TWI549295B - High performance finfet - Google Patents

High performance finfet Download PDF

Info

Publication number
TWI549295B
TWI549295B TW104108917A TW104108917A TWI549295B TW I549295 B TWI549295 B TW I549295B TW 104108917 A TW104108917 A TW 104108917A TW 104108917 A TW104108917 A TW 104108917A TW I549295 B TWI549295 B TW I549295B
Authority
TW
Taiwan
Prior art keywords
fin
semiconductor material
finfet
main surface
fins
Prior art date
Application number
TW104108917A
Other languages
Chinese (zh)
Other versions
TW201541638A (en
Inventor
程寧
彼得J 麥克艾爾韓尼
Original Assignee
阿爾特拉公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/222,629 external-priority patent/US20150206965A1/en
Application filed by 阿爾特拉公司 filed Critical 阿爾特拉公司
Publication of TW201541638A publication Critical patent/TW201541638A/en
Application granted granted Critical
Publication of TWI549295B publication Critical patent/TWI549295B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)
  • Manufacturing & Machinery (AREA)

Description

高性能鰭式場效電晶體 High performance fin field effect transistor

本申請涉及半導體器件例如FinFET(鰭式場效電晶體)(又稱作三柵電晶體)。 The present application relates to semiconductor devices such as FinFETs (Fin Field Effect Transistors) (also known as tri-gate transistors).

傳統場效電晶體(FET)為基本平面型器件,具有跨例如單晶矽的半導體的表面而延伸的閘極結構,以及在閘極兩側上的半導體中的摻雜的源極區和汲極區。閘極通過例如氧化矽的薄層絕緣體與半導體絕緣。施加到閘極的電壓,控制在閘極下半導體中的、延伸於摻雜的源極區和汲極區之間的未摻雜的通道中的電流流動。 A conventional field effect transistor (FET) is a substantially planar device having a gate structure extending across a surface of a semiconductor such as a single crystal germanium, and a doped source region and germanium in a semiconductor on both sides of the gate. Polar zone. The gate is insulated from the semiconductor by a thin layer of insulator such as hafnium oxide. The voltage applied to the gate controls the flow of current in the undoped channel extending between the doped source region and the drain region in the semiconductor under the gate.

FET的開關速度取決於在源極區和汲極區之間的電流流動量。電流流動取決於閘極的寬度,其中寬度是通道中垂直於電流流動方向的方向。隨著對應用在通信和電腦設備中的更高速度電晶體的不斷需求,在製造具有更寬閘極的電晶體器件存有持續的興趣。 The switching speed of the FET depends on the amount of current flowing between the source and drain regions. The current flow depends on the width of the gate, where the width is the direction perpendicular to the direction of current flow in the channel. With the ever-increasing demand for higher speed transistors for use in communications and computer equipment, there is continuing interest in fabricating transistor devices with wider gates.

已經發展了FinFET以獲得更大的閘極寬度。鰭是立在邊緣上的半導體材料的薄段,從而可獲得用於形成閘極結構的多個表面。鰭具有彼此相對的且通常關於縱向均分鰭的中心面對稱的第一主面和第二主面。這些主面通常示意為平行的,例如在通過引用被包含在本申請中的USP 7,612,405 B2或者公開號US2008/0128797 A1中的那樣;但是工藝的局限通常導致表面從鰭的頂部至底部向外傾斜,導致鰭的截面是梯形形狀。在某些情形中,兩個主面在頂部相交。在某些實施例中,在每個鰭的每個表面上可以設置單獨的閘極結構。在另外的實施例中,所有的表面具有共同的閘極結構。 FinFETs have been developed to achieve larger gate widths. The fin is a thin section of semiconductor material that is standing on the edge so that a plurality of surfaces for forming the gate structure can be obtained. The fins have a first major face and a second major face that are opposite each other and are generally symmetrical about a central face of the longitudinally divided fins. These main faces are generally shown as being parallel, for example as described in USP 7,612,405 B2, or the publication number US 2008/0128797 A1, which is incorporated herein by reference; The cross section of the fin is trapezoidal. In some cases, the two major faces intersect at the top. In some embodiments, a separate gate structure can be provided on each surface of each fin. In other embodiments, all surfaces have a common gate structure.

摻雜的源極區和汲極區位於閘極的相對側上。如同 在平面型FET中,施加到閘極的電壓,控制在閘極下半導體中的、延伸於摻雜的源極區和汲極區之間的未摻雜的通道中的電流流動。 The doped source and drain regions are on opposite sides of the gate. as In a planar FET, the voltage applied to the gate controls the flow of current in the undoped channel extending between the doped source region and the drain region in the lower gate semiconductor.

關於FinFET的更多細節可以在N.H.E.Weste和 D.Harris的CMOS VLSI Design(Pearson,3rded.,2005)的第137-138頁找到,其通過引用被包含在本申請中。 More details about the FinFET can be found on pages 137-138 NHEWeste and D.Harris of CMOS VLSI Design (Pearson, 3 rd ed., 2005) , which is included herein by reference.

