TWI552224B - Semiconductor etching apparatus and semiconductor etching method - Google Patents

Semiconductor etching apparatus and semiconductor etching method Download PDF

Info

Publication number
TWI552224B
TWI552224B TW102140582A TW102140582A TWI552224B TW I552224 B TWI552224 B TW I552224B TW 102140582 A TW102140582 A TW 102140582A TW 102140582 A TW102140582 A TW 102140582A TW I552224 B TWI552224 B TW I552224B
Authority
TW
Taiwan
Prior art keywords
pulse
frequency
signal
power source
voltage
Prior art date
Application number
TW102140582A
Other languages
Chinese (zh)
Other versions
TW201423863A (en
Inventor
zhao-xiang Wang
Jie Liang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201423863A publication Critical patent/TW201423863A/en
Application granted granted Critical
Publication of TWI552224B publication Critical patent/TWI552224B/en

Links

Landscapes

  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Description

半導體刻蝕裝置及半導體刻蝕方法 Semiconductor etching device and semiconductor etching method

本發明涉及半導體技術,特別涉及一種半導體刻蝕裝置及半導體刻蝕方法。 The present invention relates to semiconductor technology, and in particular to a semiconductor etching apparatus and a semiconductor etching method.

在半導體工藝中,對半導體材料進行刻蝕的工藝通常包括乾法刻蝕工藝或濕法刻蝕工藝,其中,由於利用等離子體進行刻蝕的乾法刻蝕工藝能有效地控制刻蝕開口的尺寸而成為目前最主流的刻蝕工藝。 In a semiconductor process, a process of etching a semiconductor material generally includes a dry etching process or a wet etching process, wherein a dry etching process by etching using a plasma can effectively control an etching opening. Dimensions have become the most popular etching process.

現有工藝通常利用輝光放電、射頻信號、電暈放電等形成等離子體。其中,利用射頻信號形成等離子體時,可以通過調控處理氣體成分、射頻功率的頻率、射頻功率的耦合模式、氣壓、溫度等參數,控制形成的等離子體的密度及能量,從而優化等離子體處理效果。因此,在現有的半導體刻蝕裝置中,通常採用射頻信號形成等離子體,且利用射頻信號在待刻蝕基片上形成偏壓,使得所述等離子體轟擊待刻蝕基片,對所述待刻蝕基片進行刻蝕工藝。 Existing processes typically utilize a glow discharge, a radio frequency signal, a corona discharge, etc. to form a plasma. Wherein, when the plasma is formed by using the radio frequency signal, the density and energy of the formed plasma can be controlled by adjusting the parameters of the processing gas component, the frequency of the radio frequency power, the coupling mode of the radio frequency power, the air pressure, and the temperature, thereby optimizing the plasma treatment effect. . Therefore, in the conventional semiconductor etching apparatus, a radio frequency signal is generally used to form a plasma, and a bias voltage is formed on the substrate to be etched by using the radio frequency signal, so that the plasma bombards the substrate to be etched, and the substrate is to be etched. The etched substrate is subjected to an etching process.

在目前的半導體刻蝕裝置中,用於形成等離子體的射頻信號通常為持續的射頻信號,用於形成偏壓的射頻信號為持續的射頻信號或脈衝式的射頻信號。當形成偏壓的射頻信號為持續的射頻信號時,刻蝕氣體的等離子體會持續地刻蝕待刻蝕基片。當形成偏壓的射頻信號為脈衝式的射頻信號時,所述等離子體會交替地進行刻蝕及沉積聚合物的工藝,有利於形成高深寬比的通孔。但是現有技術中的脈衝式的射頻信號的脈衝頻率及脈衝 占空比是確定的,每一個刻蝕工藝中射頻信號的脈衝頻率及脈衝占空比是恒定的。 In current semiconductor etching devices, the radio frequency signal used to form the plasma is typically a continuous radio frequency signal, and the RF signal used to form the bias voltage is a continuous radio frequency signal or a pulsed radio frequency signal. When the biased RF signal is a continuous RF signal, the plasma of the etching gas continuously etches the substrate to be etched. When the biased RF signal is a pulsed RF signal, the plasma alternately etches and deposits a polymer, which facilitates the formation of high aspect ratio vias. However, the pulse frequency and pulse of the pulsed RF signal in the prior art The duty cycle is determined, and the pulse frequency and pulse duty cycle of the RF signal are constant in each etching process.

更多關於利用射頻功率形成等離子體進行刻蝕的刻蝕裝置,請參考專利號為US7405521B2的美國專利。 For more information on etching devices that use RF power to form a plasma for etching, please refer to US Patent No. US7405521B2.

本發明解決的問題提供一種半導體刻蝕裝置及半導體刻蝕方法,所述半導體刻蝕裝置中的等離子體射頻功率源及/或偏置射頻功率源輸出的脈衝信號會隨時間的變化而改變。 The problem to be solved by the present invention is to provide a semiconductor etching apparatus and a semiconductor etching method, wherein a pulsed signal output from a plasma RF power source and/or a bias RF power source in the semiconductor etching apparatus changes with time.

為解決上述問題,本發明實施例提供了一種半導體刻蝕裝置,包括:反應腔,所述反應腔內具有承片台,用於放置待刻蝕基片;供氣源,用於向所述反應腔內通入氣體;等離子體射頻功率源,用於將反應腔內的氣體等離子體化;偏置射頻功率源,用於在待刻蝕基片表面形成偏壓;所述等離子體射頻功率源及/或偏置射頻功率源輸出的射頻信號為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變。 In order to solve the above problems, an embodiment of the present invention provides a semiconductor etching apparatus, including: a reaction chamber having a wafer stage for placing a substrate to be etched; a gas supply source for a gas is introduced into the reaction chamber; a plasma RF power source is used to plasma the gas in the reaction chamber; a bias RF power source is used to form a bias voltage on the surface of the substrate to be etched; and the plasma RF power is The RF signal output by the source and/or the bias RF power source is a pulse signal, and the pulse frequency and the pulse duty ratio of the pulse signal change with time.

可選的,所述偏置射頻功率源包括第一射頻功率產生器及與所述第一射頻功率產生器相連接的第一射頻信號產生器,所述第一射頻信號產生器包括第一微處理器及第一脈寬調製控制器,所述第一微處理器將一定頻率的三角波及一定電壓的參考信號輸入到第一脈寬調製控制器,所述第一脈寬調製控制器利用所述一定頻率的三角波及一定電壓的參考信號對第一射頻功率產生器的開啟時間及關閉時間進行控制,其中,所述三角波的頻率對應於第一射頻功率產生器輸出的第一脈衝信號的脈衝頻率,所述參考信號的電壓對應於第一脈衝信號的開啟時間與關閉時間的比值。 Optionally, the bias RF power source includes a first RF power generator and a first RF signal generator connected to the first RF power generator, where the first RF signal generator includes a first micro a processor and a first pulse width modulation controller, the first microprocessor inputs a triangular wave of a certain frequency and a reference signal of a certain voltage to the first pulse width modulation controller, wherein the first pulse width modulation controller utilizes The triangular wave of a certain frequency and the reference signal of a certain voltage control the opening time and the closing time of the first RF power generator, wherein the frequency of the triangular wave corresponds to the pulse of the first pulse signal output by the first RF power generator The frequency, the voltage of the reference signal corresponds to the ratio of the on time of the first pulse signal to the off time.

可選的,所述等離子體射頻功率源包括第二射頻功率產生器及與所述第二射頻功率產生器相連接的第二射頻信號產生器,所述第二射頻信號產生器包括第二微處理器及第二脈寬調 製控制器,所述第二微處理器將一定頻率的三角波及一定電壓的參考信號輸入到第二脈寬調製控制器,所述第二脈寬調製控制器利用所述一定頻率的三角波及一定電壓的參考信號對第二射頻功率產生器的開啟時間及關閉時間進行控制,其中,所述三角波的頻率對應於第二射頻功率產生器輸出的第二脈衝信號的脈衝頻率,所述參考信號的電壓對應於第二脈衝信號的開啟時間與關閉時間的比值。 Optionally, the plasma RF power source includes a second RF power generator and a second RF signal generator connected to the second RF power generator, where the second RF signal generator includes a second micro Processor and second pulse width adjustment a controller, the second microprocessor inputs a triangular wave of a certain frequency and a reference signal of a certain voltage to a second pulse width modulation controller, wherein the second pulse width modulation controller utilizes a triangular wave of the certain frequency and a certain The reference signal of the voltage controls the turn-on time and the turn-off time of the second RF power generator, wherein the frequency of the triangular wave corresponds to the pulse frequency of the second pulse signal output by the second RF power generator, and the reference signal The voltage corresponds to the ratio of the on time of the second pulse signal to the off time.

可選的,所述第一脈寬調製控制器、第二脈寬調製控制器根據如下公式分別控制第一射頻功率產生器、第二射頻功率產生器的開啟時間Ton(t)及關閉時間Toff(t),fo(t)=1/(Ton(t)+Toff(t)),Vref(t)=a×Ton(t)/Toff(t),其中,fo(t)為所述三角波的頻率函數,Vref(t)為所述參考信號的電壓函數,a為特定係數。 Optionally, the first pulse width modulation controller and the second pulse width modulation controller respectively control an on time T on (t) and an off time of the first RF power generator and the second RF power generator according to the following formula: T off (t), f o (t)=1/(T on (t)+T off (t)), V ref (t)=a×T on (t)/T off (t), wherein f o (t) is a frequency function of the triangular wave, V ref (t) is a voltage function of the reference signal, and a is a specific coefficient.

可選的,所述三角波的頻率及參考信號的電壓隨時間的變化而改變。 Optionally, the frequency of the triangular wave and the voltage of the reference signal change with time.

