TWI550924B - Piezoelectric sensing element and its making method - Google Patents

Piezoelectric sensing element and its making method Download PDF

Info

Publication number
TWI550924B
TWI550924B TW103101794A TW103101794A TWI550924B TW I550924 B TWI550924 B TW I550924B TW 103101794 A TW103101794 A TW 103101794A TW 103101794 A TW103101794 A TW 103101794A TW I550924 B TWI550924 B TW I550924B
Authority
TW
Taiwan
Prior art keywords
piezoelectric
nano
piezoelectric sensing
fabricating
layer
Prior art date
Application number
TW103101794A
Other languages
Chinese (zh)
Other versions
TW201530838A (en
Inventor
rui-hua Hong
dong-xing Wu
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW103101794A priority Critical patent/TWI550924B/en
Publication of TW201530838A publication Critical patent/TW201530838A/en
Application granted granted Critical
Publication of TWI550924B publication Critical patent/TWI550924B/en

Links

Landscapes

  • Piezo-Electric Transducers For Audible Bands (AREA)

Description

壓電感測元件及其製作方法 Piezoelectric inductance measuring component and manufacturing method thereof

本發明是有關於一種感測元件的製造方法及感測元件,特別是指一種可輕量化的壓電感測元件的製作方法及由此方法製得的壓電感測元件。 The invention relates to a method for manufacturing a sensing element and a sensing element, in particular to a method for manufacturing a lightweight piezoelectric sensing element and a piezoelectric sensing element obtained by the method.

奈米發電機(nanogenerator)是一種可利用環境收集能量而產生電流的微機電系統,可用以取代一般能源系統,因此,受到廣大的注意。而壓電材料由於具有受到壓力而會產生電流及受到外加電場會產生形變的特性,因此已廣泛的應用於自供電型奈米產生系統(self-powered nanosystem)、壓電場效電晶體(piezoelectric field-effect transistors)或是感測器等不同領域。其中,以壓電材料應用生物感測器,由於具有不需外界電力供應的優點,因此更是受到廣泛的研究。 A nanogenerator is a MEMS system that uses the environment to collect energy and generate current. It can be used to replace the general energy system. Therefore, it has received extensive attention. Piezoelectric materials have been widely used in self-powered nanosystems and piezoelectric field effect transistors because they have the characteristics of being subjected to pressure and being deformed by an applied electric field. Field-effect transistors) or different fields such as sensors. Among them, the application of a biosensor with a piezoelectric material is widely studied because it has the advantage of not requiring external power supply.

氧化鋅(ZnO)壓電材料由於具有3.37eV的直接能隙(direct bandgap),以及60meV的束縛能(exciton energy),因此,可用於感測細微的變化而被廣泛應用。例如,Minbaek Lee等人(Minbaek Lee,Chih-Yen Chen,Sihong Wang,Seung Nam Cha,Yong Jun Park,Jong Min Kim,Li-Jen Chou,and Zhong Lin Wang,A Hybrid Piezoelectric Structure for Wearable,Adv.Mater.2012),於2012年發表一種具有氧化鋅奈米柱的可攜式奈米發電機(Nanogenerators),其結構為PS/PDMS/Electrode/ZnO Nanowire array/PVDF/Electrode,係在以具有可撓性的高分子材料構成的支撐材上形成大面積的氧化鋅奈米柱陣列,而得到具有高效能且可應用於穿戴式電子元件的奈米發電機。 Zinc oxide (ZnO) piezoelectric materials are widely used because they have a direct bandgap of 3.37 eV and an exciton energy of 60 meV, which can be used to sense subtle changes. For example, Minbaek Lee et al. (Minbaek Lee, Chih-Yen Chen, Sihong Wang, Seung Nam Cha, Yong Jun Park, Jong Min Kim, Li-Jen Chou, and Zhong Lin Wang, A Hybrid Piezoelectric Structure for Wearable, Adv. Mater. 2012), published in 2012 a portable nanogenerator with zinc oxide nano columns, the structure of which is PS/PDMS/Electrode/ZnO Nanowire array/PVDF/Electrode A large-area zinc oxide nano-pillar array is formed on a support material made of a flexible polymer material to obtain a nano-generator having high performance and applicable to wearable electronic components.

然而,為了讓該壓電感測器可更進一步應用於感測人體更細微的變化,例如,可感受到人體細微的氣流變化而達到生物偵測的目的,「輕量化」,則為此類感測元件的主要挑戰。因為藉由感測人體的呼吸以作為感測源的感測元件主要是利用風力驅動(wind-driven)的生物壓電感測元件,由於壓電材料可藉由人體的震動或呼吸時產生的氣流產生壓電流特性,因此,可利用壓電流的變化進行偵測人體的生命跡象,以達到生物感測的目的。 However, in order to make the piezoelectric detector more suitable for sensing subtle changes in the human body, for example, the human body can feel the slight change of airflow to achieve the purpose of biodetection, and "lightweight" is such The main challenge of sensing components. Because the sensing element that senses the breathing of the human body as a sensing source is mainly a wind-driven bio-pressure sensing component, since the piezoelectric material can be generated by vibration or breathing of the human body. The airflow generates a current-current characteristic. Therefore, the change of the piezoelectric current can be used to detect the vital signs of the human body to achieve the purpose of biological sensing.

然而,如何突破感測元件的體積及重量的限制,讓該生物壓電感測元件的體積可更小且更輕量化,以提升生物壓電感測元件的偵測靈敏度,則是本技術領域的一個重要關鍵條件。 However, how to break the limitation of the volume and weight of the sensing component, the volume of the bio-pressure sensing component can be smaller and lighter, so as to improve the detection sensitivity of the bio-pressure sensing component, the technical field is An important key condition.

因此,本發明之目的,即在提供一種製程簡便且可有效薄化,並減小元件體積的壓電感測元件的製作方法。 Therefore, an object of the present invention is to provide a method for fabricating a piezoelectric sensing element which is simple in process, can be effectively thinned, and reduces the volume of a component.

於是,一種壓電感測元件的製作方法,包含以 下四個步驟。 Thus, a method of fabricating a piezoelectric sensing component includes The next four steps.

(a)提供一基材,該基材具有一個基板、一層形成於該基板其中一表面的犧牲層,及一層形成於該犧牲層表面的底電極層。 (a) A substrate having a substrate, a sacrificial layer formed on one surface of the substrate, and a bottom electrode layer formed on a surface of the sacrificial layer.

(b)於該底電極層的表面形成多根由壓電材料構成並具有壓電特性的奈米柱。 (b) A plurality of nano-pillars composed of a piezoelectric material and having piezoelectric characteristics are formed on the surface of the bottom electrode layer.

(c)於該些奈米柱的間隙形成一層高分子緩衝層。 (c) forming a polymer buffer layer in the gaps of the nano columns.

(d)移除該犧牲層,令該底電極層與該基板分離,製得該壓電感測元件。 (d) removing the sacrificial layer and separating the bottom electrode layer from the substrate to obtain the piezoelectric sensing element.

較佳地,前述該壓電感測元件製作方法,其中,該壓電材料選自氧化鋅,該步驟(b)是利用水熱法、氣-液-固生長法、化學氣相沉積法、電化學沉積法、濕化學法,或模板法,先於該底電極層上形成多根由氧化鋅構成的奈米柱,再經過300~1000℃退火處理,而得到該些具有壓電特性的氧化鋅奈米柱。 Preferably, the piezoelectric sensing element manufacturing method is described, wherein the piezoelectric material is selected from the group consisting of zinc oxide, and the step (b) is a hydrothermal method, a gas-liquid-solid growth method, a chemical vapor deposition method, Electrochemical deposition method, wet chemical method, or template method, a plurality of nano columns made of zinc oxide are formed on the bottom electrode layer, and then annealed at 300 to 1000 ° C to obtain the piezoelectric properties. Zinc nano column.

較佳地,前述該壓電感測元件製作方法,其中,該步驟(c)是利用旋塗法將一具有可撓性的高分子材料填置於該些奈米柱的間隙並覆蓋該些奈米柱的表面,而形成該高分子緩衝層。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the step (c) is to fill a gap of the nano-pillars with a flexible polymer material by spin coating and cover the holes. The polymer buffer layer is formed on the surface of the column.

較佳地,前述該壓電感測元件製作方法,其中,該底電極層選自金屬、合金金屬、金屬氧化物,其前述其中一組合。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the bottom electrode layer is selected from the group consisting of a metal, an alloy metal, a metal oxide, and a combination thereof.

較佳地,前述該壓電感測元件製作方法,其中,該高分子緩衝層選自壓克力樹脂、聚醯亞胺樹脂、環氧 樹脂,及聚偏氟乙烯。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the polymer buffer layer is selected from the group consisting of acrylic resin, polyimide resin, epoxy Resin, and polyvinylidene fluoride.

較佳地,前述該壓電感測元件製作方法,其中,該犧牲層選自光阻材料。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the sacrificial layer is selected from the group consisting of photoresist materials.

較佳地,前述該壓電感測元件製作方法,其中,該犧牲層選自耐熱溫度不小於300℃的光阻材料。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the sacrificial layer is selected from a photoresist material having a heat resistant temperature of not less than 300 ° C.

較佳地,前述該壓電感測元件製作方法,其中,該步驟(d)是利用濕式蝕刻方式移除該犧牲層。 Preferably, the method for fabricating the piezoelectric sensing element, wherein the step (d) is to remove the sacrificial layer by wet etching.

較佳地,前述該壓電感測元件製作方法,還包含一步驟(e),於該些奈米柱表面形成一層與該些奈米柱電連接的頂電極層,且該頂電極層選自金屬、合金金屬、金屬氧化物等導電材料構成。 Preferably, the method for fabricating the piezoelectric sensing component further comprises a step (e) of forming a top electrode layer electrically connected to the nano columns on the surface of the nano column, and the top electrode layer is selected It consists of conductive materials such as metals, alloy metals, and metal oxides.

又,本發明一種壓電感測元件,包含一個基材、多根奈米柱,及一層高分子緩衝層。 Moreover, the piezoelectric sensing component of the present invention comprises a substrate, a plurality of nano columns, and a polymer buffer layer.

該基材由導電材料構成,該些奈米柱是自該基材表面向上延伸並具有壓電特性,且該高分子緩衝層為覆蓋該些奈米柱的頂面,並填充於該些奈米柱之間的間隙。 The substrate is composed of a conductive material, the nano column extends upward from the surface of the substrate and has piezoelectric characteristics, and the polymer buffer layer covers the top surface of the nano columns and is filled in the nanometers. The gap between the meters.

本發明之功效在於:利用犧牲層可移除的特性,讓該壓電感測元件半成品可與原始支撐基板分離,因此,製得的壓電感測元件不會受到原始支撐基板的重量或體積的限制,可有效的減小該壓電感測元件的重量及體積,而可提升壓電感測元件的感測靈敏度。 The utility model has the advantages that the semi-finished product of the piezoelectric sensing component can be separated from the original supporting substrate by using the removable property of the sacrificial layer, and therefore, the obtained piezoelectric sensing component is not affected by the weight or volume of the original supporting substrate. The limitation can effectively reduce the weight and volume of the piezoelectric sensing component, and can improve the sensing sensitivity of the piezoelectric sensing component.

21‧‧‧步驟 21‧‧‧Steps

22‧‧‧步驟 22‧‧‧Steps

23‧‧‧步驟 23‧‧‧Steps

24‧‧‧步驟 24‧‧‧Steps

31‧‧‧基材 31‧‧‧Substrate

32‧‧‧氧化鋅奈米柱 32‧‧‧Zinc Oxide Nano Column

33‧‧‧高分子緩衝層 33‧‧‧ Polymer buffer layer

311‧‧‧基板 311‧‧‧Substrate

312‧‧‧表面 312‧‧‧ surface

313‧‧‧犧牲層 313‧‧‧ Sacrifice layer

314‧‧‧底電極層 314‧‧‧ bottom electrode layer

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一文字流程圖,說明本發明該壓電感測元件的製作方法的較佳實施例;圖2是一流程示意圖,輔助說明圖1;圖3是一潮氣量-時間關係圖,說明該較佳實施例製得的壓電感測元件,於模擬正常人每分鐘呼吸12次,呼吸的潮氣量與時間的關係;圖4是一電流密度-時間關係圖,說明該較佳實施例製得的壓電感測元件,於模擬潮氣量500ml、氣流速率2m/s,量測而得的電流密度-時間關係;圖5是一電壓-時間關係圖,說明該較佳實施例製得的壓電感測元件,於模擬潮氣量500ml、氣流速率2m/s,量測而得的電壓-時間關係;圖6是一電流密度-時間關係圖,說明該較佳實施例製得的壓電感測元件,在固定潮氣量(500ml)下,於不同氣流速率(0.5~5.0m/s)的條件下,所量測到的電流密度-時間關係;圖7是一電壓-時間關係圖,說明該較佳實施例製得的壓電感測元件,在固定潮氣量(500ml)下,於不同氣流速率(0.5~5.0m/s)的條件下,所量測到的電壓-時間關係。 Other features and effects of the present invention will be apparent from the embodiments of the drawings, in which: 1 is a text flow chart showing a preferred embodiment of the method for fabricating the piezoelectric sensing element of the present invention; FIG. 2 is a schematic flow chart for assisting the description of FIG. 1; FIG. 3 is a tidal volume-time relationship diagram illustrating The piezoelectric sensing component produced by the preferred embodiment simulates the normal person's breathing 12 times per minute, and the relationship between the tidal volume of the breath and the time; FIG. 4 is a current density-time relationship diagram illustrating the preferred embodiment. The obtained piezoelectric sensing element has a current density-time relationship measured by simulating a tidal volume of 500 ml and a gas flow rate of 2 m/s; FIG. 5 is a voltage-time relationship diagram illustrating the preferred embodiment. The piezoelectric sensing component is a voltage-time relationship measured by simulating a tidal volume of 500 ml and a gas flow rate of 2 m/s; and FIG. 6 is a current density-time relationship diagram illustrating the piezoelectric obtained by the preferred embodiment. The sensed current density-time relationship of the sensing element at a fixed tidal volume (500 ml) at different gas flow rates (0.5 to 5.0 m/s); Figure 7 is a voltage-time relationship diagram. The piezoelectric sensing component produced by the preferred embodiment is described in the fixed tidal volume (50 The measured voltage-time relationship at 0 ml) at different gas flow rates (0.5 to 5.0 m/s).

參閱圖1,本發明壓電感測元件製作方法的該較佳實施例包含以下三個步驟。 Referring to FIG. 1, the preferred embodiment of the method for fabricating a piezoelectric sensing component of the present invention comprises the following three steps.

首先進行步驟21,先準備一基材31,該基材31具有一個基板311、一層形成於該基板311其中一表面312 的犧牲層313,及一層形成於該犧牲層313表面的底電極層314。 First, in step 21, a substrate 31 having a substrate 311 and a layer formed on one surface 312 of the substrate 311 is prepared. The sacrificial layer 313 and a bottom electrode layer 314 formed on the surface of the sacrificial layer 313.

詳細的說,該基板311可選自矽、玻璃、金屬、氧化鋁,及可撓性高分子膜,該犧牲層313形成於該基板311的表面312,選自可經由濕式蝕刻移除的高分子材料構成,較佳地,為了配合後續壓電材料的高溫退火製程,該基板311與該犧牲層313是選自耐溫性大於300℃的材料,於本實施例中,該基板311選自矽,該犧牲層313選自聚甲基戊二醯亞胺(PMGI,polymethyl glutarimide)光阻材料,且是利用網印方式形成於該基板311的表面312,厚度約為2~3μm。 In detail, the substrate 311 may be selected from the group consisting of germanium, glass, metal, aluminum oxide, and a flexible polymer film. The sacrificial layer 313 is formed on the surface 312 of the substrate 311, and is selected from the group that can be removed by wet etching. The substrate 311 and the sacrificial layer 313 are selected from materials having a temperature resistance of more than 300 ° C. In this embodiment, the substrate 311 is selected. The sacrificial layer 313 is selected from the group consisting of a polymethyl glutarimide (PMGI) photoresist material and is formed on the surface 312 of the substrate 311 by screen printing to a thickness of about 2 to 3 μm.

該底電極層314形成於該犧牲層313表面,選自金屬、合金金屬,及金屬氧化物等導電材料構成,由於該底電極層314的形成方式及相關材料選擇為本技術領域者所周知且非為本發明之重點,因此不再多加贅述,於本實施例中是利用濺鍍方式於該犧牲層313表面沉積一層以金/鈦合金為材料的底電極層314。 The bottom electrode layer 314 is formed on the surface of the sacrificial layer 313 and is made of a conductive material such as a metal, an alloy metal, or a metal oxide. The formation of the bottom electrode layer 314 and related material selection are well known in the art. It is not the focus of the present invention, so the description will not be repeated. In this embodiment, a bottom electrode layer 314 made of gold/titanium alloy is deposited on the surface of the sacrificial layer 313 by sputtering.

接著進行步驟22,於該基材31表面形成多根具有壓電特性的氧化鋅奈米柱32。 Next, in step 22, a plurality of zinc oxide nano columns 32 having piezoelectric characteristics are formed on the surface of the substrate 31.

目前用於製備氧化鋅奈米柱32的方法有氣-液-固(VLS)生長法、水熱法、化學氣相沉積法(CVD)、電化學沉積法、濕化學法、膜板法等,由於該等方法均可用於製備氧化鋅奈米柱/線且為本技術領域者所知悉,因此不再一一敘述。本發明該較佳實施例是利用水熱法先於該底電極 層314表面形成多數氧化鋅奈米柱32,得到一半成品,接著,再將該半成品在300-1000℃/N2的條件下進行退火30min,即可得到具有優越壓電性能之氧化鋅奈米柱32。 At present, methods for preparing zinc oxide nano column 32 include gas-liquid-solid (VLS) growth method, hydrothermal method, chemical vapor deposition (CVD), electrochemical deposition method, wet chemical method, membrane plate method, and the like. Since these methods can be used to prepare zinc oxide nano columns/wires and are known to those skilled in the art, they will not be described one by one. In the preferred embodiment of the present invention, a plurality of zinc oxide nano columns 32 are formed on the surface of the bottom electrode layer 314 by hydrothermal method to obtain half of the finished product, and then the semi-finished product is subjected to 300-1000 ° C / N 2 . Annealing for 30 minutes gives a zinc oxide nanocolumn 32 having superior piezoelectric properties.

然後進行步驟23,於該些經過退火的氧化鋅奈米柱32的表面形成一層高分子緩衝層33。 Then, in step 23, a polymer buffer layer 33 is formed on the surface of the annealed zinc oxide nano columns 32.

詳細的說,該高分子緩衝層為33選自可耐鹼性蝕刻顯影液,例如氫氧化鉀(KOH)、氫氧化鈉(NaOH)、氫氧化四甲基銨(TMAH,(CH3)4NOH)的高分子材料所構成,填置於該些氧化鋅奈米柱32之間的間隙並覆蓋該些氧化鋅奈米柱32的表面,該高分子緩衝層33除了可作為後續進行剝除(lift-off)製程時的支撐基材,還可用於避免該些氧化鋅奈米柱之間彼此接觸而影響後續製得之壓電感測元件的壓電流輸出量。較佳地,該高分子材料為選自壓克力樹脂、聚醯亞胺樹脂、環氧樹脂,及聚偏氟乙烯等相關之高分子材料。於本實施例中,該高分子材料是以環氧樹脂為例做說明。 In detail, the polymer buffer layer is 33 selected from an alkali-resistant etching developer such as potassium hydroxide (KOH), sodium hydroxide (NaOH), tetramethylammonium hydroxide (TMAH, (CH 3 ) 4 The polymer material of NOH) is filled in the gap between the zinc oxide nano columns 32 and covers the surface of the zinc oxide nano columns 32. The polymer buffer layer 33 can be stripped as a follow-up. The support substrate during the lift-off process can also be used to prevent the zinc oxide nano-pillars from contacting each other and affecting the piezoelectric current output of the subsequently produced piezoelectric sensing component. Preferably, the polymer material is a polymer material selected from the group consisting of acrylic resin, polyimide resin, epoxy resin, and polyvinylidene fluoride. In the present embodiment, the polymer material is exemplified by an epoxy resin.

具體的說,該步驟23是利用旋轉塗佈方式將高分子絕緣材料塗佈於該些氧化鋅奈米柱32的間隙及頂面,形成該覆蓋該些氧化鋅奈米柱32的高分子緩衝層33,而製得一壓電感測元件半成品。 Specifically, in the step 23, the polymer insulating material is applied to the gaps and the top surface of the zinc oxide nano columns 32 by spin coating to form the polymer buffer covering the zinc oxide nano columns 32. Layer 33, and a semi-finished product of a piezoelectric sensing component is produced.

最後,進行步驟24,移除該犧牲層313,令該底電極層314與該基板311分離,即可得到該壓電感測元件。 Finally, in step 24, the sacrificial layer 313 is removed, and the bottom electrode layer 314 is separated from the substrate 311 to obtain the piezoelectric sensing element.

具體的說,該步驟24是利用濕式蝕刻方式將該 犧牲層313蝕刻移除,於本實施例中是利用含有氫氧化四甲基銨(TMAH)的蝕刻液將該犧牲層313移除,令該底電極層314與該基板311分離,而得到該壓電感測元件。 Specifically, the step 24 is to use a wet etching method. The sacrificial layer 313 is etched and removed. In this embodiment, the sacrificial layer 313 is removed by using an etchant containing tetramethylammonium hydroxide (TMAH), and the bottom electrode layer 314 is separated from the substrate 311. Pressure sensing component.

此外,要說明的是,當該步驟23形成的高分子緩衝層33未蓋覆該些氧化鋅奈米柱32的頂面時,本發明該壓電感測元件於該步驟24前還可先於該些氧化鋅奈米柱的頂面形成一頂電極層,如此即可製得具有雙電極感測輸出的壓電感測元件。 In addition, when the polymer buffer layer 33 formed in the step 23 does not cover the top surface of the zinc oxide nano-pillars 32, the piezoelectric sensing component of the present invention may be preceded by the step 24. A top electrode layer is formed on the top surface of the zinc oxide nano-pillars, so that a piezoelectric sensing element having a two-electrode sensing output can be obtained.

本發明利用犧牲層可移除的特性,讓製作完成後之壓電感測元件可與基板311分離,因此可有效的減小該壓電感測元件的重量及體積,而可更便於應用在攜帶式或是非侵入式的生物感測器。 The invention utilizes the removable layer sacrificial property to separate the piezoelectric sensing component after the fabrication is completed from the substrate 311, thereby effectively reducing the weight and volume of the piezoelectric sensing component, and is more convenient to be applied in Portable or non-invasive biosensor.

接著利用本發明該較佳實施例製得的壓電感測元件應用於風力驅動的偵測環境進行感測測試。 Then, the piezoelectric sensing component obtained by using the preferred embodiment of the present invention is applied to a wind driven detection environment for sensing test.

參閱圖3~5,圖3~5是利用一個可模擬人體呼吸氣流的呼吸模擬裝置,再以本發明該較佳實施例製得之壓電感測元件(長x寬:0.65cm x 1.16cm)作為該呼吸氣流的感測器所得的電流及電壓的量測結果。圖3是模擬正常人每分鐘呼吸12次,呼吸的潮氣量(肺活量)與時間的關係圖,圖4是模擬潮氣量500ml、氣流速率(air flow rate)2m/s的條件下,量測而得的封閉迴路電流密度(closed-circuit current density),圖5是模擬潮氣量500ml、氣流速率(air flow rate)2m/s的條件下,量測而得的開放迴路電壓(open-circuit Voltage)。 Referring to Figures 3 to 5, Figures 3 to 5 are pressure sensing elements (length x width: 0.65 cm x 1.16 cm) obtained by using the breathing simulation device capable of simulating human respiratory airflow in accordance with the preferred embodiment of the present invention. As a result of measuring the current and voltage obtained as a sensor of the respiratory gas flow. Figure 3 is a graph showing the relationship between the tidal volume (spirometry) of breathing and the time when the normal person breathes 12 times per minute. Figure 4 shows the measurement under the condition of simulated tidal volume of 500 ml and air flow rate of 2 m/s. The closed-circuit current density is obtained. Figure 5 shows the open-circuit voltage measured under the condition of simulating tidal volume of 500 ml and air flow rate of 2 m/s. .

具體的說,該呼吸模擬裝置具有雙邊開口的中空管柱,及一連接於該中空管柱的其中一開口的呼吸器(Respironics Lifecare,PLV-100),該呼吸器可模擬人體呼氣及吸氣的過程而將氣流送進該中空管柱或自該中空管柱吸進氣流,本實驗是利用該呼吸器在潮氣量(Tidal volumn)500mL、氣流速率(air flow rate)2m/s作為模仿人體的呼、吸氣流進行實驗;該壓電感測元件的置放方式是將該壓電感測元件的氧化鋅奈米柱32朝向該呼吸器方向,固置於該中空管柱內,之後,再將該壓電感測元件的底電極層314與一外部電流偵測器電連接形成迴路,如此,該些氧化鋅奈米柱32受到外力所產生的壓電流即可藉由該底電極層314向外輸出。 Specifically, the breathing simulation device has a hollow tubular column with a bilateral opening, and a respirator (Respironics Lifecare, PLV-100) connected to one of the openings of the hollow tubular string, the breathing device can simulate human exhalation And the process of inhaling, the airflow is sent into the hollow pipe column or the air intake flow is sucked from the hollow pipe column. In this experiment, the ventilator is used in the tidal volume (500 mL, air flow rate). 2m/s is used as an experiment to simulate the body's breathing and inhaling airflow; the piezoelectric sensing component is placed by directing the zinc oxide nanocolumn 32 of the piezoelectric sensing component toward the respirator, and is placed in the In the hollow tube column, the bottom electrode layer 314 of the piezoelectric sensing element is electrically connected to an external current detector to form a loop, so that the zinc oxide nano-pillars 32 are subjected to a bias current generated by an external force. The bottom electrode layer 314 can be outputted outward.

由於該等氧化鋅奈米柱32在受到不同的壓力條件下會產生不同相位的壓電流,例如當氧化鋅奈米柱32受到拉力時,會產生正相的壓電流;而當氧化鋅奈米柱32受到壓縮時,則會產生負相的壓電流。當該呼吸器模擬人體呼氣時,由於會將氣流送進該中空管柱內,因此該些氧化鋅奈米柱32即會受到氣流的壓迫而產生負相的壓電流;而當該呼吸器模擬人體吸氣時,由於會自該中空管柱吸進氣體,因此該些氧化鋅奈米柱32即會順向受到氣流的牽引而產生正向的壓電流。 Since the zinc oxide nano columns 32 generate different phase currents under different pressure conditions, for example, when the zinc oxide nano column 32 is subjected to a tensile force, a positive phase current is generated; and when the zinc oxide nanometer is used, When the column 32 is compressed, a negative phase current is generated. When the respirator simulates exhalation of the human body, since the airflow is sent into the hollow tubular string, the zinc oxide nanocolumn 32 is subjected to the compression of the airflow to generate a negative phase of the current; When the human body is inhaled, since the gas is sucked from the hollow column, the zinc oxide nano-pillars 32 are smoothly drawn by the airflow to generate a positive current.

由圖4及圖5的結果可知,本發明該壓電感測元件可對應呼氣及吸氣而分別產生明顯的正相及負相電流訊號,且量測得到的封閉迴路電流密度(closed-circuit current density)及開放迴路電壓(open-circuit Voltage)分別為3.65nA及27.32mV。也就是說,藉由本發明該壓電感測元件的電訊號變化可量測到極為輕微的氣流變化,而可即時的觀察人體的呼吸狀態變化,因此可更適用於生物感測。 As can be seen from the results of FIG. 4 and FIG. 5, the piezoelectric sensing component of the present invention can generate distinct positive and negative phase current signals corresponding to exhalation and inhalation, respectively, and the measured closed loop current density (closed- Circuit The current density and the open-circuit voltage are 3.65 nA and 27.32 mV, respectively. That is to say, the electrical signal change of the piezoelectric sensing component of the present invention can measure a very slight airflow change, and can instantly observe the change of the respiratory state of the human body, so that it can be more suitable for biological sensing.

參閱圖6、圖7,圖6~7是利用本發明該壓電感測元件,在固定潮氣量(500ml)下,於不同氣流速率(0.5~5.0m/s)的條件下,所量測到的電流密度及電壓結果。 Referring to FIG. 6 and FIG. 7 , FIG. 6 to FIG. 7 are measured by using the piezoelectric inductance measuring component of the present invention under different air flow rates (0.5 to 5.0 m/s) under a fixed tidal volume (500 ml). Current density and voltage results.

由圖6~7的結果可知,本發明該壓電感測元件可隨著氣流速率的變化而在輸出電流及電壓均可觀察到明顯的變化,顯示在不同的呼吸狀況下本發明之壓電感測元件均可得到良好的感測結果。 It can be seen from the results of FIGS. 6-7 that the piezoelectric sensing component of the present invention can observe a significant change in output current and voltage as the airflow rate changes, showing the piezoelectric of the present invention under different breathing conditions. Good sensing results can be obtained for the sensing elements.