儘管從矽FinFET可獲得增加了的速度,但仍然需要 更快的操作。這通過在鰭中使用應變矽代替NMOS器件的矽和PMOS器件的鍺或矽鍺(SiGe)獲得。然而,鍺和SiGe的帶隙比矽小,結果是由這些材料形成的PMOS器件具有明顯更高的洩漏電流(Iboff)。高的洩漏電流不僅增加靜態洩漏,而且產生其中形成有PMOS電晶體的半導體晶片的過度加熱。這在使用大量PMOS電晶體的電路例如靜態隨機存取記憶體(SRAM)電路中尤其困擾。 Although the increased speed is available from the 矽FinFET, it still needs Faster operation. This is obtained by using strain 矽 in the fin instead of 矽 or 矽锗 (SiGe) of the NMOS device and the PMOS device. However, the band gap ratio of germanium and SiGe is smaller, with the result that PMOS devices formed from these materials have significantly higher leakage currents (Iboff). The high leakage current not only increases static leakage, but also produces excessive heating of the semiconductor wafer in which the PMOS transistor is formed. This is especially troublesome in circuits that use a large number of PMOS transistors, such as static random access memory (SRAM) circuits.

本發明是一種降低FinFET中功率損耗的積體電路以及一種製造該電路的方法。 The present invention is an integrated circuit for reducing power loss in a FinFET and a method of fabricating the same.

本發明的示例性FinFET包括多個第一鰭、多個第二鰭和多個第三鰭,FinFET具有形成在鰭上的閘極結構以及源極區和汲極區,使得PMOS電晶體形成在多個第一鰭上,NMOS電晶體形成在多個第二鰭上,以及PMOS電晶體形成在多個第三鰭上。在一個實施例中,多個第一鰭和多個第二鰭由應變矽製成;並且多個第三鰭由具有比應變矽更高的電洞遷移率的材料例如鍺或矽鍺製成。在第二實施例中,多個第一鰭由矽製成,多個第二鰭由應變矽、鍺或III-V族化合物製成;並且多個第三鰭由具有比應變矽更高的電洞遷移率的材料例如鍺或矽鍺製成。 An exemplary FinFET of the present invention includes a plurality of first fins, a plurality of second fins, and a plurality of third fins, the FinFET having a gate structure formed on the fins and a source region and a drain region such that a PMOS transistor is formed at On the plurality of first fins, an NMOS transistor is formed on the plurality of second fins, and a PMOS transistor is formed on the plurality of third fins. In one embodiment, the plurality of first fins and the plurality of second fins are made of strain enthalpy; and the plurality of third fins are made of a material having a higher mobility than the strain enthalpy, such as ruthenium or iridium. . In a second embodiment, the plurality of first fins are made of tantalum, the plurality of second fins are made of strained tantalum, niobium or a group III-V compound; and the plurality of third fins are made of a higher specific strain The material of the hole mobility is made of, for example, tantalum or niobium.

形成FinFET的鰭有多種方法。示例性地,通過在鰭 上形成閘極結構,接著使用N型摻雜劑的離子注入來形成NMOS電晶體的源極區和汲極區,並且使用P型摻雜劑的離子注入來形成PMOS電晶體的源極區和汲極區,從而在鰭上形成電晶體。 There are several ways to form the fins of a FinFET. Illustratively, through the fin Forming a gate structure thereon, followed by ion implantation using an N-type dopant to form a source region and a drain region of the NMOS transistor, and ion implantation using a P-type dopant to form a source region of the PMOS transistor and The bungee region forms a transistor on the fin.

已經發現,形成在應變矽鰭上的PMOS電晶體的洩 漏電流與形成在鍺或SiGe鰭上的相似PMOS電晶體的洩漏電流的十五分之一(1/15)同樣低、甚至更低。這種PMOS電晶體的一種應用是在例如那些用於存儲對現場可程式設計閘陣列(FPGA)的開關電路以及邏輯元件進行程式設計的配置位元的靜態RAM單元中。在當前技術中,這種配置記憶體可能包括數百萬的靜態RAM單元。 It has been found that the PMOS transistor formed on the strained skeletal fin The leakage current is as low as or even lower than one-fifth (1/15) of the leakage current of a similar PMOS transistor formed on a germanium or SiGe fin. One application of such PMOS transistors is in static RAM cells such as those used to store configuration bits for switching circuit and logic elements of a field programmable gate array (FPGA). In the current state of technology, such configuration memory may include millions of static RAM cells.

在優選的實施例中可以實施大量的變形。 A large number of variations can be implemented in the preferred embodiment.

100‧‧‧鰭式場效電晶體 100‧‧‧Fin field effect transistor

110‧‧‧矽基板 110‧‧‧矽 substrate

120‧‧‧矽鍺應變鬆弛阻礙物 120‧‧‧矽锗 strain relaxation obstruction

130‧‧‧第一應變矽鰭 130‧‧‧First strained fin

140‧‧‧第二應變矽鰭 140‧‧‧Second strained fin

150‧‧‧第三鰭 150‧‧‧third fin

162‧‧‧主面 162‧‧‧Main face

164‧‧‧主面 164‧‧‧Main face

170‧‧‧閘極 170‧‧‧ gate

180‧‧‧源極 180‧‧‧ source

190‧‧‧汲極 190‧‧‧汲polar

200‧‧‧鰭式場效電晶體 200‧‧‧Fin field effect transistor

210‧‧‧矽基板 210‧‧‧矽 substrate

220‧‧‧應變鬆弛阻礙物 220‧‧‧ strain relaxation obstruction

222‧‧‧第一部分 222‧‧‧Part I

224‧‧‧第二部分 224‧‧‧Part II

230‧‧‧第一矽鰭 230‧‧‧The first fin

240‧‧‧第二矽鰭 240‧‧‧Second fin

250‧‧‧第三鰭 250‧‧‧third fin

262‧‧‧主面 262‧‧‧Main face

264‧‧‧主面 264‧‧‧ main face

270‧‧‧閘極 270‧‧‧ gate

280‧‧‧源極 280‧‧‧ source

290‧‧‧汲極 290‧‧‧汲polar

310‧‧‧RAM 310‧‧‧RAM

320‧‧‧RAM的一個單元 320‧‧‧One unit of RAM

321‧‧‧PMOS電晶體 321‧‧‧ PMOS transistor

322‧‧‧NMOS電晶體 322‧‧‧NMOS transistor

323‧‧‧PMOS電晶體 323‧‧‧PMOS transistor

324‧‧‧NMOS電晶體 324‧‧‧NMOS transistor

325‧‧‧NMOS傳輸電晶體 325‧‧‧NMOS transmission transistor

326‧‧‧NMOS傳輸電晶體 326‧‧‧NMOS transmission transistor

410‧‧‧步驟 410‧‧‧Steps

420‧‧‧步驟 420‧‧ steps

430‧‧‧步驟 430‧‧ steps

440‧‧‧步驟 440‧‧‧Steps

450‧‧‧步驟 450‧‧‧Steps

460‧‧‧步驟 460‧‧ steps

鑒於下面的詳細描述,本發明的這些以及其他目的和優點對於本領域技術人員會是明顯的,其中:第一圖是本發明的第一示例性實施例的立體圖;第二圖是本發明的第二示例性實施例的立體圖;第三圖是描述現場可程式設計閘陣列和它的配置記憶體的示意圖;第四圖是描述本發明的方法的示例性實施例的流程圖;以及第五圖是描述各種半導體材料的電子和電洞遷移率的圖。 These and other objects and advantages of the present invention will be apparent to those skilled in the art in the <RTIgt; A perspective view of a second exemplary embodiment; a third diagram depicting a field programmable gate array and its configuration memory; a fourth diagram is a flow chart depicting an exemplary embodiment of the method of the present invention; and a fifth The figure is a graph depicting the electron and hole mobility of various semiconductor materials.

第一圖是本發明的第一示例性實施例FinFET 100的截面圖。FinFET 100包括矽基板110、形成在矽基板110上的矽鍺應變鬆弛阻礙物120、形成在應變鬆弛阻礙物120上的多個第一應 變矽鰭130,形成在應變鬆弛阻礙物120上的多個第二應變矽鰭140以及形成在應變鬆弛阻礙物120上並且由電洞遷移率比應變矽的大的半導體材料製成的多個第三鰭150。示例性地,該半導體材料是鍺或矽鍺。每個鰭具有兩個主面162、164。閘極結構170以及源極區和汲極區180、190形成在鰭130、140和150的表面上,使得PMOS電晶體形成在鰭130上,NMOS電晶體形成在鰭140上,以及PMOS電晶體形成在鰭150上。 The first figure is a cross-sectional view of the first exemplary embodiment FinFET 100 of the present invention. The FinFET 100 includes a ruthenium substrate 110, a ruthenium strain relaxation inhibitor 120 formed on the ruthenium substrate 110, and a plurality of first responsiveness formed on the strain relaxation inhibitor 120. The skeg fin 130, a plurality of second strained fins 140 formed on the strain relaxation obstruction 120, and a plurality of semiconductor materials formed on the strain relaxation obstruction 120 and having a larger mobility than the strain 矽Third fin 150. Illustratively, the semiconductor material is tantalum or niobium. Each fin has two major faces 162, 164. A gate structure 170 and source and drain regions 180, 190 are formed on the surfaces of the fins 130, 140, and 150 such that a PMOS transistor is formed on the fin 130, an NMOS transistor is formed on the fin 140, and a PMOS transistor Formed on the fin 150.

