TWI554340B - Rolling simulation device - Google Patents
Rolling simulation device Download PDFInfo
- Publication number
- TWI554340B TWI554340B TW103142558A TW103142558A TWI554340B TW I554340 B TWI554340 B TW I554340B TW 103142558 A TW103142558 A TW 103142558A TW 103142558 A TW103142558 A TW 103142558A TW I554340 B TWI554340 B TW I554340B
- Authority
- TW
- Taiwan
- Prior art keywords
- model
- rolling
- parameter
- simulation
- unit
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Mechanical Engineering (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Control Of Metal Rolling (AREA)
- Entrepreneurship & Innovation (AREA)
- Game Theory and Decision Science (AREA)
- Development Economics (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Feedback Control In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
Description
本發明係關於一種壓延模擬裝置,係模擬製造金屬製品之壓延線及壓延操作,且預測當變更金屬材料之尺寸或合金組成、加熱、壓延、冷卻之目標值及處理時之作業穩定性、處理中間材質、製品品質。 The invention relates to a calendering simulation device, which simulates a rolling line and a rolling operation for manufacturing a metal product, and predicts the stability of the operation when the metal material is changed in size or alloy composition, heating, calendering, cooling target value and processing. Intermediate material, product quality.
在以鋼為首之金屬材料中,機械特性(強度、成形性、靭性等)、電磁特性(透磁率等)等之材質係依其合金組成、加熱條件、加工條件、及冷卻條件而變化。合金組成係藉由控制成分元素之添加量而調整,在成分調整時例如使用可保持100噸左右之熔鋼的成分調整爐等、1個批量單位較大。因此,不可能依15噸左右之各個製品來變更添加。因此,為了製造所希望之材質的製品,較重要為適當地設定加熱條件、加工條件、及冷卻條件,來製作材質。再者,該等處理條件係不僅對於材質,亦對於製品尺寸或形狀等之製品品質、穩定之作業的實現為重要者。 In a metal material such as steel, materials such as mechanical properties (strength, formability, toughness, etc.) and electromagnetic properties (magnetic permeability, etc.) vary depending on the alloy composition, heating conditions, processing conditions, and cooling conditions. The alloy composition is adjusted by controlling the amount of the component element to be added, and when the component is adjusted, for example, a component adjustment furnace capable of holding a molten steel of about 100 tons is used, and one batch unit is large. Therefore, it is impossible to change the addition according to each product of about 15 tons. Therefore, in order to manufacture a product of a desired material, it is important to prepare a material by appropriately setting heating conditions, processing conditions, and cooling conditions. Furthermore, these processing conditions are important not only for the material but also for the quality of the product such as the size and shape of the product, and the realization of stable work.
在熱軋壓延處理中,藉由變更屬於關於製品品質或作業條件之處理條件的各種處理參數的目標值,而將製品分類製作。處理參數係例如有精軋入口側溫度、 精軋出口側溫度、捲取溫度等代表之壓延線上之各點的目標溫度、各通道之板厚排程表、裝設在壓延機之除屑(descaling)之各通道的使用與否、配置在連續壓延機之台座間的內台座冷卻機之使用與否及使用初期流量、精軋壓延機所使用之潤滑油量、及送出台所使用之冷卻模式等。 In the hot rolling calendering process, the products are classified and produced by changing the target values of various processing parameters belonging to the processing conditions of the product quality or the working conditions. The processing parameters are, for example, the temperature at the inlet side of the finish rolling, The target temperature at each point on the rolling line represented by the finish rolling side temperature, the coiling temperature, etc., the plate thickness schedule of each channel, the use of each channel installed in the descaling of the calender, and the configuration The use of the internal pedestal cooler between the pedestals of the continuous calender, the initial flow rate, the amount of lubricating oil used in the finishing rolling mill, and the cooling mode used in the delivery station.
為了達成目標之製品品質,亦即為了達成上述之各種處理參數的目標值,係進行由設定計算機之處理控制。 In order to achieve the desired product quality, that is, in order to achieve the target values of the various processing parameters described above, the processing control by the setting computer is performed.
設定計算機係採用顯現加熱、壓延、冷卻、搬送等各處理之物理現象的模型式,進行設定計算俾以達成上述各種處理參數之目標值。在設定計算中,反覆進行各種致動器之控制目標值的計算、及處理之各階段中之壓延材(金屬材料)之狀態的預測計算。 The computer system is configured to perform a setting calculation by using a model formula showing physical phenomena such as heating, rolling, cooling, and transportation, so as to achieve the target values of the various processing parameters described above. In the setting calculation, the calculation of the control target value of each actuator and the prediction calculation of the state of the rolled material (metal material) in each stage of the process are repeatedly performed.
計算設定計算所使用之壓延荷重、變形阻力、輥縫、溫度、粒徑等之物理量的模型式,係以輸入變數、機械常數、調整項、學習項之函數來表示。 The model formula for calculating the physical quantities such as the rolling load, the deformation resistance, the roll gap, the temperature, and the particle size used in the calculation calculation is expressed by a function of an input variable, a mechanical constant, an adjustment term, and a learning term.
在專利文獻1或專利文獻2中揭示有以下方法:設定計算機係將模型預測值、與由設置在壓延線之感測器所得之溫度、形狀、板厚、板寬、壓延荷重等實際值予以比較,且預先自動地學習模型式之學習項,以使模型式之精確度及使用該模型式之控制精確度提升的方法。 Patent Document 1 or Patent Document 2 discloses a method in which a computer system sets an actual value such as a model prediction value and a temperature, a shape, a plate thickness, a plate width, and a rolling load obtained by a sensor provided on a rolling line. Compare and automatically learn the model-based learning items in advance so that the accuracy of the model and the method of controlling the accuracy of the model can be improved.
再者,在專利文獻3中,提案有以下之方法:針對預測壓延材之微組織之變化及最終製品之機械性質的材質預測模式,利用由對於一部分製品線圈實施之拉 伸試驗或組織觀察等機械性質之測定試驗結果所得的機械性質之實際值來進行模型學習之方法。一般而言,模型參數(機械常數、調整項、學習項)係利用容易產生模型誤差之因數、例如鋼種、目標板厚、目標板寬、目標溫度等所區分之層別表,在設定計算機所屬之資料庫內進行管理。 Further, in Patent Document 3, there is proposed a method of predicting a material for predicting a change in microstructure of a rolled material and a mechanical property of a final product, using a pull for a coil of a part of the product. The method of model learning is carried out by measuring the actual value of the mechanical properties obtained from the test results of mechanical properties such as tensile test or tissue observation. In general, the model parameters (mechanical constants, adjustment items, learning items) are based on factors that are easy to generate model errors, such as steel grade, target thickness, target panel width, target temperature, etc. Managed within the database.
此外,申請人係認知包含上述文獻之以下所記載之文獻,以作為與本發明相關連者。 Further, Applicants recognize the following documents including the above documents as a related to the present invention.
(專利文獻1)日本特許第4119684號公報 (Patent Document 1) Japanese Patent No. 4119684
(專利文獻2)日本特許第4402502號公報 (Patent Document 2) Japanese Patent No. 4402502
(專利文獻3)日本特開2010-172962號公報 (Patent Document 3) Japanese Patent Laid-Open Publication No. 2010-172962
(專利文獻4)日本特開2001-25805號公報 (Patent Document 4) Japanese Patent Laid-Open Publication No. 2001-25805
(非專利文獻1)塑性加工技術系列7板壓延(社)第198至229頁 (Non-Patent Document 1) Plastic Processing Technology Series 7 Plate Calendering ( Society) pp. 198-229
(非專利文獻2)第173、174屆西山記念技術講座「熱延鋼材之組織變化及材質之預測」(社團法人日本鋼鐵協會刊)第125頁 (Non-Patent Document 2) The 173th and 174th Nishiyama Memorial Technical Lectures "Predicting the Organizational Changes and Materials of Hot-Temperature Steel" (Journal of Japan Iron and Steel Association) Page 125
以往,壓延作業之處理參數係依據每個製 品規格長年以來之經驗而決定,為了達成上述決定,一般而言為進行溫度控制及尺寸控制的方法。然而,近年來,對於製品規格之要求的高度化、多樣化顯著,利用依據經驗之方法未必就能適當地決定該等目標值,亦有無法達成所希望之尺寸或機械性質之目標的最終品質之情形。此外,會有難以判斷是否能以既存之設備達成處理參數之目標值之情形。 In the past, the processing parameters of the rolling operation were based on each system. The product specification has been determined over the years, and in order to achieve the above decision, it is generally a method of temperature control and size control. However, in recent years, the requirements for product specifications have become more highly diverse and diversified, and it is not always possible to appropriately determine such target values using empirical methods, and there is also a final quality that cannot achieve the desired size or mechanical properties. The situation. In addition, it may be difficult to determine whether it is possible to achieve the target value of the processing parameters with the existing equipment.
因此,為了事前檢討在某合金組成及處理參數之下製造的製品是否可獲得所希望之製品品質,係提案一種利用使加熱、加工、及冷卻之各製造步驟模型化之處理模型,且在離線下模擬製造步驟之裝置(例如專利文獻4)。模擬裝置係預測各時刻之金屬材料的尺寸、溫度、製造線上之位置等的狀態,將金屬材料之合金組成的資訊及由製造步驟之模擬所得之加工歷程紀錄及溫度歷程紀錄之資訊作為輸入值,並藉由微組織預測模型來預測各時刻之壓延材之微組織的變化及最終製品之機械性質。此外,模擬裝置亦用於發現可獲得所希望之品質的合金組成及處理參數的目標值。 Therefore, in order to review in advance whether a product manufactured under an alloy composition and processing parameters can obtain the desired product quality, a processing model that utilizes various manufacturing steps for heating, processing, and cooling is proposed, and is offline. A device that simulates a manufacturing step (for example, Patent Document 4). The simulation device predicts the state of the metal material at each time, the temperature, the position on the manufacturing line, etc., and the information on the alloy composition of the metal material and the processing history record and temperature history record obtained from the simulation of the manufacturing step are used as input values. And by using the micro-organization prediction model to predict the change of the microstructure of the rolled material at each moment and the mechanical properties of the final product. In addition, the simulation device is also used to find the target values of the alloy composition and processing parameters for which the desired quality can be obtained.
在模擬中,係採用與實際作業之設定計算所用之模型相同的模型、簡易化之模型、或使一部分忠實地模型化成物理現象之高精確的模型等。模擬係不使用實際作業所用之設定計算機、及管理上述處理參數或模型參數之資料庫,而是另外準備有模擬專用之計算機及資料庫。在模擬實際之壓延作業的用途下進行模擬,且在使用 與實際作業之設定計算所用之模型式相同的函數時亦同。這是由於模擬用之計算及對資料庫之讀寫所產生之負荷不能對實際作業造成影響之故。 In the simulation, the same model as the model used for the actual operation setting calculation, the simplified model, or a highly accurate model in which a part of the model is faithfully modeled into a physical phenomenon is used. The simulation system does not use the setting computer used for the actual work, and the database for managing the above-mentioned processing parameters or model parameters, but separately prepares a computer and a database dedicated to the simulation. Simulated and used while simulating the actual rolling operation The same is true for the same function as the model used for the actual job setting calculation. This is because the calculations used for simulation and the load generated by reading and writing the database cannot affect the actual operation.
實際作業係對於1個壓延材,在加熱爐爐中依據設定計算之試計算、在加熱爐抽出時依據設定計算、而在抽出後依據壓延中隨時收集之實際值,反覆執行數次至數十次之設定計算。要使用之參數、要收集之實際值、設定計算的輸出係由於資料龐大且資料之交換頻繁,因此對資料庫之讀寫所產生之負荷較大。再者,亦對於該壓延材前後之數個壓延材,進行同樣之設定計算或對資料庫之寫入。因計算負荷之急遽的增加、及對資料庫之高頻度的讀寫而在實際作業之設定計算產生問題時,不得不停止壓延作業而造成大的損失。在實際作業之設定計算中,依據該設備之壓延間距及收集資料點數等,密切地設計計算時序(timing)、對資料庫之存取方法及時序。 The actual operation is performed for several rolled materials in the heating furnace according to the calculation calculation of the setting calculation, according to the setting calculation when the heating furnace is taken out, and after the extraction according to the actual value collected at any time during the rolling, repeatedly executing several times to several tens The second setting calculation. The parameters to be used, the actual values to be collected, and the output of the set calculations are due to the large amount of data and the frequent exchange of data, so the load on the database is greatly increased. Furthermore, the same setting calculation or writing to the database is performed for the plurality of rolled materials before and after the rolled material. Due to the rapid increase in the calculation load and the reading and writing of the high frequency of the database, when the calculation of the actual operation is calculated, the rolling operation has to be stopped and a large loss is caused. In the actual operation setting calculation, the timing of the calculation, the access method to the database, and the timing are closely designed according to the rolling pitch of the device and the number of collected data points.
然而,在模擬之情形時,由於在離線下計算所模擬之處理,因此與實際之壓延作業的處理控制不同,無法獲得由設置在處理之各部位的感測器所得之荷重或溫度、尺寸之實際值及製品線圈的機械性質之實際值。因此,在與模擬相同之條件下進行實際之壓延時,是否達成處理參數之目標值、甚至目標之製品品質,並無法完全從模擬來加以確認。此外,由於依據實際值之壓延中的前饋、反饋、動態等各種控制並不會實施,因此在產生模型預測誤差之情形時,會蓄積該模型預測誤差,且越後段之 處理,處理參數之目標值與實際值之差就越大,而無法正確地預測製品品質。因此,模擬所使用之處理的模型式之精確度(特別是模型參數之精確度)本身係與模擬之精確度、亦即能以何種程度模擬實際之壓延作業,明顯地相關連。 However, in the case of simulation, since the simulated processing is calculated offline, unlike the processing control of the actual rolling operation, the load or temperature and size obtained by the sensors provided at the respective portions of the processing cannot be obtained. The actual value and the actual value of the mechanical properties of the product coil. Therefore, the actual pressure delay under the same conditions as the simulation, whether the target value of the processing parameter or even the target product quality is achieved, cannot be completely confirmed from the simulation. In addition, since various controls such as feedforward, feedback, and dynamics in the rolling according to the actual value are not implemented, when the model prediction error is generated, the model prediction error is accumulated, and the later stage is Processing, the difference between the target value and the actual value of the processing parameter is larger, and the product quality cannot be correctly predicted. Therefore, the accuracy of the model used for the simulation (especially the accuracy of the model parameters) is inherently related to the accuracy of the simulation, ie the extent to which the actual calendering operation can be simulated.
然而,製造線及金屬材料係在模擬上之模型下進行模擬者,且實際作業之設定計算係指:由於並未共用計算機或屬於該計算機之資料庫,因此模型式內之調整項或學習項、表示各致動器之機械特性之機械常數並未被更新。在專利文獻4中,為了在進行設備更新之情形下亦能模擬實機壓延線,係進行可容易地修正與設備相關之模型參數的策略。然而,模型之學習項、調整項的參數種類龐大,甚至在每次壓延或每次調整頻繁地進行更新,因此難以在每次變更之際適當地修正參數。此時,與存在於用在實際作業之控制或預測的計算機之模型不同,無法精確度佳地模擬實際壓延處理,因此即使將在模擬中所用之合金組成及處理參數適用於實際作業,亦會有無法獲得所期待之製品品質的問題。 However, the manufacturing line and the metal material are simulated under the model of the simulation, and the calculation of the actual operation means that the adjustment item or the learning item in the model type is not shared by the computer or the database belonging to the computer. The mechanical constant indicating the mechanical properties of each actuator has not been updated. In Patent Document 4, in order to simulate a real rolling line in the case where device updating is performed, a strategy for easily correcting model parameters related to the device is performed. However, the types of parameters of the learning items and adjustment items of the model are large, and are frequently updated every time calendering or each adjustment, so it is difficult to appropriately correct the parameters at each change. At this time, unlike the model of the computer existing in the control or prediction of the actual operation, the actual calendering process cannot be accurately simulated, so even if the alloy composition and processing parameters used in the simulation are applied to the actual operation, There is a problem that the quality of the desired product cannot be obtained.
本發明係為了要解決上述課題而研創者,其目的在於提供一種壓延模擬裝置,其係在與實際作業之設定計算機不同的計算機上,可精確度高地模擬使用實際作業之壓延線的虛擬金屬材料之壓延過程。 The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a calendering simulation apparatus which can accurately simulate a virtual metal material using a rolling line of an actual operation on a computer different from a computer having an actual operation setting. The calendering process.
為了達成上述目的,第1發明係一種連接在 壓延系統之壓延模擬裝置,該壓延模擬裝置係具備:壓延線,係具有對金屬材料進行加熱、壓延、冷卻、搬送之致動器群、及檢測出前述致動器群之控制實際值及前述金屬材料之狀態實際值的感測器群;以及設定計算機,係算出前述致動器群之控制目標值及/或前述金屬材料之狀態預測值;前述設定計算機係:具有第1模型式,該第1模型式係顯現前述壓延線中之加熱、壓延、冷卻、搬送的各處理之物理現象之模型式,且為利用以輸入變數及模型參數群作為輸入之函數來表示者,利用前述第1模型式,以達成實際作業中之與製品品質及/或作業條件相關之處理條件的方式,算出前述致動器群之控制目標值與前述金屬材料之狀態預測值,依據比較前述控制目標值及前述狀態預測值、與前述感測器群所檢測出之前述控制實際值及前述狀態實際值的比較值,將前述第1模型式之前述模型參數群予以隨時更新,前述壓延模擬裝置係具備:模擬條件設定部,係設定以前述壓延線對虛擬金屬材料進行加熱、壓延、冷卻、搬送之虛擬作業中之與製品品質及/或作業條件相關之模擬條件;虛擬壓延線設定計算部,係具有與前述第1模型式同樣之第2模型式,利用前述第2模型式,以達成前述模擬 條件之方式,算出前述致動器群之控制目標值及前述虛擬金屬材料之狀態預測值;以及參數更新部,係在前述第1模型式之前述模型參數群被更新時,依據前述第1模型式之前述模型參數群來更新前述第2模型式之前述模型參數群。 In order to achieve the above object, the first invention is a connection a rolling simulation device for a rolling system, comprising: a rolling line having an actuator group for heating, rolling, cooling, and transporting a metal material, and a control actual value for detecting the actuator group and the foregoing a sensor group of actual state values of the metal material; and a setting computer that calculates a control target value of the actuator group and/or a state prediction value of the metal material; and the setting computer system has a first model type, The first model type is a model expression showing physical phenomena of each process of heating, rolling, cooling, and transport in the rolling line, and is expressed by a function using input variables and model parameter groups as inputs, and the first The model formula calculates a control target value of the actuator group and a state predicted value of the metal material in a manner that achieves processing conditions related to product quality and/or operating conditions in an actual operation, and compares the control target value with The state predicted value, the comparison value between the control actual value detected by the sensor group and the actual value of the state, The model parameter group of the first model formula is updated at any time, and the rolling simulation device includes an analog condition setting unit that sets a virtual operation for heating, rolling, cooling, and transporting the dummy metal material by the rolling line. The simulation condition related to the product quality and/or the working condition; the virtual rolling line setting calculation unit has the second model equation similar to the first model formula, and the second model formula is used to achieve the simulation. a condition of calculating a control target value of the actuator group and a state predicted value of the dummy metal material; and a parameter update unit that is based on the first model when the model parameter group of the first model formula is updated The aforementioned model parameter group of the formula is used to update the aforementioned model parameter group of the second model formula.
此外,第2發明係在第1發明中,前述參數更新部係具備:更新時序指定部,係指定在實際作業中未由前述設定計算機執行計算之時序;參數複製部,係在前述時序,將前述第1模型式之前述模型參數群複製在前述第2模型式之前述模型參數群。 According to a second aspect of the invention, the parameter update unit includes: an update timing designating unit that specifies a timing at which calculation is not performed by the setting computer in an actual operation; and the parameter copying unit is in the sequence described above. The model parameter group of the first model formula is copied to the model parameter group of the second model formula.
再者,第3發明係在第1發明中,前述參數更新部係具備:更新參數選擇部,係在前述第2模型式之前述模型參數群中,選擇前述虛擬壓延線設定計算部中之利用前述模擬條件之模型計算所需之一部分的模型參數群;以及參數複製部,係僅針對由前述更新參數選擇部所選擇之前述一部分之模型參數群,從前述第1模型式之前述模型參數群進行複製。 According to a third aspect of the invention, the parameter update unit includes: an update parameter selection unit that selects the use in the virtual rolling line setting calculation unit among the model parameter groups of the second model formula; The model of the simulation condition calculates a part of the model parameter group required; and the parameter copying unit is only for the model parameter group of the part selected by the update parameter selecting unit, and the model parameter group of the first model formula Make a copy.
依據第1發明,在第1模型式之模型參數群被更新時,依據第1模型式之模型參數群,更新第2模型式之模型參數群。藉此,可將壓延模擬裝置之模型參數予以更新為實際作業之設定計算機之最新資料。因此,依據 第1發明,在與實際作業之設定計算機不同的計算機上,可精確度高地模擬利用實際作業之壓延線之虛擬金屬材料的壓延過程。 According to the first aspect of the invention, when the model parameter group of the first model is updated, the model parameter group of the second model is updated based on the model parameter group of the first model. Thereby, the model parameters of the calendering simulation device can be updated to the latest information of the actual setting computer. Therefore, based on According to the first aspect of the invention, the rolling process of the dummy metal material using the actual working rolling line can be accurately simulated on a computer different from the actual setting computer.
依據第2或第3發明,可一邊抑制實際作業之設定計算機中對計算賦予之負荷的增大,一邊將壓延模擬裝置之模型參數予以更新成實際作業之設定計算機中之最新資料。 According to the second or third aspect of the invention, it is possible to update the model parameters of the rolling simulation device to the latest data in the setting computer of the actual operation while suppressing an increase in the load imposed on the calculation in the setting computer of the actual operation.
1‧‧‧壓延線 1‧‧‧calendering line
10‧‧‧搬送台 10‧‧‧Transportation station
11‧‧‧加熱爐 11‧‧‧heating furnace
12‧‧‧粗壓延機 12‧‧‧crude rolling machine
13‧‧‧片帶加熱器 13‧‧‧Film with heater
14‧‧‧精軋壓延機入口側溫度計 14‧‧‧ Finishing calender entrance side thermometer
15‧‧‧精軋壓延機 15‧‧‧Rolling calender
16‧‧‧精軋壓延機出口側溫度計 16‧‧‧Exhaust side thermometer for finishing rolling calender
17‧‧‧送出台 17‧‧‧Send
18‧‧‧捲取機入口側溫度計 18‧‧‧Winner inlet side thermometer
19‧‧‧捲取機 19‧‧‧Winding machine
20‧‧‧壓延系統 20‧‧‧Depression system
21‧‧‧控制用控制器 21‧‧‧Control controller
23‧‧‧設定計算機 23‧‧‧Set computer
24‧‧‧壓延模擬裝置 24‧‧‧Depression simulator
25‧‧‧上位計算機 25‧‧‧Upper computer
31‧‧‧模擬條件設定部 31‧‧‧ Simulation Condition Setting Department
32‧‧‧虛擬壓延線設定計算部 32‧‧‧Virtual calender line setting calculation section
33‧‧‧參數更新部 33‧‧‧Parameter Update Department
41‧‧‧更新時序指定部 41‧‧‧Update Timing Designation Department
42‧‧‧更新參數選擇部 42‧‧‧Update parameter selection department
43‧‧‧參數複製部 43‧‧‧Parameter Copy Department
第1圖係顯示本發明實施形態1之熱軋薄板壓延線之一例的圖。 Fig. 1 is a view showing an example of a rolled sheet of a hot rolled sheet according to Embodiment 1 of the present invention.
第2圖係顯示本發明實施形態1之壓延系統的方塊圖。 Fig. 2 is a block diagram showing a rolling system according to a first embodiment of the present invention.
第3圖係顯示本發明實施形態1之壓延模擬裝置24之功能的方塊圖。 Fig. 3 is a block diagram showing the function of the rolling simulation device 24 according to the first embodiment of the present invention.
第4圖係輸入虛擬金屬材料之化學成分的輸入畫面。 Figure 4 is an input screen for inputting the chemical composition of the virtual metal material.
第5圖係在加熱爐11內之扁胚升溫模式之一例的圖。 Fig. 5 is a view showing an example of a flat embryo heating mode in the heating furnace 11.
第6圖係用以說明在送出台17之冷卻模式的圖。 Fig. 6 is a view for explaining the cooling mode at the delivery station 17.
第7圖係用以說明在送出台17之冷卻模式的圖。 Fig. 7 is a view for explaining the cooling mode at the delivery station 17.
第8圖係顯示虛擬壓延線設定計算部32所具有之模型群與模型參數表群的圖。 Fig. 8 is a view showing a model group and a model parameter table group which the virtual rolling line setting calculation unit 32 has.
第9圖係針對參數更新部33所執行之處理加以說明的圖。 The ninth figure is a figure explaining the process performed by the parameter update part 33.
第10圖係顯示參數更新部33之構成的方塊圖。 Fig. 10 is a block diagram showing the configuration of the parameter updating unit 33.
第11圖係顯示將壓延模擬裝置24所用之模型參數更 新成最新狀態所適合之更新時序的圖。 Figure 11 shows the model parameters used in the calendering simulation device 24. A map of the updated timing that is suitable for the latest state of the new.
第12圖係顯示在接受模擬執行指令時,將模擬所需之調整項及學習項更新成最新狀態之處理的1個具體例之圖。 Fig. 12 is a view showing a specific example of a process of updating the adjustment items and the learning items required for the simulation to the latest state when the simulation execution command is accepted.
第13圖係顯示將存在於虛擬壓延線設定計算部32之各模型的參數更新成與在實際作業中使用之最新參數相同之值的處理程序(routine)之流程圖。 Fig. 13 is a flowchart showing a processing procedure for updating the parameters of the respective models existing in the virtual rolling line setting calculation unit 32 to the same values as the latest parameters used in the actual work.
第14圖係顯示利用壓延模擬裝置24來檢討合金組成及製造條件之1個順序的流程圖。 Fig. 14 is a flow chart showing a procedure for reviewing the alloy composition and manufacturing conditions by the rolling simulation device 24.
以下,參照圖式對本發明之實施形態詳細地說明。此外,對於各圖中共通之要素,係標示同一之符號並省略重複之說明。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same elements in the respective drawings are denoted by the same reference numerals and the description thereof will not be repeated.
實施形態1 Embodiment 1
[實施形態1之系統構成] [System configuration of the first embodiment]
(壓延線) (rolling line)
第1圖係顯示本發明實施形態1之熱軋薄板壓延線之一例的圖。以後說明之對象為模擬第1圖所示之熱軋薄板壓延線的模擬器。此外,本模擬器亦可適用於其他壓延線。 Fig. 1 is a view showing an example of a rolled sheet of a hot rolled sheet according to Embodiment 1 of the present invention. The object to be described later is a simulator for simulating the hot rolled sheet rolling line shown in Fig. 1. In addition, this simulator can also be applied to other rolling lines.
壓延線係具備加熱裝置、壓延機、冷卻裝置、捲取裝置、連結上述裝置之搬送台。該等裝置係藉由電動機或油壓裝置等致動器而驅動。具體而言,第1圖所示之壓延線1係從搬送台10之上游側起依序具有加熱爐11、粗壓延機12、片帶加熱器13、精軋壓延機入口側溫度 計14、精軋壓延機15、精軋壓延機出口側溫度計16、送出台(run out table)17、捲取機入口側溫度計18、及捲取機19。 The rolling line includes a heating device, a rolling machine, a cooling device, a winding device, and a transfer table that connects the devices. These devices are driven by actuators such as electric motors or hydraulic devices. Specifically, the rolling line 1 shown in Fig. 1 has the heating furnace 11, the rough calender 12, the strip heater 13, and the inlet side temperature of the finish rolling calender from the upstream side of the transfer table 10 in this order. The finisher 14, the finish rolling calender 15, the finish rolling calender outlet side thermometer 16, the run out table 17, the coiler inlet side thermometer 18, and the coiler 19.
加熱爐11係用以加熱扁胚(slap)之爐。加熱爐11係控制成獲得所希望之扁胚升溫模式、加熱爐抽出溫度。粗壓延機12係由單數個或複數個台座所構成,在第1圖所示之例中,由1個台座所構成之可逆式粗壓延機。片帶加熱器13係為了控制壓延製品(亦包含從扁胚至完成為製品為止之途中的狀態,以下亦同)之溫度,而藉由電磁感應加熱等而使壓延製品升溫之裝置。精軋壓延機15係由單數個或複數個台座所構成,在第1圖所示之例中,為由7個台座所構成之串聯式精軋壓延機。送出台17係為了控制壓延製品之溫度而藉由冷卻水將壓延製品予以冷卻之冷卻裝置。此外,壓延線1亦可具備作為冷卻裝置之冷卻台、強制冷卻裝置等。捲取機19係用以捲取壓延製品,且形成為容易搬送之形狀的裝置。搬送台10係將各步驟中之壓延製品搬送至下一個步驟之裝置。該等裝置係藉由電動機或油壓裝置等致動器而驅動。 The heating furnace 11 is a furnace for heating a slap. The heating furnace 11 is controlled to obtain a desired radish heating mode and a furnace extraction temperature. The rough calender 12 is composed of a single number or a plurality of pedestals, and in the example shown in Fig. 1, a reversible rough calender composed of one pedestal. The sheet heater 13 is a device for heating the rolled product by electromagnetic induction heating or the like in order to control the temperature of the rolled product (including the state from the flat embryo to the state in which the product is completed, and the same applies hereinafter). The finish rolling calender 15 is composed of a single number or a plurality of pedestals. In the example shown in Fig. 1, it is a tandem type finish rolling calender composed of seven pedestals. The delivery station 17 is a cooling device that cools the rolled product by cooling water in order to control the temperature of the rolled product. Further, the rolling line 1 may be provided with a cooling stage as a cooling device, a forced cooling device, or the like. The winder 19 is a device for winding up a rolled product and forming a shape that is easy to convey. The transfer table 10 transports the rolled product in each step to the apparatus of the next step. These devices are driven by actuators such as electric motors or hydraulic devices.
第2圖係顯示本發明實施形態1之壓延系統的方塊圖。第2圖所示之壓延系統20係具有階層0至階層3之階層構造。階層0係由控制用以驅動壓延線1之各裝置之電動機的驅動控制裝置、及用以驅動壓延線1之各裝置的油壓裝置所構成。階層1係由控制用控制器21所構成。階層2係由設定計算機23所構成。此外,亦可為採用 處理控制器之構成,以取代設定計算機23。階層3係由生產管理用之上位計算機25所構成。壓延模擬裝置24雖對實際作業之壓延沒有影響,但為了進行參數更新,係與設定計算機23連接。 Fig. 2 is a block diagram showing a rolling system according to a first embodiment of the present invention. The rolling system 20 shown in Fig. 2 has a hierarchical structure of a hierarchy 0 to a hierarchy 3. The hierarchy 0 is composed of a drive control device that controls the motors for driving the devices of the rolling line 1, and a hydraulic device for driving the devices of the rolling line 1. The hierarchy 1 is composed of the control controller 21. The hierarchy 2 is composed of a setting computer 23. In addition, it can also be adopted The configuration of the controller is replaced by the setting computer 23. The hierarchy 3 is composed of a production management upper computer 25. The rolling simulation device 24 does not affect the rolling of the actual work, but is connected to the setting computer 23 in order to update the parameters.
(設定計算機) (setting the computer)
在實際作業之熱軋壓延處理中,藉由變更與製品品質或作業條件相關之處理條件、亦即上述之各種處理參數的目標值,而將製品分類製作。為了達成目標之製品品質,亦即以達成上述之各種處理參數之目標值的方式,進行由設定計算機23之處理控制。 In the hot rolling calendering process of the actual work, the products are classified and produced by changing the processing conditions relating to the product quality or the working conditions, that is, the target values of the various processing parameters described above. In order to achieve the desired product quality, that is, the processing control by the setting computer 23 is performed so as to achieve the target values of the various processing parameters described above.
處理參數之目標值係有時是由位在階層2之設定計算機23之上位的階層3之上位計算機25所指定。此外,處理參數之目標值係有時是在設定計算機23所屬之資料庫具有表格,且以鋼種、板厚、板寬等作為索引(key)而指定。此外,處理參數之目標值亦有時藉由操作者而在壓延中變更。 The target value of the processing parameters is sometimes specified by the level 3 upper computer 25 located in the upper level of the setting computer 23 of the level 2. Further, the target value of the processing parameter is sometimes specified in the database to which the setting computer 23 belongs, and is specified by a steel type, a plate thickness, a board width, or the like. In addition, the target value of the processing parameters is sometimes changed by calendering by the operator.
設定計算機23係具有:顯現壓延線1之加熱、壓延、冷卻、搬送等之各處理的物理現象之模型式(以下,亦將設定計算機23所具有之模型式稱為「第1模型式」)。設定計算機23係利用第1模型式,以達成實際作業中之上述各種處理參數之目標值(處理條件)的方式,進行設定計算。在設定計算中,反覆進行各種致動器之控制目標值的算出、及處理之各階段中之壓延材的狀態(金屬材料之狀態預測值)的算出。 The setting computer 23 has a model of a physical phenomenon in which each process such as heating, rolling, cooling, and conveyance of the rolling line 1 is displayed (hereinafter, the model type of the setting computer 23 is also referred to as "first model type"). . The setting computer 23 performs the setting calculation so as to achieve the target value (processing condition) of the various processing parameters in the actual operation by the first model formula. In the setting calculation, the calculation of the control target value of each actuator and the calculation of the state of the rolled material (predicted state of the metal material) in each stage of the process are repeatedly performed.
致動器之控制目標值係指壓延機之輥縫、壓延速度、搬送速度、除屑或各種噴灑器之流量、送出台之閥的ON/OFF等。處理之各階段中之壓延材的狀態(金屬材料之狀態預測值)係指尺寸或形狀、溫度、微組織等。 The control target value of the actuator refers to the roll gap of the calender, the rolling speed, the conveying speed, the flow of the chip removing or various sprayers, and the ON/OFF of the valve of the delivery table. The state of the rolled material in each stage of the treatment (predicted state of the state of the metal material) means size or shape, temperature, microstructure, and the like.
控制用控制器21係以從設定計算機23接受設定計算結果且追隨控制目標值之方式,控制各種致動器。在實際作業之熱軋壓延處理中,於壓延線之隨處設置有各種感測器,以監視、收集溫度、形狀、板厚、板寬、壓延荷重等對處理控制造成影響之參數的實際值。 The control controller 21 controls various actuators so as to receive the setting calculation result from the setting computer 23 and follow the control target value. In the actual hot rolling calendering process, various sensors are provided around the rolling line to monitor and collect the actual values of the parameters affecting the process control such as temperature, shape, plate thickness, plate width, and rolling load.
該等實際值係應用在處理控制或模型式(第1模型式)之精確度提升、品質管理。比較處理參數之目標值、由各種感測器所取得之實際值、及由實際值及計算值再計算之實際計算值時,若處理參數之目標值未達成時,再度進行設定計算。依據該結果,進行前饋控制、反饋控制、及動態控制等各種控制。 These actual values are applied to the process control or model (first model) accuracy improvement and quality management. When the target value of the processing parameter, the actual value obtained by the various sensors, and the actual calculated value calculated from the actual value and the calculated value are compared, if the target value of the processing parameter is not reached, the setting calculation is performed again. According to the result, various controls such as feedforward control, feedback control, and dynamic control are performed.
計算設定計算所使用之壓延荷重、變形阻力、輥縫、溫度、粒徑等物理量之模型式(第1模型式),係以將輸入變數、模型參數群(機械常數、調整項、學習項)作為輸入之函數來表示。輸入變數為與模型輸出具有相關之物理量。例如,模型輸出為壓延荷重時,變形阻力、壓延材之寬度、壓下量等成為輸入變數。機械常數為表示壓延輥之輥徑、輥軋曲線(mill curve)、噴灑器流量等、致動器之機械特性的物理量。機械常數係因輥替換、設備之修繕或調整、經年性變化而變化,因此會隨時進行更新。調 整項或學習項係用以提升模型式之預測精確度的項。 The model formula (first model formula) for calculating the physical quantities such as the rolling load, the deformation resistance, the roll gap, the temperature, and the particle diameter used in the calculation calculation is based on the input variable and the model parameter group (mechanical constant, adjustment term, learning item). It is represented as a function of input. The input variable is the physical quantity associated with the model output. For example, when the model output is a rolling load, the deformation resistance, the width of the rolled material, the amount of reduction, and the like become input variables. The mechanical constant is a physical quantity indicating the mechanical properties of the actuator such as the roll diameter, the mill curve, the sprinkler flow rate, and the like of the calender roll. The mechanical constants are subject to change due to roll replacement, equipment repair or adjustment, and annual changes. Tune The entire item or learning item is used to improve the predictive accuracy of the model.
即使處理之模型式積極地模擬物理現象,現實上亦會產生模型預測誤差。因此,工程師對於模型式內之各項的係數或常數進行微調整,以提高模型式之預測精確度。調整項係模型式內之各項的係數或常數,利用容易產生模型誤差之因數、例如鋼種、目標板厚、目標板寬、目標溫度等被區分之層別表,依每一層在設定計算機23所屬之資料庫內進行管理。調整項係除了在開始作業時,亦主要在新鋼種之壓延時、及以新的處理參數之組合壓延時進行調整。調整項係有時工程師依據經驗或數值解析結果而進行調整之情形,近年來有時利用類神經網路等之統計手法來進行半自動調整。學習項係為了彌補模型輸出、與實際處理輸出之誤差而對模型式進行乘算及加算之項。 Even if the model of the treatment actively simulates the physical phenomenon, the model prediction error will also occur in reality. Therefore, the engineer fine-tunes the coefficients or constants of the various models in the model to improve the prediction accuracy of the model. Adjust the coefficient or constant of each item in the model, and use the factor that is easy to generate the model error, such as the steel type, the target thickness, the target plate width, the target temperature, etc., according to the layer table that is distinguished by the setting computer 23 Managed within the database. In addition to the start of the operation, the adjustments are mainly adjusted for the pressure delay of the new steel grade and the combination of new processing parameters. Adjustment items are sometimes adjusted by engineers based on experience or numerical analysis results. In recent years, statistical methods such as neural networks have been used to perform semi-automatic adjustments. The learning item is used to multiply and add to the model in order to compensate for the error in the model output and the actual processing output.
(壓延模擬裝置) (calendering simulation device)
第3圖係顯示本發明實施形態1之壓延模擬裝置24之功能的方塊圖。壓延模擬裝置24係模擬第1圖所示之熱軋薄板壓延線之各處理,且預測在變更金屬材料之尺寸或合金組成、加熱、壓延、冷卻之目標值及處理時之作業穩定性、處理途中之壓延材的狀態、製品品質。壓延模擬裝置24係具備模擬條件設定部31、虛擬壓延線設定計算部32、及參數更新部33。此外,壓延模擬裝置24係具備演算處理裝置、記憶裝置、輸出入裝置之計算機。記憶裝置係記憶記述有上述各部之處理內容的處理。上述各部係藉由以演算處理裝置從執行記憶裝置載入之處理。 Fig. 3 is a block diagram showing the function of the rolling simulation device 24 according to the first embodiment of the present invention. The calendering simulation device 24 simulates each treatment of the hot-rolled sheet rolling line shown in Fig. 1, and predicts the operation stability and treatment when changing the size or alloy composition of the metal material, the target value of heating, calendering, cooling, and the treatment. The state of the rolled material and the quality of the product on the way. The rolling simulation device 24 includes an simulation condition setting unit 31, a virtual rolling line setting calculation unit 32, and a parameter update unit 33. Further, the rolling simulation device 24 is provided with a computer for calculating the processing device, the memory device, and the input/output device. The memory device memorizes the processing of the processing contents of the above respective units. Each of the above units is processed by the execution of the memory device by the arithmetic processing device.
((模擬條件設定部)) ((simulation condition setting unit))
模擬條件設定部31係設定由壓延線1對虛擬金屬材料進行加熱、壓延、冷卻、搬送之虛擬作業中之與製品品質及作業條件相關之模擬條件。以下,詳細地進行說明。 The simulation condition setting unit 31 sets simulation conditions relating to the product quality and the working conditions in the virtual operation of heating, rolling, cooling, and transporting the dummy metal material by the rolling line 1. Hereinafter, it demonstrates in detail.
模擬條件設定部31係以壓延作業處理之參數作為模擬條件而設定在壓延模擬裝置24。在此,壓延作業處理之參數係例如在實際作業中由上位計算機25所賦予之壓延材之合金組成與尺寸、目標板厚、目標板寬、在加熱爐內之扁胚升溫模式、加熱爐出口側溫度、精軋出口側目標溫度、精軋入口側目標溫度、冷卻模式、捲取目標溫度等。再者,壓延作業處理之參數係例如在實際作業中依每一鋼種及每一目標板厚區分預先設定在設定計算機23,或藉由操作者從HMI所賦予之各通道的壓下量、壓下率分配、通板速度或加速率等。 The simulation condition setting unit 31 sets the parameter of the rolling operation process as the simulation condition in the rolling simulation device 24. Here, the parameters of the calendering process are, for example, the alloy composition and size of the rolled material given by the upper computer 25 in actual operation, the target plate thickness, the target plate width, the flat embryo heating mode in the heating furnace, and the furnace outlet. Side temperature, finish rolling outlet target temperature, finish rolling inlet target temperature, cooling mode, coiling target temperature, etc. Further, the parameters of the rolling operation process are, for example, predetermined in the actual operation for each steel type and each target thickness, and are set in advance by the setting computer 23, or by the amount and pressure of each channel given by the operator from the HMI. Lower rate allocation, board speed or acceleration rate.
各模擬條件係透過通信LAN或記憶媒體等複製採用實際作業之上位計算機25或設定計算機23等所儲存之實際作業中壓延、或預定壓延之金屬材料的作業條件。除此之外,亦可利用手輸入來設定全部或一部分之條件。此外,亦可再利用過去在壓延模擬裝置所使用過之模擬條件,或變更一部分再加以利用。 Each of the simulation conditions is a work condition in which the metal material which is rolled in the actual operation stored in the actual work upper computer 25 or the setting computer 23 or the like, or the predetermined rolling is used, by the communication LAN or the memory medium. In addition to this, you can use hand input to set all or part of the conditions. In addition, the simulation conditions used in the past rolling simulation device may be reused, or a part of the simulation may be used.
第4圖係輸入虛擬金屬製品(虛擬金屬材料)之化學成分的輸入畫面。在實際之作業中,由於1個批量單位大,且成為15噸左右,因此無法依各製品變更合金成分之添加量。因此,在模擬條件設定部31中,為了可容易 地計算變更合金組成時之製品品質的變化,係如第4圖所示在每一個虛擬金屬製品輸入各化學成分之含量(wt%)並予以設定。亦可叫出在實際作業中所壓延之金屬製品的合金組成或在過去之模擬中所使用之合金組成以作為參考值,且變更其一部分以進行模擬。 Figure 4 is an input screen for inputting the chemical composition of a virtual metal product (virtual metal material). In the actual work, since one batch unit is large and is about 15 tons, the amount of the alloy component cannot be changed depending on each product. Therefore, in the simulation condition setting unit 31, in order to be easy The change in the quality of the product at the time of changing the alloy composition is calculated by inputting the content (wt%) of each chemical component in each of the virtual metal products as shown in Fig. 4 . The alloy composition of the metal product calendered in the actual work or the alloy composition used in the past simulation can also be called as a reference value, and a part thereof is changed for simulation.
第5圖係在加熱爐11內之扁胚升溫模式之一例的圖。在加熱爐11內之扁胚升溫模式或加熱爐抽出溫度亦會對製品材質及品質造成影響。例如在未對扁胚充分地進行加熱時,將無法充分地獲得微合金(micro alloy)之固溶量,而有由固溶微合金所產生之溶質拖曳(solute drag)效果減少、及抽出後之壓延中及冷卻中的析出量減少、及由析出物所產生之釘扎(pinning)效果減少之虞。再者,由於對低溫之壓延材進行之壓延係對硬材料進行壓延,因此會有因在壓延機之壓延荷重增加所造成之壓延作業的不穩定化、及壓延用電動機之消耗電力增加之虞。模擬條件設定部31係如第5圖所示在加熱爐11內設定扁胚升溫模式。在溫度模式不會對品質造成影響之情形時或欲進行簡易之計算之情形時,係僅設定加熱爐抽出溫度之目標值。 Fig. 5 is a view showing an example of a flat embryo heating mode in the heating furnace 11. The flat embryo heating mode or the furnace extraction temperature in the heating furnace 11 also affects the material quality and quality of the product. For example, when the flat embryo is not sufficiently heated, the solid solution amount of the micro alloy cannot be sufficiently obtained, and the solute drag effect by the solid solution microalloy is reduced, and after the extraction The amount of precipitation during rolling and cooling is reduced, and the pinning effect by the precipitate is reduced. Further, since the rolling of the low-temperature rolled material is performed by rolling the hard material, the rolling operation due to the increase in the rolling load of the calender is unstable, and the electric power consumption of the electric motor for rolling is increased. . The simulation condition setting unit 31 sets the flat embryo heating mode in the heating furnace 11 as shown in Fig. 5 . In the case where the temperature mode does not affect the quality or when simple calculation is to be performed, only the target value of the extraction temperature of the furnace is set.
在實際作業中,為了管理壓延中之壓延材的溫度,係透過上位計算機25或HMI由操作者賦予精軋出口側目標溫度、精軋入口側目標溫度、捲取目標溫度等之處理參數的目標值,且以追隨其目標值之方式控制壓延速度、在壓延線途中之加熱裝置的升溫模式、及在各種噴灑器、送出台17中之冷卻模式。關於冷卻模式,亦有由上 位計算機25指定之情形。在模擬條件設定部31中,為了藉由模擬可確認使壓延中之溫度歷程紀錄變化時之製品品質及對壓延作業之影響,係設定精軋出口側目標溫度、精軋入口側目標溫度、捲取目標溫度、在送出台17之冷卻模式,以作為模擬條件。第6圖及第7圖係用以說明在送出台17之冷卻模式之設定例的圖。送出台17之冷卻模式,係選擇優先使用第6圖所示之上游側冷卻的前段冷卻、優先使用下游側冷卻設備之後段冷卻、及使用所有之冷卻設備之緩冷卻的3模式中之任一者,且具有將水冷卻之區域的冷卻速度、空氣冷卻之時間設定為目標值之方法。此外,在送出台17之冷卻模式係選擇在第7圖所示之冷卻設備的上游側及下游側進行水冷冷卻、而在中游側進行空氣冷卻之模式,且例如有將上游側之水冷卻速度、空冷時間、及在送出台中間點之溫度予以設定為目標值之方法。 In the actual operation, in order to manage the temperature of the rolled material in the rolling, the operator gives the target of the processing parameters such as the target temperature of the finishing rolling outlet, the target temperature of the finishing rolling inlet, and the target temperature of the coiling through the upper computer 25 or the HMI. The value is controlled such that the rolling speed, the heating mode of the heating device in the middle of the rolling line, and the cooling mode in the various sprinklers and delivery tables 17 are controlled so as to follow the target value. Regarding the cooling mode, there are also The situation specified by the bit computer 25. In the simulation condition setting unit 31, in order to confirm the influence of the product quality and the rolling operation when the temperature history in the rolling is changed by the simulation, the finishing rolling side target temperature, the finish rolling inlet target temperature, and the volume are set. The target temperature and the cooling mode at the delivery station 17 were taken as simulation conditions. Fig. 6 and Fig. 7 are views for explaining a setting example of the cooling mode of the delivery table 17. The cooling mode of the delivery station 17 is selected to preferentially use the front stage cooling of the upstream side cooling shown in Fig. 6, the cooling of the downstream side of the downstream side cooling equipment preferentially, and the slow mode of cooling using all the cooling devices. Further, there is a method of setting the cooling rate of the region where the water is cooled and the time for cooling the air to the target value. Further, in the cooling mode of the delivery table 17, a mode in which water cooling is performed on the upstream side and the downstream side of the cooling device shown in Fig. 7 and air cooling is performed on the midstream side, and for example, a water cooling rate on the upstream side is selected. The method of setting the target value to the air cooling time and the temperature at the intermediate point of the delivery station.
在實際作業中所使用之設定計算機23中,為了進行穩定之壓延及通板,係將各通道之壓下量或壓下率分配、通板速度或加速率等之處理參數之目標值依各鋼種及各目標板厚區分預先記憶在資料庫。或者,由操作者輸入處理參數之目標值。另一方面,在虛擬作業所使用之壓延模擬裝置24中,模擬條件設定部31係以可簡單地計算使各通道之壓下量或壓下率分配、通板速度或加速率等變化時之對製品品質或壓延作業所造成之影響的方式,設定模擬條件。 In the setting computer 23 used in the actual operation, in order to perform stable rolling and passing, the target values of the processing parameters such as the reduction amount or the reduction ratio of each channel, the plate speed or the acceleration rate are determined. The steel grade and each target thickness are distinguished in advance in the database. Alternatively, the operator inputs the target value of the processing parameter. On the other hand, in the rolling simulation device 24 used for the virtual work, the simulation condition setting unit 31 can easily calculate when the reduction amount or the reduction ratio of each channel, the plate speed or the acceleration rate are changed. The simulation conditions are set in a way that affects the quality of the product or the operation of the rolling operation.
((虛擬壓延線設定計算部)) ((Virtual rolling line setting calculation unit))
虛擬壓延線設定計算部32係具有與第1模型式相同之模型式(稱為第2模型式),利用第2模型式,以達成模擬條件之方式算出致動器群之控制目標值或虛擬金屬材料之狀態預測值。以下,詳細地進行說明。 The virtual rolling line setting calculation unit 32 has the same model formula as the first model formula (referred to as a second model formula), and uses the second model formula to calculate the control target value or virtual of the actuator group so as to achieve the simulation condition. The predicted value of the state of the metal material. Hereinafter, it demonstrates in detail.
虛擬壓延線設定計算部32係以追隨由模擬條件設定部31所賦予之各目標值的方式,計算以虛擬壓延線對虛擬金屬材料進行壓延之各處理的設定值、及各種時刻之金屬材料的尺寸、位置、溫度。 The virtual rolling line setting calculation unit 32 calculates the set value of each process for rolling the dummy metal material by the virtual rolling line, and the metal material at various times, so as to follow the respective target values given by the simulation condition setting unit 31. Size, location, temperature.
第8圖係顯示虛擬壓延線設定計算部32所具有之模型群及模型參數表群之圖。虛擬壓延線設定計算部32係具有作為模型群之處理模型、搬送模型、溫度模型、材質模型。處理模型係計算加熱裝置、壓延裝置、冷卻裝置等之各壓延處理的設定值。搬送模型係計算各時刻之虛擬金屬材料的位置。溫度模型係計算各場所之各時刻的虛擬金屬材料之溫度。材質模型係依據合金組成、加工歷程紀錄、溫度,預測虛擬壓延線上之各場所之各時刻的金屬材料之微組織及最終製品材質。此外,虛擬壓延線設定計算部32係具有記憶模型參數表群之資料庫等記憶裝置,以對各模型式進行連成計算,該模型參數表群係用以儲存上述之各模型的參數。 Fig. 8 is a view showing a model group and a model parameter table group which the virtual rolling line setting calculation unit 32 has. The virtual rolling line setting calculation unit 32 has a processing model, a transport model, a temperature model, and a material model as a model group. The processing model calculates the set values of the respective calendering processes of the heating device, the rolling device, the cooling device, and the like. The transfer model calculates the position of the virtual metal material at each moment. The temperature model calculates the temperature of the virtual metal material at each moment in each location. The material model predicts the microstructure of the metal material and the final product material at each moment of each place on the virtual calendering line based on the alloy composition, processing history, and temperature. Further, the virtual rolling line setting calculation unit 32 has a memory device such as a data library of the memory model parameter table group, and performs a joint calculation for each model formula, and the model parameter table group is used to store the parameters of the respective models described above.
處理模型係利用搬送模型所賦予之各場所之各時刻的虛擬金屬材料之位置、及溫度模型所賦予之各場所之各時刻的虛擬金屬材料之溫度的資訊,來計算追隨模擬條件設定部31所賦予之目標值之加熱爐11的設定溫 度模式、壓延之通道排程表、輥縫、各時刻之虛擬金屬材料的加工歷程紀錄、尺寸及形狀、壓延速度、各種噴灑器之ON/Off設定及流量設定、及送出台17之冷卻設定。 The processing model calculates the following simulation condition setting unit 31 by using the position of the virtual metal material at each time point of each place given by the transfer model and the temperature of the virtual metal material at each time point of each place given by the temperature model. The set temperature of the furnace 11 given the target value Degree mode, calendering channel schedule, roll gap, processing history of virtual metal materials at various times, size and shape, calendering speed, ON/Off setting and flow setting of various sprinklers, and cooling setting of the delivery station 17 .
搬送模型係利用各處理間之距離或處理模型所賦予之通道排程表,來計算各場所之各時刻之虛擬金屬材料的位置。此外,搬送模型係利用溫度模型所賦予之虛擬金屬材料的溫度資訊,計算追隨各目標溫度的搬送速度。 The transfer model calculates the position of the virtual metal material at each moment of each place by using the distance between the processes or the channel schedule given by the processing model. Further, the transport model calculates the transport speed following each target temperature using the temperature information of the virtual metal material given by the temperature model.
溫度模型係由各處理中之虛擬金屬材料的尺寸資訊、機械因素之資訊、由模擬條件設定部31或處理模型所賦予之通道排程表、輥縫、壓延速度、搬送速度、壓延線途中之對加熱裝置的升溫模式等指令值之資訊等,來計算虛擬壓延線上之各場所之各時刻的虛擬金屬材料之溫度。 The temperature model is obtained from the dimensional information of the virtual metal material in each process, the information of the mechanical factor, the channel schedule table given by the simulation condition setting unit 31 or the processing model, the roll gap, the rolling speed, the conveying speed, and the rolling line. The temperature of the virtual metal material at each time point of each place on the virtual rolling line is calculated from the information of the command value such as the heating mode of the heating device.
材質模型係利用處理模型所賦予之虛擬金屬的加工歷程紀錄及溫度模型所賦予之溫度歷程紀錄的資訊,來預測壓延處理中及捲取後之虛擬金屬材料的微組織。所預測之微組織係例如粒徑、錯位密度、沃斯田鐵、肥粒鐵、珍珠岩等各組織之分率。並且,依據微組織預測結果,計算與降伏應力或拉伸強度等之機械性質相關的參數。將冶金現象予以數式化之微組織預測模型中,提案有各式各樣者,且周知有一種由表示靜態回復、靜態再結晶、動態回復、動態再結晶、粒成長等之數式群所構成者。其一例係揭載在塑性加工技術系列7板壓延(CORONA公司) 之第198至229頁。由金屬組織資訊及合金組成可預測降伏應力或拉伸強度等機械性質之材質者為眾所周知者。其一例係揭載在第173、174屆西山記念技術講座「熱延鋼材之組織變化及材質的預測」((社團法人)日本鋼鐵協會刊物)之125頁。 The material model predicts the microstructure of the virtual metal material during and after the rolling process by using the processing history record of the virtual metal given by the processing model and the temperature history record given by the temperature model. The predicted microstructures are, for example, the fractions of various tissues such as particle size, dislocation density, Worthite iron, ferrite iron, and perlite. And, based on the microstructural prediction result, parameters related to mechanical properties such as stress or tensile strength are calculated. In the micro-organization prediction model that digitizes the metallurgical phenomenon, there are various proposals, and it is known that there are a number of groups representing static recovery, static recrystallization, dynamic recovery, dynamic recrystallization, grain growth, and the like. Constitute. One example is unveiled in the plastic processing technology series 7 plate calendering (CORONA) Pp. 198-229. It is well known that metal structure information and alloy composition can predict mechanical properties such as stress or tensile strength. An example of this is the 125th page of the 173th and 174th West Mountain Memorial Technical Lectures, "Predicting the Organizational Changes and Materials of Hot Steel" (published by the Japan Iron and Steel Association).
上述之處理模型、搬送模型、溫度模型、材質模型係以與存在於熱軋壓延之實際作業所用之設定計算機23的模型式(第1模型式)相同之函數來表示。例如,近年來,藉由虛擬機器(Virtual Machine)來複製全部計算機之架構,而在不同之計算機上虛擬地實現之方法係廣泛地被採用。藉此,可將實際作業所採用之設定計算機23的模型式(第1模型式)、及管理該模型參數之資料庫構造移植至壓延模擬裝置24。因此,壓延模擬裝置24係具有與第1模型式同樣之模型式(第2模型式)。模型式係以將變數、機械常數、調整項作為輸入之函數,表示成以下之式。 The above-described processing model, transport model, temperature model, and material model are expressed by the same function as the model formula (first model formula) of the setting computer 23 used in the actual work of hot rolling calendering. For example, in recent years, a virtual machine is used to replicate the architecture of all computers, and a method that is virtually implemented on different computers is widely adopted. Thereby, the model type (first model type) of the setting computer 23 used in the actual work and the database structure for managing the model parameters can be transferred to the rolling simulation device 24. Therefore, the rolling simulation device 24 has the same model formula (second model formula) as the first model. The model is expressed as the following equation by taking variables, mechanical constants, and adjustment terms as inputs.
Y=f(X 1,X 2,…,m 1,m 2,…,a 1,a 2) (1) Y = f ( X 1 , X 2 ,..., m 1 , m 2 ,..., a 1 , a 2 ) (1)
其中, among them,
f:未含學習項之模型式 f: model without learning items
Y:未含學習項之模型式的輸出 Y: model output without learning items
Xi:與模型式f相關之輸入變數 X i : input variable associated with model f
mi:機械常數 m i : mechanical constant
aj:調整項 a j : adjustment
輸入變數係與模型輸出相關之物理量。例 如,模型輸出為壓延荷重時,變形阻力、壓延材之寬度、壓下量等係相當於輸入變數。機械常數係表示壓延輥之輥徑、輥軋曲線、噴灑器流量等機械特性之物理量。機械常數係依輥替換、定期修理、設備更新、經年性變化等而變化。在實際作業中,機械常數係以實際作業所用之設定計算機23所屬之資料庫的表來進行管理,隨著上述之變化而隨時地修正。調整項係用以提升模型式之預測精確度的項。調整項係為了縮小模型誤差而設置者,且為容許補正之係數或常數。調整項係利用容易產生模型誤差之因數、例如由鋼種、目標板厚、目標板寬、目標溫度等所區分之層別表,且依各層別而管理在實際作業所用之設定計算機23所屬的資料庫內。調整項係在實際作業中,除了作業開始時之外,主要在新的鋼種之壓延時、或新的處理參數之組合壓延時進行調整。亦有工程師依據經驗或實際作業之數值解析結果而進行調整之情形,近年來亦有利用類神經網路等之統計手法來進行半自動調整之情形。 The input variable is the physical quantity associated with the model output. example For example, when the model output is a rolling load, the deformation resistance, the width of the rolled material, and the amount of reduction are equivalent to the input variables. The mechanical constant is a physical quantity indicating mechanical properties such as a roll diameter, a rolling curve, and a flow rate of a roll of a calender roll. The mechanical constant varies depending on roll replacement, periodic repair, equipment renewal, and annual changes. In the actual operation, the mechanical constant is managed by the table of the database to which the setting computer 23 belongs for the actual work, and is corrected at any time as the above changes. Adjustments are used to improve the predictive accuracy of the model. The adjustment item is set to reduce the model error and is a coefficient or constant that allows correction. The adjustment item is a layer table which is easy to generate a model error, for example, a steel sheet, a target thickness, a target board width, a target temperature, etc., and manages a database to which the setting computer 23 used in actual work belongs according to each layer. Inside. The adjustment item is adjusted in the actual operation, except for the start of the operation, mainly in the new steel type pressure delay, or the combination of new processing parameters. There are also cases where engineers adjust to the results of numerical analysis based on experience or actual operations. In recent years, statistical methods such as neural networks have been used to perform semi-automatic adjustments.
在實際作業之熱軋壓延處理中,係在壓延線1之隨處設置各種感測器,以監視、收集溫度、形狀、板厚、板寬、壓延荷重等對處理控制造成影響之參數的實際值。該等實際值係用於處理控制或模型式(第1模型式)之精確度提升、品質管理。係採用比較設定計算之模型預測值、各種感測器所取得之實際值、及由實際值與計算值所再計算之實際計算值,且使模型式學習,以提升使用模型式之精確度及使用模型式之控制精確度的方法。學習項 係為了補償模式之輸出、與實際處理之輸出的誤差,對模型式進行乘算或加算。乘算型與加算型係分別以下述之方式表示。 In the actual hot rolling and rolling process, various sensors are provided everywhere in the rolling line 1 to monitor and collect the actual values of the parameters affecting the process control such as temperature, shape, plate thickness, plate width, and rolling load. . These actual values are used for processing control or model (first model) accuracy improvement and quality management. The model predicts the calculated value, the actual value obtained by various sensors, and the actual calculated value calculated from the actual value and the calculated value, and makes the model learning to improve the accuracy of using the model and Use a model-based approach to control accuracy. Learning item In order to compensate for the output of the mode and the error of the output of the actual processing, the model is multiplied or added. The multiplication type and the addition type are respectively expressed in the following manner.
乘算型: Multiplication type:
YL=Zp‧Y (2) Y L =Z p ‧Y (2)
加算型: Addition type:
YL=Y+ZA (3) Y L =Y+Z A (3)
其中, among them,
YL:所學習之模型式的預測結果 Y L : model-based predictions of the learning
Y:未包含學習項之模型式的輸出 Y: model output without learning items
Zp:乘算型學習項 Z p : multiplication type learning item
ZA:加算型學習項 Z A : Additional learning items
學習項係以感測器等獲得相當於模型式之輸出的參數之實際值而更新。例如,在乘算型中,如以下方式更新學習項。 The learning item is updated with the actual value of the parameter that the sensor or the like obtains the output of the model. For example, in the multiplication type, the learning item is updated as follows.
其中, among them,
ZP ACT:依據實際值所計算之乘算型學習項 Z P ACT : Multiplication type learning item calculated based on actual value
YACT:依據模型式輸出之參數的實際值 Y ACT : actual value of the parameter according to the model output
Y:未包含學習項之模型式輸出 Y: model output without learning items
ZP NEW:更新後之乘算型學習項 Z P NEW : updated multiplication type learning item
ZP OLD:更新前之乘算型學習項 Z P OLD : Multiplication learning item before update
A:平滑化增益 A: Smoothing gain
學習項係利用由容易產生模型誤差之因數、例如鋼種、目標板厚、目標板寬、目標溫度等所區分之層別表,依層別自動地進行更新。關於預測壓延材之微組織的變化及最終製品之機械性質的微組織之材質預測模型,利用對一部分之製品線圈實施之拉伸試驗及組織觀察等機械性質之測定試驗結果所得之機械性質的實際值學習模型。實際作業之設定計算所用之模型式(第1模型式)的模型參數、亦即機械常數、調整項、學習項係在實際作業之設定計算機23所屬之資料庫進行管理。 The learning item is automatically updated by layer based on a layer table that is easily distinguished by a factor of model error, such as steel grade, target thickness, target panel width, target temperature, and the like. A material prediction model for predicting the microstructure of a rolled material and the mechanical properties of the final product, and the actual mechanical properties obtained by measuring the mechanical properties such as tensile test and tissue observation of a part of the product coil Value learning model. The model parameters (the first model formula) used for the calculation of the actual work calculation, that is, the mechanical constants, adjustment items, and learning items are managed in the database to which the actual work setting computer 23 belongs.
第8圖之壓延模擬裝置24的虛擬壓延線設定計算部32所包含之處理模型、搬送模型、溫度模型、材質模型的模型式(第2模型式),係使用與存在於熱軋壓延之實際作業所用之設定計算機23之模型式(第1模型式)相同定義的函數。再者,機械常數、調整項、學習項之各參數係依層別所收納之模型參數表群係在虛擬壓延線設定計算部32所屬之資料庫進行管理。虛擬壓延線設定計算部32所屬之資料庫的表,係具有與用於實際作業之設定計算機23所屬的資料庫內之儲存機械常數、調整項、學習項之表相同的構造。 The model (type 2 model) of the processing model, the transport model, the temperature model, and the material model included in the virtual rolling line setting calculation unit 32 of the rolling simulation device 24 of Fig. 8 is used and actually exists in the hot rolling calendering A function defined by the model (first model formula) of the setting computer 23 used for the job. Further, each of the parameters of the mechanical constant, the adjustment item, and the learning item is managed by the database to which the virtual rolling line setting calculation unit 32 belongs according to the model parameter table group stored in the layer. The table of the database to which the virtual rolling line setting calculation unit 32 belongs has the same structure as the table of the stored mechanical constants, adjustment items, and learning items in the database to which the setting computer 23 for the actual work belongs.
((參數更新部)) ((Parameter Update Department))
第9圖係針對參數更新部33所執行之處理加以說明的 圖。參數更新部33係在第1模型式之模型參數群被更新時,依據第1模型式之模型參數群,更新第2模型式之模型參數群。以下,詳細地進行說明。 Fig. 9 is a description of the processing executed by the parameter updating unit 33. Figure. When the model parameter group of the first model formula is updated, the parameter update unit 33 updates the model parameter group of the second model formula based on the model parameter group of the first model formula. Hereinafter, it demonstrates in detail.
在參數更新部33中,如第9圖所示,依據虛擬壓延線設定計算部32之模型式的模型參數、亦即依據將機械常數、調整項、學習項儲存在實際作業之設定計算機23所屬之資料庫的參數表群之參數進行更新。在模擬中,與實際之壓延作業的處理控制不同,無法獲得由設置在處理之各處的感測器所得之荷重或溫度、尺寸之實際值或製品線圈之機械性質的實際值。必須使因模擬所產生之計算及因對資料庫之讀寫所產生之負荷,不會對實際作業之設定計算造成影響。因此,在模擬中,並未採用實際作業所用之設定計算機23及其資料庫,而是採用模擬專用之計算機及資料庫。因此,第2模型式內之機械常數、調整項、學習項係在用於實際作業之設定計算機23的第1模型式相同之時序,不會被更新。參數更新部33係更新模擬之虛擬壓延線設定計算部32的第2模型式之模型參數、亦即機械常數、調整項、學習項,俾不會對實際作業之設定計算造成影響,且確保與實際作業之設定計算同等的模式精確度。 In the parameter updating unit 33, as shown in FIG. 9, the model parameter of the model calculation unit 32 is set in accordance with the virtual rolling line, that is, the setting of the computer 23 in accordance with the mechanical constant, the adjustment item, and the learning item stored in the actual operation. The parameters of the parameter table group of the database are updated. In the simulation, unlike the actual control of the rolling operation, the actual value of the load or temperature, the actual value of the size, or the mechanical properties of the product coil obtained by the sensors disposed throughout the process cannot be obtained. The calculations resulting from the simulation and the load due to the reading and writing of the database must not affect the calculation of the actual operation. Therefore, in the simulation, the setting computer 23 and its database used in the actual operation are not used, but a computer and a database dedicated to simulation are used. Therefore, the mechanical constant, the adjustment term, and the learning term in the second model are not updated at the same timing as the first model of the setting computer 23 used for the actual work. The parameter update unit 33 updates the model parameters of the second model type of the simulated virtual rolling line setting calculation unit 32, that is, the mechanical constants, the adjustment items, and the learning items, and does not affect the setting calculation of the actual work, and ensures that The actual job settings calculate the same mode accuracy.
第10圖係顯示參數更新部33之構成的方塊圖。如第10圖所示,參數更新部33係具備更新時序指定部41、更新參數選擇部42、參數複製部43。更新時序指定部41係自動地指定用以更新模擬器之參數的時序。例 如,指定在實際作業中,並未由設定計算機23來執行計算之時序。更新參數選擇部42係選擇要更新之參數。例如,選擇第2模型式之模型參數群中之利用虛擬壓延線設定計算部32之模擬條件的模式計算所需之一部分的模型參數群。參數複製部43係在由更新時序指定部41所得之更新時序,僅針對更新參數選擇部42所選擇之一部分的模型參數群,從儲存在實際作業之設定計算機23所屬之資料庫之第1模型式的模型參數群進行複製。 Fig. 10 is a block diagram showing the configuration of the parameter updating unit 33. As shown in FIG. 10, the parameter update unit 33 includes an update timing designation unit 41, an update parameter selection unit 42, and a parameter copying unit 43. The update timing designation section 41 automatically specifies the timing for updating the parameters of the simulator. example For example, it is specified that the timing of the calculation is not performed by the setting computer 23 in the actual work. The update parameter selection unit 42 selects a parameter to be updated. For example, a model parameter group of a part of the required calculation of the simulation condition of the virtual rolling line setting calculation unit 32 in the model parameter group of the second model is selected. The parameter copying unit 43 is based on the update timing obtained by the update timing designating unit 41, and only the model parameter group selected by the update parameter selecting unit 42 is stored from the first model of the database to which the setting computer 23 of the actual job belongs. The model parameter group is copied.
然而,在實際作業之設定計算中,壓延作業中係對於1個壓延材,在加熱爐爐中執行設定計算之試計算、在加熱爐抽出時執行致動器之設置用的設定計算、亦在抽出後一面收集實際值一面依據該值,反覆執行數次至數十次之設定計算。由於要使用之參數、要收集之實際值、設定計算之輸出亦龐大且頻繁,因此對資料庫之讀寫的負荷較大。再者,由於亦對該壓延材前後之數個壓延材進行同樣之設定計算及對資料庫之讀寫,因此依據該設備之壓延間距、收集資料點數等,密切地設計、管理計算時序、對資料庫之存取方法及時序。 However, in the calculation of the actual operation, in the rolling operation, the calculation calculation of the setting calculation is performed for one rolled material in the heating furnace, and the setting calculation for the setting of the actuator is performed when the heating furnace is taken out. After the extraction, the actual value is collected, and based on the value, the setting calculation is performed several times to several tens of times. Since the parameters to be used, the actual values to be collected, and the output of the set calculations are also large and frequent, the load on the database is relatively large. Furthermore, since the same setting calculation and reading and writing of the data are performed on the plurality of rolled materials before and after the rolled material, the calculation timing is closely designed and managed according to the rolling pitch of the device, the number of collected data points, and the like. Access method and timing for the database.
然而,在壓延線停止之時間、例如以每數小時之頻率使線停止十分鐘之輥替換之期間、或以數日乃至數週之頻率使線停止數小時至數十小時之定期修理的期間,設定計算機23之計算負荷或對資料庫之讀寫會消失,或負荷或讀寫之頻度會明顯地降低。若藉由存在於壓延模擬裝置24之參數更新部33的更新時序指定部41,將在上 述之實際作業的輥替換、定期修理、設備更新之期間選擇作為壓延模擬裝置24之模型參數的更新時序,則不會對實際作業之設定計算造成影響。 However, during the period in which the rolling line is stopped, for example, during the period in which the line is stopped for ten minutes at a frequency of several hours, or during the period of periodic repairs in which the line is stopped for several hours to several tens of hours at a frequency of several days or even several weeks. The calculation load of the computer 23 or the reading and writing of the database will disappear, or the frequency of load or reading and writing will be significantly reduced. If it is present in the update timing designating unit 41 of the parameter updating unit 33 of the rolling simulation device 24, it will be on When the rollover, periodic repair, and equipment update of the actual work are described as the update timing of the model parameters of the rolling simulation device 24, the calculation calculation of the actual work is not affected.
實際作業之設定計算所用之模型參數(機械常數、調整項、學習項)各自被更新之時序不同。例如,機械常數中之壓延輥的初期輥徑係依每隔數小時之輥替換而變更。即使是機械常數,作為壓延機之拉伸指標的輥軋曲線係依數個月乃至數年單位之比較長期間隔而更新。各種噴灑器之流量雖會經年性變化,但變化量平緩,且在未預先設置流量計時,難以計測流量。因此,各種噴灑器之流量係在產生缺失時或更新設備時等,除非是由特別原因,否則不會進行計測。調整項係除了在開始作業時,亦主要在新鋼種之壓延時、及以新的處理參數之組合壓延時進行調整。學習項係在該等項中更新頻率最高者。學習項係以由容易產生模型誤差之因數、例如鋼種、目標板厚、目標板寬、目標溫度等所區分之層別表依每一壓延進行管理,且相當於與該壓延相關之模型式之層的學習項會被更新。若以與實際作業所用之模型參數的更新頻率相同之頻率,對壓延模擬裝置24所用之模型參數進行更新,則可精確度佳地模擬實際作業之壓延。 The model parameters (mechanical constants, adjustment items, and learning items) used in the actual job setting calculation are updated at different timings. For example, the initial roll diameter of the calender rolls in the mechanical constant is changed by the replacement of the rolls every few hours. Even with the mechanical constant, the rolling curve as the tensile index of the calender is updated over a long-term interval of several months or even years. Although the flow rate of various sprinklers changes year by year, the amount of change is gentle, and it is difficult to measure the flow rate when the flow meter is not set in advance. Therefore, the flow rate of various sprinklers is such that when a defect occurs or when the device is updated, the measurement is not performed unless it is for special reasons. In addition to the start of the operation, the adjustments are mainly adjusted for the pressure delay of the new steel grade and the combination of new processing parameters. The learning item is the most frequently updated in these items. The learning item is managed according to a layered table that is easily distinguished by a factor of model error, such as steel grade, target thickness, target panel width, target temperature, etc., and is equivalent to the model layer associated with the calendering. The learning items will be updated. If the model parameters used by the calendering simulation device 24 are updated at the same frequency as the update frequency of the model parameters used in the actual work, the actual work can be accurately simulated.
第11圖係顯示將壓延模擬裝置24所用之模型參數更新成最新狀態所適合之更新時序的圖。例如,在第11圖所示之時序,在壓延模擬裝置24所用之各參數,複製與實際作業之參數相同之值。在實際作業中,調整項 及學習項係有可能分別以比定期修理時及輥替換時高之頻率、或不同之時序進行更新。然而,由於該等之參數的數量龐大,因此所有之參數的自動更新係應在實際作業之壓延停止的時序進行。另一方面,在壓延模擬裝置24中,由包含模擬條件設定部31所賦予之模擬對象的壓延材之尺寸或合金組成、目標製品尺寸或材質、壓下率分配或冷卻模式等之壓延作業處理之參數等的模擬條件,得知執行之模擬所需之模型參數。因此,若在模擬執行時將模擬所需之調整項及學習項更新成最新狀態,則可在該條件下精確度佳地模擬實際作業之壓延。 Fig. 11 is a view showing an update timing suitable for updating the model parameters used by the rolling simulation device 24 to the latest state. For example, at the timing shown in Fig. 11, the parameters used in the calendering simulation device 24 are copied to the same values as the parameters of the actual operation. In actual work, adjustments The learning items may be updated at a higher frequency than the periodic repair and roll replacement, or at different timings. However, due to the large number of such parameters, the automatic updating of all parameters should be performed at the timing of the calender stop of the actual operation. On the other hand, in the rolling simulation device 24, the rolling operation is performed by the size or alloy composition of the rolled material to be simulated by the simulation condition setting unit 31, the target product size or material, the reduction ratio distribution, or the cooling mode. The simulation conditions such as the parameters are used to know the model parameters required for the simulation to be performed. Therefore, if the adjustment items and the learning items required for the simulation are updated to the latest state during the simulation execution, the rolling of the actual work can be accurately simulated under the conditions.
第12圖係顯示在接受模擬執行指令時,將模擬所需之調整項及學習項更新成最新狀態之處理的1個具體例之圖。首先,由模擬條件中之合金組成、目標板厚等,辨識用於模擬之虛擬壓延材的鋼種及板厚區分。在第12圖所示之例中,模擬條件設定部31係設定鋼種=C、0.1≦板厚<0.3,以作為模擬條件。 Fig. 12 is a view showing a specific example of a process of updating the adjustment items and the learning items required for the simulation to the latest state when the simulation execution command is accepted. First, the steel composition and thickness of the virtual rolled material used for the simulation are identified by the alloy composition in the simulation conditions, the target thickness, and the like. In the example shown in Fig. 12, the simulation condition setting unit 31 sets the steel type = C, 0.1 ≦ plate thickness < 0.3 as a simulation condition.
實際作業之設定計算機23所屬之資料庫的表群、及壓延模擬裝置24所屬之資料庫的表群係具有相同之表構造,且可在資料庫間複製資料。資料庫係具有調整項之表群、學習項之表群、機械常數之表群。在第12圖所示之例中,更新參數選擇部42係由雙方之表群選擇鋼種=C且0.1≦板厚<0.3之參數,以作為更新參數。更新參數係通知至更新時序指定部41及參數複製部43。更新時序指定部41係確認所選擇之參數的更新不會對實際作業之設 定計算造成影響。在未造成影響之情形時,指定更新時序並通知至參數複製部43。然後,參數複製部43係在所指定之更新時序,將所選擇之更新參數從實際作業之設定計算機23所屬之資料庫,複製到壓延模擬裝置24所屬之資料庫。 The table group of the database to which the actual job setting computer 23 belongs and the table group of the database to which the calendaring simulation device 24 belongs have the same table structure, and data can be copied between the databases. The database is a table group with a set of adjustment items, a table of learning items, and a mechanical constant. In the example shown in Fig. 12, the update parameter selection unit 42 selects a parameter of steel type = C and 0.1 ≦ plate thickness < 0.3 as the update parameter from both of the table groups. The update parameter is notified to the update timing designation unit 41 and the parameter copying unit 43. The update timing designation unit 41 confirms that the update of the selected parameter does not set the actual operation. The calculations have an impact. When there is no influence, the update timing is specified and notified to the parameter copying section 43. Then, the parameter copying unit 43 copies the selected update parameter from the database to which the actual job setting computer 23 belongs to the database to which the rolling simulation device 24 belongs, at the designated update timing.
(流程圖) (flow chart)
第13圖係將存在於虛擬壓延線設定計算部32之各模型的參數予以更新成與在實際作業中使用之最新參數相同之值的處理程序之流程圖。該處理程序係藉由參數更新部33而反覆執行。 Fig. 13 is a flowchart showing a processing procedure for updating the parameters of the respective models existing in the virtual rolling line setting calculation unit 32 to the same values as the latest parameters used in the actual work. This processing program is repeatedly executed by the parameter updating unit 33.
在步驟S131中,參數更新部33係判定壓延線1是否在定期修理中。具體而言,更新時序指定部41係對控制用控制器21或設定計算機23查詢壓延線1是否在定期修理中。更新時序指定部41係依據查詢結果,判定壓延線1是否在定期修理中。在定期修理中之情形時,係執行步驟S132之處理。在非定期修理中之情形時,係執行步驟S133之處理。 In step S131, the parameter update unit 33 determines whether or not the rolling line 1 is in periodic repair. Specifically, the update timing designation unit 41 inquires of the control controller 21 or the setting computer 23 whether or not the rolling line 1 is in periodic repair. The update timing designation unit 41 determines whether or not the rolling line 1 is in periodic repair based on the result of the inquiry. In the case of regular repair, the processing of step S132 is performed. In the case of non-periodic repair, the processing of step S133 is performed.
在步驟S132中,參數更新部33係選擇所有之模型參數作為更新參數。在定期修理時,較佳為將存在於虛擬壓延線設定計算部32之所有的參數更新成與實際作業設定計算機23所用之最新參數相同的值。因此,更新參數選擇部42係在定期修理時選擇全參數。 In step S132, the parameter update unit 33 selects all of the model parameters as update parameters. In the case of regular repair, it is preferable to update all the parameters existing in the virtual rolling line setting calculation unit 32 to the same values as the latest parameters used by the actual work setting computer 23. Therefore, the update parameter selection unit 42 selects the full parameter at the time of regular repair.
在步驟S133中,參數更新部33係判定是否進行輥替換。具體而言,更新時序指定部41係對於控制用 控制器21或設定計算機23查詢壓延線1之運轉模式是否為輥更換模式。更新時序指定部41係依據查詢結果來判定是否為輥更換模式。在為輥更換模式之情形時,係執行步驟S134之處理。在非輥更換模式之情形時,係執行步驟S135之處理。 In step S133, the parameter update unit 33 determines whether or not to perform roll replacement. Specifically, the update timing designation unit 41 is for control The controller 21 or the setting computer 23 inquires whether or not the operation mode of the rolling line 1 is the roll replacement mode. The update timing designation unit 41 determines whether or not the roll replacement mode is based on the result of the query. In the case of the roll replacement mode, the process of step S134 is performed. In the case of the non-roller replacement mode, the process of step S135 is performed.
在步驟S134中,參數更新部33係選擇與輥相關之機械常數及所有的學習項作為更新參數。具體而言,更新參數選擇部42係選擇與輥相關之機械常數及所有的學習項作為作為應更新之模型參數。 In step S134, the parameter updating unit 33 selects the mechanical constant associated with the roller and all the learning items as the update parameters. Specifically, the update parameter selection unit 42 selects the mechanical constant associated with the roller and all the learning items as the model parameters to be updated.
在步驟S135中,參數更新部33係判定是否進行模擬執行指令。具體而言,參數更新部33之更新時序指令部41係對於模擬條件設定部31查詢是否輸入模擬條件且進行模擬執行指令。參數更新部33係依據查詢結果,判定是否進行模擬執行指令。在進行模擬執行指令時,執行步驟S136之處理。 In step S135, the parameter update unit 33 determines whether or not the simulation execution instruction is to be performed. Specifically, the update timing instruction unit 41 of the parameter update unit 33 inquires of the simulation condition setting unit 31 whether or not the simulation condition is input and performs the simulation execution instruction. The parameter update unit 33 determines whether or not to execute the simulation execution command based on the result of the query. When the simulation execution instruction is performed, the processing of step S136 is performed.
在步驟S136中,參數更新部33係在模擬之計算執行前,選擇與模擬條件相關之學習項、調整項,以作為更新參數。具體而言,更新參數選擇部42係選擇與模擬條件相關之學習項、調整項,以作為應更新之模型參數。 In step S136, the parameter update unit 33 selects the learning item and the adjustment item related to the simulation condition as the update parameter before the execution of the simulation calculation. Specifically, the update parameter selection unit 42 selects the learning item and the adjustment item related to the simulation condition as the model parameter to be updated.
在步驟S137中,參數更新部33之更新時序指定部41係判定更新參數選擇部42所選擇之參數的更新是否會對實際作業之設定計算造成影響。具體而言,更新時序指定部41係在由實際作業之設定計算機23取得更新參數選擇部42所選擇之參數時,計算對設定計算機23賦 予之負荷。此外,更新時序指定部41係確認設定計算機23之負荷狀況。依據該等情況,更新時序指定部41係確認即使產生因參數取得所致之負荷,亦不會對實際作業之設定計算造成影響。當判斷參數更新不會對實際作業之設定計算造成影響時,係執行步驟S139之處理。當判斷參數更新會對實際作業之設定計算造成影響時,係執行步驟S138之處理。 In step S137, the update timing designation unit 41 of the parameter update unit 33 determines whether or not the update of the parameter selected by the update parameter selection unit 42 affects the setting calculation of the actual job. Specifically, the update timing designation unit 41 calculates the parameter selected by the update parameter selection unit 42 when the actual operation setting computer 23 acquires the parameter selected by the update parameter selection unit 42. Load it. Further, the update timing designation unit 41 confirms the load status of the setting computer 23. In accordance with these circumstances, the update timing designation unit 41 confirms that even if a load due to the parameter acquisition occurs, the calculation of the actual work setting is not affected. When it is judged that the parameter update does not affect the setting calculation of the actual job, the processing of step S139 is performed. When it is judged that the parameter update affects the setting calculation of the actual job, the processing of step S138 is performed.
在步驟S138中,係判定步驟S137之判定處理的執行次數是否比上限次數更少。當判定條件成立時,係在經過指定時間後,再執行步驟S137之處理。當判定條件不成立時,結束本程序之處理。 In step S138, it is determined whether or not the number of executions of the determination processing of step S137 is less than the upper limit number of times. When the determination condition is satisfied, the processing of step S137 is performed after the specified time has elapsed. When the determination condition is not established, the processing of the present routine is ended.
在步驟S139中,參數複製部43係將藉由更新參數選擇部42所選擇之模型參數予以更新成與實際作業之設定計算機23所用之最新參數相同之值。 In step S139, the parameter copying unit 43 updates the model parameter selected by the update parameter selection unit 42 to the same value as the latest parameter used by the setting computer 23 of the actual job.
第14圖係顯示利用壓延模擬裝置24來檢討合金組成及製造條件之1個順序的流程圖。 Fig. 14 is a flow chart showing a procedure for reviewing the alloy composition and manufacturing conditions by the rolling simulation device 24.
首先,在步驟S141中,參數更新部33係在定期修理時更新所有的模型參數。步驟S141中之處理係與上述之第13圖之步驟S131、步驟S132之處理相同。 First, in step S141, the parameter update unit 33 updates all the model parameters at the time of regular repair. The processing in step S141 is the same as the processing in steps S131 and S132 of Fig. 13 described above.
在步驟S142中,參數更新部33係更新與輥相關之機械常數及所有的學習項。步驟S142中之處理係與上述之第13圖之步驟S133、步驟S134之處理相同。 In step S142, the parameter update unit 33 updates the mechanical constant associated with the roller and all the learning items. The processing in step S142 is the same as the processing in steps S133 and S134 of Fig. 13 described above.
在步驟S143中,使用者係利用壓延模擬裝置24之輸出入裝置,輸入模擬條件。具體而言,使用者除 依需要輸入用於模擬之虛擬金屬的初期扁胚資訊(尺寸、合金組成)、各種目標值(加熱爐抽出目標溫度、精軋入口側目標溫度、精軋出口側目標溫度、捲取目標溫度、粗壓延出口側目標板厚、粗壓延出口側目標板寬、目標板寬、目標板厚、目標冠高比(crown rate)、目標平坦度等)之外,又再依需要輸入詳細之條件(例如加熱爐扁胚升溫模式、粗出口側目標溫度、各通道之壓下量或壓下率分配、通板速度或加速率、在送出台之冷卻模式、各種噴灑器設定、精軋壓延供應商及工件輥替換等)。所輸入之模擬條件係設定在模擬條件設定部31。 In step S143, the user inputs the simulation condition using the input/output device of the calender simulation device 24. Specifically, the user Input the initial flat embryo information (size, alloy composition) of the virtual metal used for simulation, various target values (heating furnace extraction target temperature, finish rolling inlet target temperature, finish rolling outlet target temperature, coiling target temperature, In addition to the rough rolling outlet target plate thickness, the rough rolling outlet side target plate width, the target plate width, the target plate thickness, the target crown height ratio, the target flatness, etc., the detailed conditions are input as needed ( For example, the heating furnace flat embryo heating mode, the crude outlet side target temperature, the reduction or reduction ratio of each channel, the plate speed or acceleration rate, the cooling mode at the delivery station, various sprayer settings, and the finish rolling and rolling supplier. And workpiece roll replacement, etc.). The input simulation condition is set in the simulation condition setting unit 31.
在步驟S144中,參數更新部33係在模擬之計算執行前更新與模擬條件相關之學習項、調整項。具體而言,更新參數選擇部42係選擇與模擬條件相關之學習項、調整項,以作為應更新之模型參數。參數複製部43係將所選擇之模型參數予以更新成用於實際作業之最新參數相同之值。 In step S144, the parameter update unit 33 updates the learning item and the adjustment item related to the simulation condition before the execution of the simulation calculation. Specifically, the update parameter selection unit 42 selects the learning item and the adjustment item related to the simulation condition as the model parameter to be updated. The parameter copying unit 43 updates the selected model parameter to the same value as the latest parameter for the actual work.
在步驟S145中,虛擬壓延線設定計算部32係利用處理模型、搬送模型、溫度模型,計算依據所設定之模擬條件以虛擬壓延線對虛擬金屬材料進行壓延時各處理之設定值及各時刻之金屬材料的尺寸、位置、溫度。再者,虛擬壓延線設定計算部32係利用材質模型,將所賦予之虛擬金屬的加工歷程紀錄及溫度歷程紀錄之資訊作為輸入值,以預測最後製品材質。此外,利用金屬組織預測模型來預測虛擬金屬之虛擬壓延中的金屬組織變化。此外, 利用機械性質預測模型,將最後計算之虛擬金屬製品的組織及合金組成作為輸入值,以預測降伏應力及拉伸強度等之機械性質等的材質。 In step S145, the virtual rolling line setting calculation unit 32 calculates a set value and a time of each processing of the dummy metal material by the virtual rolling line in accordance with the set simulation condition using the processing model, the transfer model, and the temperature model. The size, position, and temperature of the metal material. Further, the virtual rolling line setting calculation unit 32 uses the material model to input the processing history record and the temperature history record information of the given virtual metal as input values to predict the final product material. In addition, metal structure prediction models are utilized to predict metal structure changes in virtual calendering of virtual metals. In addition, Using the mechanical property prediction model, the final calculated virtual metal product structure and alloy composition are used as input values to predict the mechanical properties such as the tensile stress and the tensile strength.
在步驟S146中,使用者係依據在步驟S145中之計算結果,來確認虛擬金屬製品之品質。在步驟S147中,使用者係確認各處理之設定值。此外,在步驟S148中,依需要來變更模擬條件並反覆進行步驟S144至步驟S147之處理。在步驟S149中,使用者係檢討模擬結果是否適用實際作業。 In step S146, the user confirms the quality of the virtual metal product based on the calculation result in step S145. In step S147, the user confirms the set value of each process. Further, in step S148, the simulation conditions are changed as needed, and the processes of steps S144 to S147 are repeatedly performed. In step S149, the user reviews whether the simulation result is applicable to the actual work.
依據上述順序,不會對實際作業壓延造成影響,且可進行模擬實際作業壓延之精確度佳的模擬。此外,進行模擬條件之變更且反覆實施上述之模擬,且分析該結果,藉此可獲得改善實際作業之加熱、壓延、及冷卻條件或扁胚合金組成的方針。 According to the above sequence, the actual work calendering is not affected, and the simulation for simulating the actual work calendering can be performed. Further, by changing the simulation conditions and repeatedly performing the above simulation, and analyzing the results, it is possible to obtain a policy of improving the heating, rolling, and cooling conditions or the composition of the flat metal alloy in the actual work.
1‧‧‧壓延線 1‧‧‧calendering line
23‧‧‧設定計算機 23‧‧‧Set computer
24‧‧‧壓延模擬裝置 24‧‧‧Depression simulator
31‧‧‧模擬條件設定部 31‧‧‧ Simulation Condition Setting Department
32‧‧‧虛擬壓延線設定計算部 32‧‧‧Virtual calender line setting calculation section
33‧‧‧參數更新部 33‧‧‧Parameter Update Department
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/073975 WO2016038705A1 (en) | 2014-09-10 | 2014-09-10 | Rolling simulation device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201609283A TW201609283A (en) | 2016-03-16 |
TWI554340B true TWI554340B (en) | 2016-10-21 |
Family
ID=55458493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103142558A TWI554340B (en) | 2014-09-10 | 2014-12-08 | Rolling simulation device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6292309B2 (en) |
KR (1) | KR101889668B1 (en) |
CN (1) | CN106660090B (en) |
TW (1) | TWI554340B (en) |
WO (1) | WO2016038705A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798047B (en) * | 2022-04-08 | 2023-04-01 | 中國鋼鐵股份有限公司 | Method for predicting rolling force of steel plate and rolling system |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7052250B2 (en) * | 2017-08-10 | 2022-04-12 | オムロン株式会社 | Information processing equipment, information processing methods, and information processing programs |
JP6988665B2 (en) * | 2018-04-20 | 2022-01-05 | オムロン株式会社 | Information processing systems, information processing methods, and information processing programs |
JP7020379B2 (en) * | 2018-11-20 | 2022-02-16 | 東芝三菱電機産業システム株式会社 | Material control support device for metal materials |
KR20210110661A (en) * | 2019-01-15 | 2021-09-08 | 제이에프이 스틸 가부시키가이샤 | Analysis system and analysis method |
WO2020152750A1 (en) * | 2019-01-21 | 2020-07-30 | Jfeスチール株式会社 | Design assistance method for metal material, prediction model generation method, metal material manufacturing method, and design assistance device |
JP2020131248A (en) * | 2019-02-21 | 2020-08-31 | Jfeスチール株式会社 | Rolling load prediction method, rolling load prediction device, and rolling control method |
JP7207547B2 (en) * | 2019-07-22 | 2023-01-18 | Jfeスチール株式会社 | Quality prediction model generation method, quality prediction model, quality prediction method, metal material manufacturing method, quality prediction model generation device, and quality prediction device |
JP7147974B2 (en) * | 2020-01-29 | 2022-10-05 | Jfeスチール株式会社 | METHOD OF CLASSIFICATION OF METALLOGICAL STRUCTURE PHASE, METHOD OF CLASSIFICATION OF METALLOGICAL STRUCTURE PHASE, METHOD OF MATERIAL CHARACTERISTICS PREDICTION OF METALLIC MATERIAL, AND MATERIAL CHARACTERISTICS PREDICTION DEVICE OF MATERIAL MATERIAL |
KR20220156044A (en) * | 2020-03-31 | 2022-11-24 | 제이에프이 스틸 가부시키가이샤 | Metallographic imaging condition determination method, metallographic imaging method, metallographic phase classification method, metallographic imaging condition determination device, metallographic imaging device, metallographic phase classification device, material property prediction method for metal materials, and Material property prediction device for metallic materials |
TWI721879B (en) * | 2020-05-04 | 2021-03-11 | 和碩聯合科技股份有限公司 | Method of determining productive capacity parameters and productive capacity parameters generating system |
TWI740494B (en) * | 2020-05-12 | 2021-09-21 | 中國鋼鐵股份有限公司 | Roll inspection method and roll inspection system |
JP7180796B2 (en) * | 2020-05-13 | 2022-11-30 | 東芝三菱電機産業システム株式会社 | Physical model identification system |
JP7230880B2 (en) * | 2020-05-18 | 2023-03-01 | Jfeスチール株式会社 | Rolling load prediction method, rolling method, method for manufacturing hot-rolled steel sheet, and method for generating rolling load prediction model |
TWI731809B (en) * | 2020-10-21 | 2021-06-21 | 中國鋼鐵股份有限公司 | Control method for improving coiling temperature vibration on steel bar |
JP7468376B2 (en) * | 2021-01-21 | 2024-04-19 | 株式会社Tmeic | Roll Management Device |
WO2022172524A1 (en) * | 2021-02-15 | 2022-08-18 | Jfeスチール株式会社 | Method for calculating rolling condition for cold rolling mill, device for calculating rolling condition for cold rolling mill, cold rolling method, cold rolling mill, and method for manufacturing steel sheet |
TWI792240B (en) * | 2021-03-24 | 2023-02-11 | 中國鋼鐵股份有限公司 | Method for adjusting control parameters used in rolling mill process |
TWI787940B (en) * | 2021-08-04 | 2022-12-21 | 中國鋼鐵股份有限公司 | Optimization method of furnace temperature setting values of heating furnace |
CN113780852B (en) * | 2021-09-16 | 2024-03-05 | 东北大学 | Diagnosis method for quality defects in plate and strip rolling process |
WO2024157420A1 (en) * | 2023-01-26 | 2024-08-02 | 東芝三菱電機産業システム株式会社 | Temperature control system and temperature control method for hot rolling line |
WO2024189790A1 (en) * | 2023-03-14 | 2024-09-19 | 株式会社Tmeic | Material property prediction device for rolled product |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05118979A (en) * | 1991-10-25 | 1993-05-14 | Hitachi Metals Ltd | Form rolling simulation testing method and testing device therefor |
JPH06312206A (en) * | 1993-04-28 | 1994-11-08 | Nippon Steel Corp | Simulation device for physical distribution in hot rolling plant |
JP2001025805A (en) * | 1999-07-13 | 2001-01-30 | Kobe Steel Ltd | Rolling simulation device and computer readable recording medium recording rolling simulation program |
JP2009208115A (en) * | 2008-03-04 | 2009-09-17 | Kobe Steel Ltd | Method and device for calculating parameter of rolling control, and rolling simulation device |
JP2010172962A (en) * | 2009-02-02 | 2010-08-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Method of predicting characteristics of rolled product |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100425601B1 (en) * | 1999-12-28 | 2004-04-03 | 주식회사 포스코 | Real-time simulator of shape control system for rolling mills |
JP4119684B2 (en) | 2002-05-27 | 2008-07-16 | 東芝三菱電機産業システム株式会社 | Learning control device for rolling mill setting calculation device |
JP4402502B2 (en) | 2004-04-13 | 2010-01-20 | 東芝三菱電機産業システム株式会社 | Winding temperature controller |
WO2008012881A1 (en) * | 2006-07-26 | 2008-01-31 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Rolling line material prediction and material control apparatus |
KR100841888B1 (en) * | 2007-04-12 | 2008-06-27 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Rolling line material quality prediction and control apparatus |
JP4890433B2 (en) * | 2007-12-28 | 2012-03-07 | 株式会社神戸製鋼所 | Rolled material temperature prediction method, rolled material cooling device control method, and continuous rolling equipment |
CN103406362B (en) * | 2013-08-08 | 2015-03-04 | 东北大学 | Control system and method for simulating milling process of medium-heavy plate mill |
-
2014
- 2014-09-10 KR KR1020177006332A patent/KR101889668B1/en active IP Right Grant
- 2014-09-10 WO PCT/JP2014/073975 patent/WO2016038705A1/en active Application Filing
- 2014-09-10 CN CN201480081164.XA patent/CN106660090B/en active Active
- 2014-09-10 JP JP2016547307A patent/JP6292309B2/en active Active
- 2014-12-08 TW TW103142558A patent/TWI554340B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05118979A (en) * | 1991-10-25 | 1993-05-14 | Hitachi Metals Ltd | Form rolling simulation testing method and testing device therefor |
JPH06312206A (en) * | 1993-04-28 | 1994-11-08 | Nippon Steel Corp | Simulation device for physical distribution in hot rolling plant |
JP2001025805A (en) * | 1999-07-13 | 2001-01-30 | Kobe Steel Ltd | Rolling simulation device and computer readable recording medium recording rolling simulation program |
JP2009208115A (en) * | 2008-03-04 | 2009-09-17 | Kobe Steel Ltd | Method and device for calculating parameter of rolling control, and rolling simulation device |
JP2010172962A (en) * | 2009-02-02 | 2010-08-12 | Toshiba Mitsubishi-Electric Industrial System Corp | Method of predicting characteristics of rolled product |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI798047B (en) * | 2022-04-08 | 2023-04-01 | 中國鋼鐵股份有限公司 | Method for predicting rolling force of steel plate and rolling system |
Also Published As
Publication number | Publication date |
---|---|
WO2016038705A1 (en) | 2016-03-17 |
KR101889668B1 (en) | 2018-08-17 |
CN106660090A (en) | 2017-05-10 |
KR20170039736A (en) | 2017-04-11 |
JP6292309B2 (en) | 2018-03-14 |
CN106660090B (en) | 2019-03-19 |
TW201609283A (en) | 2016-03-16 |
JPWO2016038705A1 (en) | 2017-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI554340B (en) | Rolling simulation device | |
JP6922675B2 (en) | Manufacturing process state predictors, methods and programs, and manufacturing process control systems | |
KR101011546B1 (en) | Prediction formula making device and prediction formula making method | |
JP5003483B2 (en) | Material prediction and material control device for rolling line | |
CN108311544B (en) | A kind of roll-force Parameter Self-learning method and device | |
JP2008112288A (en) | Prediction type creation device, result prediction device, quality design device, prediction type creation method and method for manufacturing product | |
JP5604945B2 (en) | Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium | |
JP6662109B2 (en) | Product state prediction device, product state control device, product state prediction method and program | |
JP7503150B2 (en) | System and method for controlling a production facility consisting of several facility parts, in particular for producing industrial products such as metal semi-finished products - Patents.com | |
Wang et al. | A hybrid approach for supervisory control of furnace temperature | |
JP5817450B2 (en) | Thick plate width control method | |
JP7135962B2 (en) | Steel plate finishing delivery side temperature control method, steel plate finishing delivery side temperature control device, and steel plate manufacturing method | |
JP5195331B2 (en) | Quality prediction apparatus, prediction method, program, and computer-readable recording medium in manufacturing process | |
JP4696775B2 (en) | Plate width control method and apparatus | |
JP7020379B2 (en) | Material control support device for metal materials | |
JP2012011448A (en) | Cooling control method of rolled material, and continuous rolling mill to which the cooling control method is applied | |
KR102448426B1 (en) | How the annealing furnace works | |
JP5488140B2 (en) | Quality prediction apparatus, quality prediction method, computer program, and computer-readable recording medium | |
WO2021229727A1 (en) | Physical model identification system | |
KR102045651B1 (en) | Estimating apparatus for heat flux coefficient of run-out table based artificial intelligence | |
WO2024189790A1 (en) | Material property prediction device for rolled product | |
Song et al. | A Digital Twin Model for Automatic Width Control of Hot Rolling Mill | |
JP2009059045A (en) | Control method and control apparatus of product quality | |
JP2018028853A (en) | Production plan creation method and production plan creation device | |
JP6176260B2 (en) | Steel plate shape control device and shape control method |