TWI548095B - Semiconductor device and method of forming the same - Google Patents

Semiconductor device and method of forming the same Download PDF

Info

Publication number
TWI548095B
TWI548095B TW103103046A TW103103046A TWI548095B TW I548095 B TWI548095 B TW I548095B TW 103103046 A TW103103046 A TW 103103046A TW 103103046 A TW103103046 A TW 103103046A TW I548095 B TWI548095 B TW I548095B
Authority
TW
Taiwan
Prior art keywords
region
layer
substrate
isolation structure
conductivity type
Prior art date
Application number
TW103103046A
Other languages
Chinese (zh)
Other versions
TW201530768A (en
Inventor
詹景琳
林正基
連士進
吳錫垣
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW103103046A priority Critical patent/TWI548095B/en
Publication of TW201530768A publication Critical patent/TW201530768A/en
Application granted granted Critical
Publication of TWI548095B publication Critical patent/TWI548095B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體元件及其製造方法Semiconductor component and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same.

超高壓元件在操作時必須具有高崩潰電壓(breakdown voltage)以及低的開啟電阻(on-state resistance,Ron),以減少功率損耗。在目前的超高壓元件中,經常發現在源極端會有非常大的電流聚集效應,因而成為崩潰點,導致元件的崩潰電壓下降,而且漏電流的情況非常嚴重。The UHV component must have a high breakdown voltage and a low on-state resistance (Ron) during operation to reduce power loss. In the current ultra-high voltage components, it is often found that there is a very large current concentration effect at the source terminal, which becomes a collapse point, causing a breakdown voltage of the component to drop, and the leakage current is very serious.

本發明實施例提供一種半導體元件及其製造方法,用以提供具有高崩潰電壓以及低漏電流的半導體元件。Embodiments of the present invention provide a semiconductor device and a method of fabricating the same to provide a semiconductor device having a high breakdown voltage and a low leakage current.

本發明提出一種半導體元件,其包括基底、隔離結構、閘極結構、具有第一導電型之源極區與汲極區、以及導體層。源極區與汲極區位於基底中。隔離結構位於源極區與汲極區之間。閘極結構位於源極區與隔離結構之間的基底上。導體層位於基底上方,至少自源極區上方延伸至隔離結構上方,且電性連接源極區。基底包括第一區與第二區,在第二區之源極區的輪廓的曲率大於在第一區之源極區的輪廓的曲率,且在第二區上方之覆蓋隔離結構的導體層的部分的寬度大於在第一區上方之覆蓋隔離結構的導體層的部分的寬度。The present invention provides a semiconductor device including a substrate, an isolation structure, a gate structure, a source region and a drain region having a first conductivity type, and a conductor layer. The source region and the drain region are located in the substrate. The isolation structure is located between the source region and the drain region. The gate structure is on the substrate between the source region and the isolation structure. The conductor layer is located above the substrate, at least from above the source region to above the isolation structure, and electrically connected to the source region. The substrate includes a first region and a second region, a curvature of a contour of the source region of the second region being greater than a curvature of a contour of the source region of the first region, and a conductor layer covering the isolation structure over the second region The width of the portion is greater than the width of the portion of the conductor layer overlying the isolation structure above the first region.

根據本發明一實施例,所述導體層為最上層金屬層。According to an embodiment of the invention, the conductor layer is the uppermost metal layer.

根據本發明一實施例,所述半導體元件包括多數個直線區域以及多數個轉彎區域,直線區域之一者位於第一區;轉彎區域之一者位於第二區。According to an embodiment of the invention, the semiconductor component includes a plurality of linear regions and a plurality of turning regions, one of the linear regions being located in the first region; and one of the turning regions is located in the second region.

根據本發明一實施例,所述半導體元件更包括:具有第二導電型的頂層,位於隔離結構下方的基底中;以及具有第一導電型的梯層,位於頂層與隔離結構之間。According to an embodiment of the invention, the semiconductor device further includes: a top layer having a second conductivity type, located in the substrate under the isolation structure; and a step layer having the first conductivity type between the top layer and the isolation structure.

根據本發明一實施例,所述半導體元件更包括具有第二導電型的第一井區,位於基底中,其中源極區位於第一井區中,且閘極結構覆蓋部分第一井區;具有第二導電型的摻雜區位於第一井區中,與源極區相鄰,且與源極區共同連接導體層;以及具有第一導電型的第二井區,位於基底中,其中第一井區以及汲極區位於第二井區中。According to an embodiment of the present invention, the semiconductor device further includes a first well region having a second conductivity type, located in the substrate, wherein the source region is located in the first well region, and the gate structure covers a portion of the first well region; a doped region having a second conductivity type is located in the first well region, adjacent to the source region, and commonly connected to the source region; and a second well region having the first conductivity type is located in the substrate, wherein The first well zone and the bungee zone are located in the second well zone.

本發明還提出一種半導體元件的製造方法,包括於基底上形成隔離結構。於基底上形成閘極結構。在閘極結構與隔離結構的兩側的基底中形成具有第一導電型之源極區與具有第一導電型之汲極區。源極區接近閘極結構,汲極區接近隔離結構。於基底上方形成導體層。導體層自源極區上方延伸至隔離結構上方,且電性連接源極區。基底包括第一區與第二區,在第二區之源極區的輪廓的曲率大於在第一區之源極區的輪廓的曲率,且在第二區上方之覆蓋隔離結構的導體層的部分的寬度大於第一區上方之覆蓋隔離結構的導體層的部分的寬度。The present invention also provides a method of fabricating a semiconductor device comprising forming an isolation structure on a substrate. A gate structure is formed on the substrate. A source region having a first conductivity type and a drain region having a first conductivity type are formed in the substrate on both sides of the gate structure and the isolation structure. The source region is close to the gate structure, and the drain region is close to the isolation structure. A conductor layer is formed over the substrate. The conductor layer extends from above the source region to above the isolation structure and is electrically connected to the source region. The substrate includes a first region and a second region, a curvature of a contour of the source region of the second region being greater than a curvature of a contour of the source region of the first region, and a conductor layer covering the isolation structure over the second region The width of the portion is greater than the width of the portion of the conductor layer overlying the isolation structure above the first region.

根據本發明一實施例,所述導體層為最上層金屬層。According to an embodiment of the invention, the conductor layer is the uppermost metal layer.

根據本發明一實施例,所述半導體元件包括多數個直線區域以及多數個轉彎區域,直線區域之一者位於第一區;轉彎區域之一者位於第二區。According to an embodiment of the invention, the semiconductor component includes a plurality of linear regions and a plurality of turning regions, one of the linear regions being located in the first region; and one of the turning regions is located in the second region.

根據本發明一實施例,所述半導體元件的製造方法更包括:於隔離結構下方的基底中形成具有第二導電型的頂層;以及於頂層與隔離結構之間形成具有第一導電型的一梯層。According to an embodiment of the invention, the method of fabricating the semiconductor device further includes: forming a top layer having a second conductivity type in a substrate under the isolation structure; and forming a ladder having a first conductivity type between the top layer and the isolation structure Floor.

根據本發明一實施例,所述半導體元件的製造方法更包括:於基底中形成具有第二導電型的第一井區,其中源極區位於第一井區中,且閘極結構覆蓋部分第一井區;於第一井區中形成具有第二導電型的摻雜區,摻雜區與源極區相鄰,且與源極區共同連接導體層;以及於基底中形成具有第一導電型的第二井區,其中第一井區以及汲極區位於第二井區中。According to an embodiment of the invention, the method of fabricating the semiconductor device further includes: forming a first well region having a second conductivity type in the substrate, wherein the source region is located in the first well region, and the gate structure covers the portion a well region; forming a doped region having a second conductivity type in the first well region, the doped region is adjacent to the source region, and the conductor layer is commonly connected to the source region; and forming the first conductive layer in the substrate A second well zone of the type wherein the first well zone and the bungee zone are located in the second well zone.

基於上述,本發明之半導體元件係依據源極區輪廓曲率不同將源極端的導體層(如最上層金屬層)設計成具有不同的寬度,以分散曲率較大處或轉角處的電場,提升崩潰電壓,降低漏電流。Based on the above, the semiconductor component of the present invention designs the conductor layers of the source end (such as the uppermost metal layer) to have different widths according to the curvature of the contour of the source region, so as to disperse the electric field at a large curvature or a corner, and improve the collapse. Voltage, reducing leakage current.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

本發明的概念可以用於源極區具有轉彎區域的半導體元件,例如是源極區為跑道型或U型的半導體元件,但不以此為限。本發明之半導體元件係依據源極區輪廓曲率不同將源極端的導體層(如最上層金屬層)的設計成具有不同的寬度,以分散曲率較大處或轉角處的電場,提升崩潰電壓,降低漏電流。以下是以具有U型源極區的半導體元件來說明,然而,本發明並不以此為限。The concept of the present invention can be applied to a semiconductor element having a turning region in the source region, for example, a semiconductor element whose source region is a racetrack type or a U-shape, but is not limited thereto. The semiconductor component of the present invention is designed to have different widths of the source layer of the conductor layer (such as the uppermost metal layer) according to the curvature of the source region profile to disperse the electric field at a larger curvature or a corner, thereby increasing the breakdown voltage. Reduce leakage current. The following is a description of a semiconductor element having a U-type source region, however, the invention is not limited thereto.

圖1是依據本發明實施例之一種半導體元件的上視圖。圖2G為圖1之切線I-I以及II-II的剖面圖。1 is a top plan view of a semiconductor device in accordance with an embodiment of the present invention. 2G is a cross-sectional view of the tangent I-I and II-II of FIG. 1.

在以下的實施例中,第一導電型為N型,且第二導電型為P型。P型摻雜例如是硼;N型摻雜例如是磷或是砷。然而,本發明並不以此為限。在其他實施例中,第一導電型可以為P型,且第二導電型可以為N型。In the following embodiments, the first conductivity type is an N type, and the second conductivity type is a P type. The P-type doping is, for example, boron; the N-type doping is, for example, phosphorus or arsenic. However, the invention is not limited thereto. In other embodiments, the first conductivity type may be P-type and the second conductivity type may be N-type.

請參照圖1與2G,本發明之半導體元件99可以是一種高壓元件、超高壓元件(操作電壓300V至1000V)、功率元件、側向擴散金氧半導體(LDMOS)或是絕緣閘雙極電晶體(IGBT)。半導體元件99包括基底10、隔離結構24a~24d、閘極結構30、源極區34、汲極區36以及金屬內連線60(包括導體層50a、50b等)。本發明之半導體元件99還可以更包括井區12、16、18、頂層20、梯層22以及摻雜區38、40。1 and 2G, the semiconductor device 99 of the present invention may be a high voltage component, an ultrahigh voltage component (operating voltage 300V to 1000V), a power component, a laterally diffused metal oxide semiconductor (LDMOS), or an insulated gate bipolar transistor. (IGBT). The semiconductor component 99 includes a substrate 10, isolation structures 24a-24d, a gate structure 30, a source region 34, a drain region 36, and a metal interconnect 60 (including conductor layers 50a, 50b, etc.). The semiconductor component 99 of the present invention may further include well regions 12, 16, 18, top layer 20, ladder layer 22, and doped regions 38, 40.

基底10例如是具有第二導電型的半導體基底,例如P型基底。半導體基底的材料例如是選自於由Si、Ge、SiGe、GaP、GaAs、SiC、SiGeC、InAs與InP所組成的群組中的至少一種材料。基底10也可以是覆矽絕緣(SOI)基底。基底10可以是具有第二導電型的磊晶晶圓,例如P型磊晶(P-epi)晶圓。The substrate 10 is, for example, a semiconductor substrate having a second conductivity type, such as a P-type substrate. The material of the semiconductor substrate is, for example, at least one material selected from the group consisting of Si, Ge, SiGe, GaP, GaAs, SiC, SiGeC, InAs, and InP. Substrate 10 can also be a blanket insulating (SOI) substrate. The substrate 10 may be an epitaxial wafer having a second conductivity type, such as a P-type epitaxial (P-epi) wafer.

在一實施例中,半導體元件99包括多數個直線區域以及多數個轉彎區域,但不以此為限。在本實施例中,基底10的第一區100可以為直線區域(其中源極區34輪廓的曲率小或為零);在基底10的第二區200可以是轉彎區域(其中源極區34輪廓的曲率大)。In one embodiment, the semiconductor element 99 includes a plurality of linear regions and a plurality of turning regions, but is not limited thereto. In the present embodiment, the first region 100 of the substrate 10 may be a linear region (where the curvature of the contour of the source region 34 is small or zero); the second region 200 of the substrate 10 may be a turning region (where the source region 34 The curvature of the contour is large).

井區12具有第一導電型,其位於基底10中。井區12例如是N井,或稱為高壓N井(HVNW)。井區16以及18具有第二導電型,例如是P井。井區16位於基底10中與井區12相鄰。井區18位於井區12之中。The well region 12 has a first conductivity type that is located in the substrate 10. The well zone 12 is, for example, a well N, or a high pressure N well (HVNW). Well zones 16 and 18 have a second conductivity type, such as a P well. Well zone 16 is located in substrate 10 adjacent to well zone 12. Well zone 18 is located in well zone 12.

隔離結構24a~24d位於基底10上。更詳細地說,隔離結構24a覆蓋部分的井區16。隔離結構24b覆蓋另一部分的井區16,並延伸覆蓋部分井區12以及井區18。隔離結構24c與24d位於井區18一側的部分井區12上。隔離結構24c位於井區18與隔離結構24d之間。隔離結構24a、24b、24c、24d為絕緣材料,例如是未摻雜的氧化矽、氮化矽或其組合。The isolation structures 24a-24d are located on the substrate 10. In more detail, the isolation structure 24a covers a portion of the well region 16. The isolation structure 24b covers another portion of the well region 16 and extends over a portion of the well region 12 and the well region 18. The isolation structures 24c and 24d are located on a portion of the well region 12 on one side of the well region 18. The isolation structure 24c is located between the well region 18 and the isolation structure 24d. The isolation structures 24a, 24b, 24c, 24d are insulating materials such as undoped yttrium oxide, tantalum nitride or combinations thereof.

閘極結構30包括閘介電層26以及閘極導體層28。閘極結構30位於基底12上,覆蓋部分的井區18、井區12,閘極結構30可在延伸覆蓋到隔離結構24c上。閘極結構30的側壁上還有間隙壁32。間隙壁32的材料例如是氧化矽、氮化矽或其組合。The gate structure 30 includes a gate dielectric layer 26 and a gate conductor layer 28. The gate structure 30 is located on the substrate 12, covering a portion of the well region 18, the well region 12, and the gate structure 30 can extend over the isolation structure 24c. There is also a spacer 32 on the sidewall of the gate structure 30. The material of the spacer 32 is, for example, ruthenium oxide, tantalum nitride or a combination thereof.

源極區34與汲極區36具有第一導電型,例如是N型源極區與N型汲極區(N+)。源極區34與汲極區36分別位於隔離結構24c與閘極結構30的兩側的基底10中,其中源極區34接近閘極結構30,汲極區36接近隔離結構24c。更具體地說,源極區34位於閘極結構30一側的井區18之中。汲極區36位於隔離結構24c與隔離結構24d之間的井區12之中。源極區34與汲極區36的摻雜濃度例如是1´1014 /cm2 至9´1016 /cm2The source region 34 and the drain region 36 have a first conductivity type, such as an N-type source region and an N-type drain region (N+). The source region 34 and the drain region 36 are respectively located in the substrate 10 on both sides of the isolation structure 24c and the gate structure 30, wherein the source region 34 is close to the gate structure 30, and the drain region 36 is close to the isolation structure 24c. More specifically, the source region 34 is located in the well region 18 on one side of the gate structure 30. The drain region 36 is located in the well region 12 between the isolation structure 24c and the isolation structure 24d. The doping concentration of the source region 34 and the drain region 36 is, for example, 1 ́10 14 /cm 2 to 9 ́10 16 /cm 2 .

摻雜區38、40具有第二導電型,例如是P型濃摻雜區(P+)。摻雜區38位於隔離結構24b與源極區34之間的井區18中。摻雜區40位於井區16之中。摻雜區38、40的摻雜濃度例如是1´1014 /cm2 至9´1016 /cm2The doped regions 38, 40 have a second conductivity type, such as a P-type heavily doped region (P+). Doped region 38 is located in well region 18 between isolation structure 24b and source region 34. Doped region 40 is located in well region 16. The doping concentration of the doping regions 38, 40 is, for example, 1 ́10 14 /cm 2 to 9 ́10 16 /cm 2 .

頂層20具有第二導電型,例如是P型頂層(P-Top)。頂層20位於隔離結構24c下方的井區12中,用以提升崩潰電壓。梯層22具有第一導電型,例如是N型梯層(N-grade)。梯層22位於頂層20與隔離結構24c之間,用以降低導通電阻。梯層22的摻雜濃度不小於井區12的摻雜濃度。頂層20的摻雜濃度例如是1´1011 /cm2 至9´1013 /cm2 。梯層22的摻雜濃度例如是1´1011 /cm2 至9´1013 /cm2The top layer 20 has a second conductivity type, such as a P-type top layer (P-Top). The top layer 20 is located in the well region 12 below the isolation structure 24c for raising the breakdown voltage. The step layer 22 has a first conductivity type, such as an N-grade layer. The step 22 is located between the top layer 20 and the isolation structure 24c to reduce the on-resistance. The doping concentration of the ladder layer 22 is not less than the doping concentration of the well region 12. The doping concentration of the top layer 20 is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 . The doping concentration of the step layer 22 is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 .

在一實施例中,金屬內連線60包括介電層42、接觸窗44a~44e、導體層(或稱第一金屬層)46a~46d、介電層48、介層窗52a~52b以及導體層(或稱頂金屬層)50a~50b,但不以此為限。在其他實施例中,金屬內連線60可更包括導體層46a~46d與導體層50a~50b之間的多層的導體層(或稱金屬層)與多數個介層窗。導體層46a藉由接觸窗44a與摻雜區40電性連接。導體層46b藉由接觸窗44b、44c,分別與摻雜區38以及源極區34電性連接。導體層46c藉由接觸窗44d與閘極導體層28電性連接。導體層46d藉由接觸窗44e與汲極區36電性連接。In one embodiment, the metal interconnect 60 includes a dielectric layer 42, contact windows 44a-44e, conductor layers (or first metal layers) 46a-46d, dielectric layer 48, vias 52a-52b, and conductors. Layer (or top metal layer) 50a~50b, but not limited to this. In other embodiments, the metal interconnect 60 may further include a plurality of conductor layers (or metal layers) between the conductor layers 46a-46d and the conductor layers 50a-50b and a plurality of vias. The conductor layer 46a is electrically connected to the doping region 40 through the contact window 44a. The conductor layer 46b is electrically connected to the doping region 38 and the source region 34 through the contact windows 44b and 44c, respectively. The conductor layer 46c is electrically connected to the gate conductor layer 28 via the contact window 44d. The conductor layer 46d is electrically connected to the drain region 36 via the contact window 44e.

導體層50a、50b可為金屬內連線60的最上層金屬層,藉由介層窗52a~52b與導體層46a~46d電性連接。導體層50a可稱為源極金屬層,至少自源極區34(或自隔離結構24b)上方延伸至隔離結構24c上方,且藉由介層窗52a、導體層46b及接觸窗44c以電性連接源極區34。導體層50b可稱為汲極金屬層,至少自隔離結構24c上方延伸到隔離結構24d上方,且藉由介層窗52b、導體層46d及接觸窗44e以電性連接汲極區36。The conductor layers 50a and 50b may be the uppermost metal layer of the metal interconnect 60, and are electrically connected to the conductor layers 46a to 46d via the vias 52a to 52b. The conductor layer 50a may be referred to as a source metal layer, extending at least from above the source region 34 (or from the isolation structure 24b) to the isolation structure 24c, and electrically connected through the via window 52a, the conductor layer 46b, and the contact window 44c. Source region 34. The conductor layer 50b may be referred to as a gate metal layer, extending at least from above the isolation structure 24c to the isolation structure 24d, and electrically connected to the drain region 36 through the via 52b, the conductor layer 46d and the contact window 44e.

請參照圖1與圖2G,第一區100上之覆蓋隔離結構24c的導體層50a的部分的寬度W1,為第一區100之導體層50a對應隔離結構24c的端點OP1之處至導體層50a(鄰近導體層50b)之邊緣的距離。第二區200上之覆蓋隔離結構24c的導體層50a的部分的寬度W2,為第二區200之導體層50a對應隔離結構24c的端點OP2之處至導體層50a(鄰近導體層50b)之邊緣的距離。在本實施例中,在第二區200上的導體層50a的部分的寬度W2大於在第一區100上的導體層50a的部分的寬度W1,即W2>W1。寬度W2例如寬度W1的1.5倍至5倍。Referring to FIG. 1 and FIG. 2G, the width W1 of the portion of the conductor layer 50a covering the isolation structure 24c on the first region 100 is such that the conductor layer 50a of the first region 100 corresponds to the end point OP1 of the isolation structure 24c to the conductor layer. The distance of the edge of 50a (adjacent conductor layer 50b). The width W2 of the portion of the second region 200 covering the conductor layer 50a of the isolation structure 24c is such that the conductor layer 50a of the second region 200 corresponds to the end point OP2 of the isolation structure 24c to the conductor layer 50a (adjacent to the conductor layer 50b). The distance from the edge. In the present embodiment, the width W2 of the portion of the conductor layer 50a on the second region 200 is larger than the width W1 of the portion of the conductor layer 50a on the first region 100, that is, W2 > W1. The width W2 is, for example, 1.5 to 5 times the width W1.

從圖1的上視圖來看,自區域100至區域200,源極區34的輪廓的曲率遞增。在本實施例中,覆蓋隔離結構24c的導體層50a的部分的寬度也自區域100至區域200逐漸平滑遞增,使導體層50a具有平滑的輪廓(如圖1所示)。在另一實施例中(未繪示),覆蓋隔離結構24c的導體層50a的部分的寬度也可以自區域100至區域200逐漸階梯地遞增,使導體層50a具有梯狀輪廓。From the top view of FIG. 1, from the region 100 to the region 200, the curvature of the contour of the source region 34 is increased. In the present embodiment, the width of the portion of the conductor layer 50a covering the isolation structure 24c is also gradually increased from the region 100 to the region 200, so that the conductor layer 50a has a smooth profile (as shown in FIG. 1). In another embodiment (not shown), the width of the portion of the conductor layer 50a covering the isolation structure 24c may also gradually increase from the region 100 to the region 200 such that the conductor layer 50a has a stepped profile.

在以上實施例中,在基底10的第一區100上的是半導體元件99的直線區域;在基底10的第二區200上的是半導體元件99的轉彎區域。然而,本發明並不以此為限,只要在第二區200上之半導體元件99的部分的源極區34的輪廓的曲率大於在第一區100上之半導體元件99的部分的源極區34的輪廓的曲率均是本發明涵蓋的範圍。In the above embodiment, on the first region 100 of the substrate 10 is a linear region of the semiconductor element 99; on the second region 200 of the substrate 10 is a turning region of the semiconductor element 99. However, the present invention is not limited thereto as long as the curvature of the outline of the source region 34 of the portion of the semiconductor element 99 on the second region 200 is greater than the source region of the portion of the semiconductor device 99 on the first region 100. The curvature of the outline of 34 is the scope covered by the present invention.

圖2A至2G是依據本發明實施例之一種半導體元件的製造方法的剖面示意圖。2A to 2G are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention.

請參照圖2A,提供基底10,基底10包括第一區100與第二區200。接著,於基底10上形成圖案化的罩幕層102。圖案化的罩幕層102的材料例如是光阻或是介電材料。之後,以圖案化的罩幕層102為植入罩幕,進行離子植入製程,以於基底10中形成具有第一導電型的井區12。井區12例如是N井。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1011 /cm2 至9´1013 /cm2 ,植入的能量例如是50 KeV至200 KeV。Referring to FIG. 2A, a substrate 10 is provided. The substrate 10 includes a first region 100 and a second region 200. Next, a patterned mask layer 102 is formed on the substrate 10. The material of the patterned mask layer 102 is, for example, a photoresist or a dielectric material. Thereafter, the patterned mask layer 102 is used as an implant mask to perform an ion implantation process to form a well region 12 having a first conductivity type in the substrate 10. The well zone 12 is, for example, the N well. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 , and the implanted energy is, for example, 50 KeV to 200 KeV. .

之後,請參照圖2B,移除圖案化的罩幕層102。之後,在基底10上形成圖案化的罩幕層104。圖案化的罩幕層104的材料例如是光阻或是介電材料。之後,以圖案化的罩幕層104為植入罩幕,進行離子植入製程,以於基底10中形成具有第二導電型的井區16以及18。井區16、18例如是P井。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1011 /cm2 至9´1013 /cm2 ,植入的能量例如是50 KeV至200 KeV。Thereafter, referring to FIG. 2B, the patterned mask layer 102 is removed. Thereafter, a patterned mask layer 104 is formed on the substrate 10. The material of the patterned mask layer 104 is, for example, a photoresist or a dielectric material. Thereafter, the patterned mask layer 104 is used as an implant mask to perform an ion implantation process to form well regions 16 and 18 having a second conductivity type in the substrate 10. The well areas 16, 18 are for example P wells. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 , and the implanted energy is, for example, 50 KeV to 200 KeV.

其後,請參照圖2C,移除圖案化的罩幕層104。然後,在基底10上形成圖案化的罩幕層106。圖案化的罩幕層106的材料例如是光阻或是介電材料。之後,以圖案化的罩幕層106為植入罩幕,進行離子植入製程,以於基底10中形成具有第二導電型的頂層20。頂層20例如是P型頂層。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1011 /cm2 至9´1013 /cm2 ,植入的能量例如是50 KeV至200 KeV。Thereafter, referring to FIG. 2C, the patterned mask layer 104 is removed. A patterned mask layer 106 is then formed on the substrate 10. The material of the patterned mask layer 106 is, for example, a photoresist or a dielectric material. Thereafter, the patterned mask layer 106 is used as an implant mask to perform an ion implantation process to form a top layer 20 having a second conductivity type in the substrate 10. The top layer 20 is, for example, a P-type top layer. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 , and the implanted energy is, for example, 50 KeV to 200 KeV.

接著,請繼續參照圖2C,以圖案化的罩幕層106為植入罩幕,進行離子植入製程,以於基底10中形成具有第一導電型的梯層22。梯層22例如是N型梯層。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1011 /cm2 至9´1013 /cm2 ,植入的能量例如是50 KeV至200 KeV。Next, referring to FIG. 2C, the patterned mask layer 106 is used as an implant mask to perform an ion implantation process to form a step layer 22 having a first conductivity type in the substrate 10. The step layer 22 is, for example, an N-type ladder layer. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 11 /cm 2 to 9 ́10 13 /cm 2 , and the implanted energy is, for example, 50 KeV to 200 KeV. .

其後,請參照圖2D,移除圖案化的罩幕層106。然後,形成隔離結構24a、24b、24c、24d,以定義出主動區。隔離結構24a、24b、24c、24d的材料例如是未摻雜的氧化矽,其形成的方法可以利用場氧化隔離法或淺溝渠隔離法。隔離結構24a、24b、24c、24d的厚度例如是100 nm至800 nm。Thereafter, referring to FIG. 2D, the patterned mask layer 106 is removed. Isolation structures 24a, 24b, 24c, 24d are then formed to define the active regions. The material of the isolation structures 24a, 24b, 24c, 24d is, for example, undoped cerium oxide, which can be formed by field oxidation isolation or shallow trench isolation. The thickness of the isolation structures 24a, 24b, 24c, 24d is, for example, 100 nm to 800 nm.

其後,請參照圖2E,在鄰近隔離結構24c的基底10上形成閘極結構30。在一實施例中,閘極結構30還延伸覆蓋部分隔離結構24c。閘極結構30包括閘介電層26以及閘極導體層28。閘介電層26的材料可以例如是低介電常數材料或是高介電常數材料。低介電常數材料是指介電常數低於4的介電材料,例如是氧化矽或氮氧化矽。高介電常數材料是指介電常數高於4的介電材料,例如是HfAlO、HfO2 、Al2 O3 或Si3 N4 。形成方法例如是熱氧化法或是化學氣相沉積法。閘極導體層28包括多晶矽、金屬、金屬矽化物或其組合,形成的方法例如是化學氣相沈積法。Thereafter, referring to FIG. 2E, a gate structure 30 is formed on the substrate 10 adjacent to the isolation structure 24c. In an embodiment, the gate structure 30 also extends to cover a portion of the isolation structure 24c. The gate structure 30 includes a gate dielectric layer 26 and a gate conductor layer 28. The material of the gate dielectric layer 26 can be, for example, a low dielectric constant material or a high dielectric constant material. A low dielectric constant material refers to a dielectric material having a dielectric constant of less than 4, such as cerium oxide or cerium oxynitride. The high dielectric constant material refers to a dielectric material having a dielectric constant higher than 4, such as HfAlO, HfO 2 , Al 2 O 3 or Si 3 N 4 . The formation method is, for example, a thermal oxidation method or a chemical vapor deposition method. The gate conductor layer 28 includes polysilicon, a metal, a metal halide, or a combination thereof, and is formed by, for example, a chemical vapor deposition method.

之後,在閘極結構30的側壁形成間隙壁32。間隙壁32的材料例如是氧化矽、氮化矽或其組合。形成的方法可以先形成間隙壁材料層,之後,再進行非等向性蝕刻。Thereafter, a spacer 32 is formed on the sidewall of the gate structure 30. The material of the spacer 32 is, for example, ruthenium oxide, tantalum nitride or a combination thereof. The method of forming may first form a layer of spacer material, and then perform an anisotropic etching.

其後,在閘極結構30一側的井區18中形成具有第一導電型的源極區34,並在閘極結構30(或隔離結構24c)另一側的井區12中形成具有第一導電型的汲極區36。源極區34與汲極區36的形成方法可以形成圖案化的罩幕層(未繪示),再進行離子植入製程來形成。源極區34與汲極區36例如是N型重摻雜區。離子植入製程所植入的摻雜例如是磷或是砷,摻雜的劑量例如是1´1014 /cm2 至9´1016 /cm2 ,植入的能量例如是50 KeV至200 KeV。Thereafter, a source region 34 having a first conductivity type is formed in the well region 18 on the side of the gate structure 30, and is formed in the well region 12 on the other side of the gate structure 30 (or the isolation structure 24c). A conductive type drain region 36. The method of forming the source region 34 and the drain region 36 may form a patterned mask layer (not shown) and then be formed by an ion implantation process. The source region 34 and the drain region 36 are, for example, N-type heavily doped regions. The doping implanted by the ion implantation process is, for example, phosphorus or arsenic, and the doping dose is, for example, 1 ́10 14 /cm 2 to 9 ́10 16 /cm 2 , and the implanted energy is, for example, 50 KeV to 200 KeV. .

其後,請參照圖2F,在井區18中形成具有第二導電型的摻雜區38,並在井區16中形成具有第二導電型的摻雜區40。摻雜區38、40的形成方法可以形成圖案化的罩幕層(未繪示),再進行離子植入製程來形成。摻雜區38、40例如是P型摻雜區。離子植入製程所植入的摻雜例如是硼,摻雜的劑量例如是1´1014 /cm2 至9´1016 /cm2 ,植入的能量例如是50K eV至200 KeV。Thereafter, referring to FIG. 2F, a doped region 38 having a second conductivity type is formed in the well region 18, and a doped region 40 having a second conductivity type is formed in the well region 16. The method of forming the doped regions 38, 40 can be formed by forming a patterned mask layer (not shown) and then performing an ion implantation process. The doped regions 38, 40 are, for example, P-type doped regions. The doping implanted by the ion implantation process is, for example, boron, and the doping dose is, for example, 1 ́10 14 /cm 2 to 9 ́10 16 /cm 2 , and the implanted energy is, for example, 50 keV to 200 keV.

繼之,請參照圖2G,在基底10上形成金屬內連線60。在本實施例中,金屬內連線60包括介電層42、接觸窗44a~44e、導體層(或稱第一金屬層)46a~46d、介電層48、介層窗52a~52b以及導體層(或稱頂金屬層)50a~50b,但不以此為限。在一實施例中,金屬內連線60的形成方法包括以下步驟。可先於基底10上形成介電層42。接著,在介電層42中形成接觸窗44a~44e。之後,在介電層42上形成導體層46a~46d。其後,在基底10上形成介電層48,並於介電層48中形成介層窗52a~52b。之後,在介電層48上形成導體層(或稱頂金屬層)50a~50b。介電層42與介電層48的材料例如是氧化矽、氮化矽、氮氧化矽或介電常數低於4的低介電常數材料,形成的方法例如是化學氣相沉積法或旋塗法。接觸窗44a~44e與介層窗52a~52b的材料例如是鋁、鎢或其合金,形成的方法例如是化學氣相沉積法或是物理氣相沉積法。接觸窗44a~44e的形成方法例如是先在介電層42中形成接觸窗開口,再沉積導體材料層於接觸窗開口中,然後進行回蝕刻或化學機械研磨製程,以移除介電層42上之接觸窗開口外的部分導體材料層。介層窗52a~52b的形成方法與接觸窗44a~44e的形成方法相似,於此不再贅述。導體層46a~46d與導體層50a~50b的形成的方法例如是分別形成導體材料層,然後再以微影與蝕刻製程圖案化。導體材料層可以是金屬或金屬合金,例如是鋁、鎢或其合金。導體材料層的形成方法例如是化學氣相沉積法或是物理氣相沉積法。金屬內連線60的形成方法不限於此。在另一實施例中,金屬內連線60也可以利用金屬鑲嵌的方式來形成。Next, referring to FIG. 2G, a metal interconnect 60 is formed on the substrate 10. In the present embodiment, the metal interconnect 60 includes a dielectric layer 42, contact windows 44a-44e, conductor layers (or first metal layers) 46a-46d, dielectric layer 48, vias 52a-52b, and conductors. Layer (or top metal layer) 50a~50b, but not limited to this. In an embodiment, the method of forming the metal interconnect 60 includes the following steps. The dielectric layer 42 can be formed prior to the substrate 10. Next, contact windows 44a to 44e are formed in the dielectric layer 42. Thereafter, conductor layers 46a to 46d are formed on the dielectric layer 42. Thereafter, a dielectric layer 48 is formed on the substrate 10, and vias 52a-52b are formed in the dielectric layer 48. Thereafter, conductor layers (or top metal layers) 50a to 50b are formed on the dielectric layer 48. The material of the dielectric layer 42 and the dielectric layer 48 is, for example, hafnium oxide, tantalum nitride, hafnium oxynitride or a low dielectric constant material having a dielectric constant of less than 4. The method of forming is, for example, chemical vapor deposition or spin coating. law. The materials of the contact windows 44a to 44e and the vias 52a to 52b are, for example, aluminum, tungsten or an alloy thereof, and are formed by, for example, chemical vapor deposition or physical vapor deposition. The contact windows 44a-44e are formed by, for example, forming a contact opening in the dielectric layer 42, depositing a layer of conductive material in the contact opening, and then performing an etch back or chemical mechanical polishing process to remove the dielectric layer 42. A portion of the conductor material layer outside the opening of the contact window. The forming method of the vias 52a to 52b is similar to the method of forming the contact windows 44a to 44e, and will not be described herein. The method of forming the conductor layers 46a to 46d and the conductor layers 50a to 50b is, for example, forming a conductor material layer separately, and then patterning by a lithography and etching process. The layer of conductor material may be a metal or a metal alloy such as aluminum, tungsten or alloys thereof. The method of forming the conductor material layer is, for example, a chemical vapor deposition method or a physical vapor deposition method. The method of forming the metal interconnect 60 is not limited thereto. In another embodiment, the metal interconnect 60 can also be formed by damascene.

在形成金屬內連線60之後,可以更包括在基底10上形成保護層(未繪示),以覆蓋導體層50a~50b以及介電層48。保護層可以是單層或是雙層結構。保護層的材料可以是無機材料、有機材料或其組合。無機材料例如是氧化矽、氮化矽或其組合。有機材料例如是聚醯亞胺(PI)。After the metal interconnect 60 is formed, a protective layer (not shown) may be further formed on the substrate 10 to cover the conductive layers 50a-50b and the dielectric layer 48. The protective layer can be a single layer or a two layer structure. The material of the protective layer may be an inorganic material, an organic material, or a combination thereof. The inorganic material is, for example, cerium oxide, cerium nitride or a combination thereof. The organic material is, for example, polyimine (PI).

圖3與圖4分別繪示三種半導體元件在進行靜電放電保護元件2kV之測試的漏電流曲線以及崩潰電壓曲線,所述半導體元件於各自轉彎區(如圖2G之第二區200)處之覆蓋隔離結構24c之導體層50a的部分的寬度W2不同。所述半導體元件的所述寬度W2可分別為a、b、c(其中a<b<c)。3 and FIG. 4 respectively show leakage current curves and breakdown voltage curves of three kinds of semiconductor elements tested in the electrostatic discharge protection element 2kV, and the semiconductor elements are covered at respective turning regions (eg, the second region 200 of FIG. 2G). The width W2 of the portion of the conductor layer 50a of the isolation structure 24c is different. The width W2 of the semiconductor element may be a, b, c (where a < b < c).

經實驗結果顯示:當源極端處之覆蓋隔離結構之導體層的部分的寬度愈大則漏電流愈小,崩潰電壓愈大。換言之,只要經過適當的調整源極端處之覆蓋隔離結構之導體層的部分的寬度,本發明之700V之半導體元件可以通過靜電放電保護元件2kV之測試。在實際應用上,本發明之結構可以應用於操作電壓為300V至1000之超高壓半導體元件。The experimental results show that the smaller the width of the portion of the conductor layer covering the isolation structure at the source end, the smaller the leakage current and the larger the breakdown voltage. In other words, the 700V semiconductor component of the present invention can be tested by the electrostatic discharge protection component 2kV as long as the width of the portion of the conductor layer covering the isolation structure at the source end is appropriately adjusted. In practical applications, the structure of the present invention can be applied to an ultrahigh voltage semiconductor element having an operating voltage of 300V to 1000.

綜合以上所述,在本發明中,依據半導體元件中的不同區域,將覆蓋隔離結構之導體層的部分的寬度調整為不同寬度。舉例來說,將源極區之曲率較大或轉角處的導體層(如最上層金屬層)的寬度加大,使其大於源極區之曲率較小或直線處的導體層(如最上層金屬層)的寬度。換言之,增加源極區曲率較大或轉角處的導體層(如最上層金屬層)的面積可以有效均勻分散該處的高電場。以此方式,可提供高崩潰電場、低漏電流以及高靜電放電保護的能力的半導體元件。In summary, in the present invention, the width of the portion covering the conductor layer of the isolation structure is adjusted to a different width depending on different regions in the semiconductor element. For example, the width of the source region is larger or the width of the conductor layer (such as the uppermost metal layer) at the corner is increased to be larger than the conductor layer having a smaller curvature or straight line in the source region (eg, the uppermost layer). The width of the metal layer). In other words, increasing the area of the source region with a larger curvature or a conductor layer at the corner (such as the uppermost metal layer) can effectively uniformly disperse the high electric field there. In this way, a semiconductor element capable of providing a high breakdown electric field, low leakage current, and high electrostatic discharge protection can be provided.

再者,本發明之半導體元件的製造方法可以透過改變定義導體層(如最上層金屬層)之圖案的光罩,即可以使得增加曲率較大或轉角處的導體層(如最上層金屬層)的寬度(或面積),以有效均勻分散該處的高電場,降低崩潰電場,並降低漏電流,故可以提升靜電放電保護的能力。Furthermore, the method of fabricating the semiconductor device of the present invention can change the mask of the pattern defining the conductor layer (such as the uppermost metal layer), that is, the conductor layer (such as the uppermost metal layer) having a larger curvature or a corner can be added. The width (or area) can effectively disperse the high electric field there, reduce the electric field of collapse, and reduce the leakage current, so the ability of electrostatic discharge protection can be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧基底
12、14、16、18、32‧‧‧井區
20‧‧‧頂層
22‧‧‧梯層
24a~24d‧‧‧隔離結構
26‧‧‧閘介電層
28‧‧‧閘極導體層
30‧‧‧閘極結構
32‧‧‧間隙壁
34‧‧‧源極區
36‧‧‧汲極區
38、40‧‧‧摻雜區
42、48‧‧‧介電層
44a~44e‧‧‧接觸窗
46a~46d、50a~50b‧‧‧導體層
52a~52b‧‧‧介層窗
60‧‧‧金屬內連線
99‧‧‧半導體元件
100‧‧‧第一區
200‧‧‧第二區
104、106‧‧‧罩幕
W1、W2、W3、W4‧‧‧寬度
OP1、OP2‧‧‧端點
I-I、II-II‧‧‧切線
10‧‧‧Base
12, 14, 16, 18, 32‧‧‧ well areas
20‧‧‧ top
22‧‧‧Layer
24a~24d‧‧‧Isolation structure
26‧‧‧gate dielectric layer
28‧‧‧ gate conductor layer
30‧‧‧ gate structure
32‧‧‧ spacer
34‧‧‧ source area
36‧‧‧Bungee Area
38, 40‧‧‧Doped area
42, 48‧‧‧ dielectric layer
44a~44e‧‧‧Contact window
46a~46d, 50a~50b‧‧‧ conductor layer
52a~52b‧‧・Intermediate window
60‧‧‧Metal interconnection
99‧‧‧Semiconductor components
100‧‧‧First District
200‧‧‧Second District
104, 106‧‧‧ mask
W1, W2, W3, W4‧‧‧ width
OP1, OP2‧‧‧ endpoint
II, II-II‧‧‧ Tangent

圖1是依據本發明實施例之一種半導體元件的上視圖。 圖2A至2G是依據本發明實施例之一種半導體元件的製造方法的剖面示意圖,其中圖2G為圖1之切線I-I以及II-II的剖面圖。 圖3是三種半導體元件在進行靜電放電保護元件2kV之測試的漏電流曲線,所述半導體元件於各自源極端處之覆蓋隔離結構之導體層的部分的寬度不同。 圖4是三種半導體元件在進行靜電放電保護元件2kV之測試的崩潰電壓曲線,所述半導體元件於各自源極端處之覆蓋隔離結構之導體層的部分的寬度不同。1 is a top plan view of a semiconductor device in accordance with an embodiment of the present invention. 2A to 2G are schematic cross-sectional views showing a method of fabricating a semiconductor device in accordance with an embodiment of the present invention, wherein Fig. 2G is a cross-sectional view taken along line I-I and II-II of Fig. 1. Fig. 3 is a graph showing leakage currents of three kinds of semiconductor elements tested in the electrostatic discharge protection element 2kV, which have different widths at portions of the conductor layers covering the isolation structures at respective source terminals. 4 is a breakdown voltage curve of three kinds of semiconductor elements tested in the electrostatic discharge protection element 2kV, which have different widths at portions of the conductor layers covering the isolation structures at respective source terminals.

24c‧‧‧隔離結構 24c‧‧‧Isolation structure

30‧‧‧閘極結構 30‧‧‧ gate structure

34‧‧‧源極區 34‧‧‧ source area

36‧‧‧汲極區 36‧‧‧Bungee Area

50a、50b‧‧‧導體層 50a, 50b‧‧‧ conductor layer

60‧‧‧金屬內連線 60‧‧‧Metal interconnection

99‧‧‧半導體元件 99‧‧‧Semiconductor components

100‧‧‧第一區 100‧‧‧First District

200‧‧‧第二區 200‧‧‧Second District

W1、W2‧‧‧寬度 W1, W2‧‧‧ width

OP1、OP2‧‧‧端點 OP1, OP2‧‧‧ endpoint

I-I、II-II‧‧‧切線 I-I, II-II‧‧‧ tangent

Claims (8)

一種半導體元件,包括:一具有第一導電型之一源極區與具有該第一導電型之一汲極區,位於一基底中;一隔離結構,位於該源極區與該汲極區之間;一閘極結構,位於該源極區與該隔離結構之間的該基底上;一導體層,位於該基底上方,至少自該源極區上方延伸至該隔離結構上方,且電性連接該源極區,其中,該導體層為一最上層金屬層,該基底包括一第一區與一第二區,在該第二區之該源極區的輪廓的曲率大於在該第一區之該源極區的輪廓的曲率,且該第二區之覆蓋該隔離結構的該導體層的部分的寬度大於該第一區之覆蓋該隔離結構的該導體層的部分的寬度。 A semiconductor device comprising: a source region having a first conductivity type and a drain region having the first conductivity type in a substrate; and an isolation structure located in the source region and the drain region a gate structure on the substrate between the source region and the isolation structure; a conductor layer above the substrate, extending at least from above the source region to above the isolation structure, and electrically connected The source region, wherein the conductor layer is an uppermost metal layer, the substrate includes a first region and a second region, and a curvature of a contour of the source region in the second region is greater than in the first region a curvature of a contour of the source region, and a width of a portion of the second region covering the conductor layer of the isolation structure is greater than a width of a portion of the first region covering the conductor layer of the isolation structure. 如申請專利範圍第1項所述之半導體元件,其中該半導體元件包括多數個直線區域以及多數個轉彎區域,該些直線區域之一者位於該第一區;該些轉彎區域之一者位於該第二區。 The semiconductor device of claim 1, wherein the semiconductor device comprises a plurality of linear regions and a plurality of turning regions, one of the linear regions being located in the first region; wherein one of the turning regions is located Second district. 如申請專利範圍第1項所述之半導體元件,更包括:具有一第二導電型的一頂層,位於該隔離結構下方的該基底中;以及具有該第一導電型的一梯層,位於該頂層與該隔離結構之間。 The semiconductor device of claim 1, further comprising: a top layer having a second conductivity type in the substrate under the isolation structure; and a ladder layer having the first conductivity type Between the top layer and the isolation structure. 如申請專利範圍第1項所述之半導體元件,更包括:具有一第二導電型的一第一井區,位於該基底中,其中該源 極區位於該第一井區中,且該閘極結構覆蓋部分該第一井區;具有該第二導電型的摻雜區,位於該第一井區中,與該源極區相鄰,且與該源極區共同連接該導體層;以及具有該第一導電型的一第二井區,位於該基底中,其中該第一井區以及該汲極區位於該第二井區中。 The semiconductor device of claim 1, further comprising: a first well region having a second conductivity type, located in the substrate, wherein the source a pole region is located in the first well region, and the gate structure covers a portion of the first well region; a doped region having the second conductivity type is located in the first well region adjacent to the source region And interconnecting the conductor layer with the source region; and a second well region having the first conductivity type is located in the substrate, wherein the first well region and the drain region are located in the second well region. 一種半導體元件的製造方法,包括:於一基底上形成一隔離結構;於該基底上形成一閘極結構;在該閘極結構與該隔離結構的兩側的該基底中形成具有一第一導電型之一源極區與具有該第一導電型之一汲極區,其中該源極區接近該閘極結構,該汲極區接近該隔離結構;於該基底上方形成一導體層,該導體層自該源極區上方延伸至該隔離結構上方,且電性連接該源極區,其中該導體層為一最上層金屬層,該基底包括一第一區與一第二區,在該第二區之該源極區的輪廓的曲率大於在該第一區之該源極區的輪廓的曲率,在該第二區之覆蓋該隔離結構的該導體層的部分的寬度大於該第一區之覆蓋該隔離結構的該導體層的部分。 A method of fabricating a semiconductor device, comprising: forming an isolation structure on a substrate; forming a gate structure on the substrate; forming a first conductive layer in the substrate on both sides of the gate structure and the isolation structure a source region and a drain region having the first conductivity type, wherein the source region is adjacent to the gate structure, the drain region is adjacent to the isolation structure; a conductor layer is formed over the substrate, the conductor The layer extends from above the source region to the upper portion of the isolation structure, and is electrically connected to the source region, wherein the conductor layer is an uppermost metal layer, and the substrate includes a first region and a second region. a curvature of a contour of the source region of the second region is greater than a curvature of a contour of the source region of the first region, and a width of a portion of the second region covering the conductor layer of the isolation structure is greater than the first region A portion of the conductor layer covering the isolation structure. 如申請專利範圍第5項所述之半導體元件的製造方法,其中該半導體元件包括多數個直線區域以及多數個轉彎區域,該些直線區域之一者位於該第一區;該些轉彎區域之一者位於該第二區。 The method of manufacturing a semiconductor device according to claim 5, wherein the semiconductor device comprises a plurality of linear regions and a plurality of turning regions, one of the linear regions being located in the first region; and one of the turning regions Located in the second zone. 如申請專利範圍第5項所述之半導體元件的製造方法,更包括:於該隔離結構下方的該基底中形成具有一第二導電型的一頂層;以及於該頂層與該隔離結構之間形成具有該第一導電型的一梯層。 The method for fabricating a semiconductor device according to claim 5, further comprising: forming a top layer having a second conductivity type in the substrate under the isolation structure; and forming a top layer and the isolation structure A step layer having the first conductivity type. 如申請專利範圍第5項所述之半導體元件的製造方法,更包括:於該基底中形成具有一第二導電型的一第一井區,其中該源極區位於該第一井區中,且該閘極結構覆蓋部分該第一井區;於該第一井區中形成具有該第二導電型的一摻雜區,該摻雜區與該源極區相鄰,且與該源極區共同連接該導體層;以及於該基底中形成具有該第一導電型的一第二井區,其中該第一井區以及該汲極區位於該第二井區中。 The method for manufacturing a semiconductor device according to claim 5, further comprising: forming a first well region having a second conductivity type in the substrate, wherein the source region is located in the first well region, And the gate structure covers a portion of the first well region; forming a doped region having the second conductivity type in the first well region, the doped region being adjacent to the source region, and the source region The region is commonly connected to the conductor layer; and a second well region having the first conductivity type is formed in the substrate, wherein the first well region and the drain region are located in the second well region.
TW103103046A 2014-01-28 2014-01-28 Semiconductor device and method of forming the same TWI548095B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103103046A TWI548095B (en) 2014-01-28 2014-01-28 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103103046A TWI548095B (en) 2014-01-28 2014-01-28 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
TW201530768A TW201530768A (en) 2015-08-01
TWI548095B true TWI548095B (en) 2016-09-01

Family

ID=54342842

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103046A TWI548095B (en) 2014-01-28 2014-01-28 Semiconductor device and method of forming the same

Country Status (1)

Country Link
TW (1) TWI548095B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816323A (en) * 2006-09-29 2008-04-01 Leadtrend Tech Corp High-voltage semiconductor device structure
US7960786B2 (en) * 2008-07-09 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Breakdown voltages of ultra-high voltage devices by forming tunnels
CN102867853A (en) * 2011-07-08 2013-01-09 新唐科技股份有限公司 Metal Oxide Half Field Effect Transistor
US8592901B1 (en) * 2012-08-31 2013-11-26 Nuvoton Technology Corporation Metal oxide semiconductor field transistor and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200816323A (en) * 2006-09-29 2008-04-01 Leadtrend Tech Corp High-voltage semiconductor device structure
US7960786B2 (en) * 2008-07-09 2011-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Breakdown voltages of ultra-high voltage devices by forming tunnels
CN102867853A (en) * 2011-07-08 2013-01-09 新唐科技股份有限公司 Metal Oxide Half Field Effect Transistor
US8592901B1 (en) * 2012-08-31 2013-11-26 Nuvoton Technology Corporation Metal oxide semiconductor field transistor and method of fabricating the same

Also Published As

Publication number Publication date
TW201530768A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
US8466513B2 (en) Semiconductor device with enhanced mobility and method
CN203325907U (en) Insulated gate semiconductor device structure
US9842903B2 (en) Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same
KR100974697B1 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method of lateral double diffused metal oxide semiconductor device
CN101728392B (en) High voltage device having reduced on-state resistance
US11721758B2 (en) Semiconductor structure and associated fabricating method
US11004971B2 (en) LDMOS transistor with gate structure having alternating regions of wider and narrower spacing to a body region
US9660020B2 (en) Integrated circuits with laterally diffused metal oxide semiconductor structures and methods for fabricating the same
TW201539750A (en) Semiconductor device
CN107180869B (en) Semiconductor device and method of forming the same
KR20100079573A (en) Semiconductor device and method for manufacturing the same
US9484437B2 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
CN108258046B (en) Semiconductor device with a plurality of semiconductor chips
CN114883412A (en) Silicon carbide MOSFET device and manufacturing method thereof
CN104810383B (en) Semiconductor element and its manufacture method
US9099556B2 (en) Transistor having an active region with wing structure
TWI548095B (en) Semiconductor device and method of forming the same
US9070766B1 (en) Semiconductor device and method of forming the same
TWI429073B (en) Semiconductor structure and method for forming the same
JP2017098371A (en) Semiconductor device and manufacturing method of the same
TWI612664B (en) Semiconductor device
US6777295B1 (en) Method of fabricating trench power MOSFET
TWI738198B (en) Semiconductor device and method of manufacturing the same
US11545396B2 (en) Semiconductor structure and method for forming the same
KR102251761B1 (en) Power semiconductor device