可選的,所述第一微處理器根據所述三角波的頻率函數、參考信號的電壓函數計算出某個時間對應的三角波的頻率及參考信號的電壓,並將對應頻率的三角波及對應電壓的參考信號輸入到第一脈寬調製控制器,所述第二微處理器根據所述三角波的頻率函數、參考信號的電壓函數計算出某個時間對應的三角波的頻率及參考信號的電壓,並將對應頻率的三角波及對應電壓的參考信號輸入到第二脈寬調製控制器。 Optionally, the first microprocessor calculates a frequency of a triangular wave corresponding to a certain time and a voltage of a reference signal according to a frequency function of the triangular wave and a voltage function of the reference signal, and the triangular wave corresponding to the frequency and the corresponding voltage The reference signal is input to the first pulse width modulation controller, and the second microprocessor calculates the frequency of the triangular wave corresponding to the certain time and the voltage of the reference signal according to the frequency function of the triangular wave and the voltage function of the reference signal, and A triangular wave corresponding to the frequency and a reference signal of the corresponding voltage are input to the second pulse width modulation controller.

可選的,所述第一微處理器、第二微處理器存儲有與時間相關的三角波的頻率值及參考信號的電壓值,所述第一微處理器、第二微處理器對相應時間對應的三角波的頻率值及對應的參考信號的電壓值進行讀取後,將對應頻率的三角波及對應電壓的參考信號輸入到第一脈寬調製控制器、第二脈寬調製控制器。 Optionally, the first microprocessor and the second microprocessor store a frequency value of a time-dependent triangular wave and a voltage value of the reference signal, and the first microprocessor and the second microprocessor pair the corresponding time. After reading the frequency value of the corresponding triangular wave and the voltage value of the corresponding reference signal, the triangular wave of the corresponding frequency and the reference signal of the corresponding voltage are input to the first pulse width modulation controller and the second pulse width modulation controller.

可選的,還包括控制電腦,利用所述控制電腦向第 一微處理器及第二微處理器輸入三角波的頻率函數、參考信號的電壓函數,或向第一微處理器及第二微處理器輸入與時間相關的三角波的頻率值、參考信號的電壓值。 Optionally, the method further includes controlling the computer, and using the control computer to a microprocessor and the second microprocessor input a frequency function of the triangular wave, a voltage function of the reference signal, or input a time-dependent triangular wave frequency value and a reference signal voltage value to the first microprocessor and the second microprocessor .

可選的,所述偏置射頻功率源通過第一射頻匹配器連接於承片台。 Optionally, the bias RF power source is connected to the stage through the first RF matcher.

可選的,所述偏置射頻功率源通過第一射頻匹配器連接於反應腔頂部。 Optionally, the bias RF power source is connected to the top of the reaction chamber through a first RF matcher.

可選的,所述等離子體射頻功率源為電感耦合射頻功率源或電容耦合射頻功率源。 Optionally, the plasma RF power source is an inductively coupled RF power source or a capacitively coupled RF power source.

本發明實施例還提供了一種利用所述半導體刻蝕裝置的半導體刻蝕方法,包括:提供待刻蝕基片;在反應腔內通入氣體;等離子體射頻功率源將反應腔內的氣體等離子體化;偏置射頻功率源在待刻蝕基片表面施加偏壓;利用所述氣體的等離子體對待刻蝕基片進行刻蝕形成刻蝕圖形,所述等離子體射頻功率源及/或偏置射頻功率源輸出的射頻信號輸出的信號為脈衝信號,在刻蝕圖形具有第一深度時,所述脈衝信號具有第一脈衝占空比及第一脈衝頻率,在刻蝕圖形具有第二深度時,所述脈衝信號具有第二脈衝占空比及第二脈衝頻率。 The embodiment of the invention further provides a semiconductor etching method using the semiconductor etching device, comprising: providing a substrate to be etched; introducing a gas into the reaction chamber; and a plasma RF power source for gas plasma in the reaction chamber Applying a bias voltage to the surface of the substrate to be etched; etching the substrate to be etched by the plasma of the gas to form an etched pattern, the plasma RF power source and/or bias The signal output from the RF signal output by the RF power source is a pulse signal. When the etched pattern has a first depth, the pulse signal has a first pulse duty ratio and a first pulse frequency, and the etched pattern has a second depth. The pulse signal has a second pulse duty cycle and a second pulse frequency.

可選的,所述脈衝信號的脈衝頻率小於50千赫茲,所述脈衝信號的脈衝占空比範圍為10%~90%。 Optionally, the pulse signal has a pulse frequency of less than 50 kHz, and the pulse signal has a pulse duty cycle ranging from 10% to 90%.

可選的,所述刻蝕圖形至少還包括第三深度,所述第三深度對應的第一脈衝信號及第二脈衝信號的脈衝頻率及/或脈衝占空比與第一深度、第二深度不同,從而調節不同深度的刻蝕圖形側壁形貌及刻蝕速率。 Optionally, the etched pattern further includes a third depth, the pulse frequency and/or the pulse duty ratio of the first pulse signal and the second pulse signal corresponding to the third depth, and the first depth and the second depth Different, thereby adjusting the sidewall morphology and etching rate of the etched pattern at different depths.

與現有技術相比,本發明具有以下優點:所述半導體刻蝕裝置的等離子體射頻功率源及/或偏置射頻功率源輸出的射頻信號為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變,可以根據需要即時 地調節反應腔內的等離子體的密度及偏置電壓來控制通孔內的等離子體的交換及通孔內的反應速率,從而有利於控制通孔的側壁形貌。 Compared with the prior art, the present invention has the following advantages: the plasma RF power source of the semiconductor etching device and/or the RF signal output by the bias RF power source is a pulse signal, and the pulse frequency and pulse of the pulse signal The duty cycle changes with time and can be instantly available as needed The density and bias voltage of the plasma in the reaction chamber are adjusted to control the exchange of plasma in the via and the reaction rate in the via, thereby facilitating control of the sidewall morphology of the via.

110‧‧‧反應腔 110‧‧‧Reaction chamber

120‧‧‧承片台 120‧‧‧Sheet

125‧‧‧待刻蝕基片 125‧‧‧ substrates to be etched

130‧‧‧供氣源 130‧‧‧ gas supply

140‧‧‧等離子體射頻功率源 140‧‧‧ Plasma RF power source

141‧‧‧第二射頻匹配器 141‧‧‧Second RF Matcher

142‧‧‧電感線圈 142‧‧‧Inductance coil

143‧‧‧第二射頻功率產生器 143‧‧‧Second RF power generator

144‧‧‧第二射頻信號產生器 144‧‧‧Second RF signal generator

145‧‧‧第二微處理器 145‧‧‧second microprocessor

146‧‧‧第二脈寬調製控制器 146‧‧‧Second Pulse Width Modulation Controller

150‧‧‧偏置射頻功率源 150‧‧‧Bad RF power source

151‧‧‧第一射頻匹配器 151‧‧‧First RF Matcher

153‧‧‧第一射頻功率產生器 153‧‧‧First RF Power Generator

154‧‧‧第一射頻信號產生器 154‧‧‧First RF signal generator

155‧‧‧第一微處理器 155‧‧‧First microprocessor

156‧‧‧第一脈寬調製控制器 156‧‧‧First Pulse Width Modulation Controller

圖1至圖3是本發明實施例的半導體刻蝕裝置的結構示意圖。 1 to 3 are schematic views showing the structure of a semiconductor etching apparatus according to an embodiment of the present invention.

在現有技術中,形成等離子體的射頻信號及形成偏壓的射頻信號通常為持續的射頻信號或脈衝式射頻信號,且所述脈衝式射頻信號的脈衝頻率及脈衝占空比是確定的,形成所述持續的射頻信號的射頻功率源或脈衝頻率、脈衝占空比恒定的脈衝式射頻信號的射頻功率源的結構簡單。但發明人發現,隨著器件的尺寸的縮小,待刻蝕結構的尺寸也隨之縮小,尤其是採用現有的等離子體刻蝕工藝在形成具有高的深寬比的通孔時,隨著刻蝕的進行,通孔內的等離子體交換越來越慢,通孔內的等離子體的密度發生改變,因此需要即時地調節反應腔內的等離子體的密度及偏置電壓來控制通孔內的等離子體的交換及通孔內的反應速率,從而有利於控制通孔的側壁形貌。 In the prior art, the radio frequency signal forming the plasma and the radio frequency signal forming the bias voltage are usually a continuous radio frequency signal or a pulsed radio frequency signal, and the pulse frequency and the pulse duty ratio of the pulsed radio frequency signal are determined to form. The RF power source of the continuous RF signal or the RF power source of the pulsed RF signal with a pulse frequency and a constant pulse duty ratio is simple in structure. However, the inventors have found that as the size of the device is reduced, the size of the structure to be etched is also reduced, especially when an existing plasma etching process is used to form a via having a high aspect ratio. As the etch progresses, the plasma exchange in the via hole becomes slower and slower, and the density of the plasma in the via hole changes. Therefore, it is necessary to instantly adjust the density and bias voltage of the plasma in the reaction chamber to control the inside of the via hole. The exchange of plasma and the rate of reaction within the vias facilitate the control of the sidewall morphology of the vias.

因此,本發明實施例提供了一種半導體刻蝕裝置及半導體刻蝕方法,所述半導體刻蝕裝置的等離子體射頻功率源及/或偏置射頻功率源輸出的射頻信號為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變,使得通過即時控制所述脈衝信號的脈衝頻率及脈衝占空比,可以即時控制反應腔中的等離子體的密度及偏置電壓,從而可以控制刻蝕速率及刻蝕圖形的形貌。 Therefore, an embodiment of the present invention provides a semiconductor etching apparatus and a semiconductor etching method, wherein a plasma RF power source of the semiconductor etching apparatus and/or a radio frequency signal output by a bias RF power source is a pulse signal, and the The pulse frequency of the pulse signal and the pulse duty ratio change with time, so that the density and the bias voltage of the plasma in the reaction chamber can be instantly controlled by controlling the pulse frequency and the pulse duty ratio of the pulse signal in real time. Thus, the etching rate and the morphology of the etched pattern can be controlled.

為使本發明的上述目的、特徵及優點能夠更為明顯易懂,下面結合附圖對本發明的具體實施方式做詳細的說明。 The above described objects, features and advantages of the present invention will become more apparent from the aspects of the appended claims.

在以下描述中闡述了具體細節以便於充分理解本發明。但是本發明能夠以多種不同於在此描述的其它方式來實施,本領域技術人員可以在不違背本發明內涵的情況下做類似推廣。因此本發明不受下面公開的具體實施的限制。 Specific details are set forth in the following description in order to provide a thorough understanding of the invention. However, the present invention can be implemented in a variety of other ways than those described herein, and those skilled in the art can make similar promotion without departing from the scope of the present invention. The invention is therefore not limited by the specific embodiments disclosed below.

本發明實施例首先提供了一種半導體刻蝕裝置,請參考圖1,為本發明實施例的半導體刻蝕裝置的結構示意圖,具體包括:反應腔110,所述反應腔110內具有承片台120,用於放置待刻蝕基片125;供氣源130,所述供氣源130與反應腔110的頂部相連接且向所述反應腔110內通入氣體;等離子體射頻功率源140,通過第二射頻匹配器141與圍繞反應腔110側壁設置的電感線圈142相連接,所述等離子體射頻功率源140產生的射頻信號通過電感線圈142將反應腔110內的氣體等離子體化;偏置射頻功率源150,通過第一射頻匹配器151與承片台120相連接,所述偏置射頻功率源150輸出的射頻信號在所述待刻蝕基片125表面形成偏壓;所述等離子體射頻功率源140及偏置射頻功率源150輸出的射頻信號都為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變。 An embodiment of the present invention provides a semiconductor etching apparatus. Referring to FIG. 1 , a schematic structural diagram of a semiconductor etching apparatus according to an embodiment of the present invention includes: a reaction chamber 110 having a wafer stage 120 therein. For placing the substrate 125 to be etched; a gas supply source 130, the gas supply source 130 is connected to the top of the reaction chamber 110 and a gas is introduced into the reaction chamber 110; the plasma RF power source 140 passes The second RF matcher 141 is connected to the inductor 142 disposed around the sidewall of the reaction chamber 110. The RF signal generated by the plasma RF power source 140 is used to plasma the gas in the reaction chamber 110 through the inductor 142; The power source 150 is connected to the stage 120 through the first RF matching unit 151. The RF signal outputted by the bias RF power source 150 forms a bias voltage on the surface of the substrate 125 to be etched; The RF signals output by the power source 140 and the bias RF power source 150 are both pulse signals, and the pulse frequency and pulse duty ratio of the pulse signals change with time.

在本發明實施例中,所述等離子體射頻功率源140及偏置射頻功率源150輸出的射頻信號都為脈衝信號,且都能對輸出的脈衝信號的脈衝頻率及脈衝占空比進行即時控制,使得所述脈衝信號的脈衝頻率及脈衝占空比能隨著時間的變化而改變。在其他實施例中,所述等離子體射頻功率源或偏置射頻功率源其中一個輸出的射頻信號為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變,另一個輸出的射頻信號為脈衝頻率及脈衝占空比恒定的脈衝信號或持續的射頻信號。 In the embodiment of the present invention, the RF signals output by the plasma RF power source 140 and the bias RF power source 150 are pulse signals, and both of the pulse frequency and the pulse duty ratio of the output pulse signal can be instantly controlled. Therefore, the pulse frequency and the pulse duty ratio of the pulse signal can be changed with time. In other embodiments, the RF signal outputted by the plasma RF power source or the bias RF power source is a pulse signal, and the pulse frequency and the pulse duty ratio of the pulse signal change with time. The other output RF signal is a pulse signal with a constant pulse frequency and pulse duty cycle or a continuous RF signal.

在本實施例中,所述等離子體射頻功率源140通過第二射頻匹配器141與圍繞反應腔110側壁設置的電感線圈142相連接,所述等離子體射頻功率源140為電感耦合射頻功率源。 在其他實施例中,所述等離子體射頻功率源通過第二射頻匹配器與反應腔頂部或承片台相連接,對應的,承片台或反應腔頂部接地,所述反應腔頂部及承片台形成電容耦合,在反應腔內形成射頻功率從而將氣體等離子體化,對應的等離子體射頻功率源為電容耦合射頻功率源。 In the present embodiment, the plasma RF power source 140 is coupled to an inductor 142 disposed around a sidewall of the reaction chamber 110 by a second RF matcher 141, which is an inductively coupled RF power source. In other embodiments, the plasma RF power source is connected to the top of the reaction chamber or the stage via a second RF matching device, and correspondingly, the top of the substrate or the reaction chamber is grounded, the top of the reaction chamber and the carrier The stage forms a capacitive coupling, and RF power is formed in the reaction chamber to plasma the gas. The corresponding plasma RF power source is a capacitively coupled RF power source.

在本實施例中,所述偏置射頻功率源150通過第一射頻匹配器151與承片台120相連接,使得所述承片台120上的待刻蝕基片125表面具有負偏壓,使得等離子體受到負偏壓的作用聚集到待刻蝕基片125的表面,有利於提高刻蝕效率,且當偏壓較大時,所述等離子體會轟擊待刻蝕基片125的表面,進一步提高刻蝕效率,且所述負偏壓會影響待刻蝕基片表面形成的鞘層電壓。在其他實施例中,所述偏置射頻功率源還可以通過第一射頻匹配器與反應腔頂部相連接,通過在所述反應腔頂部形成正偏壓,使得等離子體受到正偏壓的作用聚集到待刻蝕基片的表面進行刻蝕。 In the embodiment, the bias RF power source 150 is connected to the carrier 120 through the first RF matching unit 151, so that the surface of the substrate 125 to be etched on the substrate 120 has a negative bias. The plasma is subjected to a negative bias to concentrate on the surface of the substrate 125 to be etched, which is advantageous for improving the etching efficiency, and when the bias voltage is large, the plasma may bombard the surface of the substrate 125 to be etched, further The etching efficiency is increased, and the negative bias voltage affects the sheath voltage formed on the surface of the substrate to be etched. In other embodiments, the bias RF power source can also be connected to the top of the reaction chamber through a first RF matcher, and the plasma is positively biased by forming a positive bias at the top of the reaction chamber. Etching is performed on the surface of the substrate to be etched.

請參考圖2,為圖1中偏置射頻功率源150的結構示意圖,所述偏置射頻功率源150具體包括:第一射頻功率產生器153及與所述第一射頻功率產生器153相連接的第一射頻信號產生器154,所述第一射頻信號產生器154包括第一微處理器155及第一脈寬調製控制器156(PMW),所述第一微處理器155將一定頻率的三角波及一定電壓的參考信號輸入到第一脈寬調製控制器156,所述第一脈寬調製控制器156利用所述一定頻率的三角波及一定電壓的參考信號對第一射頻功率產生器153的開啟時間及關閉時間進行控制。 Please refer to FIG. 2 , which is a schematic structural diagram of the biased RF power source 150 of FIG. 1 . The bias RF power source 150 specifically includes: a first RF power generator 153 and is connected to the first RF power generator 153 . a first RF signal generator 154, the first RF signal generator 154 includes a first microprocessor 155 and a first pulse width modulation controller 156 (PMW), the first microprocessor 155 will be a certain frequency The triangular wave and a reference signal of a certain voltage are input to the first pulse width modulation controller 156, and the first pulse width modulation controller 156 uses the triangular wave of the certain frequency and the reference signal of a certain voltage to the first RF power generator 153. Turn on time and off time for control.

在本實施例中,所述第一微處理器155中存儲有一定頻率的三角波及一定電壓的參考信號,所述三角波的頻率函數為fo(t),所述參考信號的電壓函數為Vref(t),所述三角波的頻率函數及參考信號的電壓函數隨時間的變化而改變,為階躍函數或連 續函數。所述第一微處理器155將所述一定頻率的三角波及一定電壓的參考信號輸入到第一脈寬調製控制器156,所述第一脈寬調製控制器156會根據如下公式控制第一射頻功率產生器153的開啟時間Ton(t)及關閉時間Toff(t),fo(t)=1/(Ton(t)+Toff(t)),Vref(t)=a×Ton(t)/Toff(t),其中,a為特定係數。因此,所述第一射頻功率產生器產生的射頻信號為脈衝信號,即為第一脈衝信號,且所述三角波的頻率對應於第一射頻功率產生器輸出的第一脈衝信號的脈衝頻率,所述參考信號的電壓對應於第一脈衝信號的開啟時間與關閉時間的比值。通過所述第一微處理器155中存儲的具有一定頻率的三角波及一定電壓的參考信號,即可控制偏置射頻功率源150輸出的第一脈衝信號的脈衝頻率及脈衝占空比。由於所述三角波的頻率函數及參考信號的電壓函數隨時間的變化而改變,即所述偏置射頻功率源150輸出的第一脈衝信號的脈衝頻率及脈衝占空比也隨時間的變化而改變。 In this embodiment, the first microprocessor 155 stores a triangular wave of a certain frequency and a reference signal of a certain voltage, the frequency function of the triangular wave is f o (t), and the voltage function of the reference signal is V. Ref (t), the frequency function of the triangular wave and the voltage function of the reference signal change with time, and are a step function or a continuous function. The first microprocessor 155 inputs the triangular wave of a certain frequency and a reference signal of a certain voltage to the first pulse width modulation controller 156, and the first pulse width modulation controller 156 controls the first radio frequency according to the following formula. The turn-on time Ton(t) and the turn-off time Toff (t) of the power generator 153, f o (t)=1/(T on (t)+T off (t)), V ref (t)=a× T on (t) / T off (t), where a is a specific coefficient. Therefore, the radio frequency signal generated by the first radio frequency power generator is a pulse signal, that is, a first pulse signal, and the frequency of the triangular wave corresponds to a pulse frequency of the first pulse signal output by the first radio frequency power generator. The voltage of the reference signal corresponds to the ratio of the on time of the first pulse signal to the off time. The pulse frequency and the pulse duty ratio of the first pulse signal output by the bias RF power source 150 can be controlled by the triangular wave having a certain frequency and the reference signal of a certain voltage stored in the first microprocessor 155. Since the frequency function of the triangular wave and the voltage function of the reference signal change with time, that is, the pulse frequency and the pulse duty ratio of the first pulse signal output by the bias RF power source 150 also change with time. .

在其他實施例中,所述第一微處理器具有資料表,所述資料表存儲有與時間相關的三角波的頻率值及參考信號的電壓值,所述第一微處理器對相應時間對應的三角波的頻率值及對應的參考信號的電壓值進行讀取後,將對應頻率的三角波及對應電壓的參考信號輸入到第一脈寬調製控制器,利用所述第一脈寬調製控制器控制第一射頻功率產生器的開啟時間及關閉時間,從而形成具有特定脈衝頻率及脈衝占空比的第一脈衝信號。 In other embodiments, the first microprocessor has a data table that stores a frequency value of a time-dependent triangular wave and a voltage value of a reference signal, the first microprocessor corresponding to the corresponding time After reading the frequency value of the triangular wave and the voltage value of the corresponding reference signal, inputting the triangular wave of the corresponding frequency and the reference signal of the corresponding voltage to the first pulse width modulation controller, and controlling the first pulse width modulation controller The turn-on and turn-off times of an RF power generator to form a first pulse signal having a particular pulse frequency and pulse duty cycle.

所述偏置射頻功率源150產生的第一脈衝信號用於在待刻蝕基片表面形成偏壓,當所述第一脈衝信號處於打開狀態時,所述待刻蝕基片表面形成偏壓會作用反應腔中的等離子體使得所述等離子體轟擊所述待刻蝕基片,進行刻蝕步驟;當所述第一脈衝信號處於關閉狀態時,所述待刻蝕基片表面不形成偏壓,使得所述等離子體在刻蝕形成的溝槽側壁形成聚合物,以保護側壁不會被過刻蝕。且通過控制第一微處理器155中存儲的參考信 號函數,從而可以控制所述偏置射頻功率源150的脈衝占空比,控制不同深度下刻蝕形成的溝槽側壁的聚合物的數量,進而控制不同深度下溝槽側壁的傾斜度。當所述第一脈衝信號處於關閉狀態的時間較長,使得溝槽側壁的聚合物的數量較多,溝槽傾斜度較大;當所述第一脈衝信號處於關閉狀態的時間較短,使得溝槽側壁的聚合物的數量較少,溝槽傾斜度較小。在其中一個實施例中,隨著刻蝕深度的增加,通過提高所述第一脈衝信號處於關閉狀態的時間,使得形成的聚合物的數量逐漸增加,形成側壁傾斜的溝槽,使得最終形成的溝槽的剖面結果為倒三角形或倒梯形,有利於後續材料的填充。當刻蝕高深寬比的通孔時,由於等離子體不容易進入通孔內,通過逐步減小第一脈衝信號的頻率,使得一次刻蝕步驟及形成聚合物的步驟的時間變長,從而仍舊能保持相同的速率進行刻蝕。且調整所述第一脈衝信號的脈衝占空比及脈衝頻率,還能調節偏置射頻功率源150的平均功率,影響鞘層特性及等離子體的分佈。 The first pulse signal generated by the bias RF power source 150 is used to form a bias voltage on the surface of the substrate to be etched, and the surface of the substrate to be etched is biased when the first pulse signal is in an open state. The plasma in the reaction chamber is caused to cause the plasma to bombard the substrate to be etched, and an etching step is performed; when the first pulse signal is in a closed state, the surface of the substrate to be etched is not polarized. The pressure is such that the plasma forms a polymer on the sidewalls of the trench formed by etching to protect the sidewall from being overetched. And by controlling the reference letter stored in the first microprocessor 155 The function is such that the pulse duty cycle of the biased RF power source 150 can be controlled to control the amount of polymer of the trench sidewalls formed by etching at different depths, thereby controlling the slope of the trench sidewalls at different depths. When the first pulse signal is in a closed state for a long time, the number of polymers on the sidewall of the trench is larger, and the slope of the trench is larger; when the first pulse signal is in a closed state, the time is short, The number of polymers on the sidewalls of the trench is small and the slope of the trench is small. In one of the embodiments, as the etching depth increases, the number of formed polymers is gradually increased by increasing the time during which the first pulse signal is in a closed state, forming a trench with sidewalls inclined, so that the final formed The cross-section of the groove results in an inverted triangle or an inverted trapezoid, which facilitates the filling of subsequent materials. When the high aspect ratio via hole is etched, since the plasma does not easily enter the through hole, the step of the first etching step and the step of forming the polymer becomes longer by gradually reducing the frequency of the first pulse signal, thereby still being It can be etched at the same rate. Moreover, adjusting the pulse duty ratio and the pulse frequency of the first pulse signal can also adjust the average power of the bias RF power source 150 to affect the sheath characteristics and the plasma distribution.

其中,在不改變第一脈衝信號的脈衝占空比的情況下單獨增大或減小第一脈衝信號的脈衝頻率,可以控制刻蝕速率;在不改變第一脈衝信號的脈衝頻率的情況下單獨增大或減小第一脈衝信號的脈衝占空比,可以控制刻蝕結構的形貌;同時改變第一脈衝信號的脈衝占空比及脈衝頻率,可以控制刻蝕結構的形貌及刻蝕速率。 Wherein, the etch rate can be controlled by independently increasing or decreasing the pulse frequency of the first pulse signal without changing the pulse duty ratio of the first pulse signal; without changing the pulse frequency of the first pulse signal Increasing or decreasing the pulse duty ratio of the first pulse signal alone can control the morphology of the etching structure; simultaneously changing the pulse duty ratio and the pulse frequency of the first pulse signal can control the shape and engraving of the etching structure Erosion rate.

請參考圖3,為圖1中等離子體射頻功率源140的結構示意圖,所述等離子體射頻功率源140具體包括:第二射頻功率產生器143及與所述第二射頻功率產生器143相連接的第二射頻信號產生器144,所述第二射頻信號產生器144包括第二微處理器145及第二脈寬調製控制器146,所述第二微處理器145將一定頻率的三角波及一定電壓的參考信號輸入到第二脈寬調製控制器146,所述第二脈寬調製控制器146利用所述一定頻率的三角波及 一定電壓的參考信號對第二射頻功率產生器143的開啟時間及關閉時間進行控制。 Please refer to FIG. 3 , which is a schematic structural diagram of the plasma RF power source 140 of FIG. 1 . The plasma RF power source 140 specifically includes: a second RF power generator 143 and is connected to the second RF power generator 143 . a second RF signal generator 144, the second RF signal generator 144 includes a second microprocessor 145 and a second pulse width modulation controller 146, the second microprocessor 145 and a certain frequency of triangular waves The reference signal of the voltage is input to the second pulse width modulation controller 146, and the second pulse width modulation controller 146 utilizes the triangular wave of the certain frequency The reference signal of a certain voltage controls the on time and the off time of the second RF power generator 143.

在本實施例中,所述第二微處理器145中存儲有一定頻率的三角波及一定電壓的參考信號,所述三角波的頻率函數為fo(t),所述參考信號的電壓函數為Vref(t),所述三角波的頻率函數及參考信號的電壓函數隨時間的變化而改變,為階躍函數或連續函數。所述第二微處理器145將所述一定頻率的三角波及一定電壓的參考信號輸入到第二脈寬調製控制器146,所述第二脈寬調製控制器146(PMW)會根據如下公式控制第二射頻功率產生器143的開啟時間Ton(t)及關閉時間Toff(t),fo(t)=1/(Ton(t)+Toff(t)),Vref(t)=a×Ton(t)/Toff(t),其中,a為特定係數。因此,所述第二射頻功率產生器143產生的射頻信號為脈衝信號,即為第二脈衝信號,且所述三角波的頻率對應於第二射頻功率產生器143輸出的第二脈衝信號的脈衝頻率,所述參考信號的電壓對應於第二脈衝信號的開啟時間與關閉時間的比值。因此,通過所述第二微處理器145中存儲的具有一定頻率的三角波及一定電壓的參考信號,即可控制等離子體射頻功率源140輸出的第二脈衝信號的脈衝頻率及脈衝占空比。由於所述三角波的頻率函數及參考信號的電壓函數隨時間的變化而改變,即所述等離子體射頻功率源140輸出的第二脈衝信號的脈衝頻率及脈衝占空比也隨時間的變化而改變。 In this embodiment, the second microprocessor 145 stores a triangular wave of a certain frequency and a reference signal of a certain voltage, the frequency function of the triangular wave is f o (t), and the voltage function of the reference signal is V. Ref (t), the frequency function of the triangular wave and the voltage function of the reference signal change with time, and are a step function or a continuous function. The second microprocessor 145 inputs the triangular wave of a certain frequency and a reference signal of a certain voltage to the second pulse width modulation controller 146, and the second pulse width modulation controller 146 (PMW) is controlled according to the following formula The turn-on time T on (t) and the turn-off time T off (t) of the second RF power generator 143, f o (t) = 1 / (T on (t) + T off (t)), V ref (t ) = a × T on (t) / T off (t), where a is a specific coefficient. Therefore, the radio frequency signal generated by the second RF power generator 143 is a pulse signal, that is, a second pulse signal, and the frequency of the triangular wave corresponds to the pulse frequency of the second pulse signal output by the second RF power generator 143. The voltage of the reference signal corresponds to a ratio of an on time to a off time of the second pulse signal. Therefore, the pulse frequency and the pulse duty ratio of the second pulse signal output by the plasma RF power source 140 can be controlled by the triangular wave having a certain frequency and the reference signal of a certain voltage stored in the second microprocessor 145. Since the frequency function of the triangular wave and the voltage function of the reference signal change with time, that is, the pulse frequency and the pulse duty ratio of the second pulse signal output by the plasma RF power source 140 also change with time. .

在其他實施例中,所述第二微處理器具有資料表,所述資料表存儲有與時間相關的三角波的頻率值及參考信號的電壓值,所述第二微處理器對相應時間對應的三角波的頻率值及對應的參考信號的電壓值進行讀取後,將對應頻率的三角波及對應電壓的參考信號輸入到第二脈寬調製控制器,利用所述第二脈寬調製控制器控制第二射頻功率產生器的開啟時間及關閉時間,從而形成具有特定脈衝頻率及脈衝占空比的第二脈衝信號。 In other embodiments, the second microprocessor has a data table storing a frequency value of a time-dependent triangular wave and a voltage value of the reference signal, the second microprocessor corresponding to the corresponding time After reading the frequency value of the triangular wave and the voltage value of the corresponding reference signal, inputting the triangular wave of the corresponding frequency and the reference signal of the corresponding voltage to the second pulse width modulation controller, and controlling the second pulse width modulation controller The turn-on time and the turn-off time of the two RF power generators, thereby forming a second pulse signal having a specific pulse frequency and a pulse duty ratio.

所述等離子體射頻功率源140產生的第二脈衝信號 用於在將反應腔中的氣體等離子體化,當所述第二脈衝信號處於打開狀態時,所述反應腔內的氣體形成等離子體;當所述第二脈衝信號處於關閉狀態時,所述反應腔內的氣體不繼續形成等離子體。且通過控制第二微處理器145中存儲的參考信號的電壓函數,控制所述等離子體射頻功率源140的脈衝占空比,可以控制反應腔內等離子體的密度及分佈,從而控制刻蝕速率。且由於等離子體射頻功率源140將氣體等離子體化,形成的等離子體包括正離子、負離子、中性自由基及熱電子等,其中熱電子由於品質小、運動速度大,會最快到達靠近待刻蝕基片表面的區域,會在靠近待刻蝕基片表面的區域形成帶負電的鞘層,所述帶負電的鞘層會加速正離子轟擊待刻蝕基片。而當所述第二脈衝信號處於關閉狀態時,由於熱電子的壽命很短,會影響鞘層的加速性能,因此通過控制所述等離子體射頻功率源140的脈衝頻率,即通過增加或減小第二脈衝信號開啟及關閉的時間,也可以控制刻蝕速率。 a second pulse signal generated by the plasma RF power source 140 For plasmaizing a gas in the reaction chamber, the gas in the reaction chamber forms a plasma when the second pulse signal is in an open state; and when the second pulse signal is in a closed state, The gas in the reaction chamber does not continue to form a plasma. And by controlling the voltage function of the reference signal stored in the second microprocessor 145, controlling the pulse duty ratio of the plasma RF power source 140, the density and distribution of the plasma in the reaction chamber can be controlled, thereby controlling the etching rate. . And because the plasma RF power source 140 plasmaizes the gas, the formed plasma includes positive ions, negative ions, neutral radicals, and hot electrons, etc., wherein the hot electrons arrive at the near end due to small quality and high speed of movement. Etching the area of the surface of the substrate creates a negatively charged sheath near the surface of the substrate to be etched, which accelerates the positive ion bombardment of the substrate to be etched. When the second pulse signal is in the off state, since the lifetime of the hot electrons is short, the acceleration performance of the sheath layer is affected, and thus the pulse frequency of the plasma RF power source 140 is controlled, that is, by increasing or decreasing. The etching rate can also be controlled by the time when the second pulse signal is turned on and off.

其中,當在不改變第二脈衝信號的脈衝占空比的情況下單獨增大或減小第二脈衝信號的脈衝頻率,可以控制刻蝕速率;當在不改變第二脈衝信號的脈衝頻率的情況下單獨增大或減小第二脈衝信號的脈衝占空比,可以控制等離子體的密度及分佈;當同時改變第二脈衝信號的脈衝占空比及脈衝頻率,可以同時控制反應腔內的等離子體的密度、分佈及刻蝕速率。 Wherein, when the pulse frequency of the second pulse signal is separately increased or decreased without changing the pulse duty ratio of the second pulse signal, the etching rate can be controlled; when the pulse frequency of the second pulse signal is not changed In the case of increasing or decreasing the pulse duty ratio of the second pulse signal alone, the density and distribution of the plasma can be controlled; when the pulse duty ratio and the pulse frequency of the second pulse signal are simultaneously changed, the reaction chamber can be simultaneously controlled. Plasma density, distribution, and etch rate.

在本實施例中,所述半導體刻蝕裝置還包括控制電腦(未圖示),所述控制電腦與第一微處理器、第二微處理器相連接,所述控制電腦向第一微處理器、第二微處理器輸入三角波的頻率函數、參考信號的電壓函數,從而控制第一脈衝信號、第二脈衝信號的脈衝頻率及脈衝占空比。 In this embodiment, the semiconductor etching apparatus further includes a control computer (not shown), the control computer is connected to the first microprocessor and the second microprocessor, and the control computer is to the first micro processing. And the second microprocessor inputs a frequency function of the triangular wave and a voltage function of the reference signal, thereby controlling a pulse frequency and a pulse duty ratio of the first pulse signal and the second pulse signal.

在其他實施例中,所述控制電腦向第一微處理器、第二微處理器的資料表輸入與時間相關的三角波的頻率值、參考信號的電壓值,使得第一微處理器、第二微處理器可以根據對應 的頻率值及電壓值控制第一脈衝信號、第二脈衝信號的脈衝頻率及脈衝占空比。 In other embodiments, the control computer inputs a frequency value of a time-dependent triangular wave and a voltage value of the reference signal to a data table of the first microprocessor and the second microprocessor, so that the first microprocessor and the second The microprocessor can correspond The frequency value and the voltage value control the pulse frequency of the first pulse signal and the second pulse signal and the pulse duty ratio.

在本實施例中,所述半導體刻蝕裝置還包括排氣口(未圖示),所述排氣口與真空泵(未圖示)相連接,用於將反應腔中的反應物及多餘的氣體排出。 In this embodiment, the semiconductor etching apparatus further includes an exhaust port (not shown) connected to a vacuum pump (not shown) for discharging reactants in the reaction chamber and excess The gas is discharged.

本發明實施例還提供了一種採用上述半導體刻蝕裝置的半導體刻蝕方法,具體包括:提供待刻蝕基片;在反應腔內通入反應氣體;等離子體射頻功率源將反應腔內的氣體等離子體化;偏置射頻功率源在待刻蝕基片表面施加偏壓;利用所述氣體的等離子體對待刻蝕基片進行刻蝕形成刻蝕圖形,所述等離子體射頻功率源及偏置射頻功率源輸出的射頻信號為脈衝信號,在刻蝕圖形具有第一深度時,所述脈衝信號具有第一脈衝占空比及第一脈衝頻率,在刻蝕圖形具有第二深度時,所述脈衝信號具有第二脈衝占空比及第二脈衝頻率。 The embodiment of the invention further provides a semiconductor etching method using the above semiconductor etching device, which comprises: providing a substrate to be etched; introducing a reaction gas into the reaction chamber; and a plasma RF power source for the gas in the reaction chamber Plasmaizing; biasing the RF power source to apply a bias voltage on the surface of the substrate to be etched; etching the substrate to be etched by using the plasma of the gas to form an etched pattern, the plasma RF power source and the bias The RF signal output by the RF power source is a pulse signal. When the etched pattern has a first depth, the pulse signal has a first pulse duty ratio and a first pulse frequency. When the etched pattern has a second depth, the The pulse signal has a second pulse duty cycle and a second pulse frequency.

請參考圖1,所述待刻蝕基片125至少包括半導體襯底,所述半導體襯底為矽襯底、鍺襯底、鍺矽襯底、氮化矽襯底、絕緣體上矽襯底等,可以利用所述半導體刻蝕方法對所述半導體襯底進行刻蝕,形成溝槽或通孔。在其他實施例中,所述待刻蝕基片包括半導體襯底及位於半導體襯底表面的一層或多層半導體層或金屬層,利用所述半導體刻蝕方法對所述半導體層或金屬層繼續刻蝕。在本實施例中,所述待刻蝕基片125為單晶矽襯底。 Referring to FIG. 1, the substrate to be etched 125 includes at least a semiconductor substrate, which is a germanium substrate, a germanium substrate, a germanium substrate, a tantalum nitride substrate, a germanium on insulator, and the like. The semiconductor substrate may be etched by the semiconductor etching method to form trenches or via holes. In other embodiments, the substrate to be etched includes a semiconductor substrate and one or more semiconductor layers or metal layers on the surface of the semiconductor substrate, and the semiconductor layer or the metal layer is further engraved by the semiconductor etching method. eclipse. In this embodiment, the substrate to be etched 125 is a single crystal germanium substrate.

通過供氣源130向所述反應腔110內通入氣體,在本實施例中,當待刻蝕的材料為單晶矽時,所述氣體包括SF6、C4F8、He、N2中的一種或幾種。在其他實施例中,當待刻蝕的材料為氧化矽或氮化矽時,所述氣體包括CF4、C4F8、C4F6、CH2F2、CHF3、He、N2中的一種或幾種。 The gas is introduced into the reaction chamber 110 through the gas supply source 130. In the embodiment, when the material to be etched is a single crystal crucible, the gas includes SF 6 , C 4 F 8 , He, N 2 . One or several of them. In other embodiments, when the material to be etched is tantalum oxide or tantalum nitride, the gas includes CF 4 , C 4 F 8 , C 4 F 6 , CH 2 F 2 , CHF 3 , He, N 2 . One or several of them.

在本實施例中,所述等離子體射頻功率源及偏置射頻功率源輸出的射頻信號都為脈衝信號,且所述脈衝信號隨著時間的變化會發生改變。在其他實施例中,所述等離子體射頻功率源或偏置射頻功率源其中一個輸出的射頻信號為脈衝信號,且所述脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變,另一個輸出的射頻信號為脈衝頻率及脈衝占空比都恒定的脈衝信號或持續的射頻信號。 In this embodiment, the RF signal output by the plasma RF power source and the bias RF power source are pulse signals, and the pulse signal changes with time. In other embodiments, the RF signal outputted by the plasma RF power source or the bias RF power source is a pulse signal, and the pulse frequency and the pulse duty ratio of the pulse signal change with time. The other output RF signal is a pulse signal with a constant pulse frequency and pulse duty cycle or a continuous RF signal.

在本實施例中,所述刻蝕圖形具有第一深度及第二深度。在第一深度,所述偏置射頻功率源輸出第一脈衝信號,所述等離子體射頻功率源輸出第二脈衝信號,所述第一脈衝信號及第二脈衝信號具有第一脈衝頻率及第一脈衝占空比。在第二深度,所述偏置射頻功率源輸出第一脈衝信號,所述等離子體射頻功率源輸出第二脈衝信號,所述第一脈衝信號及第二脈衝信號具有第二脈衝頻率及第二脈衝占空比。所述第一脈衝頻率及第二脈衝頻率不相同、所述第一脈衝占空比及第二脈衝占空比不相同,從而調節不同深度的刻蝕圖形側壁形貌及刻蝕速率。 In this embodiment, the etched pattern has a first depth and a second depth. At a first depth, the bias RF power source outputs a first pulse signal, and the plasma RF power source outputs a second pulse signal, the first pulse signal and the second pulse signal having a first pulse frequency and a first Pulse duty cycle. At a second depth, the bias RF power source outputs a first pulse signal, the plasma RF power source outputs a second pulse signal, the first pulse signal and the second pulse signal having a second pulse frequency and a second Pulse duty cycle. The first pulse frequency and the second pulse frequency are different, and the first pulse duty ratio and the second pulse duty ratio are different, thereby adjusting sidewall morphology and etching rate of the etched pattern at different depths.

請參考圖2,在本實施例中,對所述偏置射頻功率源輸出的第一脈衝信號進行控制的具體方法包括:利用控制電腦將一定頻率的三角波及一定電壓的參考信號輸入到第一微處理器155中,所述三角波及參考信號為分段函數且對應於第一深度及第二深度,所述第一微處理器155將所述三角波及參考信號輸入到第一脈寬調製控制器156,所述第一脈寬調製控制器156利用所述三角波及參考信號對第一射頻功率產生器153的開啟時間及關閉時間進行控制,使得偏置射頻功率源輸出第一脈衝信號,其中,所述三角波的頻率對應於第一脈衝信號的脈衝頻率,所述參考信號的電壓對應於第一脈衝信號的開啟時間與關閉時間的比值,使得在刻蝕圖形具有第一深度時,所述第一脈衝信號具有第一脈衝占空比及第一脈衝頻率,在刻蝕圖形具有第二深度時,所述第一 脈衝信號具有第二脈衝占空比及第二脈衝頻率。 Referring to FIG. 2, in the embodiment, the specific method for controlling the first pulse signal output by the bias RF power source includes: inputting a triangular wave of a certain frequency and a reference signal of a certain voltage to the first by using a control computer. In the microprocessor 155, the triangular wave and the reference signal are piecewise functions and correspond to the first depth and the second depth, and the first microprocessor 155 inputs the triangular wave and the reference signal to the first pulse width modulation control. The first pulse width modulation controller 156 controls the turn-on time and the turn-off time of the first RF power generator 153 by using the triangular wave and the reference signal, so that the bias RF power source outputs the first pulse signal, wherein The frequency of the triangular wave corresponds to a pulse frequency of the first pulse signal, and the voltage of the reference signal corresponds to a ratio of an on time of the first pulse signal to a turn-off time, such that when the etched pattern has a first depth, The first pulse signal has a first pulse duty ratio and a first pulse frequency, and when the etched pattern has a second depth, the first The pulse signal has a second pulse duty cycle and a second pulse frequency.

請參考圖3,在本實施例中,對所述等離子體射頻功率源輸出的第二脈衝信號進行控制的具體方法包括:利用控制電腦將一定頻率的三角波及一定電壓的參考信號輸入到第二微處理器145中,所述三角波及參考信號為分段函數且對應於第一深度及第二深度,所述第二微處理器145將所述三角波及參考信號輸入到第二脈寬調製控制器146,所述第二脈寬調製控制器146利用所述三角波及參考信號對第二射頻功率產生器143的開啟時間及關閉時間進行控制,使得等離子體射頻功率源輸出第二脈衝信號,其中,所述三角波的頻率對應於第二脈衝信號的脈衝頻率,所述參考信號的電壓對應於第二脈衝信號的開啟時間與關閉時間的比值,使得在刻蝕圖形具有第一深度時,所述第二脈衝信號具有第一脈衝占空比及第一脈衝頻率,在刻蝕圖形具有第二深度時,所述第二脈衝信號具有第二脈衝占空比及第二脈衝頻率。 Referring to FIG. 3, in the embodiment, the specific method for controlling the second pulse signal output by the plasma RF power source includes: inputting a triangular wave of a certain frequency and a reference signal of a certain voltage into the second by using a control computer. In the microprocessor 145, the triangular wave and the reference signal are piecewise functions and correspond to the first depth and the second depth, and the second microprocessor 145 inputs the triangular wave and the reference signal to the second pulse width modulation control. The second pulse width modulation controller 146 controls the turn-on time and the turn-off time of the second RF power generator 143 by using the triangular wave and the reference signal, so that the plasma RF power source outputs the second pulse signal, wherein The frequency of the triangular wave corresponds to a pulse frequency of the second pulse signal, and the voltage of the reference signal corresponds to a ratio of an on time of the second pulse signal to a turn-off time, such that when the etched pattern has a first depth, The second pulse signal has a first pulse duty ratio and a first pulse frequency, and the second pulse signal when the etched pattern has a second depth The number has a second pulse duty cycle and a second pulse frequency.

在本實施例中,所述第二脈衝信號及第二脈衝信號的脈衝占空比及脈衝頻率相等且同步變化,即所述等離子體射頻功率源、偏置射頻功率源同時打開,同時關閉。在其他實施例中,所述第二脈衝信號及第二脈衝信號的脈衝占空比及脈衝頻率可以相等但不同步變化,具有一定的相位差。在其他實施例中,所述第二脈衝信號及第二脈衝信號的脈衝占空比及脈衝頻率還可以不相等,兩者互相獨立。 In this embodiment, the pulse duty ratio and the pulse frequency of the second pulse signal and the second pulse signal are equal and synchronously changed, that is, the plasma RF power source and the bias RF power source are simultaneously turned on and simultaneously turned off. In other embodiments, the pulse duty ratio and the pulse frequency of the second pulse signal and the second pulse signal may be equal but not synchronously changed, and have a certain phase difference. In other embodiments, the pulse duty ratio and the pulse frequency of the second pulse signal and the second pulse signal may also be unequal, and the two are independent of each other.

在其他實施例,在不同的深度,也可以單獨調節第一脈衝信號及第二脈衝信號的脈衝頻率或脈衝占空比,從而調節不同深度的刻蝕圖形側壁形貌及刻蝕速率。 In other embodiments, the pulse frequency or pulse duty ratio of the first pulse signal and the second pulse signal may be separately adjusted at different depths, thereby adjusting sidewall morphology and etching rate of the etched pattern at different depths.

在其中一個實施例,所述三角波的頻率保持不變,所述參考信號的電壓隨時間的變化而改變,使得偏置射頻功率源、等離子體射頻功率源輸出的脈衝信號的脈衝頻率不變的情況下,改變所述脈衝信號的開啟時間、關閉時間之間的比值。 In one embodiment, the frequency of the triangular wave remains unchanged, and the voltage of the reference signal changes with time, so that the pulse frequency of the pulse signal output by the biased RF power source and the plasma RF power source is constant. In the case, the ratio between the on time and the off time of the pulse signal is changed.

在另一個實施例,所述三角波的頻率隨時間的變化而改變,所述參考信號的電壓保持不變,使得偏置射頻功率源、等離子體射頻功率源輸出的第一脈衝信號、第一脈衝信號開啟時間、關閉時間之間的比值保持不變的情況下,改變所述第一脈衝信號、第一脈衝信號的脈衝頻率,從而改變偏置射頻功率源、等離子體射頻功率源開啟及關閉的時間。 In another embodiment, the frequency of the triangular wave changes with time, and the voltage of the reference signal remains unchanged, such that the biased RF power source, the first pulse signal output by the plasma RF power source, and the first pulse are When the ratio between the signal on time and the off time remains unchanged, changing the pulse frequency of the first pulse signal and the first pulse signal, thereby changing the bias RF power source and the plasma RF power source to be turned on and off. time.

在另一個實施例,在所述偏置射頻功率源、等離子體射頻功率源輸出的第一脈衝信號、第一脈衝信號開啟時間或關閉時間不變的情況下,改變對應關閉時間或開啟時間,改變第一脈衝信號、第一脈衝信號的脈衝頻率及脈衝占空比。 In another embodiment, when the biased RF power source, the first pulse signal output by the plasma RF power source, the first pulse signal turn-on time or the turn-off time are unchanged, the corresponding turn-off time or turn-on time is changed. The first pulse signal, the pulse frequency of the first pulse signal, and the pulse duty ratio are changed.

在其他實施例中,所述刻蝕圖形也可以具有至少三個的不同深度段,不同的深度段對應的第一脈衝信號及第二脈衝信號的脈衝頻率及/或脈衝占空比不同,從而調節不同深度的刻蝕圖形側壁形貌及刻蝕速率。 In other embodiments, the etched pattern may have at least three different depth segments, and the pulse frequency and/or the pulse duty ratio of the first pulse signal and the second pulse signal corresponding to different depth segments are different, thereby Adjust the sidewall morphology and etch rate of the etched pattern at different depths.

在本實施例中,所述第二脈衝信號及第二脈衝信號的脈衝頻率小於50千赫茲,所述第二脈衝信號及第二脈衝信號的脈衝占空比範圍為10%~90%。 In this embodiment, the pulse frequency of the second pulse signal and the second pulse signal is less than 50 kHz, and the pulse duty ratio of the second pulse signal and the second pulse signal is 10% to 90%.

本發明雖然已以較佳實施例公開如上,但其並不是用來限定本發明,任何本領域技術人員在不脫離本發明的精神及範圍內,都可以利用上述揭示的方法及技術內容對本發明技術方案做出可能的變動及修改,將上述技術應用於等離子體沉積、等離子體表面處理等,因此,凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所作的任何簡單修改、等同變化及修飾,均屬於本發明技術方案的保護範圍。 The present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Any one skilled in the art can use the above disclosed methods and technical contents to the present invention without departing from the spirit and scope of the present invention. The technical solution makes possible changes and modifications, and the above techniques are applied to plasma deposition, plasma surface treatment, etc., and therefore, any of the above embodiments can be made according to the technical essence of the present invention without departing from the technical solution of the present invention. Simple modifications, equivalent changes, and modifications are all within the scope of protection of the present invention.

110‧‧‧反應腔 110‧‧‧Reaction chamber

120‧‧‧承片台 120‧‧‧Sheet

125‧‧‧待刻蝕基片 125‧‧‧ substrates to be etched

130‧‧‧供氣源 130‧‧‧ gas supply

140‧‧‧等離子體射頻功率源 140‧‧‧ Plasma RF power source

141‧‧‧第二射頻匹配器 141‧‧‧Second RF Matcher

142‧‧‧電感線圈 142‧‧‧Inductance coil

150‧‧‧偏置射頻功率源 150‧‧‧Bad RF power source

151‧‧‧第一射頻匹配器 151‧‧‧First RF Matcher

Claims (13)

一種半導體刻蝕裝置,包括:反應腔,該反應腔內具有承片台,用於放置待刻蝕基片;供氣源,用於向該反應腔內通入氣體;等離子體射頻功率源,用於將該反應腔內的氣體等離子體化;偏置射頻功率源,用於在該待刻蝕基片表面形成偏壓;該等離子體射頻功率源及/或該偏置射頻功率源輸出的射頻信號為脈衝信號,且該脈衝信號的脈衝頻率及脈衝占空比隨著時間的變化而改變;其中該偏置射頻功率源包括第一射頻功率產生器及與該第一射頻功率產生器相連接的一第一射頻信號產生器,該第一射頻信號產生器包括第一微處理器及第一脈寬調製控制器,該第一微處理器將一特定頻率的三角波及一特定電壓的參考信號輸入到該第一脈寬調製控制器,該第一脈寬調製控制器利用該一特定頻率的三角波及該一特定電壓的參考信號對該第一射頻功率產生器的開啟時間及關閉時間進行控制,其中,該三角波的頻率對應於該第一射頻功率產生器輸出的第一脈衝信號的脈衝頻率,該參考信號的電壓對應於該第一脈衝信號的開啟時間與關閉時間的比值。 A semiconductor etching apparatus includes: a reaction chamber having a wafer stage for placing a substrate to be etched; a gas supply source for introducing gas into the reaction chamber; and a plasma RF power source, For plasmaizing the gas in the reaction chamber; biasing a radio frequency power source for forming a bias voltage on the surface of the substrate to be etched; and outputting the plasma RF power source and/or the bias RF power source The RF signal is a pulse signal, and the pulse frequency and the pulse duty ratio of the pulse signal change with time; wherein the bias RF power source includes a first RF power generator and is coupled to the first RF power generator Connected to a first RF signal generator, the first RF signal generator comprising a first microprocessor and a first pulse width modulation controller, the first microprocessor to reference a triangular wave of a specific frequency and a specific voltage Transmitting a signal to the first pulse width modulation controller, the first pulse width modulation controller utilizing the triangular wave of the specific frequency and the reference signal of the specific voltage to open the first RF power generator The start time and the off time are controlled, wherein the frequency of the triangular wave corresponds to a pulse frequency of the first pulse signal output by the first RF power generator, and the voltage of the reference signal corresponds to an on time and a turnoff of the first pulse signal The ratio of time. 如請求項1所述的半導體刻蝕裝置,其中該等離子體射頻功率源包括第二射頻功率產生器及與該第二射頻功率產生器相連接的第二射頻信號產生器,該第二射頻信號產生器包括第二微處理器及第二脈寬調製控制器,該第二微處理器將一定頻率的三角波及一定電壓的參考信號輸入到該第二脈寬調製控制器,該第二脈寬調製控制器利用該一定頻率的三角波及該一定電壓的參考信號對該第二射頻功率產生器的開啟時間及關閉時間進行控制,其中,該三角波的頻率對應於該第二射頻功率產生器輸出的 第二脈衝信號的脈衝頻率,該參考信號的電壓對應於該第二脈衝信號的開啟時間與關閉時間的比值。 The semiconductor etching apparatus of claim 1, wherein the plasma RF power source comprises a second RF power generator and a second RF signal generator connected to the second RF power generator, the second RF signal The generator includes a second microprocessor and a second pulse width modulation controller, the second microprocessor inputs a triangular wave of a certain frequency and a reference signal of a certain voltage to the second pulse width modulation controller, the second pulse width The modulation controller controls the turn-on time and the turn-off time of the second RF power generator by using the triangular wave of the certain frequency and the reference signal of the certain voltage, wherein the frequency of the triangular wave corresponds to the output of the second RF power generator The pulse frequency of the second pulse signal, the voltage of the reference signal corresponding to the ratio of the on time of the second pulse signal to the off time. 如請求項2所述的半導體刻蝕裝置,其中該第一脈寬調製控制器、該第二脈寬調製控制器根據如下公式分別控制該第一射頻功率產生器、該第二射頻功率產生器的開啟時間Ton(t)及關閉時間Toff(t),fo(t)=1/(Ton(t)+Toff(t)),Vref(t)=a×Ton(t)/Toff(t),其中,fo(t)為該三角波的頻率函數,Vref(t)為該參考信號的電壓函數,a為特定係數。 The semiconductor etching apparatus of claim 2, wherein the first pulse width modulation controller and the second pulse width modulation controller respectively control the first RF power generator and the second RF power generator according to the following formula Opening time T on (t) and closing time T off (t), f o (t)=1/(T on (t)+T off (t)), V ref (t)=a×T on ( t) / T off (t), where f o (t) is a function of the frequency of the triangular wave, V ref (t) is a function of the voltage of the reference signal, and a is a specific coefficient. 如請求項3所述的半導體刻蝕裝置,其中該三角波的頻率及該參考信號的電壓隨時間的變化而改變。 The semiconductor etching apparatus of claim 3, wherein the frequency of the triangular wave and the voltage of the reference signal change with time. 如請求項3所述的半導體刻蝕裝置,其中該第一微處理器根據該三角波的頻率函數、該參考信號的電壓函數計算出某個時間對應的三角波的頻率及參考信號的電壓,並將該對應頻率的三角波及該對應電壓的參考信號輸入到該第一脈寬調製控制器,該第二微處理器根據該三角波的頻率函數、該參考信號的電壓函數計算出某個時間對應的三角波的頻率及參考信號的電壓,並將該對應頻率的三角波及該對應電壓的參考信號輸入到該第二脈寬調製控制器。 The semiconductor etching apparatus of claim 3, wherein the first microprocessor calculates a frequency of a triangular wave corresponding to a certain time and a voltage of a reference signal according to a frequency function of the triangular wave and a voltage function of the reference signal, and And inputting, by the second microwave, a triangular wave corresponding to the time-frequency corresponding to The frequency and the voltage of the reference signal, and input the triangular wave of the corresponding frequency and the reference signal of the corresponding voltage to the second pulse width modulation controller. 如請求項3所述的半導體刻蝕裝置,其中該第一微處理器、該第二微處理器存儲有與時間相關的三角波的頻率值及參考信號的電壓值,該第一微處理器、該第二微處理器對相應時間對應的三角波的頻率值及對應的參考信號的電壓值進行讀取後,將該對應頻率的三角波及該對應電壓的參考信號輸入到該第一脈寬調製控制器、該第二脈寬調製控制器。 The semiconductor etching apparatus of claim 3, wherein the first microprocessor and the second microprocessor store a frequency value of a time-dependent triangular wave and a voltage value of a reference signal, the first microprocessor, The second microprocessor reads the frequency value of the triangular wave corresponding to the corresponding time and the voltage value of the corresponding reference signal, and then inputs the triangular wave of the corresponding frequency and the reference signal of the corresponding voltage to the first pulse width modulation control The second pulse width modulation controller. 如請求項2所述的半導體刻蝕裝置,其中還包括控制電腦,利用該控制電腦向該第一微處理器及該第二微處理器輸入三角波的頻率函數、參考信號的電壓函數,或向該第一微處理器及該第二微處理器輸入與時間相關的三角波的頻率值、參考信號的電 壓值。 The semiconductor etching apparatus of claim 2, further comprising a control computer, wherein the control computer is used to input a frequency function of the triangular wave, a voltage function of the reference signal to the first microprocessor and the second microprocessor, or The first microprocessor and the second microprocessor input a frequency value of a time-dependent triangular wave and a reference signal Pressure value. 如請求項1所述的半導體刻蝕裝置,其中還包括:該偏置射頻功率源通過第一射頻匹配器連接於該承片台。 The semiconductor etching apparatus of claim 1, further comprising: the bias RF power source connected to the stage via a first RF matcher. 如請求項1所述的半導體刻蝕裝置,其中還包括:該偏置射頻功率源通過第一射頻匹配器連接於該反應腔頂部。 The semiconductor etching apparatus of claim 1, further comprising: the bias RF power source connected to the top of the reaction chamber by a first RF matcher. 如請求項1所述的半導體刻蝕裝置,其中該等離子體射頻功率源為電感耦合射頻功率源或電容耦合射頻功率源。 The semiconductor etching apparatus of claim 1, wherein the plasma RF power source is an inductively coupled RF power source or a capacitively coupled RF power source. 一種利用如請求項1所述的半導體刻蝕裝置的半導體刻蝕方法,包括:提供待刻蝕基片;在反應腔內通入氣體;等離子體射頻功率源將該反應腔內的氣體等離子體化;偏置射頻功率源在該待刻蝕基片表面施加偏壓;利用該氣體的等離子體對該待刻蝕基片進行刻蝕形成刻蝕圖形,該等離子體射頻功率源及/或偏置射頻功率源輸出的射頻信號輸出的信號為脈衝信號,在該刻蝕圖形具有第一深度時,該脈衝信號具有第一脈衝占空比及第一脈衝頻率,在該刻蝕圖形具有第二深度時,該脈衝信號具有第二脈衝占空比及第二脈衝頻率。 A semiconductor etching method using the semiconductor etching apparatus according to claim 1, comprising: providing a substrate to be etched; introducing a gas into the reaction chamber; and a plasma RF power source for the gas plasma in the reaction chamber Applying a bias voltage to the surface of the substrate to be etched by using a biased RF power source; etching the substrate to be etched by using a plasma of the gas to form an etched pattern, the plasma RF power source and/or bias The signal output from the RF signal output by the RF power source is a pulse signal. When the etched pattern has a first depth, the pulse signal has a first pulse duty ratio and a first pulse frequency, and the etched pattern has a second At depth, the pulse signal has a second pulse duty cycle and a second pulse frequency. 如請求項11所述的半導體刻蝕方法,其中該脈衝信號的脈衝頻率小於50千赫茲,該脈衝信號的脈衝占空比範圍為10%~90%。 The semiconductor etching method according to claim 11, wherein the pulse signal has a pulse frequency of less than 50 kHz, and the pulse signal has a pulse duty ratio ranging from 10% to 90%. 如請求項11所述的半導體刻蝕方法,其中該刻蝕圖形至少還包括第三深度,該第三深度對應的第一脈衝信號及第二脈衝信號的脈衝頻率及/或脈衝占空比與該第一深度、該第二深度不同,從而調節不同深度的刻蝕圖形側壁形貌及刻蝕速率。 The semiconductor etching method of claim 11, wherein the etched pattern further comprises at least a third depth, the pulse frequency and/or the pulse duty ratio of the first pulse signal and the second pulse signal corresponding to the third depth The first depth and the second depth are different, thereby adjusting sidewall morphology and etching rate of the etched pattern at different depths.
TW102140582A 2012-12-14 2013-11-07 Semiconductor etching apparatus and semiconductor etching method TWI552224B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210545662.8A CN103035470B (en) 2012-12-14 2012-12-14 Semiconductor etching apparatus and semiconductor etching method

Publications (2)

Publication Number Publication Date
TW201423863A TW201423863A (en) 2014-06-16
TWI552224B true TWI552224B (en) 2016-10-01

Family

ID=48022258

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102140582A TWI552224B (en) 2012-12-14 2013-11-07 Semiconductor etching apparatus and semiconductor etching method

Country Status (2)

Country Link
CN (1) CN103035470B (en)
TW (1) TWI552224B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103400762B (en) * 2013-08-26 2016-03-02 中微半导体设备(上海)有限公司 The formation method of semiconductor structure
CN104752331B (en) * 2013-12-31 2018-08-07 中微半导体设备(上海)有限公司 A kind of silicon hole lithographic method
CN105070627B (en) * 2015-07-15 2017-06-27 大连理工大学 It is a kind of to reduce the method that substrate material is damaged by high-energy ion bombardment
JP6965205B2 (en) * 2018-04-27 2021-11-10 東京エレクトロン株式会社 Etching device and etching method
CN108766882B (en) * 2018-05-23 2021-04-09 北京北方华创微电子装备有限公司 Plasma silicon etching method and semiconductor device
CN110896019A (en) * 2018-09-12 2020-03-20 北京北方华创微电子装备有限公司 Plasma etching equipment and etching method
CN111341636B (en) * 2018-12-19 2023-07-11 北京北方华创微电子装备有限公司 Semiconductor device and radio frequency loading method thereof
EP3742341B1 (en) * 2019-05-20 2022-07-27 Nxp B.V. Rfid transponder and method of operating the same
CN113035677B (en) * 2019-12-09 2023-01-24 中微半导体设备(上海)股份有限公司 Plasma processing apparatus and plasma processing method
CN114628212A (en) * 2020-12-10 2022-06-14 中国科学院微电子研究所 Plasma processing chamber and semiconductor manufacturing equipment
CN114156154B (en) * 2021-11-15 2024-04-05 华科电子股份有限公司 Frequency adjusting method and system applied to radio frequency power supply of etching machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW228038B (en) * 1993-07-14 1994-08-11 zhao-zheng Lu Direct current power supply
TW514967B (en) * 2000-08-29 2002-12-21 Univ Texas Ion-Ion plasma processing with bias modulation synchronized to time-modulated discharges
TW200425338A (en) * 2003-03-26 2004-11-16 Sony Corp Plasma surface treatment system and plasma surface treatment method
TW200638804A (en) * 2005-04-20 2006-11-01 Himax Tech Inc Method for driving a fluorescent lamp and inverter circiut for performing such a method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256353A1 (en) * 2003-04-24 2004-12-23 Tokyo Electron Limited Method and system for deep trench silicon etch
TW200511430A (en) * 2003-05-29 2005-03-16 Tokyo Electron Ltd Plasma processing apparatus and plasma processing method
TWI304230B (en) * 2003-05-30 2008-12-11 Tokyo Electron Ltd Method and system for etching a high-k dielectric material
CN101783281B (en) * 2009-01-15 2012-01-11 北京北方微电子基地设备工艺研究中心有限责任公司 Plasma etching device and etching method of grid electrode
JP5595134B2 (en) * 2010-06-11 2014-09-24 富士フイルム株式会社 Dry etching apparatus and dry etching method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW228038B (en) * 1993-07-14 1994-08-11 zhao-zheng Lu Direct current power supply
TW514967B (en) * 2000-08-29 2002-12-21 Univ Texas Ion-Ion plasma processing with bias modulation synchronized to time-modulated discharges
TW200425338A (en) * 2003-03-26 2004-11-16 Sony Corp Plasma surface treatment system and plasma surface treatment method
TW200638804A (en) * 2005-04-20 2006-11-01 Himax Tech Inc Method for driving a fluorescent lamp and inverter circiut for performing such a method

Also Published As

Publication number Publication date
CN103035470A (en) 2013-04-10
TW201423863A (en) 2014-06-16
CN103035470B (en) 2016-02-17

Similar Documents

Publication Publication Date Title
TWI552224B (en) Semiconductor etching apparatus and semiconductor etching method
TWI835826B (en) Control method of plasma treatment device and plasma treatment device
TWI756234B (en) Selective etch using material modification and rf pulsing
TWI501289B (en) A plasma processing method and a plasma processing apparatus
US9053908B2 (en) Method and apparatus for controlling substrate DC-bias and ion energy and angular distribution during substrate etching
TWI604498B (en) Plasma processing apparatus and plasma processing method
JPH06349784A (en) Method and apparatus for anisotropic plasma etching of substrate as well as electronic component or sensor element
JP6298867B2 (en) Plasma processing method and plasma processing apparatus
TW200845183A (en) Plasma processing apparatus of substrate and plasma processing method thereof
KR20170054280A (en) Methods and systems for plasma etching using bi-modal process gas composition responsive to plasma power level
US10193066B2 (en) Apparatus and techniques for anisotropic substrate etching
JP6180824B2 (en) Plasma etching method and plasma etching apparatus
TW201426814A (en) Semiconductor etching device and etching method of semiconductor structure
KR101919641B1 (en) Method for providing high etch rate
JP5367689B2 (en) Plasma processing method
JP2012142495A (en) Plasma etching method and plasma etching apparatus
TWI521597B (en) Etching method of semiconductor structure
JPWO2003030239A1 (en) Silicon substrate etching method and etching apparatus
JP2014229751A (en) Plasma processing apparatus and processing method
JP7542451B2 (en) Plasma Processing Equipment
TW202147445A (en) Plasma processing apparatus
US20070212888A1 (en) Silicon Substrate Etching Method
CN105097494B (en) Lithographic method
JP5774356B2 (en) Plasma processing method
KR101503258B1 (en) Method of processing subtrate using plasma