第二圖是本發明的第二示例性實施例FinFET 200的 截面。FinFET 200包括矽基板210、形成在基板210的部分上的應變鬆弛阻礙物220、形成在襯底210上的多個第一矽鰭230、形成在應變鬆弛阻礙物220的第一部分222上的多個第二應變矽、鍺或III-V族化合物例如InGaAs的鰭240、以及形成在應變鬆弛阻礙物220的第二部分224上的由電洞遷移率比應變矽的大的半導體材料製成的多個第三鰭250。示例性地,半導體材料是鍺或矽鍺。每個鰭具有兩個主面262、264。閘極結構270以及源極區和汲極區280、290形成在鰭230、240和250的表面上,使得PMOS電晶體形成在鰭230上,NMOS電晶體形成在鰭240上,以及PMOS電晶體形成在鰭250上。 The second figure is a second exemplary embodiment of the present invention FinFET 200 section. The FinFET 200 includes a germanium substrate 210, a strain relaxation barrier 220 formed on a portion of the substrate 210, a plurality of first fin fins 230 formed on the substrate 210, and a plurality of first fins 222 formed on the strain relaxation obstruction 220. Second strain 矽, 锗 or III-V compound such as fin 240 of InGaAs, and a semiconductor material formed on the second portion 224 of the strain relaxation barrier 220 by a large semiconductor material having a hole mobility greater than strain 矽A plurality of third fins 250. Illustratively, the semiconductor material is tantalum or niobium. Each fin has two major faces 262, 264. A gate structure 270 and source and drain regions 280, 290 are formed on the surfaces of the fins 230, 240, and 250 such that a PMOS transistor is formed on the fin 230, an NMOS transistor is formed on the fin 240, and a PMOS transistor Formed on the fin 250.

已經發現,形成在應變矽鰭上的PMOS電晶體的洩 漏電流,與形成在鍺或SiGe鰭上的相似PMOS電晶體的洩漏電流的十五分之一(1/15)同樣低、甚至更低。這種PMOS電晶體的一種應用是在例如用於存儲配置FPGA的配置位元的六電晶體靜態RAM單元中。第三圖是描述FPGA 300、它的配置RAM 310以及該配置RAM的一個單元320的示意圖。如第三圖所示,該單元包括鎖存器(latch),該鎖存器具有:與第二對串聯連接的PMOS和NMOS電晶體323、324交叉耦合的第一對串聯連接的PMOS和NMOS電晶體321、322,以及用於將鎖存器連接到位線bit和bit_b的NMOS傳輸電晶體325、326。由於當今技術中的配置RAM可能包括數百萬的靜態RAM單元,所以應用在這種單元中的PMOS電晶體的洩漏電流的明顯下降具有很大的價值。對於一些 FPGA產品,靜態功率需求的降低達約百分之三十(30%);並且總功耗需求的降低達約百分之十(10%)。 It has been found that the PMOS transistor formed on the strained skeletal fin The leakage current is as low as or even lower than one-fifth (1/15) of the leakage current of a similar PMOS transistor formed on a germanium or SiGe fin. One application of such a PMOS transistor is in, for example, a six-transistor static RAM cell for storing configuration bits of a configuration FPGA. The third diagram is a schematic diagram depicting FPGA 300, its configuration RAM 310, and a unit 320 of the configuration RAM. As shown in the third figure, the unit includes a latch having a first pair of series connected PMOS and NMOS cross-coupled with a second pair of PMOS and NMOS transistors 323, 324 connected in series. Transistors 321, 322, and NMOS transfer transistors 325, 326 for connecting the latches to bit lines bit and bit_b. Since the configuration RAM in today's technology may include millions of static RAM cells, the significant drop in leakage current of PMOS transistors used in such cells is of great value. For some For FPGA products, static power requirements are reduced by approximately thirty percent (30%); and total power demand is reduced by approximately ten percent (10%).

有利地,本發明的FinFET的NMOS電晶體可以用作配置RAM 310的靜態RAM單元中的NMOS電晶體。 Advantageously, the NMOS transistor of the FinFET of the present invention can be used as an NMOS transistor in a static RAM cell in which the RAM 310 is configured.

形成FinFET的鰭有很多種方法。其中的幾種中,從塊材料形成鰭,使用傳統的光刻方法去除不需要的材料並留下在基板上的邊緣上立著的多個鰭的最終形狀。通常基板是例如矽的半導體材料的晶圓;並且在今天的科技中,晶片可能達到12英寸(300毫米)直徑。 There are many ways to form the fins of a FinFET. In some of these, fins are formed from the bulk material, using conventional photolithographic methods to remove unwanted material and leaving the final shape of the plurality of fins standing on the edge on the substrate. Typically the substrate is a wafer of germanium semiconductor material; and in today's technology, the wafer may reach a diameter of 12 inches (300 mm).

第四圖是用於製造第一圖所示的FinFET電晶體的流程圖。方法以步驟410開始,其中在基板底上的矽鍺應變鬆弛阻礙物上形成多個鰭。用於製造這種結構的步驟在本領域中是公知的。在步驟420,在基本垂直於鰭的脊和谷的方向上形成跨鰭而延伸的閘極結構。用於形成這種閘極結構的方法是熟知的。在步驟430,在PMOS電晶體130和150將要設置的FinFET的部分之上形成第一光罩(mask)。接著在步驟440,通過例如砷的N型摻雜劑的離子注入來在沒有被第一光罩保護的閘極的側上的鰭的主面上形成N型源極和汲極區,從而形成NMOS電晶體140。接著去除第一光罩並且在步驟450,在其中剛剛形成N型源極和汲極區的FinFET的部分上形成第二光罩。接著在步驟460,通過例如硼的P型摻雜劑的離子注入來在沒有被第二光罩保護的閘極的側上的鰭的主面上形成P型源極和汲極區,從而形成PMOS電晶體130、150。第二光罩接著被去除。 The fourth figure is a flow chart for fabricating the FinFET transistor shown in the first figure. The method begins with step 410 in which a plurality of fins are formed on the 矽锗 strain relaxation obstruction on the substrate bottom. The steps used to make such structures are well known in the art. At step 420, a gate structure extending across the fin is formed in a direction substantially perpendicular to the ridges and valleys of the fin. Methods for forming such gate structures are well known. At step 430, a first mask is formed over portions of the FinFET to which the PMOS transistors 130 and 150 are to be placed. Next, in step 440, an N-type source and a drain region are formed on the main surface of the fin on the side of the gate not protected by the first mask by ion implantation of an N-type dopant such as arsenic, thereby forming NMOS transistor 140. The first reticle is then removed and at step 450, a second reticle is formed over the portion of the FinFET in which the N-type source and drain regions are formed. Next, at step 460, a P-type source and a drain region are formed on the main surface of the fin on the side of the gate not protected by the second mask by ion implantation of a P-type dopant such as boron, thereby forming PMOS transistors 130, 150. The second mask is then removed.

在本發明的精神和範圍之內可以實施大量的變形,這對於本領域技術人員而言將是顯而易見的。例如,可以在本發明的實施中使用大量的半導體材料。第五圖是描述針對矽、鍺和各種III-V族化合物的電子和電洞遷移率與帶隙之間關係的圖。這些材料包括可以在本發明的實施中使用的、具有電洞遷移率比矽的大的化合物,例如銻化鎵(GaSb)和銻化銦(InSb)。這些材料也包括可以在本發明的實施中使用的、具有電子遷移率比矽的大 的化合物,例如GaSb、InSb、砷化銦(InAs)和銦鎵砷(InGaAs)。 也可以使用許多其他沒有在圖中標明但是在本領域熟知的III-V族化合物。儘管描述了一種形成FinFET的方法,但也可以使用其他的方法;並且也可以實施這些方法中的大量變形。可以使用不同的材料作為帽層(cap layer)、光罩層等;並且可以使用各種各樣的刻蝕劑和刻蝕方法以去除這些材料。 Numerous variations can be made within the spirit and scope of the invention, as will be apparent to those skilled in the art. For example, a large amount of semiconductor material can be used in the practice of the present invention. The fifth panel is a graph depicting the relationship between electron and hole mobility and band gap for ruthenium, osmium, and various III-V compounds. These materials include large compounds having a hole mobility ratio 矽 that can be used in the practice of the present invention, such as gallium antimonide (GaSb) and indium antimonide (InSb). These materials also include those having a higher electron mobility than 矽 which can be used in the practice of the present invention. Compounds such as GaSb, InSb, indium arsenide (InAs), and indium gallium arsenide (InGaAs). Many other III-V compounds not indicated in the figures but well known in the art can also be used. Although a method of forming a FinFET is described, other methods can be used; and a large number of variations in these methods can also be implemented. Different materials can be used as cap layers, photomask layers, etc.; and a wide variety of etchants and etching methods can be used to remove these materials.

100‧‧‧鰭式場效電晶體 100‧‧‧Fin field effect transistor

110‧‧‧矽基板 110‧‧‧矽 substrate

120‧‧‧矽鍺應變鬆弛阻礙物 120‧‧‧矽锗 strain relaxation obstruction

130‧‧‧第一應變矽鰭 130‧‧‧First strained fin

140‧‧‧第二應變矽鰭 140‧‧‧Second strained fin

150‧‧‧第三鰭 150‧‧‧third fin

162‧‧‧主面 162‧‧‧Main face

164‧‧‧主面 164‧‧‧Main face

170‧‧‧閘極 170‧‧‧ gate

180‧‧‧源極 180‧‧‧ source

190‧‧‧汲極 190‧‧‧汲polar

Claims (20)

一種鰭式場效電晶體(FinFET),包括:多個第一鰭,所述一第一鰭,具有相對的第一主面和第二主面,並且由第一半導體材料製成;至少一第一PMOS電晶體,形成在所述第一鰭的所述第一主面和所述第二主面上;多個第二鰭,所述一第二鰭,具有相對的第三主面和第四主面,並且由所述第一半導體材料製成;至少一第一NMOS電晶體,形成在所述第二鰭的所述第三主面和所述第四主面上;多個第三鰭,所述一第三鰭,具有第五主面和第六主面,並且由第二半導體材料製成,所述第二半導體材料具有比應變矽的電洞遷移率更大的電洞遷移率;以及至少一第二PMOS電晶體,形成在所述第三鰭的所述第五主面和所述第六主面上。 A fin field effect transistor (FinFET) comprising: a plurality of first fins, the first fins having opposite first and second main faces, and being made of a first semiconductor material; at least one a PMOS transistor formed on the first main surface and the second main surface of the first fin; a plurality of second fins, the second fin having opposite third main surfaces and a fourth main surface, and made of the first semiconductor material; at least one first NMOS transistor formed on the third main surface and the fourth main surface of the second fin; a plurality of third a fin, the third fin having a fifth major surface and a sixth major surface, and being made of a second semiconductor material having a hole migration greater than a strain 矽 hole mobility And a second PMOS transistor formed on the fifth main surface and the sixth main surface of the third fin. 如申請專利範圍第1項所述的FinFET,其中所述第一半導體材料是應變矽。 The FinFET of claim 1, wherein the first semiconductor material is a strain enthalpy. 如申請專利範圍第2項所述的FinFET,其中所述第一鰭、所述第二鰭和所述第三鰭形成於在矽基板上形成的矽鍺應變鬆弛阻礙物上。 The FinFET of claim 2, wherein the first fin, the second fin, and the third fin are formed on a 矽锗 strain relaxation obstruction formed on a ruthenium substrate. 如申請專利範圍第2項所述的FinFET,其中所述具有比應變矽的電洞遷移率更大的電洞遷移率的半導體材料是鍺或矽鍺。 The FinFET of claim 2, wherein the semiconductor material having a hole mobility greater than a strain 矽 hole mobility is 锗 or 矽锗. 如申請專利範圍第2項所述的FinFET,其中所述具有比應變矽的電洞遷移率更大的電洞遷移率的半導體材料是III-V族化合物。 The FinFET of claim 2, wherein the semiconductor material having a hole mobility greater than the mobility of the strain 矽 is a III-V compound. 如申請專利範圍第5項所述的FinFET,其中所述III-V族化合物是銻化銦或銻化鎵。 The FinFET of claim 5, wherein the III-V compound is indium antimonide or gallium antimonide. 如申請專利範圍第1項所述的FinFET,其中所述相對的第一主面和第二主面基本平行,所述相對的第三主面和第四主面基本平行,以及所述相對的第五主面和第六主面基本平行。 The FinFET of claim 1, wherein the opposing first major surface and second major surface are substantially parallel, the opposing third major surface and the fourth major surface are substantially parallel, and the opposing The fifth major surface and the sixth major surface are substantially parallel. 一種鰭式場效電晶體(FinFET),包括: 一矽基板;至少一第一矽鰭,形成在所述矽襯底上,所述鰭具有相對的第一主面和第二主面;至少一第一MOS電晶體,形成在所述第一鰭的所述第一主面和所述第二主面上;一矽鍺應變鬆弛阻礙物,形成在其中不形成所述第一鰭的矽基板上;至少一第二鰭,形成在所述應變鬆弛阻礙物上,所述第二鰭具有相對的第三主面和第四主面並且由具有比矽的電子遷移率更大的電子遷移率的第一半導體材料製成;至少一NMOS電晶體,形成在所述第二鰭的所述第三主面和所述第四主面上;至少一第三鰭,形成在所述應變鬆弛阻礙物上,所述第三鰭具有相對的第五主面和第六主面並且由具有比矽的電洞遷移率更大的電洞遷移率的第二半導體材料製成;以及至少一PMOS電晶體,形成在所述第三鰭的所述第五主面和所述第六主面上。 A fin field effect transistor (FinFET) comprising: a substrate; at least one first fin formed on the germanium substrate, the fins having opposite first and second main faces; at least one first MOS transistor formed at the first a first main surface and a second main surface of the fin; a strain relaxation obstruction formed on the crucible substrate in which the first fin is not formed; at least one second fin formed in the On the strain relaxation obstruction, the second fin has opposite third major faces and fourth major faces and is made of a first semiconductor material having a higher electron mobility than erbium; at least one NMOS a crystal formed on the third main surface and the fourth main surface of the second fin; at least one third fin formed on the strain relaxation obstruction, the third fin having a relative a fifth major surface and a sixth major surface and made of a second semiconductor material having a mobility of a hole having a larger mobility than a hole of the crucible; and at least one PMOS transistor formed in the third fin a fifth main surface and the sixth main surface. 如申請專利範圍第8項所述的FinFET,其中所述具有比矽的電子遷移率更大的電子遷移率的的第一半導體材料是鍺、矽鍺、或III-V族化合物。 The FinFET of claim 8, wherein the first semiconductor material having an electron mobility greater than the electron mobility of ruthenium is a ruthenium, osmium, or III-V compound. 如申請專利範圍第8項所述的FinFET,其中所述具有比矽的電洞遷移率更大的電洞遷移率的第二半導體材料是鍺、矽鍺、或III-V族化合物。 The FinFET of claim 8, wherein the second semiconductor material having a hole mobility greater than a hole mobility of ruthenium is a ruthenium, osmium, or III-V compound. 如申請專利範圍第8項所述的FinFET,其中所述第一MOS電晶體是PMOS電晶體。 The FinFET of claim 8, wherein the first MOS transistor is a PMOS transistor. 如申請專利範圍第8項所述的FinFET,其中所述第一MOS電晶體是NMOS電晶體。 The FinFET of claim 8, wherein the first MOS transistor is an NMOS transistor. 如申請專利範圍第8項所述的FinFET,包括多個第一鰭、多個第二鰭和多個第三鰭。 The FinFET of claim 8, comprising a plurality of first fins, a plurality of second fins, and a plurality of third fins. 一種用於形成鰭式場效電晶體(FinFET)結構的方法,包括:形成第一半導體材料的多個第一薄段,每個段具有相對的第 一主面和第二主面;形成第二半導體材料的多個第二薄段,每個段具有相對的第三主面和第四主面;在所述薄段上形成閘極;在所述第一半導體材料的多個第一薄段的一些中注入第一導電類型的離子;以及在所述第二半導體材料的多個第二薄段中以及在其中沒有注入第一導電類型離子的第一半導體材料的至少一個薄段中,注入第二導電類型的離子。 A method for forming a fin field effect transistor (FinFET) structure, comprising: forming a plurality of first thin segments of a first semiconductor material, each segment having an opposite first a major surface and a second major surface; forming a plurality of second thin segments of the second semiconductor material, each segment having opposing third major faces and fourth major faces; forming a gate on the thin segments; Injecting ions of a first conductivity type into a plurality of first thin segments of the first semiconductor material; and implanting a first conductivity type ion in the plurality of second thin segments of the second semiconductor material In at least one thin section of the first semiconductor material, ions of the second conductivity type are implanted. 如申請專利範圍第14項所述的方法,其中所述第一半導體材料具有與所述第二半導體材料的電子遷移率不同的電子遷移率。 The method of claim 14, wherein the first semiconductor material has an electron mobility that is different from an electron mobility of the second semiconductor material. 如申請專利範圍第14項所述的方法,其中所述第一半導體材料是應力矽,並且所述第二半導體材料是具有比矽的電洞遷移率更大的電洞遷移率的鍺、矽鍺、或III-V族化合物。 The method of claim 14, wherein the first semiconductor material is stress 矽, and the second semiconductor material is 锗, 矽 having a hole mobility greater than a hole mobility of 矽锗, or a III-V compound. 如申請專利範圍第16項所述的方法,其中所述III-V族化合物是銻化銦或銻化鎵。 The method of claim 16, wherein the group III-V compound is indium antimonide or gallium antimonide. 如申請專利範圍第14項所述的方法,其中所述第一導電類型是N型導電性並且所述第二導電類型是P型導電性。 The method of claim 14, wherein the first conductivity type is N-type conductivity and the second conductivity type is P-type conductivity. 如申請專利範圍第14項所述的方法,其中所述多個第一薄段和所述多個第二薄段形成於在一矽基板上形成的一矽鍺應變鬆弛阻礙物上。 The method of claim 14, wherein the plurality of first thin segments and the plurality of second thin segments are formed on a strain relaxation obstruction formed on a tantalum substrate. 一種鰭式場效電晶體(FinFET),包括:所述一第一鰭,具有相對的第一主面和第二主面,並且由第一半導體材料製成;至少一第一PMOS電晶體,形成在所述第一鰭的所述第一主面和所述第二主面上;多個第二鰭,所述一第二鰭,具有相對的第三主面和第四主面,並且由所述第一半導體材料製成;至少一第一NMOS電晶體,形成在所述第二鰭的所述第三主面和所述第四主面上;多個第三鰭,所述一第三鰭,具有第五主面和第六主面, 並且由第二半導體材料製成,所述第二半導體材料具有比應變矽的電洞遷移率更大的電洞遷移率;以及至少一第二PMOS電晶體,形成在所述第三鰭的所述第五主面和所述第六主面上,其中所述第一半導體材料是應變矽,其中所述第一鰭、所述第二鰭和所述第三鰭形成於在矽基板上形成的矽鍺應變鬆弛阻礙物上。 A fin field effect transistor (FinFET) comprising: the first fin having opposite first main faces and second main faces, and being made of a first semiconductor material; at least one first PMOS transistor formed On the first main surface and the second main surface of the first fin; a plurality of second fins, the second fins having opposite third main surfaces and fourth main surfaces, and The first semiconductor material is formed; at least one first NMOS transistor is formed on the third main surface and the fourth main surface of the second fin; a plurality of third fins, the first a triple fin having a fifth major surface and a sixth major surface And being made of a second semiconductor material having a hole mobility greater than a strain 矽 hole mobility; and at least one second PMOS transistor formed at the third fin The fifth main surface and the sixth main surface, wherein the first semiconductor material is a strain enthalpy, wherein the first fin, the second fin, and the third fin are formed on a germanium substrate The 矽锗 strain is relaxed on the obstruction.
TW104108917A 2014-03-22 2015-03-20 High performance finfet TWI549295B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/222,629 US20150206965A1 (en) 2013-11-14 2014-03-22 High performance finfet

Publications (2)

Publication Number Publication Date
TW201541638A TW201541638A (en) 2015-11-01
TWI549295B true TWI549295B (en) 2016-09-11

Family

ID=54121559

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104108917A TWI549295B (en) 2014-03-22 2015-03-20 High performance finfet

Country Status (3)

Country Link
KR (1) KR101738510B1 (en)
CN (1) CN104934478B (en)
TW (1) TWI549295B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699967B2 (en) 2018-06-28 2020-06-30 International Business Machines Corporation Co-integration of high carrier mobility PFET and NFET devices on the same substrate using low temperature condensation

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170179127A1 (en) * 2015-12-18 2017-06-22 Globalfoundries Inc. Semiconductor structure having silicon germanium fins and method of fabricating same
US9825036B2 (en) 2016-02-23 2017-11-21 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and method for semiconductor device
TWI622171B (en) * 2016-06-24 2018-04-21 財團法人國家實驗研究院 Heterogeneous integration semiconductor device and manucacturing method thereof
US10134893B2 (en) * 2017-02-22 2018-11-20 International Business Machines Corporation Fabrication of a vertical field effect transistor device with a modified vertical fin geometry
CN110571195B (en) * 2018-06-05 2021-12-21 中芯国际集成电路制造(上海)有限公司 SRAM (static random Access memory), manufacturing method thereof and electronic device
KR102603500B1 (en) 2018-10-26 2023-11-17 한온시스템 주식회사 Air conditioner for vehicle
KR102685797B1 (en) 2019-09-06 2024-07-17 한온시스템 주식회사 Air conditioner for vehicle
KR20220099645A (en) 2021-01-07 2022-07-14 한온시스템 주식회사 Air conditioner for vehicle
US20230031490A1 (en) * 2021-07-30 2023-02-02 Taiwan Semiconductor Manufacturing Co., Ltd. Strained nanosheets on silicon-on-insulator substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270641A1 (en) * 2012-04-12 2013-10-17 Globalfoundries Inc. Methods of forming finfet semiconductor devices so as to tune the threshold voltage of such devices

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7449753B2 (en) * 2006-04-10 2008-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Write margin improvement for SRAM cells with SiGe stressors
JP5431372B2 (en) * 2011-01-05 2014-03-05 株式会社東芝 Semiconductor device and manufacturing method thereof
CN102956453B (en) * 2011-08-19 2017-02-22 联华电子股份有限公司 Semiconductor device and manufacture method thereof
US20130075818A1 (en) * 2011-09-23 2013-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. 3D Semiconductor Device and Method of Manufacturing Same
US9728464B2 (en) * 2012-07-27 2017-08-08 Intel Corporation Self-aligned 3-D epitaxial structures for MOS device fabrication

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130270641A1 (en) * 2012-04-12 2013-10-17 Globalfoundries Inc. Methods of forming finfet semiconductor devices so as to tune the threshold voltage of such devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10699967B2 (en) 2018-06-28 2020-06-30 International Business Machines Corporation Co-integration of high carrier mobility PFET and NFET devices on the same substrate using low temperature condensation
US10923403B2 (en) 2018-06-28 2021-02-16 International Business Machines Corporation Co-integration of high carrier mobility PFET and NFET devices on the same substrate using low temperature condensation

Also Published As

Publication number Publication date
TW201541638A (en) 2015-11-01
CN104934478B (en) 2019-02-19
KR101738510B1 (en) 2017-05-22
CN104934478A (en) 2015-09-23
KR20150110404A (en) 2015-10-02

Similar Documents

Publication Publication Date Title
TWI549295B (en) High performance finfet
US9502531B2 (en) Semiconductor device having fin-type field effect transistor and method of manufacturing the same
US10164099B2 (en) Device with diffusion blocking layer in source/drain region
CN107017257B (en) Static random access memory device with vertical FET device
US20230378177A1 (en) Integrated circuit structure including multi-length source/drain contacts
KR101393947B1 (en) Integrated circuit having finfets with different fin profiles
KR101531795B1 (en) Structure for FinFETs
US20180047733A1 (en) Embedded SRAM and Methods of Forming the Same
US10177157B2 (en) Transistor structure having multiple n-type and/or p-type elongated regions intersecting under common gate
US20150206965A1 (en) High performance finfet
US10734478B2 (en) Semiconductor device and manufacturing method thereof
US9589966B2 (en) Static random access memory
US10332891B1 (en) Method and device to reduce finFET SRAM contact resistance
US10529414B2 (en) SRAM cell having SiGe PMOS fin lines
CN109979942B (en) Static random access memory and forming method thereof
JP2006210453A (en) Semiconductor device
US9508720B1 (en) Low leakage FinFET
US20110309448A1 (en) Differentially recessed contacts for multi-gate transistor of sram cell
KR20070016156A (en) Memory with recessed devices

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees