TWI546605B - Mobile flash positioning system and method thereof - Google Patents

Mobile flash positioning system and method thereof Download PDF

Info

Publication number
TWI546605B
TWI546605B TW103114425A TW103114425A TWI546605B TW I546605 B TWI546605 B TW I546605B TW 103114425 A TW103114425 A TW 103114425A TW 103114425 A TW103114425 A TW 103114425A TW I546605 B TWI546605 B TW I546605B
Authority
TW
Taiwan
Prior art keywords
flash
positioner
parameter
array antenna
electromagnetic wave
Prior art date
Application number
TW103114425A
Other languages
Chinese (zh)
Other versions
TW201541175A (en
Inventor
Jian-Fu Huang
Original Assignee
Jian-Fu Huang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jian-Fu Huang filed Critical Jian-Fu Huang
Priority to TW103114425A priority Critical patent/TWI546605B/en
Publication of TW201541175A publication Critical patent/TW201541175A/en
Application granted granted Critical
Publication of TWI546605B publication Critical patent/TWI546605B/en

Links

Description

移動式閃燈定位系統及其方法 Mobile flashing light positioning system and method thereof

本發明係有關於一種移動式閃燈定位系統及其方法,尤指一種藉由相機參數及閃燈出力指數以控制多軸飛行器與被攝體間維持較佳閃燈距離的移動式閃燈定位系統及其方法。 The invention relates to a mobile flash lamp positioning system and a method thereof, in particular to a mobile flash lamp positioning for controlling a better flash distance between a multi-axis aircraft and a subject by using camera parameters and a flash output index. System and its methods.

一般攝影者在拍攝照片時,除了需注意光圈大小、快門速度和光感係數以外,尚需觀察整體環境中的光線分布。舉例而言,於高光環境中,影像容易產生對比度過高的問題,而於低光環境中,由於光線不足,為使得照片正確的曝光並減少雜訊,這時就必須藉由閃光燈來補光或打光。 In general, photographers need to pay attention to the distribution of light in the overall environment, in addition to the aperture size, shutter speed and light sensitivity coefficient. For example, in a high-light environment, images tend to produce high contrast, and in low-light environments, due to insufficient light, in order to properly expose the photo and reduce noise, it is necessary to fill the light with a flash or Light up.

拍攝用的閃光燈可分為內置閃光燈(Internal Flash)、外置閃光燈(External Flash)和離機閃光燈(Off Camera Flash)三種,內置閃光燈係指相機裡內建不可拆卸的閃光燈,外置閃光燈係指外接於相機上方熱靴的閃光燈,外接閃光燈的優點在於可依照攝影需求選擇不同的閃光燈,離機閃光燈係泛指未固定於相機上的閃光燈,常用的離機閃主要可分為有線及無線兩種,其優點在於閃光燈調配的自由度高,可依使用者需求擺放於不同 的位置並調整合適的打光方向及角度。 The flash for shooting can be divided into internal flash (External Flash), external flash (External Flash) and off-camera flash (Off Camera Flash). The built-in flash refers to the built-in non-removable flash in the camera, and the external flash refers to the flash. The flash connected to the hot shoe above the camera, the advantage of the external flash is that you can choose different flash according to the needs of photography. Off-camera flash refers to the flash that is not fixed on the camera. The commonly used off-camera can be divided into wired and wireless. The advantage is that the degree of freedom of flash deployment is high, and can be placed differently according to user needs. Position and adjust the appropriate lighting direction and angle.

在使用閃光燈拍攝的情況下,閃光燈與被攝體間的距離,是決定正確曝光的重要條件。一般使用離機閃時通常是先根據相機參數,計算出閃光燈與被攝體間的較佳閃燈距離,再由攝影者去移動閃光燈至適當位置,並調整為合適的角度。但如果各項拍攝參數於拍攝過程中重新調整,則就必須重新利用公式計算對應的閃燈距離,並再藉由攝影者去重新調整閃光燈之位置,於拍攝現場瞬息萬變的環境中,重新計算距離及調整位置將會大幅增加攝影者拍攝時的困難度。 In the case of shooting with the flash, the distance between the flash and the subject is an important condition for determining the correct exposure. Generally, when using the off-camera flash, the preferred flash distance between the flash and the subject is calculated according to the camera parameters, and then the photographer moves the flash to the appropriate position and adjusts to an appropriate angle. However, if the various shooting parameters are re-adjusted during the shooting, the formula must be used to calculate the corresponding flash distance, and then the photographer can re-adjust the position of the flash to recalculate the distance in the rapidly changing environment of the shooting scene. And adjusting the position will greatly increase the difficulty for the photographer to shoot.

有鑑於此,本發明的目的在於透過多軸飛行器控制閃光燈與被攝體間的相對位置,讓閃光燈可以依照拍攝參數自動地計算出較佳的閃燈距離,並藉由該較佳閃燈距離適當地調整閃光燈與被攝體間的間距。 In view of this, the object of the present invention is to control the relative position between the flash and the object through the multi-axis aircraft, so that the flash can automatically calculate a better flash distance according to the shooting parameters, and by the preferred flash distance. Adjust the spacing between the flash and the subject appropriately.

為達到上述目的,本發明係提供一種移動式閃燈定位系統包含有一第一定位器、一搭載閃光燈的多軸飛行器、一相機參數擷取器、以及一運算器。該第一定位器係設置於被攝體上,並測得該被攝體的第一位置資訊。該搭載閃光燈的多軸飛行器其上設置有一連結至該閃光燈並取得該閃光燈的閃光燈出力參數的閃燈參數擷取器,以及一測得該閃光燈的第二位置資訊的第二定位器。該相機參數擷取器係裝設於攝像裝置上,藉以擷取該攝像 裝置內的拍攝參數。該運算器定義該第一位置資訊為原點,並透過該閃光燈的該閃光燈出力參數、該攝像資訊計算出一具有較佳閃燈距離的閃燈距離參數,透過該閃燈距離參數控制該多軸飛行器相對該原點間維持於該較佳閃燈距離。 In order to achieve the above object, the present invention provides a mobile flash lamp positioning system including a first positioner, a multi-axis aircraft equipped with a flash, a camera parameter extractor, and an arithmetic unit. The first positioner is disposed on the object and measures the first position information of the object. The flash-equipped multi-axis aircraft is provided with a flash parameter picker coupled to the flash and obtaining a flash output parameter of the flash, and a second positioner that measures the second position information of the flash. The camera parameter extractor is mounted on the camera device to capture the camera Shooting parameters within the device. The operator defines the first position information as an origin, and calculates a flash distance parameter having a better flash distance through the flash output parameter of the flash and the camera information, and controls the plurality of flash distance parameters through the flash distance parameter The axle aircraft is maintained at the preferred flash distance relative to the origin.

進一步地,該相機參數擷取器上係設置有一測得該攝像裝置的第三位置資訊的第三定位器。 Further, the camera parameter extractor is provided with a third locator for measuring the third position information of the camera device.

進一步地,該運算器係取得該第一定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第一定位器的第一位置座標,並取得該第一定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第一定位器的第二位置座標。 Further, the operator obtains a distance parameter between the first locator and the second locator, and a signal azimuth parameter, and establishes a first position coordinate of the second locator relative to the first locator, and obtains The distance parameter between the first positioner and the third positioner and the signal azimuth parameter establish a second position coordinate of the third positioner relative to the first positioner.

進一步地,該運算器係取得該第二定位器及該第一定位器間的距離參數、以及訊號方位角參數,建立該第一定位器相對該第二定位器的第三位置座標,並取得該第二定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第二定位器的第四位置座標。 Further, the operator obtains a distance parameter between the second locator and the first locator, and a signal azimuth parameter, and establishes a third position coordinate of the first locator relative to the second locator, and obtains The distance parameter between the second positioner and the third positioner and the signal azimuth parameter establish a fourth position coordinate of the third positioner relative to the second positioner.

進一步地,該運算器係取得該第三定位器及該第一定位器間的距離參數、以及訊號方位角參數,建立該第一定位器相對該第三定位器的第五位置座標,並取得該第三定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第三定位器的第六位置座標。 Further, the operator obtains a distance parameter between the third locator and the first locator, and a signal azimuth parameter, and establishes a fifth position coordinate of the first locator relative to the third locator, and obtains The distance parameter between the third locator and the second locator and the signal azimuth parameter establish a sixth position coordinate of the second locator relative to the third locator.

進一步地,該運算單元係透過以下公式取得該閃燈 距離參數:Dt=GN×((ISO/100))÷F Further, the arithmetic unit obtains the flash distance parameter by using the following formula: Dt=GN×( (ISO/100))÷F

其中,Dt係為該閃燈距離參數,GN係為感光度係數(ISO值)為100時的該閃光燈出力參數,ISO係為該攝像裝置的感光度係數,F係為該攝像裝置的光圈值。 Wherein, Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, ISO is the sensitivity coefficient of the imaging device, and F is the aperture value of the imaging device. .

進一步地,該搭載閃光燈的多軸飛行器包含有一飛行器主體,至少三設置於該飛行器主體上並藉由電動機帶動的旋翼軸,以及一設置於該飛行器主體上供該閃光燈設置的設置部。 Further, the flash-equipped multi-axis aircraft includes an aircraft body, at least three rotor shafts disposed on the aircraft body and driven by an electric motor, and a setting portion disposed on the aircraft body for the flash.

進一步地,包含有一設置於該攝像裝置上的離機閃觸發器,該搭載閃光燈的多軸飛行器係包含有一設置於該設置部上的離機閃接收器,以及一設置於該離機閃接收器上並電性連結於該閃光燈一側連接埠的熱靴,該攝像裝置係透過該離機閃觸發器傳送一閃燈觸發指令至該閃光燈。 Further, the device includes an off-camera flash trigger disposed on the camera, the flash-equipped multi-axis aircraft includes an off-camera flash receiver disposed on the set portion, and a off-camera flash receiver disposed on the off-camera The device is electrically connected to the hot shoe connected to the side of the flash, and the camera transmits a flash trigger command to the flash through the off-camera trigger.

進一步地,該搭載閃光燈的多軸飛行器包含有處理單元,分別設置於該閃光燈垂直方向兩側並連結於該處理單元的一上側垂直陣列天線以及一下側垂直陣列天線,以及分別設置於該閃光燈水平方向兩側並連結於該處理單元的一左側水平陣列天線以及一右側水平陣列天線。 Further, the flash-equipped multi-axis aircraft includes processing units respectively disposed on both sides of the vertical direction of the flash and coupled to an upper vertical array antenna and a lower vertical array antenna of the processing unit, and respectively disposed at the flash level A left horizontal array antenna and a right horizontal array antenna are connected to both sides of the processing unit.

進一步地,該設置部包含有一供離機閃接收器或該閃光燈設置的熱靴,一設置於該飛行器主體上藉由馬達帶動該熱靴沿第一平面旋轉的第一旋轉裝置,以及一設置於該飛行器主體藉由馬達帶動該熱靴沿第二平面旋轉的第二旋轉裝置。 Further, the setting portion includes a hot shoe provided for the off-camera flash receiver or the flash, a first rotating device disposed on the aircraft body to drive the hot shoe to rotate along the first plane by the motor, and a setting And a second rotating device that drives the hot shoe to rotate along a second plane by the motor body.

進一步地,該馬達係連接於該處理單元,該處理單元係透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一電磁波相位差(phase difference),並依照該第一電磁波相位差藉由該馬達控制該第一旋轉裝置沿該第一平面旋轉,該處理單元係透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二電磁波相位差(phase difference),並依照該第二電磁波相位差藉由該馬達控制該第二旋轉裝置沿該第二平面旋轉。 Further, the motor is connected to the processing unit, and the processing unit receives the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and is received by the first positioner via the right horizontal array antenna. The electromagnetic wave signal is calculated to obtain a phase difference of the first electromagnetic wave, and the first rotating device is controlled to rotate along the first plane according to the phase difference of the first electromagnetic wave, and the processing unit is transmitted through the upper vertical array antenna The electromagnetic wave signal received by the first positioner and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna calculate a phase difference of the second electromagnetic wave (phase And rotating the second rotating device along the second plane by the motor according to the second electromagnetic wave phase difference.

進一步地,該馬達係連接於該處理單元,該處理單元係透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一代碼偏移級距,並依照該第一代碼偏移級距藉由該馬達控制該第一旋轉裝置沿該第一平面旋轉,該處理單元係透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二代碼偏移級距,並依照該第二代碼偏移級距藉由該馬達控制該第二旋轉裝置沿該第二平面旋轉。 Further, the motor is connected to the processing unit, and the processing unit receives the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and is received by the first positioner via the right horizontal array antenna. The electromagnetic wave signal calculates a first code offset step, and controls the first rotating device to rotate along the first plane according to the first code offset step, and the processing unit transmits the upper vertical array antenna Calculating a second code offset step by the electromagnetic wave signal received by the first positioner and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna, and offset according to the second code The step is controlled by the motor to rotate the second rotating device along the second plane.

進一步地,該飛行器主體上係設置有氣壓計、超聲波感測器、電子羅盤、GPS、重力感測器(G-sensor)及陀螺儀。 Further, the aircraft body is provided with a barometer, an ultrasonic sensor, an electronic compass, a GPS, a gravity sensor (G-sensor), and a gyroscope.

本發明之另一目的,在於提供一種移動式閃燈定位 方法,包含有以下步驟:藉由設置於被攝體上的第一定位器,測得該被攝體的第一位置資訊;藉由設置於搭載閃光燈的多軸飛行器上的第二定位器,測得該閃光燈的第二位置資訊;藉由裝設於攝像裝置上的相機參數擷取器,以擷取該攝像裝置內的拍攝參數;定義該第一位置資訊為原點,並透過該閃光燈的閃光燈出力參數、及該攝像資訊計算出一具有較佳閃燈距離的閃燈距離參數;以及透過該閃燈距離參數控制該飛行器主體於相對該原點間維持於該較佳閃燈距離上移動。 Another object of the present invention is to provide a mobile flash lamp positioning The method includes the steps of: measuring a first position information of the object by using a first positioner disposed on the object; and providing a second positioner on the multi-axis aircraft equipped with the flash, Detecting the second position information of the flash; capturing the shooting parameters in the camera device by using a camera parameter picker mounted on the camera; defining the first position information as an origin, and transmitting the flash through the flash a flash output parameter and the camera information to calculate a flash distance parameter having a better flash distance; and controlling the aircraft body to maintain the preferred flash distance relative to the origin by the flash distance parameter mobile.

進一步地,該相機參數擷取器上係設置有一測得該攝像裝置的第三位置資訊的第三定位器,該第一位置資訊、該第二位置資訊、及該第三位置資訊係由以下步驟取得:定義該被攝體的位置為該第一位置資訊;藉由該第一定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第一定位器的第一位置座標,並定義該第一位置座標為該第二位置資訊;藉由該第一定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第一定位器的第二位置座標,並定義該第二位置座標為該第三位置資訊。 Further, the camera parameter extractor is provided with a third locator for measuring the third position information of the camera device, and the first position information, the second position information, and the third position information are as follows Step obtaining: defining a position of the object as the first position information; establishing, by the distance parameter between the first positioner and the second positioner, and a signal azimuth parameter, the second positioner is opposite to the first positioner a first position coordinate of the positioner, and defining the first position coordinate as the second position information; establishing the first position by the distance parameter between the first positioner and the third positioner and the signal azimuth parameter a third position coordinate of the third positioner relative to the first positioner, and defining the second position coordinate as the third position information.

進一步地,該閃燈距離參數係透過以下公式取得:Dt=GN×((ISO/100))÷F其中,Dt係為該閃燈距離參數,GN係為感光度係數(ISO值)為100時的該閃光燈出力參數,ISO係為該攝像裝置的感光度係數,F係為該攝像裝置的光圈值。 Further, the flash distance parameter is obtained by the following formula: Dt=GN×( (ISO/100)) ÷ F where Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, ISO is the sensitivity coefficient of the camera, F It is the aperture value of the camera.

進一步地,該搭載閃光燈的多軸飛行器包含有一飛行器主體,至少三設置於該飛行器主體上並藉由電動機帶動的旋翼軸,以及一設置於該飛行器主體上供該閃光燈設置的設置部。 Further, the flash-equipped multi-axis aircraft includes an aircraft body, at least three rotor shafts disposed on the aircraft body and driven by an electric motor, and a setting portion disposed on the aircraft body for the flash.

進一步地,該閃光燈的燈座的水平方向兩側分別設置有左側水平陣列天線以及右側水平陣列天線,該閃光燈的燈座的垂直方向兩側分別設置有上側垂直陣列天線以及下側垂直陣列天線,該閃光燈係藉由以下方式調整擺頭方向:透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一電磁波相位差(phase difference),並依照該第一電磁波相位差控制該閃光燈沿該第一平面旋轉;以及透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二電磁波相位差(phase difference),並依照該第二電磁波相位差控制該閃光燈沿該第二平面旋轉。 Further, a horizontal array antenna on the left side and a horizontal array antenna on the right side are respectively disposed on two sides of the socket of the flash lamp, and an upper vertical array antenna and a lower vertical array antenna are respectively disposed on two sides of the flash socket. The flash unit adjusts the direction of the swing head by: the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and the electromagnetic wave signal received by the first positioner via the right horizontal array antenna Obtaining a first electromagnetic wave phase difference, and controlling the flash to rotate along the first plane according to the first electromagnetic wave phase difference; and transmitting electromagnetic wave signals and signals received by the first positioner through the upper vertical array antenna The lower vertical array antenna calculates a phase difference of the second electromagnetic wave by the electromagnetic wave signal received by the first positioner, and controls the flash to rotate along the second plane according to the phase difference of the second electromagnetic wave.

進一步地,該該閃光燈的燈座的水平方向兩側分別設置有左側水平陣列天線以及右側水平陣列天線,該閃光燈的燈座的垂直方向兩側分別設置有上側垂直陣列天線以及下側垂直陣列天線,該閃光燈係藉由以下方式調整擺頭方向:透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一代碼偏移級距,並依照該第一代碼偏移級距控制該閃光燈沿該 第一平面旋轉;以及透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二代碼偏移級距,並依照該第二代碼偏移級距控制該閃光燈沿該第二平面旋轉。 Further, a left horizontal array antenna and a right horizontal array antenna are respectively disposed on two sides of the lamp holder in the horizontal direction, and the upper vertical array antenna and the lower vertical array antenna are respectively disposed on two sides of the lamp holder in the vertical direction. The flash unit adjusts the direction of the swing head by the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and the electromagnetic wave signal received by the first positioner via the right horizontal array antenna. Calculating a first code offset step, and controlling the flash along the first code offset step Rotating the first plane; and calculating, by the upper vertical array antenna, the electromagnetic wave signal received by the first positioner and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna to obtain a second code deviation Shifting the pitch and controlling the flash to rotate along the second plane in accordance with the second code offset step.

是以,本發明之若干實施例相較於先前技術具有以下之有益技術功效: Therefore, several embodiments of the present invention have the following beneficial technical effects over the prior art:

1.本發明透過多軸飛行器控制閃光燈與被攝體間的相對位置,藉此可大幅地減少攝影者於拍攝時的困難度。 1. The present invention controls the relative position between the flash and the subject through the multi-axis aircraft, thereby greatly reducing the difficulty for the photographer in shooting.

2.本發明可藉由三點建立攝影者、被攝體、及閃光燈的相對位置關係,並藉由平板、或語音指令快速調整多軸飛行器的位置,藉以調整至較佳的拍攝距離及所需要的拍攝角度。 2. The present invention can establish the relative positional relationship between the photographer, the subject, and the flash by three points, and quickly adjust the position of the multi-axis aircraft by using a tablet or a voice command, thereby adjusting to a better shooting distance and location. The angle of shooting required.

3.本發明係藉由水平天線陣列、及垂直天線陣列自動化地控制閃光燈的擺頭方向,藉以定位至較佳的打光角度。 3. The present invention automatically controls the oscillating direction of the flash by means of a horizontal antenna array and a vertical antenna array, thereby positioning to a preferred lighting angle.

100‧‧‧移動式閃燈定位系統 100‧‧‧Mobile flashing light positioning system

20‧‧‧被攝體 20‧‧‧ Subjects

21‧‧‧第一定位器 21‧‧‧First positioner

30‧‧‧搭載閃光燈的多軸飛行器 30‧‧‧Multi-axis aircraft equipped with flash

31‧‧‧閃光燈 31‧‧‧flash

311‧‧‧第一旋轉裝置 311‧‧‧First rotating device

312‧‧‧第二旋轉裝置 312‧‧‧Second rotating device

313‧‧‧偵測器 313‧‧‧Detector

314‧‧‧熱靴 314‧‧‧ hot boots

3131‧‧‧左側水平陣列天線 3131‧‧‧left horizontal array antenna

3132‧‧‧右側水平陣列天線 3132‧‧‧Right horizontal array antenna

3133‧‧‧上側垂直陣列天線 3133‧‧‧Upper vertical array antenna

3134‧‧‧下側垂直陣列天線 3134‧‧‧Lower vertical array antenna

32‧‧‧離機閃接收器 32‧‧‧Off-camera flash receiver

33‧‧‧第二定位器 33‧‧‧Second positioner

34‧‧‧處理單元 34‧‧‧Processing unit

35‧‧‧飛行器主體 35‧‧‧Aircraft main body

36‧‧‧閃燈參數擷取器 36‧‧‧flash parameter picker

40‧‧‧攝像裝置 40‧‧‧ camera

41‧‧‧相機參數擷取器 41‧‧‧ Camera Parameter Reader

42‧‧‧第三定位器 42‧‧‧third positioner

43‧‧‧離機閃觸發器 43‧‧‧Off-machine flash trigger

50‧‧‧運算器 50‧‧‧Operator

51‧‧‧處理單元 51‧‧‧Processing unit

52‧‧‧儲存單元 52‧‧‧ storage unit

S101-S104‧‧‧步驟 S101-S104‧‧‧Steps

Dt‧‧‧較佳閃燈距離 Dt‧‧‧ preferred flash distance

θ1‧‧‧天頂角 θ 1 ‧‧‧ zenith angle

θ2‧‧‧方位角 azimuth θ 2 ‧‧‧

DH1‧‧‧距離 DH1‧‧‧Distance

DH2‧‧‧距離 DH2‧‧‧Distance

DH3‧‧‧距離 DH3‧‧‧Distance

DH4‧‧‧距離 DH4‧‧‧Distance

圖1,係為本發明移動式閃燈定位系統的方塊示意圖。 FIG. 1 is a block diagram of a mobile flash lamp positioning system of the present invention.

圖2,係為本發明移動式閃燈定位系統的使用狀態示意圖(一)。 FIG. 2 is a schematic view showing the use state of the mobile flash lamp positioning system of the present invention (1).

圖3,係為本發明移動式閃燈定位系統的使用狀態示意圖(二)。 FIG. 3 is a schematic view showing the use state of the mobile flash lamp positioning system of the present invention (2).

圖4,係為本發明搭載閃光燈的多軸飛行器的外觀示 意圖。 4 is an appearance view of a multi-axis aircraft equipped with a flash lamp according to the present invention. intention.

圖5,係為本發明移動式閃燈定位方法的流程示意圖。 FIG. 5 is a schematic flow chart of a method for positioning a mobile flash lamp according to the present invention.

圖6,係為本發明閃光燈的水平擺頭示意圖。 Figure 6 is a schematic view of the horizontal swing of the flash lamp of the present invention.

圖7,係為本發明閃光燈的垂直擺頭示意圖。 Figure 7 is a schematic view of the vertical oscillating head of the flash lamp of the present invention.

有關本發明之詳細說明及技術內容,現就配合圖式說明如下。再者,本發明中之圖式,為說明方便,其比例未必按實際比例繪製,而有誇大之情況,該等圖式及其比例非用以限制本發明之範圍。 The detailed description and technical contents of the present invention will now be described with reference to the drawings. In addition, the drawings are not intended to limit the scope of the present invention, and the proportions thereof are not intended to limit the scope of the present invention.

本發明係提供一種移動式閃燈定位系統,該系統主要係藉由多軸飛行器低噪、穩定的特性,精確的控制閃光燈適當的與被攝體間維持一較佳閃燈距離,藉此繞行被攝體以調整攝影者所欲打光的方向與角度。 The invention provides a mobile flash lamp positioning system, which mainly adopts the low noise and stable characteristics of the multi-axis aircraft, and precisely controls the flash to properly maintain a better flash distance from the object, thereby winding Line the subject to adjust the direction and angle of the photographer's desired light.

請參閱「圖1」,係本發明移動式閃燈定位系統的方塊示意圖,如圖所示:本發明的移動式閃燈定位系統100主要係包含有一第一定位器21、一搭載閃光燈的多軸飛行器30、一相機參數擷取器41、以及一訊號連結於上述裝置的運算器50。 Please refer to FIG. 1 , which is a block diagram of the mobile flashing light positioning system of the present invention. As shown in the figure, the mobile flashing light positioning system 100 of the present invention mainly includes a first positioning device 21 and a plurality of flashing lights. The axlecraft 30, a camera parameter extractor 41, and an operator 50 coupled to the apparatus.

所述的該第一定位器21係設置於被攝體20上,可為穿戴式電腦(Wearable Computer)或是具有訊號收發功能的數據 處理裝置,用以供被攝體20穿戴,藉以定位被攝體20的位置以測得被攝體20的第一位置資訊。更具體而言,該第一定位器21可為行動裝置、智慧型眼鏡、智慧型手錶或是其他類此之電子裝置。藉由該第一定位器21上的天線模組,透過所取得的信號將可測得距離參數,以及訊號方位角參數。該距離參數係藉由整個系統時間同步,用信號發射到接收的時間來估計距離取得或是藉由電波信號強度值(Received Signal Strength Indication,RSSI)取得。 The first locator 21 is disposed on the object 20, and can be a wearable computer or a data transmission and reception function. The processing device is configured to be worn by the subject 20, thereby locating the position of the subject 20 to measure the first position information of the subject 20. More specifically, the first locator 21 can be a mobile device, a smart eyeglass, a smart watch, or the like. Through the antenna module on the first locator 21, the distance parameter and the signal azimuth parameter can be measured by the obtained signal. The distance parameter is obtained by time synchronization of the entire system, using the time of signal transmission to the reception to estimate the distance acquisition or by the Received Signal Strength Indication (RSSI).

所述的多軸飛行器30係用於搭載離機閃光燈31,該多軸飛行器30係包含有一離機閃接收器32、一第二定位器33、一處理單元34、以及一閃燈參數擷取器36。該離機閃接收器32係包含有訊號接收模組、以及連接於該訊號接收模組的熱靴(Hot Shoe)(圖未示),透過該熱靴攝影者可依需求裝設不同的離機閃光燈31(有關於多軸飛行器30的其他細部結構,後面將有更詳細的說明)。該多軸飛行器30上相應於該閃光燈31的位置係設置有一第二定位器33,該第二定位器33係用於定位該閃光燈31的位置以測得該閃光燈31的第二位置資訊。所述的第二定位器33係為具有天線陣列模組的訊號收發裝置,藉由該天線模組,透過所取得的信號將可測得距離參數,以及訊號方位角參數。該處理單元34係可藉由熱靴314連結至該閃光燈31上的閃燈出力指數調整器並取得該閃光燈31的閃光燈出力參數,並藉由無線傳輸單元(圖未示)將該閃光燈出力參數回傳至該運算器50用以計算較佳的閃燈距離。 The multi-axis aircraft 30 is used for carrying an off-camera flash 31. The multi-axis aircraft 30 includes an off-camera flash receiver 32, a second positioner 33, a processing unit 34, and a flash parameter picker. 36. The off-camera flash receiver 32 includes a signal receiving module and a hot shoe (not shown) connected to the signal receiving module. The hot shoe can be installed by the photographer according to requirements. The machine flash 31 (with other details of the multi-axis aircraft 30, as will be explained in more detail later). A positioner corresponding to the flash 31 is disposed on the multi-axis aircraft 30, and the second positioner 33 is configured to position the flash 31 to measure the second position information of the flash 31. The second locator 33 is a signal transceiving device having an antenna array module. The antenna module can measure the distance parameter and the signal azimuth parameter through the obtained signal. The processing unit 34 is coupled to the flash output index adjuster on the flash 31 by the hot shoe 314 and obtains the flash output parameter of the flash 31, and the flash output parameter is set by a wireless transmission unit (not shown). It is passed back to the computing unit 50 for calculating the preferred flash distance.

所述的相機參數擷取器41係裝設於攝像裝置40上,藉以擷取該攝像裝置40內的拍攝參數。該攝像裝置40上設有一第三定位器42以及一離機閃觸發器43,該第三定位器42係用以定位該攝像裝置40的位置以測得該攝像裝置40的第三位置資訊。所述的第三定位器42係為具有天線模組的訊號收發裝置,藉由該天線陣列模組,透過所取得的信號將可測得距離參數,以及訊號方位角參數。 The camera parameter extractor 41 is mounted on the imaging device 40 to capture imaging parameters in the imaging device 40. The camera device 40 is provided with a third positioner 42 and an off-camera trigger 43 for positioning the position of the camera device 40 to measure the third position information of the camera device 40. The third positioner 42 is a signal transceiver device having an antenna module. The antenna array module can measure the distance parameter and the signal azimuth parameter through the obtained signal.

所述的運算器50係包含有處理單元51,以及連接於該處理單元51的儲存單元52。在本實施例中,該處理單元51以及該儲存單元52,係可共同構成為一單晶片,裝置於上述第一定位器21、相機參數擷取器41、或多軸飛行器30上,或可共同構成一電腦或處理器,例如是個人電腦、工作站、主機電腦、行動裝置、平板或其他型式之電腦或處理器,在此並不限制其種類。 The computing unit 50 includes a processing unit 51 and a storage unit 52 connected to the processing unit 51. In this embodiment, the processing unit 51 and the storage unit 52 may be configured together as a single chip, and may be disposed on the first positioner 21, the camera parameter extractor 41, or the multi-axis aircraft 30, or may be Together, they constitute a computer or processor, such as a personal computer, workstation, host computer, mobile device, tablet or other type of computer or processor, and are not limited in their scope.

在本實施例中,該處理單元51可耦接於儲存單元52。該處理單元51例如是中央處理器(Central Processing Unit;CPU),或是其他可程式化之一般用途或特殊用途的微處理器(Microprocessor)、數位訊號處理器(Digital Signal Processor;DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuits;ASIC)、可程式化邏輯裝置(Programmable Logic Device;PLD)或其他類似裝置或這些裝置的組合。於本實施例中,該處理單元51係用以載入該儲存單元52內的程式,藉以完成定位程序、並控制該多軸飛行器30移動至指定的位置。 In this embodiment, the processing unit 51 can be coupled to the storage unit 52. The processing unit 51 is, for example, a central processing unit (CPU), or other programmable general purpose or special purpose microprocessor (Microprocessor), digital signal processor (DSP), Programmable controllers, Application Specific Integrated Circuits (ASICs), Programmable Logic Devices (PLDs), or other similar devices or combinations of these devices. In the present embodiment, the processing unit 51 is configured to load a program in the storage unit 52 to complete the positioning procedure and control the multi-axis aircraft 30 to move to a designated position.

以下係針對本發明的實施方法進行詳細的說明,請參閱「圖2」及「圖3」,係為本發明移動式閃燈定位系統的使用狀態示意圖(一)及使用狀態示意圖(二),如圖所示: 所述的該第一定位器21係測得該被攝體20的第一位置資訊;所述的第二定位器33係測得該閃光燈31的第二位置資訊;所述的第三定位器42係測得該攝像裝置40的第三位置資訊。所述的運算器50於取得該第一位置資訊、第二位置資訊、及第三位置資訊後,該運算器50係先定義該第一位置資訊為原點P,其中該原點亦可定義為該第二位置資訊或是該第三位置資訊,在本發明中並不予以限制。於此同時,該運算器50係透過無線連結至該閃燈參數擷取器36取得該閃光燈31的該閃光燈出力參數,並取得該相機參數擷取器41的拍攝參數。藉由該閃光燈出力參數及該拍攝參數計算出具有較佳閃燈距離的閃燈距離參數。 The following is a detailed description of the implementation method of the present invention. Please refer to FIG. 2 and FIG. 3, which are schematic diagrams of the use state of the mobile flashlight positioning system of the present invention (1) and a schematic diagram of the use state (2). as the picture shows: The first positioner 21 measures the first position information of the object 20; the second positioner 33 measures the second position information of the flash 31; the third positioner The 42th position information of the imaging device 40 is measured. After the operator 50 obtains the first location information, the second location information, and the third location information, the computing device 50 first defines the first location information as an origin P, wherein the origin may also be defined. The second location information or the third location information is not limited in the present invention. At the same time, the computing device 50 obtains the flash output parameter of the flash 31 by wirelessly connecting to the flash parameter extractor 36, and acquires the imaging parameters of the camera parameter extractor 41. A flash distance parameter having a better flash distance is calculated by the flash output parameter and the shooting parameter.

所述的較佳閃燈距離係指藉由內建公式、或依使用者預先設定而得到的公式,依據閃光燈出力參數及相機參數所取得該閃燈對應於被攝體20間的較佳間距,使被攝體20得依攝影者的需求正確的曝光。 The preferred flashing distance refers to a formula obtained by a built-in formula or according to a preset by a user, and the preferred spacing between the flashes corresponding to the object 20 is obtained according to the flash output parameter and the camera parameter. The subject 20 is properly exposed to the needs of the photographer.

於本實施態樣中,所述的較佳閃燈距離可依正確曝光距離的公式計算取得,所述的公式如下: In this embodiment, the preferred flash distance can be calculated according to the formula of the correct exposure distance, and the formula is as follows:

其中Dt係為閃燈距離參數,GN係為感光度係數(ISO值)為100時的閃光燈出力參數,ISO係為攝像裝置40的感光度係 數,F係為攝像裝置的光圈值。 Among them, Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, and ISO is the sensitivity system of the imaging device 40. The number F is the aperture value of the imaging device.

以該第一定位器21為原點P(0,0,0),運算器50將限制該多軸飛行器30移動的範圍,使該多軸飛行器30上的閃光燈31與該被攝體20間的間距維持於較佳閃燈距離Dt,意即該目標座標(x,y,z)必須符合以下之公式: With the first positioner 21 as the origin P(0, 0, 0), the operator 50 will limit the range in which the multi-axis aircraft 30 moves, so that the flash 31 on the multi-axis aircraft 30 and the object 20 are The spacing is maintained at a preferred flash distance Dt, meaning that the target coordinate (x, y, z) must conform to the following formula:

此時該多軸飛行器30將透過該運算器50控制,以該第一定位器21的位置為中心點,相對該第一定位器21於間距為該較佳閃燈距離Dt的軌道上移動。當該多軸飛行器30遠離軌道,並與該較佳閃燈距離Dt的差值大於預設的閾值時,該運算器50將藉由該第一定位器21的位置做為參考點,重新計算目標座標,使該多軸飛行器30移動至該目標座標,藉此使該閃光燈31與該被攝體20維持於適當的間距。 At this time, the multi-axis aircraft 30 will be controlled by the arithmetic unit 50, with the position of the first positioner 21 as a center point, and moved relative to the first positioner 21 on a track whose pitch is the preferred flash distance Dt. When the multi-axis aircraft 30 is away from the track and the difference from the preferred flash distance Dt is greater than a preset threshold, the operator 50 will recalculate by using the position of the first positioner 21 as a reference point. The target coordinates move the multi-axis aircraft 30 to the target coordinates, thereby maintaining the flash 31 and the subject 20 at an appropriate distance.

其中,該第一位置資訊、該第二位置資訊、及該第三位置資訊係利用以下方式取得。首先,先設定該第一定位器21的位置為原點(該原點即為第一位置資訊)。接續,該運算器50係藉由測量該第一定位器21及該第二定位器33間的距離參數、以及訊號方位角參數,建立該第二定位器33相對該第一定位器21的第一位置座標(即第二位置資訊),測量該第一定位器21及該第三定位器42間的距離參數、以及訊號方位角參數,建立該第三定位器42的相對該第一定位器21的第二位置座標(即第三位置資訊),藉此可確定該被攝體20、該攝像裝置40、該閃光燈31間 的相對位置關係(如「圖3」所示)。 The first location information, the second location information, and the third location information are obtained in the following manner. First, the position of the first locator 21 is first set as the origin (the origin is the first position information). The operator 50 establishes the second positioner 33 relative to the first positioner 21 by measuring the distance parameter between the first positioner 21 and the second positioner 33 and the signal azimuth parameter. a position coordinate (ie, second position information), measuring a distance parameter between the first positioner 21 and the third positioner 42 and a signal azimuth parameter, establishing a relative position of the third positioner 42 relative to the first positioner a second position coordinate of 21 (ie, third position information), whereby the subject 20, the camera device 40, and the flash 31 can be determined Relative positional relationship (as shown in Figure 3).

另一實施態樣,該第一位置資訊、該第二位置資訊、及該第三位置資訊係利用以下方式取得。首先,先設定該第二定位器33的位置為原點。接續,該運算器50係藉由測量該第二定位器33及該第一定位器21間的距離參數、以及訊號方位角參數,建立該第一定位器21相對該第二定位器33的第三位置座標,測量該第二定位器33及該第三定位器42間的距離參數、以及訊號方位角參數,建立該第三定位器42的相對該第二定位器33的第四位置座標,藉此可確定該被攝體20、該攝像裝置40、該閃光燈31間的相對位置關係(如「圖3」所示)。 In another embodiment, the first location information, the second location information, and the third location information are obtained in the following manner. First, the position of the second positioner 33 is first set as the origin. The operator 50 establishes the first positioner 21 relative to the second positioner 33 by measuring the distance parameter between the second positioner 33 and the first positioner 21 and the signal azimuth parameter. a three-position coordinate, measuring a distance parameter between the second locator 33 and the third locator 42 and a signal azimuth parameter, establishing a fourth position coordinate of the third locator 42 relative to the second locator 33, Thereby, the relative positional relationship between the subject 20, the imaging device 40, and the flash 31 can be determined (as shown in FIG. 3).

另一實施態樣,該第一位置資訊、該第二位置資訊、及該第三位置資訊係利用以下方式取得。首先,先設定該第三定位器42的位置為原點。接續,該運算器50係藉由測量該第一定位器21及該第三定位器42間的距離參數、以及訊號方位角參數,建立該第一定位器21相對該第三定位器42的第五位置座標,測量該第二定位器33及該第三定位器42間的距離參數、以及訊號方位角參數,建立該第二定位器33的相對該第三定位器42的第六位置座標,藉此可確定該被攝體20、該攝像裝置40、該閃光燈31間的相對位置關係(如「圖3」所示)。 In another embodiment, the first location information, the second location information, and the third location information are obtained in the following manner. First, the position of the third positioner 42 is first set as the origin. The operator 50 establishes the first positioner 21 relative to the third positioner 42 by measuring the distance parameter between the first positioner 21 and the third positioner 42 and the signal azimuth parameter. a five-position coordinate, measuring a distance parameter between the second locator 33 and the third locator 42 and a signal azimuth parameter, establishing a sixth position coordinate of the second locator 33 relative to the third locator 42 Thereby, the relative positional relationship between the subject 20, the imaging device 40, and the flash 31 can be determined (as shown in FIG. 3).

以上所述的定位方案可採用無線射頻辨識(RFID)、藍芽(Bluetooth)、Zigbee等相關技術,於本發明中並不予以限制。 The positioning scheme described above may employ related technologies such as Radio Frequency Identification (RFID), Bluetooth, Zigbee, etc., and is not limited in the present invention.

請參閱「圖2」,於該被攝體20、該攝像裝置40、及 該閃光燈31間的相對位置確認時,該第一、第二、第三位置資訊係可透過該運算器50顯示於顯示螢幕上。該運算器50可將該第一位置資訊、該第三位置資訊間的連線設為第一參考向量,此時,運算器50可藉由該第一參考向量為基準,透過較佳閃燈距離Dt、以及二角度值(天頂角θ1、方位角θ2)建立精確的目標座標,使該多軸飛行器30移動至使用者所指定的位置。 Referring to FIG. 2, when the relative position between the subject 20, the imaging device 40, and the flash 31 is confirmed, the first, second, and third position information can be displayed on the operator 50. Displayed on the screen. The operator 50 can set the connection between the first location information and the third location information as the first reference vector. In this case, the operator 50 can use the first reference vector as a reference to transmit the preferred flash. The distance Dt, and the two angle values (zenith angle θ 1 , azimuth angle θ 2 ) establish precise target coordinates, causing the multi-axis aircraft 30 to move to a position designated by the user.

所述的目標座標係可藉由以下公式取得:(x=Dtsinθ1cosθ2,y=Dtsinθ1sinθ2,z=Dtcosθ1) The target coordinate can be obtained by the following formula: (x = Dtsin θ 1 cos θ 2 , y = Dtsin θ 1 sin θ 2 , z = Dtcos θ 1 )

其中Dt為較佳閃燈距離,θ1為天頂角,θ2為方位角。 Where Dt is the preferred flash distance, θ 1 is the zenith angle, and θ 2 is the azimuth angle.

舉例而言,以被攝體20、攝像裝置40間的連線為基準(忽略仰角的問題,以第一位置資訊與第三位置資訊間的連線為x軸),使用者得以觸控、聲控輸入天頂角θ1及方位角θ2,即可確定一精確的座標,控制該多軸飛行器30移動至相應的目標座標。 For example, based on the connection between the subject 20 and the imaging device 40 (ignoring the elevation angle problem, the connection between the first position information and the third position information is the x-axis), the user can touch, By voice inputting the zenith angle θ 1 and the azimuth angle θ 2 , an accurate coordinate can be determined, and the multi-axis aircraft 30 is controlled to move to the corresponding target coordinate.

有關於本發明多軸飛行器30的詳細構造,請參閱「圖4」,係為本發明搭載閃光燈的多軸飛行器30的外觀示意圖,如圖所示:所述搭載閃光燈的多軸飛行器30主要包含有飛行器主體35,至少三設置於該飛行器主體35上並藉由電動機帶動的旋翼軸,以及一設置於該飛行器主體35上供該閃光燈31設置的設置部(圖未示)。在本實施態樣中係揭示一種四軸的飛行器,惟本發明並不限制於此單一實施態樣。其中該飛行器主體35的設置部上係設置有一離機閃接收器32,以及一連結於該離機閃接收器32並對應於該設置部的位置以連結於該閃光燈31一側連接埠的熱靴 314。當攝影者按下攝像裝置40上的拍攝鍵時,該離機閃觸發器43係傳遞一觸發指令至該離機閃接收器32,藉由該離機閃接收器32啟動該閃光燈31進行補光。該多軸飛行器30的其他部分尚包含有前述設於該飛行器主體35上的閃光燈31、第二定位器33、閃燈參數擷取器36等。 For a detailed structure of the multi-axis aircraft 30 of the present invention, please refer to FIG. 4, which is a schematic diagram of the appearance of the multi-axis aircraft 30 equipped with a flashlight according to the present invention. As shown in the figure, the multi-axis aircraft 30 equipped with a flash lamp mainly includes There is an aircraft main body 35, at least three rotor shafts disposed on the aircraft main body 35 and driven by an electric motor, and a setting portion (not shown) provided on the aircraft main body 35 for the flash lamp 31. In the present embodiment, a four-axis aircraft is disclosed, but the present invention is not limited to this single embodiment. The aircraft body 35 is provided with an off-camera flash receiver 32, and a heat source coupled to the off-camera flash receiver 32 and corresponding to the setting portion for connecting to the side of the flash unit 31. Boots 314. When the photographer presses the shooting button on the camera device 40, the off-camera trigger 43 transmits a trigger command to the off-camera flash receiver 32, and the flash lamp receiver 32 activates the flash lamp 31 to compensate. Light. The other part of the multi-axis aircraft 30 further includes the aforementioned flash lamp 31, the second positioner 33, the flash parameter picker 36, and the like provided on the aircraft main body 35.

為精確地控制該多軸飛行器30的移動方向,該多軸飛行器30係包含有氣壓計、超聲波感測器、電子羅盤、GPS、重力感測器(G-sensor)及陀螺儀。上述內容圖均未示。 In order to accurately control the moving direction of the multi-axis aircraft 30, the multi-axis aircraft 30 includes a barometer, an ultrasonic sensor, an electronic compass, a GPS, a G-sensor, and a gyroscope. None of the above contents are shown.

其中該第二定位器33除了收發訊號藉以得到第二位置資訊功能外,亦可接收運算器50傳送至該處理單元34的操控指令。該處理單元34於接收到該運算器50的操控指令時,係透過上述裝置測得飛行器主體35所應移動的移動方向及距離,其各裝置的功能如下:透過氣壓計可測得該飛行器主體35的高度,亦可藉由電子羅盤或GPS計算該飛行器主體35的水平位置,藉由GPS所取得的座標做為參考值,藉以減少誤差。其中該超聲波感測器係設置於該飛行器主體35的周側,可避免該飛行器主體35在飛行時與鄰近物品碰觸。其中該重力感測器(G-sensor)係設置於該飛行器主體35上,可測得該飛行器主體35是否維持水平飛行。其中該陀螺儀係用以確認該飛行器主體35飛行方向、或裝設於該閃光燈31上用以測定該閃光燈31旋轉的角度。 The second locator 33 can receive the manipulation command transmitted by the computing unit 50 to the processing unit 34 in addition to the function of transmitting and receiving signals to obtain the second location information function. When receiving the manipulation command of the operator 50, the processing unit 34 measures the moving direction and distance of the aircraft body 35 to be moved through the device, and the functions of each device are as follows: the aircraft body can be measured by a barometer The height of 35 can also be calculated by the electronic compass or GPS to calculate the horizontal position of the aircraft body 35, and the coordinates obtained by the GPS are used as reference values to reduce errors. The ultrasonic sensor is disposed on the circumferential side of the aircraft body 35 to prevent the aircraft body 35 from colliding with adjacent objects during flight. The gravity sensor (G-sensor) is disposed on the aircraft body 35 to measure whether the aircraft body 35 maintains horizontal flight. The gyro is used to confirm the flight direction of the aircraft main body 35 or to be mounted on the flash 31 to measure the angle at which the flash 31 rotates.

以下,係針對本發明的移動式閃燈定位方法配合流程圖進行說明: 請參閱「圖5」所示,係為本發明移動式閃燈定位方法的流程示意圖,如圖所示:本發明之移動式閃燈定位方法包含有以下步驟:於起始時,藉由設置於被攝體20上的第一定位器21,測得該被攝體20的第一位置資訊,並傳送至運算器50(步驟S101)。藉由設置於搭載閃光燈的多軸飛行器30上的第二定位器33,測得該閃光燈31的第二位置資訊,並傳送至運算器50(步驟S102)。藉由裝設於攝像裝置40上的相機參數擷取器41,以擷取該攝像裝置40內的拍攝參數,並藉由一第三定位器42,測得該第三位置資訊,並傳送至運算器50(步驟S103)。上述的三步驟係可同時進行,其操作順序於本發明中並不予以限制。運算器50收到以上資訊,係定義該第一位置資訊為原點,透過以下公式取得較佳閃燈距離(步驟S104): Hereinafter, the mobile flash lamp positioning method of the present invention is described with reference to a flowchart: Referring to FIG. 5, it is a schematic flowchart of the mobile flash lamp positioning method of the present invention, as shown in the figure: The mobile flash positioning method includes the following steps: at the beginning, the first position information of the subject 20 is measured by the first positioner 21 disposed on the subject 20, and transmitted to the operator. 50 (step S101). The second position information of the flash unit 31 is measured by the second positioner 33 provided on the multi-axis aircraft 30 on which the flash is mounted, and transmitted to the arithmetic unit 50 (step S102). The camera parameter extractor 41 is mounted on the camera device 40 to capture the shooting parameters in the camera device 40, and the third positioner 42 is used to measure the third position information and transmit it to the camera. The arithmetic unit 50 (step S103). The above three steps can be carried out simultaneously, and the order of operation thereof is not limited in the present invention. The operator 50 receives the above information, defines the first location information as the origin, and obtains a preferred flash distance by using the following formula (step S104):

其中,Dt係為該閃燈距離參數,GN係為感光度係數(ISO值)為100時的該閃光燈出力參數,ISO係為該攝像裝置的感光度係數,F係為該攝像裝置的光圈值。 Wherein, Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, ISO is the sensitivity coefficient of the imaging device, and F is the aperture value of the imaging device. .

為精確的定位該閃光燈31的方位,以下請一併參閱「圖6」、及「圖7」,係針對閃光燈31擺頭的技術進行詳細的說明。該搭載閃光燈的多軸飛行器30係包含有一設置於該飛行器主體35藉由馬達帶動該熱靴314沿第一平面旋轉的第一旋轉裝置311,以及一設置於該飛行器主體35藉由馬達帶動該熱靴314沿 第二平面旋轉的第二旋轉裝置312。該第一旋轉裝置311係藉由馬達帶動該閃光燈31於水平面上旋轉(如圖6所示),該第二旋轉裝置312係藉由馬達帶動該閃光燈31相對該飛行器主體35軸旋(如圖7所示)。 In order to accurately locate the orientation of the flash 31, please refer to "FIG. 6" and "FIG. 7" below, and the technique of the oscillating head of the flash 31 will be described in detail. The flash-equipped multi-axis aircraft 30 includes a first rotating device 311 disposed on the aircraft body 35 to drive the hot shoe 314 to rotate along a first plane by a motor, and a motor disposed on the aircraft body 35 to be driven by the motor. Hot shoe 314 along A second rotating device 312 that rotates in a second plane. The first rotating device 311 rotates the flash 31 on a horizontal surface by a motor (as shown in FIG. 6 ), and the second rotating device 312 drives the flash 31 to rotate relative to the aircraft body 35 by a motor (as shown in the figure). 7)).

為計算該閃光燈31的擺頭方向,於所述的閃光燈31周側係對應地設置一電性連結於該處理單元34的偵測器313,該偵測器313係套置於該閃光燈31周側,所述的偵測器313亦可作為前述第二定位器33的天線實施,其包含有分別設置於該閃光燈31水平方向兩側的左側水平陣列天線3131以及右側水平陣列天線3132,以及設置於該閃光燈31垂直方向兩側並連結於該處理單元34的一上側垂直陣列天線3133以及一下側垂直陣列天線3134。 In order to calculate the oscillating direction of the flashing lamp 31, a detector 313 electrically connected to the processing unit 34 is disposed correspondingly on the peripheral side of the flashing lamp 31, and the detector 313 is sleeved on the flashing lamp for 31 weeks. On the side, the detector 313 can also be implemented as an antenna of the second locator 33, and includes a left horizontal array antenna 3131 and a right horizontal array antenna 3132 respectively disposed on two sides of the flash 31 in the horizontal direction, and a setting An upper side vertical array antenna 3133 and a lower side vertical array antenna 3134 of the processing unit 34 are connected to both sides of the flash lamp 31 in the vertical direction.

藉由第一定位器21所傳出的訊號,該偵測器313可透過電磁波相位差(phase difference)調整該閃光燈31的旋轉方向及旋轉角度。如「圖6」所示,該左側水平陣列天線3131及該右側水平陣列天線3132於接收到該第一定位器21的電磁波訊號時,係同步二水平陣列天線的時間並代入時間差參數△t及波長參數λ作為參考值進行運算,藉以取得該左側水平陣列天線3131及該右側水平陣列天線3132間的第一電磁波相位差φ1(phase difference),所述第一電磁波相位差係可由以下公式取得:φ1=2π(△t/λ) The detector 313 can adjust the rotation direction and the rotation angle of the flash 31 through the phase difference of the electromagnetic wave by the signal transmitted from the first positioner 21. As shown in FIG. 6 , when the left horizontal array antenna 3131 and the right horizontal array antenna 3132 receive the electromagnetic wave signals of the first positioner 21, the time of the two horizontal array antennas is synchronized and the time difference parameter Δt is substituted. The wavelength parameter λ is calculated as a reference value to obtain a first electromagnetic wave phase difference φ 1 (phase difference) between the left horizontal array antenna 3131 and the right horizontal array antenna 3132, and the first electromagnetic wave phase difference can be obtained by the following formula :φ 1 =2π(△t/λ)

藉由該第一電磁波相位差φ1,可透過換算取得該閃 光燈31所應旋轉的角度,並藉由第一電磁波相位差φ1的正值或負值判斷該閃光燈31所應旋轉的方向。假設右側水平陣列天線3132所取得的電磁波訊號相對於左側水平陣列天線3131所取得的電磁波訊號間的第一電磁波相位差φ1為正值,則判定該第一定位器21至該左側水平陣列天線3131的距離DH1小於該右側水平陣列天線3132的距離DH2,該處理單元34將控制該第一旋轉裝置311,往該左側水平陣列天線3131的方向轉動;反之,該第一電磁波相位差φ1為負值,則該第一定位器21至該右側水平陣列天線3132的距離DH2小於該左側水平陣列天線3131的距離DH1,該處理單元34將控制該第一旋轉裝置311,往該右側水平陣列天線3132的方向轉動。 By the first electromagnetic wave phase difference φ 1 , the angle at which the flash lamp 31 should be rotated can be obtained by conversion, and the direction in which the flash lamp 31 should be rotated can be determined by the positive or negative value of the first electromagnetic wave phase difference φ 1 . Assuming that the electromagnetic wave signal obtained by the right horizontal array antenna 3132 is positive with respect to the first electromagnetic wave phase difference φ 1 between the electromagnetic wave signals obtained by the left horizontal array antenna 3131, the first positioner 21 to the left horizontal array antenna are determined. The distance DH1 of the 3131 is smaller than the distance DH2 of the right horizontal array antenna 3132, and the processing unit 34 controls the first rotating device 311 to rotate in the direction of the left horizontal array antenna 3131; otherwise, the first electromagnetic wave phase difference φ 1 is If the value is negative, the distance DH2 of the first locator 21 to the right horizontal array antenna 3132 is smaller than the distance DH1 of the left horizontal array antenna 3131. The processing unit 34 controls the first rotating device 311 to the right horizontal array antenna. The direction of 3132 is rotated.

如「圖7」所示,該上側垂直陣列天線3133及該下側垂直陣列天線3134於接收到該第一定位器21的電磁波訊號時,係同步二垂直陣列天線的時間並代入時間差參數△t及波長參數λ作為參考值進行運算,藉以取得該上側垂直陣列天線3133及該下側垂直陣列天線3134間的第二電磁波相位差φ2(phase difference),所述第二電磁波相位差係可由以下公式取得:φ2=2π(△t/λ) As shown in FIG. 7 , when the upper vertical array antenna 3133 and the lower vertical array antenna 3134 receive the electromagnetic wave signal of the first positioner 21, the time of the two vertical array antennas is synchronized and the time difference parameter Δt is substituted. And calculating the second electromagnetic wave phase difference φ 2 (phase difference) between the upper vertical array antenna 3133 and the lower vertical array antenna 3134 by using the wavelength parameter λ as a reference value, wherein the second electromagnetic wave phase difference is The formula is obtained: φ 2 = 2π(△t/λ)

藉由該第二電磁波相位差φ2,可透過換算取得該閃光燈31所應旋轉的角度,並藉由第二電磁波相位差φ2的正值或負值判斷該閃光燈31所應旋轉的方向。假設下側垂直陣列天線3134所取得的電磁波訊號相對於上側垂直陣列天線3133所取得的電磁 波訊號間的第二電磁波相位差φ2為正值,則判定該第一定位器21至該上側垂直陣列天線3133的距離DH3小於該下側垂直陣列天線3134的距離DH4,該處理單元34將控制該第二旋轉裝置312,往該上側垂直陣列天線3133的方向轉動;反之,該第二電磁波相位差φ2為負值,則該第一定位器21至該下側垂直陣列天線3134的距離DH3小於該上側垂直陣列天線3133的距離DH4,該處理單元34將控制該第二旋轉裝置312,往該下側垂直陣列天線3134的方向轉動。 By the second electromagnetic wave phase difference φ 2 , the angle at which the flash lamp 31 should be rotated can be obtained by conversion, and the direction in which the flash lamp 31 should be rotated can be determined by the positive or negative value of the second electromagnetic wave phase difference φ 2 . Assuming that the electromagnetic wave signal obtained by the lower vertical array antenna 3134 is positive with respect to the second electromagnetic wave phase difference φ 2 between the electromagnetic wave signals obtained by the upper vertical array antenna 3133, the first positioner 21 to the upper vertical array are determined. The distance DH3 of the antenna 3133 is smaller than the distance DH4 of the lower vertical array antenna 3134. The processing unit 34 controls the second rotating device 312 to rotate in the direction of the upper vertical array antenna 3133. Otherwise, the second electromagnetic wave phase difference φ 2 is a negative value, the first locator 21 to the lower side of the vertical array antenna 3134 DH3 distance smaller than the distance of the upper vertical array antenna DH4 3133, the processing unit 34 controls the second rotating means 312, to the lower The direction of the side vertical array antenna 3134 is rotated.

除了藉由相位差控制閃燈擺頭的方式外,於另一實施方式中,亦可於該電磁波訊號中藉由分碼多重進接(Code Division Multiple Access,CDMA)的方式,將傳送的訊息進行調變(modulation)已取得代碼串,並同步二水平陣列天線的時間,藉以計算相同代碼間的代碼偏移級距(亦即時間差參數),藉由該代碼偏移級距調整該閃光燈31的旋轉方向及旋轉角度,其具體的演算方式如下:該處理單元34係透過該左側水平陣列天線3131由該第一定位器21所接收到的電磁波訊號與經由該右側水平陣列天線3132由該第一定位器21所接收到的電磁波訊號計算得到相同代碼間的第一代碼偏移級距,並依照該第一代碼偏移級距透過換算取得該閃光燈31所應旋轉的角度以及旋轉的方向,藉以控制該馬達帶動該第一旋轉裝置311沿該第一平面旋轉至目標方向。另一方面,該處理單元34係透過該上側垂直陣列天線3133由該第 一定位器21所接收到的電磁波訊號與經由該下側垂直陣列天線3134由該第一定位器21所接收到的電磁波訊號計算得到相同代碼間的第二代碼偏移級距,並依照該第二代碼偏移級距透過換算取得該閃光燈31所應旋轉的角度以及旋轉的方向,藉以控制該馬達帶動該第二旋轉裝置312沿該第二平面旋轉至目標方向。 In addition to the method of controlling the swaying of the strobe by the phase difference, in another embodiment, the transmitted message may also be transmitted by the code division multiple access (CDMA) in the electromagnetic wave signal. Modulating the obtained code string and synchronizing the time of the two horizontal array antennas, thereby calculating the code offset step (ie, the time difference parameter) between the same codes, and adjusting the flash 31 by the code offset pitch The specific rotation of the rotation direction and the rotation angle is as follows: the processing unit 34 transmits the electromagnetic wave signal received by the first positioner 21 through the left horizontal array antenna 3131 and the first horizontal array antenna 3132 via the right horizontal array antenna 3132. The electromagnetic wave signal received by the locator 21 calculates a first code offset step between the same code, and obtains an angle at which the flash 31 should rotate and a direction of rotation according to the first code offset step. The motor is controlled to drive the first rotating device 311 to rotate along the first plane to a target direction. On the other hand, the processing unit 34 is transmitted through the upper vertical array antenna 3133. The electromagnetic wave signal received by the locator 21 and the electromagnetic wave signal received by the first locator 21 via the lower vertical array antenna 3134 calculate a second code offset step between the same codes, and according to the The two code offset steps obtain the angle at which the flash 31 should rotate and the direction of rotation, thereby controlling the motor to rotate the second rotating device 312 along the second plane to the target direction.

綜上所述,本發明透過多軸飛行器控制閃光燈與被攝體間的相對位置,藉此可大幅地減少攝影者於拍攝時的困難度。此外,本發明可藉由三點建立攝影者、被攝體、及閃光燈的相對位置關係,並藉由平板、或語音指令快速調整多軸飛行器的位置,藉以調整至較佳的拍攝距離及所需要的拍攝角度。再者,本發明係藉由水平天線陣列、及垂直天線陣列自動化地控制閃光燈的擺頭方向,藉以定位至較佳的打光角度。 In summary, the present invention controls the relative position between the flash and the subject through the multi-axis aircraft, thereby greatly reducing the difficulty for the photographer in shooting. In addition, the present invention can establish the relative positional relationship between the photographer, the subject, and the flash by three points, and quickly adjust the position of the multi-axis aircraft by using a tablet or a voice command, thereby adjusting to a better shooting distance and location. The angle of shooting required. Furthermore, the present invention automatically controls the oscillating direction of the flash by means of a horizontal antenna array and a vertical antenna array, thereby positioning to a preferred illuminating angle.

以上已將本發明做一詳細說明,惟以上所述者,僅為本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。 The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. Variations and modifications are still within the scope of the patents of the present invention.

20‧‧‧被攝體 20‧‧‧ Subjects

21‧‧‧第一定位器 21‧‧‧First positioner

30‧‧‧搭載閃光燈的多軸飛行器 30‧‧‧Multi-axis aircraft equipped with flash

33‧‧‧第二定位器 33‧‧‧Second positioner

40‧‧‧攝像裝置 40‧‧‧ camera

42‧‧‧第三定位器 42‧‧‧third positioner

43‧‧‧離機閃觸發器 43‧‧‧Off-machine flash trigger

50‧‧‧運算器 50‧‧‧Operator

Dt‧‧‧較佳閃燈距離 Dt‧‧‧ preferred flash distance

θ1‧‧‧天頂角 θ 1 ‧‧‧ zenith angle

θ2‧‧‧方位角 θ 2 ‧‧‧ azimuth

Claims (20)

一種移動式閃燈定位系統,包含有:一第一定位器,係設置於被攝體上,並測得該被攝體的第一位置資訊;一搭載閃光燈的多軸飛行器,其上設置有一連結至該閃光燈並取得該閃光燈的閃光燈出力參數的閃燈參數擷取器,以及一測得該閃光燈的第二位置資訊的第二定位器;一相機參數擷取器,係裝設於攝像裝置上,藉以擷取該攝像裝置內的拍攝參數;以及一運算器,定義該第一位置資訊為原點,並透過該閃光燈的該閃光燈出力參數、該拍攝參數計算出一具有較佳閃燈距離的閃燈距離參數,透過該閃燈距離參數控制該多軸飛行器相對該原點間維持於該較佳閃燈距離。 A mobile flashing light positioning system includes: a first positioner disposed on a subject and measuring first position information of the object; and a multi-axis aircraft equipped with a flash, provided with a a flash parameter picker coupled to the flash and obtaining a flash output parameter of the flash, and a second positioner for measuring the second position information of the flash; a camera parameter extractor mounted to the camera The camera captures the shooting parameters in the camera device; and an operator defines the first position information as an origin, and calculates a flash light distance through the flash output parameter of the flash and the shooting parameter. The flash distance parameter is controlled by the flash distance parameter to maintain the preferred flash distance between the multi-axis aircraft and the origin. 如申請專利範圍第1項所述之移動式閃燈定位系統,其中該相機參數擷取器上係設置有一測得該攝像裝置的第三位置資訊的第三定位器。 The mobile flash lamp positioning system of claim 1, wherein the camera parameter extractor is provided with a third positioner that measures third position information of the camera device. 如申請專利範圍第2項所述之移動式閃燈定位系統,其中該運算器係取得該第一定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第一定位器的第一位置座標,並取得該第一定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第一定位器的第二位置座標。 The mobile flash lamp positioning system of claim 2, wherein the operator obtains a distance parameter between the first positioner and the second positioner and a signal azimuth parameter to establish the second position. Relative to the first position coordinate of the first positioner, and obtaining a distance parameter between the first positioner and the third positioner, and a signal azimuth parameter, establishing a third positioner relative to the first positioner Second position coordinates. 如申請專利範圍第2項所述之移動式閃燈定位系統,其中該運算器係取得該第二定位器及該第一定位器間的距離參數、以及訊號方位角參數,建立該第一定位器相對該第二定位器的第三位置座標,並取得該第二定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第二定位器的第四位置座標。 The mobile flash lamp positioning system of claim 2, wherein the operator obtains a distance parameter between the second positioner and the first positioner and a signal azimuth parameter to establish the first positioning. A third position coordinate of the second positioner is obtained, and a distance parameter between the second positioner and the third positioner and a signal azimuth parameter are obtained, and the third positioner is opposite to the second positioner. The fourth position coordinates. 如申請專利範圍第2項所述之移動式閃燈定位系統,其中該運算器係取得該第三定位器及該第一定位器間的距離參數、以及訊號方位角參數,建立該第一定位器相對該第三定位器的第五位置座標,並取得該第三定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第三定位器的第六位置座標。 The mobile flash lamp positioning system of claim 2, wherein the operator obtains a distance parameter between the third positioner and the first positioner and a signal azimuth parameter to establish the first positioning. a fifth position coordinate of the third positioner, and obtaining a distance parameter between the third positioner and the second positioner, and a signal azimuth parameter, establishing a position of the second positioner relative to the third positioner The sixth position coordinates. 如申請專利範圍第1項所述之移動式閃燈定位系統,其中該運算單元係透過以下公式取得該閃燈距離參數:Dt=GN×((ISO/100))÷F其中,Dt係為該閃燈距離參數,GN係為感光度係數(ISO值)為100時的該閃光燈出力參數,ISO係為該攝像裝置的感光度係數,F係為該攝像裝置的光圈值。 The mobile flash lamp positioning system according to claim 1, wherein the operation unit obtains the flash distance parameter by using the following formula: Dt=GN×( (ISO/100)) ÷ F where Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, ISO is the sensitivity coefficient of the camera, F It is the aperture value of the camera. 如申請專利範圍第1項所述之移動式閃燈定位系統,其中該搭載閃光燈的多軸飛行器包含有一飛行器主體,至少三設置於該飛行器主體上並藉由電動機帶動的旋翼軸,以及一設置於該飛行器主體上供該閃光燈設置的設置部。 The mobile flashlight positioning system of claim 1, wherein the flash-equipped multi-axis aircraft includes an aircraft body, at least three rotor shafts disposed on the aircraft body and driven by an electric motor, and a setting A setting portion for the flash is provided on the main body of the aircraft. 如申請專利範圍第7項所述之移動式閃燈定位系統,更進一步包含有一設置於該攝像裝置上的離機閃觸發器,該搭載閃光燈的多軸飛行器係包含有一設置於該設置部上的離機閃接收器,以及一設置於該離機閃接收器上並電性連結於該閃光燈一側連接埠的熱靴,該攝像裝置係透過該離機閃觸發器傳送一閃燈觸發指令至該閃光燈。 The mobile flash lamp positioning system of claim 7, further comprising an off-camera flash trigger disposed on the camera, the flash-equipped multi-axis aircraft including a set on the setting portion An off-camera flash receiver, and a hot shoe disposed on the off-camera flash receiver and electrically connected to the flash side connector, the camera device transmits a flash trigger command to the off-camera flash trigger to The flash. 如申請專利範圍第7項所述之移動式閃燈定位系統,其中該搭載閃光燈的多軸飛行器包含有處理單元,分別設置於該閃光燈垂直方向兩側並連結於該處理單元的一上側垂直陣列天線以及一下側垂直陣列天線,以及分別設置於該閃光燈水平方向兩側並連結於該處理單元的一左側水平陣列天線以及一右側水平陣列天線。 The mobile flash lamp positioning system of claim 7, wherein the flash-equipped multi-axis aircraft includes a processing unit respectively disposed on both sides of the flash vertical direction and coupled to an upper vertical array of the processing unit. An antenna and a lower vertical array antenna, and a left horizontal array antenna and a right horizontal array antenna respectively disposed on two sides of the flash horizontal direction and coupled to the processing unit. 如申請專利範圍第9項所述之移動式閃燈定位系統,其中該設置部包含有一供離機閃接收器或該閃光燈設置的熱靴,一設置於該飛行器主體藉由馬達帶動該熱靴沿第一平面旋轉的第一旋轉裝置,以及一設置於該飛行器主體藉由馬達帶動該熱靴沿第二平面旋轉的第二旋轉裝置。 The mobile flashing light positioning system of claim 9, wherein the setting portion comprises a hot shoe provided for the off-camera flash receiver or the flash, and the hot shoe is disposed on the main body of the aircraft by the motor a first rotating device that rotates along a first plane, and a second rotating device that is disposed on the aircraft body to drive the hot shoe to rotate along a second plane by a motor. 如申請專利範圍第10項所述之移動式閃燈定位系統,其中該馬達係連接於該處理單元,該處理單元係透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一電磁波相位差(phase difference),並依照該第一電磁波相 位差藉由該馬達控制該第一旋轉裝置沿該第一平面旋轉,該處理單元係透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二電磁波相位差(phase difference),並依照該第二電磁波相位差藉由該馬達控制該第二旋轉裝置沿該第二平面旋轉。 The mobile flash lamp positioning system of claim 10, wherein the motor is connected to the processing unit, and the processing unit transmits electromagnetic wave signals received by the first positioner through the left horizontal array antenna. Calculating a phase difference of the first electromagnetic wave by the electromagnetic wave signal received by the first positioner via the right horizontal array antenna, and according to the first electromagnetic wave phase The position difference is controlled by the motor to rotate the first rotating device along the first plane, and the processing unit transmits the electromagnetic wave signal received by the first positioner through the upper vertical array antenna and the vertical array antenna via the lower side The electromagnetic wave signal received by the first positioner calculates a phase difference of the second electromagnetic wave, and the second rotating device is controlled to rotate along the second plane by the motor according to the second electromagnetic wave phase difference. 如申請專利範圍第10項所述之移動式閃燈定位系統,其中該馬達係連接於該處理單元,該處理單元係透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一代碼偏移級距,並依照該第一代碼偏移級距藉由該馬達控制該第一旋轉裝置沿該第一平面旋轉,該處理單元係透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二代碼偏移級距,並依照該第二代碼偏移級距藉由該馬達控制該第二旋轉裝置沿該第二平面旋轉。 The mobile flash lamp positioning system of claim 10, wherein the motor is connected to the processing unit, and the processing unit transmits electromagnetic wave signals received by the first positioner through the left horizontal array antenna. Calculating, by the right horizontal array antenna, the first code offset step by the electromagnetic wave signal received by the first positioner, and controlling the first rotating device along the first code offset step according to the first code The first plane rotates, and the processing unit calculates the electromagnetic wave signal received by the first positioner through the upper vertical array antenna and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna. The second code offsets the pitch and controls the second rotating device to rotate along the second plane by the motor in accordance with the second code offset step. 如申請專利範圍第1項所述之移動式閃燈定位系統,其中該飛行器主體上係設置有氣壓計、超聲波感測器、電子羅盤、GPS、重力感測器(G-sensor)及陀螺儀。 The mobile flash lamp positioning system according to claim 1, wherein the aircraft body is provided with a barometer, an ultrasonic sensor, an electronic compass, a GPS, a gravity sensor (G-sensor), and a gyroscope. . 一種移動式閃燈定位方法,包含有以下步驟:藉由設置於被攝體上的第一定位器,測得該被攝體的第一位置資訊; 藉由設置於搭載閃光燈的多軸飛行器上的第二定位器,測得該閃光燈的第二位置資訊;藉由裝設於攝像裝置上的相機參數擷取器,以擷取該攝像裝置內的拍攝參數;定義該第一位置資訊為原點,並透過該閃光燈的閃光燈出力參數、及該攝像資訊計算出一具有較佳閃燈距離的閃燈距離參數;以及透過該閃燈距離參數控制該飛行器主體於相對該原點間維持於該較佳閃燈距離上移動。 A mobile flash lamp positioning method includes the following steps: measuring first position information of the object by using a first positioner disposed on the object; The second position information of the flash is measured by a second positioner disposed on the multi-axis aircraft equipped with the flash; and the camera parameter picker mounted on the image capturing device is used to capture the inside of the camera Shooting parameters; defining the first position information as an origin, and calculating a flash distance parameter having a better flash distance through the flash output parameter of the flash and the camera information; and controlling the flash distance parameter The aircraft body is moved between the origins to maintain the preferred flash distance. 如申請專利範圍第14項所述之移動式閃燈定位方法,其中該相機參數擷取器上係設置有一測得該攝像裝置的第三位置資訊的第三定位器,該第一位置資訊、該第二位置資訊、及該第三位置資訊係由以下步驟取得:定義該被攝體的位置為該第一位置資訊;藉由該第一定位器及該第二定位器間的距離參數、以及訊號方位角參數,建立該第二定位器相對該第一定位器的第一位置座標,並定義該第一位置座標為該第二位置資訊;藉由該第一定位器及該第三定位器間的距離參數、以及訊號方位角參數,建立該第三定位器相對該第一定位器的第二位置座標,並定義該第二位置座標為該第三位置資訊。 The mobile strobe positioning method according to claim 14, wherein the camera parameter extractor is provided with a third locator for measuring the third position information of the camera device, the first position information, The second location information and the third location information are obtained by: defining a location of the object as the first location information; and using a distance parameter between the first locator and the second locator, And a signal azimuth parameter, establishing a first position coordinate of the second positioner relative to the first positioner, and defining the first position coordinate as the second position information; by the first positioner and the third position The distance parameter between the device and the signal azimuth parameter establishes a second position coordinate of the third positioner relative to the first positioner, and defines the second position coordinate as the third position information. 如申請專利範圍第14項所述之移動式閃燈定位方法,其中該閃燈距離參數係透過以下公式取得: Dt=GN×((ISO/100))÷F其中,Dt係為該閃燈距離參數,GN係為感光度係數(ISO值)為100時的該閃光燈出力參數,ISO係為該攝像裝置的感光度係數,F係為該攝像裝置的光圈值。 The mobile flash lamp positioning method according to claim 14, wherein the flash distance parameter is obtained by the following formula: Dt=GN×( (ISO/100)) ÷ F where Dt is the flash distance parameter, GN is the flash output parameter when the sensitivity coefficient (ISO value) is 100, ISO is the sensitivity coefficient of the camera, F It is the aperture value of the camera. 如申請專利範圍第14所述之移動式閃燈定位方法,其中該搭載閃光燈的多軸飛行器包含有一飛行器主體,至少三設置於該飛行器主體上並藉由電動機帶動的旋翼軸,以及一設置於該飛行器主體上供該閃光燈設置的設置部。 The mobile flash lamp positioning method of claim 14, wherein the flash-equipped multi-axis aircraft includes an aircraft body, at least three rotor shafts disposed on the aircraft body and driven by an electric motor, and a rotor shaft A setting portion of the aircraft body for the flash. 如申請專利範圍第14項所述之移動式閃燈定位方法,其中該閃光燈的燈座的水平方向兩側分別設置有左側水平陣列天線以及右側水平陣列天線,該閃光燈的燈座的垂直方向兩側分別設置有上側垂直陣列天線以及下側垂直陣列天線,該閃光燈係藉由以下方式調整擺頭方向:透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一電磁波相位差(phase difference),並依照該第一電磁波相位差控制該閃光燈沿該第一平面旋轉;以及透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二電磁波相位差(phase difference),並依照該第二電磁波相位差控制該閃光燈沿該第二平面旋轉。 The mobile flash lamp positioning method according to claim 14, wherein the horizontal side of the lamp holder is provided with a left horizontal array antenna and a right horizontal array antenna, and the flash lamp holder has two vertical directions. The side is respectively provided with an upper vertical array antenna and a lower vertical array antenna, and the flash adjusts the swing direction by: the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and the horizontal level passing through the right side The array antenna calculates a phase difference of the first electromagnetic wave by the electromagnetic wave signal received by the first positioner, and controls the flash to rotate along the first plane according to the phase difference of the first electromagnetic wave; and transmits the vertical array through the upper side The second electromagnetic wave phase difference is calculated by the electromagnetic wave signal received by the first positioner and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna, and according to the second The electromagnetic wave phase difference controls the flash to rotate along the second plane. 如申請專利範圍第14項所述之移動式閃燈定位方法,其中該閃光燈的燈座的水平方向兩側分別設置有左側水平陣列天線以及右側水平陣列天線,該閃光燈的燈座的垂直方向兩側分別設置有上側垂直陣列天線以及下側垂直陣列天線,該閃光燈係藉由以下方式調整擺頭方向:透過該左側水平陣列天線由該第一定位器所接收到的電磁波訊號與經由該右側水平陣列天線由該第一定位器所接收到的電磁波訊號計算得到第一代碼偏移級距,並依照該第一代碼偏移級距控制該閃光燈沿該第一平面旋轉;以及透過該上側垂直陣列天線由該第一定位器所接收到的電磁波訊號與經由該下側垂直陣列天線由該第一定位器所接收到的電磁波訊號計算得到第二代碼偏移級距,並依照該第二代碼偏移級距控制該閃光燈沿該第二平面旋轉。 The mobile flash lamp positioning method according to claim 14, wherein the horizontal side of the lamp holder is provided with a left horizontal array antenna and a right horizontal array antenna, and the flash lamp holder has two vertical directions. The side is respectively provided with an upper vertical array antenna and a lower vertical array antenna, and the flash adjusts the swing direction by: the electromagnetic wave signal received by the first positioner through the left horizontal array antenna and the horizontal level passing through the right side The array antenna calculates a first code offset step from the electromagnetic wave signal received by the first locator, and controls the flash to rotate along the first plane according to the first code offset step; and transmits the upper vertical array The electromagnetic wave signal received by the first positioner and the electromagnetic wave signal received by the first positioner via the lower vertical array antenna are used to calculate a second code offset step, and according to the second code offset The shift step controls the flash to rotate along the second plane. 一種內儲程式的電腦可讀取記錄媒體,當運算器載入程式並執行後係可完成如申請專利範圍第14項至第19項中任一項所述的方法。 A computer-readable recording medium of a built-in program, which can be completed as described in any one of claims 14 to 19.
TW103114425A 2014-04-21 2014-04-21 Mobile flash positioning system and method thereof TWI546605B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103114425A TWI546605B (en) 2014-04-21 2014-04-21 Mobile flash positioning system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103114425A TWI546605B (en) 2014-04-21 2014-04-21 Mobile flash positioning system and method thereof

Publications (2)

Publication Number Publication Date
TW201541175A TW201541175A (en) 2015-11-01
TWI546605B true TWI546605B (en) 2016-08-21

Family

ID=55220476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103114425A TWI546605B (en) 2014-04-21 2014-04-21 Mobile flash positioning system and method thereof

Country Status (1)

Country Link
TW (1) TWI546605B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI629900B (en) * 2017-08-29 2018-07-11 正能光電股份有限公司 Camera system and camera fill light method

Also Published As

Publication number Publication date
TW201541175A (en) 2015-11-01

Similar Documents

Publication Publication Date Title
US9013576B2 (en) Aerial photograph image pickup method and aerial photograph image pickup apparatus
US9631956B2 (en) Methods and systems for calibrating sensors of a computing device
US10571254B2 (en) Three-dimensional shape data and texture information generating system, imaging control program, and three-dimensional shape data and texture information generating method
US8581960B2 (en) Imaging device, imaging method, and imaging system
US9215362B2 (en) Image capturing system and image capturing method
JP5748561B2 (en) Aerial photography imaging method and aerial photography imaging apparatus
US8542368B2 (en) Position measuring apparatus and method
CN105025217A (en) Movable flash positioning system and method
JP2006086591A (en) Mobile body tracing system, photographing apparatus, and photographing method
CN106767775B (en) A kind of localization method based on imaging sensor and inertial navigation sensor
WO2017101778A1 (en) Iris information obtaining method and apparatus, storage medium, electronic device, and system
JP6383439B2 (en) Method and system for calibrating a sensor using a recognized object
JP2017201757A (en) Image acquisition system, image acquisition method, and image processing method
TW201904643A (en) Control device, flight vehicle and recording medium
KR101780122B1 (en) Indoor Positioning Device Using a Single Image Sensor and Method Thereof
US20200049486A1 (en) Coordinate measuring device
JP2018146524A (en) Survey system
TWI546605B (en) Mobile flash positioning system and method thereof
TWM483451U (en) Movable flash lamp positioning system
WO2013161250A1 (en) Strobe device and photography device provided with same
TW202020628A (en) Tracking system, scanning device, head mounted display, computing device and related positioning and calibration methods
CN203984542U (en) Portable flashing light positioner
US9268005B2 (en) Image recording system with relational tracking
KR101217854B1 (en) A system updating digital map making
JP2020198501A (en) Photographing device, program, and photographing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees