3C) Painted).

之後,再於脊狀多層疊層210a、210b、210c和210d上進行共形沉積,以形成通道層209覆蓋於記憶材料層206、剩餘的半導體薄膜301、圖案化半導體覆蓋層202以及溝槽204的底部上,並且使通道層209與圖案化半導體覆蓋層202的頂面202f以及剩餘的半導體薄膜301直接接觸。進而藉由通道層209,將圖案化半導體覆蓋層202位於脊狀多層疊層210a、210b、210c 和210d頂部的覆蓋部分202a、202b、202c和202d電性導通(如第3D圖所繪示)。 Thereafter, conformal deposition is performed on the ridge multilayer stacks 210a, 210b, 210c, and 210d to form a channel layer 209 overlying the memory material layer 206, the remaining semiconductor film 301, the patterned semiconductor cap layer 202, and the trench 204. The bottom layer and the channel layer 209 are in direct contact with the top surface 202f of the patterned semiconductor cap layer 202 and the remaining semiconductor film 301. The patterned semiconductor cap layer 202 is then placed on the ridge multilayer stack 210a, 210b, 210c by the via layer 209. The cover portions 202a, 202b, 202c, and 202d at the top of the 210d are electrically conductive (as shown in FIG. 3D).

由於,通道層209、半導體薄膜301和圖案化半導體覆蓋層202皆係由多晶矽所構成,但三者係由不同沉積製程所形成,因此通道層209和圖案化半導體覆蓋層202之間以及通道層209和半導體薄膜301之間,會分別存在一個可藉由電子顯微鏡,例如光發射電子顯微鏡,觀測到的晶粒界面219和303。其中,晶粒界面219和303皆為U形。 Since the channel layer 209, the semiconductor film 301 and the patterned semiconductor cap layer 202 are all composed of polysilicon, the three are formed by different deposition processes, so the channel layer 209 and the patterned semiconductor cap layer 202 and the channel layer are formed. Between the 209 and the semiconductor film 301, there are respectively a grain boundaries 219 and 303 which can be observed by an electron microscope such as a light emission electron microscope. Wherein, the grain interfaces 219 and 303 are both U-shaped.

之後,再於通道層209上形成複數個接觸電極220,與通道層209直接接觸。在本發明的一些實施例中,接觸電極220的形成方式包含下述步驟:首先在脊狀多層疊層210a、210b、210c和210d上形成一介電層230,例如矽氧化物層。再以通道層209為蝕刻停止層,對介電層230進行蝕刻,藉以在介電層230中形成複數個開口222,將圖案化半導體覆蓋層202的覆蓋部分202a、202b、202c和202d暴露於外。再於開口222中形成阻障層220a,並以金屬材料,例如金、銅、鋁或其他合適的金屬或合金料填充開口222,以在開口222中形成接觸電極220。後續,再經由一連串後段製程(未繪示)完成立體記憶體元件300的製備(如第圖3E所繪示)。 Thereafter, a plurality of contact electrodes 220 are formed on the channel layer 209 to be in direct contact with the channel layer 209. In some embodiments of the invention, the manner in which the contact electrode 220 is formed includes the step of first forming a dielectric layer 230, such as a tantalum oxide layer, on the ridge multilayer stacks 210a, 210b, 210c, and 210d. The channel layer 209 is used as an etch stop layer, and the dielectric layer 230 is etched to form a plurality of openings 222 in the dielectric layer 230 to expose the covered portions 202a, 202b, 202c, and 202d of the patterned semiconductor cap layer 202. outer. A barrier layer 220a is then formed in the opening 222 and the opening 222 is filled with a metallic material, such as gold, copper, aluminum, or other suitable metal or alloy material to form the contact electrode 220 in the opening 222. Subsequently, the preparation of the stereo memory component 300 is completed via a series of back-end processes (not shown) (as shown in FIG. 3E).

由於,圖案化半導體覆蓋層202和通道層209皆係半導體材質,可整合成一厚度較大的接觸區,可提供定義開口222的蝕刻製程較大的製程裕度。另外,厚度較大的接觸區也可防止 通道層209和阻障層220a之間的金屬矽化物接面產生空隙,進降低而導致金屬接觸結構106與通道層104之間的接觸電阻值。 Since the patterned semiconductor cap layer 202 and the channel layer 209 are both made of a semiconductor material, they can be integrated into a thick contact region, which provides a process margin for defining an opening 222 with a large etching process. In addition, the thicker contact area can also be prevented The metal germanide junction between the channel layer 209 and the barrier layer 220a creates a void which, in turn, results in a contact resistance between the metal contact structure 106 and the channel layer 104.

根據上述實施例,本發明是在提供一種立體記憶體元件及其製作方法。此一立體記憶體元件的製作方法,係先在多層堆疊結構上方額外形成一半導體覆蓋層,然後再形成複數條溝槽藉以將多層堆疊結構和半導體覆蓋層區隔成複數個脊狀多層疊層。後續再於溝槽側壁上形成記憶材料層和通道層,藉以定義出複數個記憶胞,並垂直串接成至少一個記憶胞串列。其中,半導體覆蓋層和通道層直接接觸。 According to the above embodiment, the present invention provides a three-dimensional memory element and a method of fabricating the same. The three-dimensional memory device is formed by additionally forming a semiconductor cap layer over the multi-layer stack structure, and then forming a plurality of trenches to separate the multi-layer stack structure and the semiconductor cap layer into a plurality of ridge-shaped multilayer stacks. . Subsequently forming a memory material layer and a channel layer on the sidewall of the trench, a plurality of memory cells are defined and vertically connected in series to at least one memory cell string. Wherein, the semiconductor cap layer and the channel layer are in direct contact.

由於,半導體覆蓋層可以和覆蓋於多層堆疊結構頂部的通道層整合,形成厚度較大的接觸區,而使後續形成在接觸區上的金屬接觸結構能有較大的製程裕度。同時,厚度較大的接觸區,可提供較多的多晶矽來與金屬接觸結構形成晶粒結構較小的金屬矽化物層,進而減少空隙的產生,有效降低金屬接觸結構與通道層之間的接觸電阻。又由於半導體覆蓋層僅覆蓋於多層堆疊結構的頂部,並不會增加位於溝槽側壁之記憶胞的通道層厚度。因此更可兼顧元件的控制效能。 Since the semiconductor cap layer can be integrated with the channel layer covering the top of the multi-layer stack structure to form a contact region having a larger thickness, the metal contact structure subsequently formed on the contact region can have a larger process margin. At the same time, the contact area with larger thickness can provide more polycrystalline germanium to form a metal telluride layer with a smaller grain structure with the metal contact structure, thereby reducing the generation of voids and effectively reducing the contact between the metal contact structure and the channel layer. resistance. Moreover, since the semiconductor cap layer covers only the top of the multilayer stack structure, it does not increase the channel layer thickness of the memory cells located on the sidewalls of the trench. Therefore, it is possible to balance the control performance of the components.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

200‧‧‧立體記憶體元件 200‧‧‧Three-dimensional memory components

201‧‧‧基材 201‧‧‧Substrate

202a-202d‧‧‧覆蓋部分圖案化 202a-202d‧‧‧ covered part of the patterning

204‧‧‧溝槽 204‧‧‧ trench

204a‧‧‧溝槽側壁 204a‧‧‧ trench sidewall

205‧‧‧導電條帶 205‧‧‧ Conductive strips

206‧‧‧記憶材料層 206‧‧‧ memory material layer

209‧‧‧通道層 209‧‧‧channel layer

210‧‧‧多層堆疊結構 210‧‧‧Multilayer stacking structure

210a-210d‧‧‧脊狀多層疊層 210a-210d‧‧‧ ridge multilayer laminate

211-217‧‧‧導電層 211-217‧‧‧ Conductive layer

219‧‧‧晶粒界面 219‧‧‧ grain interface

220‧‧‧接觸電極 220‧‧‧Contact electrode

220a‧‧‧阻障層 220a‧‧‧ barrier layer

222‧‧‧開口 222‧‧‧ openings

221-227‧‧‧絕緣層 221-227‧‧‧Insulation

230‧‧‧介電層 230‧‧‧ dielectric layer

Claims (8)

一種記憶體元件,包括:一圖案化多層堆疊結構(multi-layer stacks)位於一基材上,具有至少一溝槽,以定義出複數個脊狀多層疊層,其中每一該些脊狀多層疊層至少包括一導電條帶;一半導體覆蓋層(semiconductor capping layer),覆蓋於該些脊狀多層疊層上;一記憶材料層覆蓋於該溝槽的一側壁上;以及一通道層覆蓋於該記憶材料層、該半導體覆蓋層以及該溝槽的一底部上,且與該半導體覆蓋層直接接觸;以及一接觸電極(contact electrode),位於該半導體覆蓋層上方,並與該通道層直接接觸,且將該通道層電性連接至一位元線。 A memory component comprising: a patterned multi-layer stacks on a substrate having at least one trench to define a plurality of ridge multilayer stacks, each of which has a plurality of ridges The layer stack includes at least one conductive strip; a semiconductor capping layer covering the ridge multilayer stack; a memory material layer covering a sidewall of the trench; and a channel layer covering The memory material layer, the semiconductor cap layer and a bottom of the trench are in direct contact with the semiconductor cap layer; and a contact electrode is located above the semiconductor cap layer and in direct contact with the channel layer And electrically connecting the channel layer to a one-dimensional line. 如申請專利範圍第1項所述之記憶體元件,其中該圖案化多層堆疊結構包括彼此交錯堆疊的複數個絕緣層和複數個導體層。 The memory element of claim 1, wherein the patterned multilayer stack structure comprises a plurality of insulating layers and a plurality of conductor layers staggered with each other. 如申請專利範圍第1項所述之記憶體元件,其中該半導體覆蓋層和該通道層皆包括多晶矽,且該半導體覆蓋層和該通道層之間具有一晶粒界面(granular boundary)。 The memory device of claim 1, wherein the semiconductor cap layer and the channel layer each comprise a polysilicon, and the semiconductor cap layer and the channel layer have a granular boundary therebetween. 如申請專利範圍第1項所述之記憶體元件,更包括一半導 體間隙壁(spacer)位於該記憶材料層和該通道層之間,且與該通道層直接接觸。 For example, the memory component described in claim 1 of the patent scope includes a half lead A bulk spacer is located between the memory material layer and the channel layer and is in direct contact with the channel layer. 一種記憶體元件的製作方法,包括:於一基材上提供一多層堆疊結構;形成一半導體覆蓋層,覆蓋於該多層堆疊結構上;圖案化該多層堆疊結構和該半導體覆蓋層,藉以於該多層堆疊結構中形成至少一溝槽,以定義出複數個脊狀多層疊層,並使每一該些脊狀多層疊層至少包括一導電條帶;形成一記憶材料層,覆蓋該半導體覆蓋層以及該溝槽的一側壁和一底部;移除位於該半導體覆蓋層和該溝槽之該底部上的一部分該記憶材料層;形成一通道層,覆蓋該記憶材料層、該半導體覆蓋層以及該溝槽的該底部,且與該半導體覆蓋層直接接觸;形成一接觸電極,位於該半導體覆蓋層上方,並與該通道層直接接觸,且將該通道層電性連接至一位元線。 A method of fabricating a memory device, comprising: providing a multi-layer stack structure on a substrate; forming a semiconductor cap layer overlying the multi-layer stack structure; patterning the multi-layer stack structure and the semiconductor cap layer, thereby Forming at least one trench in the multilayer stack structure to define a plurality of ridge multilayer stacks, and each of the ridge multilayer stacks includes at least one conductive strip; forming a memory material layer covering the semiconductor cover a layer and a sidewall and a bottom of the trench; removing a portion of the memory material layer on the semiconductor cap layer and the bottom of the trench; forming a channel layer covering the memory material layer, the semiconductor cap layer, and The bottom of the trench is in direct contact with the semiconductor cap layer; a contact electrode is formed over the semiconductor cap layer and in direct contact with the via layer, and the via layer is electrically connected to the one bit line. 如申請專利範圍第5項所述之記憶體元件的製作方法,其中形成該半導體覆蓋層形成於該多層堆疊結構的一最頂層絕緣層上。 The method of fabricating a memory device according to claim 5, wherein the semiconductor cap layer is formed on a topmost insulating layer of the multilayer stack structure. 如申請專利範圍第5項所述之記憶體元件的製作方法,其中在移除該一部分該記憶材料層之前,更包括於該記憶材料層上形成一半導體薄膜。 The method of fabricating a memory device according to claim 5, wherein a semiconductor film is further formed on the memory material layer before the portion of the memory material layer is removed. 如申請專利範圍第5項所述之記憶體元件的製作方法,其中該半導體覆蓋層和該通道層皆包括多晶矽,且該半導體覆蓋層和該通道層之間具有一晶粒界面。 The method of fabricating a memory device according to claim 5, wherein the semiconductor cap layer and the channel layer each comprise a polysilicon, and the semiconductor cap layer and the channel layer have a grain boundary.
TW104115496A 2015-05-15 2015-05-15 Memory device and method for fabricating the same TWI555127B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104115496A TWI555127B (en) 2015-05-15 2015-05-15 Memory device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104115496A TWI555127B (en) 2015-05-15 2015-05-15 Memory device and method for fabricating the same

Publications (2)

Publication Number Publication Date
TWI555127B true TWI555127B (en) 2016-10-21
TW201640618A TW201640618A (en) 2016-11-16

Family

ID=57848420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104115496A TWI555127B (en) 2015-05-15 2015-05-15 Memory device and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI555127B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675231A (en) * 2020-05-14 2021-11-19 格芯新加坡私人有限公司 Memory device and method of forming a memory device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230284463A1 (en) * 2022-03-04 2023-09-07 Macronix International Co., Ltd. Memory structure and manufacturing method for the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201515152A (en) * 2013-10-15 2015-04-16 Macronix Int Co Ltd Memory and manufacturing method thereof
TW201517242A (en) * 2013-10-29 2015-05-01 Macronix Int Co Ltd Three dimensional stacked semiconductor structure and method for manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201515152A (en) * 2013-10-15 2015-04-16 Macronix Int Co Ltd Memory and manufacturing method thereof
TW201517242A (en) * 2013-10-29 2015-05-01 Macronix Int Co Ltd Three dimensional stacked semiconductor structure and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113675231A (en) * 2020-05-14 2021-11-19 格芯新加坡私人有限公司 Memory device and method of forming a memory device

Also Published As

Publication number Publication date
TW201640618A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
US10910399B2 (en) Three dimensional memory device and method for fabricating the same
US10141328B2 (en) Three dimensional memory device and method for fabricating the same
TWI627733B (en) Memory device and method for fabricating the same
TWI632645B (en) Three dimensional memory device and method for fabricating the same
KR101692389B1 (en) A vertical type semiconductor device and method of manufacturing the same
US9754790B2 (en) Memory device and method for fabricating the same
TWI643317B (en) Memory device and method for fabricating the same
TWI580012B (en) Memory device and method for fabricating the same
KR20140018541A (en) Nonvolatile memory device and method for fabricating the same
US11127756B2 (en) Three-dimensional memory device and manufacturing method thereof
KR20120078229A (en) Nonvolatile memory device and method for fabricating the same
JP2021118333A (en) Semiconductor storage device and method for manufacturing the same
TWI555127B (en) Memory device and method for fabricating the same
TWI655750B (en) Memory device and method for fabricating the same
US11101287B2 (en) Three dimensional memory device
CN106298784B (en) Memory component and preparation method thereof
TWI667741B (en) Three dimensional memory device and method for fabricating the same
CN111540749A (en) Three-dimensional memory and forming method thereof
TWI647819B (en) Three dimensional memory device and method for fabricating the same
TWI565038B (en) Memory device and method for fabricating the same
US11315826B2 (en) Three dimensional memory device and method for fabricating the same
JP2021027332A (en) Vertical semiconductor device
CN109003987B (en) Memory element and manufacturing method thereof
TWI635600B (en) Three dimensional memory device and method for fabricating the same
CN108682677B (en) Memory element and manufacturing method thereof