綜上所述,本發明利用犧牲層可移除的特性,讓該壓電感測元件半成品可與該基板311分離,因此,最後製得的壓電感測元件不會受到原始支撐基板311的重量或體積的限制,可有效的減小該壓電感測元件的重量及體積,而可提升壓電感測元件的感測靈敏度,更便於應用在攜帶式或是非侵入式的生物感測器。 In summary, the present invention utilizes the removable layer sacrificial property to allow the piezoelectric sensing component semi-finished product to be separated from the substrate 311. Therefore, the finally fabricated piezoelectric sensing component is not affected by the original supporting substrate 311. The weight or volume limitation can effectively reduce the weight and volume of the piezoelectric sensing component, and can improve the sensing sensitivity of the piezoelectric sensing component, and is more convenient to be applied to a portable or non-invasive biosensor. .

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

21‧‧‧步驟 21‧‧‧Steps

22‧‧‧步驟 22‧‧‧Steps

23‧‧‧步驟 23‧‧‧Steps

24‧‧‧步驟 24‧‧‧Steps

Claims (10)

一種壓電感測元件的製作方法,包含:(a)提供一基材,該基材具有一個基板、一層形成於該基板其中一表面的犧牲層,及一層形成於該犧牲層表面的底電極層;(b)於該底電極層的表面形成多根由壓電材料構成並具有壓電特性的奈米柱;(c)於該些奈米柱的間隙形成一層高分子緩衝層;及(d)移除該犧牲層,令該底電極層與該基板分離,製得該壓電感測元件。 A method for fabricating a piezoelectric sensing component, comprising: (a) providing a substrate having a substrate, a sacrificial layer formed on one surface of the substrate, and a bottom electrode formed on a surface of the sacrificial layer a layer; (b) forming a plurality of nano-pillars composed of a piezoelectric material and having piezoelectric characteristics on the surface of the bottom electrode layer; (c) forming a polymer buffer layer in the gaps of the nano-pillars; and (d) Removing the sacrificial layer to separate the bottom electrode layer from the substrate to produce the piezoelectric sensing component. 如請求項1所述的壓電感測元件的製作方法,其中,該壓電材料選自氧化鋅,該步驟(b)是利用水熱法、氣-液-固生長法、化學氣相沉積法、電化學沉積法、濕化學法,或模板法,先於該底電極層上形成多根由氧化鋅構成的奈米柱,再經過300~1000℃退火處理,而得到具有壓電特性的氧化鋅奈米柱。 The method of fabricating a piezoelectric sensing element according to claim 1, wherein the piezoelectric material is selected from the group consisting of zinc oxide, and the step (b) is a hydrothermal method, a gas-liquid-solid growth method, a chemical vapor deposition method. Method, electrochemical deposition method, wet chemical method, or template method, a plurality of nano columns made of zinc oxide are formed on the bottom electrode layer, and then annealed at 300 to 1000 ° C to obtain oxidation with piezoelectric characteristics. Zinc nano column. 如請求項1所述的壓電感測元件的製作方法,其中,該步驟(c)是利用旋塗法將一具有可撓性的高分子材料填置於該些奈米柱的間隙並覆蓋該些奈米柱的表面,而形成該高分子緩衝層。 The method for fabricating a piezoelectric sensing component according to claim 1, wherein the step (c) is to fill a gap of the nano-pillars with a flexible polymer material by a spin coating method and cover the gap. The surface of the nano-pillars forms the polymer buffer layer. 如請求項1所述的壓電感測元件的製作方法,其中,該底電極層選自金屬、合金金屬、金屬氧化物,其前述其中一組合。 The method of fabricating a piezoelectric sensing element according to claim 1, wherein the bottom electrode layer is selected from the group consisting of a metal, an alloy metal, a metal oxide, and a combination thereof. 如請求項1所述的壓電感測元件的製作方法,其中,該 高分子緩衝層選自壓克力樹脂、聚醯亞胺樹脂、環氧樹脂,及聚偏氟乙烯。 The method for fabricating a piezoelectric sensing component according to claim 1, wherein The polymer buffer layer is selected from the group consisting of acrylic resin, polyimide resin, epoxy resin, and polyvinylidene fluoride. 如請求項1所述的壓電感測元件的製作方法,其中,該犧牲層選自光阻材料。 The method of fabricating a piezoelectric sensing element according to claim 1, wherein the sacrificial layer is selected from the group consisting of photoresist materials. 如請求項6所述的壓電感測元件的製作方法,其中,該犧牲層選自耐熱溫度不小於300℃的光阻材料。 The method of fabricating a piezoelectric sensing element according to claim 6, wherein the sacrificial layer is selected from a photoresist material having a heat-resistant temperature of not less than 300 °C. 如請求項6所述的壓電感測元件的製作方法,其中,該步驟(d)是利用濕式蝕刻方式移除該犧牲層。 The method of fabricating a piezoelectric sensing element according to claim 6, wherein the step (d) is to remove the sacrificial layer by wet etching. 如請求項1所述的壓電感測元件的製作方法,還包含一步驟(e),於該些奈米柱表面形成一層與該些奈米柱電連接的頂電極層,且該頂電極層選自金屬、合金金屬、金屬氧化物等導電材料構成。 The method for fabricating a piezoelectric sensing component according to claim 1, further comprising a step (e) of forming a top electrode layer electrically connected to the nano columns on the surface of the nano column, and the top electrode The layer is composed of a conductive material such as a metal, an alloy metal, or a metal oxide. 一種如請求項1所製得的壓電感測元件,包含一個基材、多根奈米柱,及一層高分子緩衝層,該基材由導電材料構成,該些奈米柱是自該基材表面向上延伸並具有壓電特性,且該高分子緩衝層為覆蓋該些奈米柱的頂面,並填充於該些奈米柱之間的間隙。 A piezoelectric inductance measuring component prepared according to claim 1, comprising a substrate, a plurality of nano columns, and a polymer buffer layer, the substrate is composed of a conductive material, and the nano columns are from the base The surface of the material extends upward and has piezoelectric characteristics, and the polymer buffer layer covers the top surface of the nano-pillars and fills the gap between the nano-pillars.
TW103101794A 2014-01-17 2014-01-17 Piezoelectric sensing element and its making method TWI550924B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103101794A TWI550924B (en) 2014-01-17 2014-01-17 Piezoelectric sensing element and its making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103101794A TWI550924B (en) 2014-01-17 2014-01-17 Piezoelectric sensing element and its making method

Publications (2)

Publication Number Publication Date
TW201530838A TW201530838A (en) 2015-08-01
TWI550924B true TWI550924B (en) 2016-09-21

Family

ID=54342857

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103101794A TWI550924B (en) 2014-01-17 2014-01-17 Piezoelectric sensing element and its making method

Country Status (1)

Country Link
TW (1) TWI550924B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786808B (en) * 2021-09-06 2022-12-11 長庚大學 A piezocomposite composite material having different wavelengths of absorbent light and a formation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115293A1 (en) * 2005-12-20 2009-05-07 Georgia Tech Research Corporation Stacked Mechanical Nanogenerators
TW201322490A (en) * 2011-09-26 2013-06-01 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
CN103418080A (en) * 2012-05-17 2013-12-04 纳米新能源(唐山)有限责任公司 System using piezoelectric field for driving medicine iontophoresis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090115293A1 (en) * 2005-12-20 2009-05-07 Georgia Tech Research Corporation Stacked Mechanical Nanogenerators
TW201322490A (en) * 2011-09-26 2013-06-01 Glo Ab Nanowire sized opto-electronic structure and method for manufacturing the same
CN103418080A (en) * 2012-05-17 2013-12-04 纳米新能源(唐山)有限责任公司 System using piezoelectric field for driving medicine iontophoresis

Also Published As

Publication number Publication date
TW201530838A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
Tao et al. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions
Ghosh et al. Fabrication of piezoresistive Si nanorod-based pressure sensor arrays: A promising candidate for portable breath monitoring devices
Su et al. Self‐powered respiration monitoring enabled by a triboelectric nanogenerator
Luo et al. Flexible piezoelectric pressure sensor with high sensitivity for electronic skin using near-field electrohydrodynamic direct-writing method
Yang et al. Graphene: diversified flexible 2D material for wearable vital signs monitoring
Wang et al. Ultra-sensitive graphene strain sensor for sound signal acquisition and recognition
KR101877108B1 (en) Electronic skin, preparation method and use thereof
Chen et al. Acid-interface engineering of carbon nanotube/elastomers with enhanced sensitivity for stretchable strain sensors
Lu et al. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring
Park et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins
CN104575500B (en) Application, speech recognition system and method for the electronic skin in speech recognition
Ding et al. Recent advances in nanomaterial-enabled acoustic devices for audible sound generation and detection
Dai et al. Recent progress of self-powered respiration monitoring systems
Shen et al. Capacitive–piezoresistive hybrid flexible pressure sensor based on conductive micropillar arrays with high sensitivity over a wide dynamic range
Zeng et al. Wearable multi-functional sensing technology for healthcare smart detection
Dai et al. A wearable self‐powered multi‐parameter respiration sensor
Shi et al. Highly stretchable and strain sensitive fibers based on braid-like structure and sliver nanowires
CN109445248B (en) Method for imprinting metal nanowires by using capillary action and application
Luo et al. Human–machine interaction via dual modes of voice and gesture enabled by triboelectric nanogenerator and machine learning
CN104958073A (en) Humidity sensor, electronic device and respiration detection system and method
CN110631750A (en) Novel high-sensitivity multi-channel flexible pressure sensor and preparation method thereof
Liu et al. Flexible multiscale pore hybrid self-powered sensor for heart sound detection
Yang et al. cut flexible multifunctional electronics using MoS2 nanosheet
TWI550924B (en) Piezoelectric sensing element and its making method
Zhang et al. High‐performance piezoresistive sensors based on transfer‐free large‐area PdSe2 films for human motion and health care monitoring

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees