TWI546553B - System and method of detecting ultra weak magnetic field - Google Patents
System and method of detecting ultra weak magnetic field Download PDFInfo
- Publication number
- TWI546553B TWI546553B TW103104481A TW103104481A TWI546553B TW I546553 B TWI546553 B TW I546553B TW 103104481 A TW103104481 A TW 103104481A TW 103104481 A TW103104481 A TW 103104481A TW I546553 B TWI546553 B TW I546553B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- unit
- magnetic field
- detecting
- buffer unit
- Prior art date
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Description
本揭露係關於一種檢測磁場的系統和方法。 The present disclosure is directed to a system and method for detecting a magnetic field.
最近,適於檢測地磁的技術已經到了需要高靈敏度和高精度地檢測非常弱的磁場,以擴大應用的範圍。這類型的磁場檢測元件磁性阻抗(Magnetic Impedance,MI)元件已引起人們的注意。與已知的磁場檢測用的MI元件的方法,該方法是施加一高頻電流給磁性元件和檢測由曲繞或佈置在磁性元件附近的檢測線圈所產生的一電壓信號。 Recently, a technique suitable for detecting geomagnetism has reached a need to detect a very weak magnetic field with high sensitivity and high precision to expand the range of applications. Magnetic Impedance (MI) components of this type of magnetic field detecting component have attracted attention. A method of using a known MI element for magnetic field detection by applying a high frequency current to a magnetic element and detecting a voltage signal generated by a detecting coil wound or disposed in the vicinity of the magnetic element.
第一圖說明一用於檢測磁場的現有技術的基本電路圖。參考第一圖,用虛線包圍的振盪電路11產生一脈衝振盪,經由反相器12和電流調整電阻13的方式將電流流到MI元件14。然後,取出在MI元件14所造成的磁通量的變化產生曲繞在MI裝置14的周圍檢測線圈15中電壓的變化。檢測線圈15的一端連接到接地端,而另一端連接到由一峰值檢測二極管和一個RC電路所形成的一個波形檢測電路16,以使得一個振幅調變磁場信號可從波形檢測電路16中取出。相對地,磁場信號可以通過和一類比開關與一保持電容建置的振盪電路11振盪的上升和下降的同步地同步檢測。然後一個零外磁場特徵的一個電壓Vso以及與電壓Vso相匹配的一個參考電 壓被選中,此是經由一個放大器17和在電源電壓和接地端子之間插入的一可變電阻18。因此,輸出電壓是在放大器的輸出端進行手動調整。 The first figure illustrates a basic circuit diagram of the prior art for detecting a magnetic field. Referring to the first figure, the oscillation circuit 11 surrounded by a broken line generates a pulse oscillation, and current is flown to the MI element 14 via the inverter 12 and the current adjustment resistor 13. Then, the change in the magnetic flux caused by the MI element 14 is taken out to cause a change in the voltage in the detection coil 15 around the MI device 14. One end of the detecting coil 15 is connected to the ground terminal, and the other end is connected to a waveform detecting circuit 16 formed of a peak detecting diode and an RC circuit so that an amplitude modulated magnetic field signal can be taken out from the waveform detecting circuit 16. In contrast, the magnetic field signal can be detected synchronously in synchronization with the rising and falling of the oscillation of the oscillation circuit 11 of an analog switch and a holding capacitor. Then a voltage Vso of a zero external magnetic field characteristic and a reference voltage matching the voltage Vso The voltage is selected, which is via an amplifier 17 and a variable resistor 18 inserted between the supply voltage and the ground terminal. Therefore, the output voltage is manually adjusted at the output of the amplifier.
然而,Vso常因周圍環境的變化而改變。在這種情況下,難以手動調整輸出電壓。如果檢測線圈上的信號是尖銳的峰頂部,峰值檢測的取樣抖動也會導致高的信號變化。如果磁場不順暢或磁場變化顯著,即使加上非線性效應,它也無法優化信號的檢測。因此,此種用於檢測磁場的磁場檢測電路無法檢測到非常弱的磁場,特別是對於檢測次mG(毫高斯)的磁場或嘈雜的磁場。針對現代的應用,特別是空中鼠標,陀螺儀等應用,此種檢測技術將導致較大的誤差。 However, Vso often changes due to changes in the surrounding environment. In this case, it is difficult to manually adjust the output voltage. If the signal on the sense coil is a sharp peak top, the sample jitter of the peak detection will also result in a high signal change. If the magnetic field is not smooth or the magnetic field changes significantly, even if a nonlinear effect is added, it cannot optimize the detection of the signal. Therefore, such a magnetic field detecting circuit for detecting a magnetic field cannot detect a very weak magnetic field, particularly for detecting a secondary mG (milli Gauss) magnetic field or a noisy magnetic field. For modern applications, especially in the case of aerial mice, gyroscopes, etc., such detection techniques will result in large errors.
針對某些情況,上述的現有檢測磁場技術具有無法處理的缺點,尤其是振盪電路的元件固有噪聲,取樣抖動引起的峰值電壓變化的噪聲,影響非外部磁場特性的線圈負載效應,以及弱磁場等情況。因此,有必要設計具有高靈活性和可靠性的磁場檢測技術。 For some cases, the above-mentioned existing detection magnetic field technology has the disadvantages that cannot be handled, especially the inherent noise of the component of the oscillation circuit, the noise of the peak voltage change caused by the sampling jitter, the coil loading effect that affects the characteristics of the non-external magnetic field, and the weak magnetic field, etc. Happening. Therefore, it is necessary to design a magnetic field detecting technique with high flexibility and reliability.
本揭露實施例提供關於一種檢測磁場的技術,此檢測技術使用一磁性阻抗元件來檢測外部磁場的強度,其中磁性阻抗元件的阻抗依據外部磁場的變化而變動。更具體地說,本發明係關於由地磁或非常弱的電流產生非常弱的磁場的高靈敏度和高精度的檢測技術。 The disclosed embodiments provide a technique for detecting a magnetic field that uses a magnetic impedance element to detect the intensity of an external magnetic field, wherein the impedance of the magnetic impedance element varies according to changes in the external magnetic field. More specifically, the present invention relates to a highly sensitive and highly accurate detection technique for generating a very weak magnetic field from a geomagnetic or very weak current.
所揭露的一實施例是關於一種檢測磁場的系統。該系統包括:由一檢測線圈所包圍的一磁性阻抗元件,產生可編程上升/下降時間的脈衝信號的激源單元以驅動磁性阻抗元件,以及一信號檢測模組 以檢測檢測線圈上的信號,其中信號檢測模組包括:具有可調整的頻寬形狀的一緩衝單元將檢測線圈的輸出信號整型,一信號放大單元將緩衝單元輸出的緩衝信號放大,一信號處理單元將信號放大單元放大後的信號施加可選擇的演算法,以輸出檢測結果,以及一控制單元連接信號處理單元,以產生激源單元、緩衝單元、信號放大單元和信號處理單元的控制參數。 One disclosed embodiment relates to a system for detecting a magnetic field. The system comprises: a magnetic impedance component surrounded by a detection coil, a source unit for generating a pulse signal of programmable rise/fall time to drive the magnetic impedance component, and a signal detection module The signal detecting module comprises: a buffer unit having an adjustable bandwidth shape to shape an output signal of the detecting coil, and a signal amplifying unit amplifying the buffer signal output by the buffer unit, a signal The processing unit applies a selectable algorithm to the signal amplified by the signal amplifying unit to output the detection result, and a control unit is connected to the signal processing unit to generate control parameters of the source unit, the buffer unit, the signal amplifying unit and the signal processing unit. .
所揭露的另一實施範例是關於一種檢測磁場的方法。該方法包括:產生可編程上升/下降時間的的電壓來驅動環繞一磁性阻抗元件的一檢測線圈;經由具有可調整頻寬的一緩衝單元將檢測線圈的輸出信號整型;通過使用一取樣和保持電路和一斬波可編程增益放大器將緩衝單元輸出的緩衝信號放大;經由可選擇的演算法來處理放大後的信號以輸出檢測結果;以及檢查檢測結果來控制產生的電壓,緩衝單元,取樣和保持電路,斬波可編程增益放大器,以及演算法。 Another embodiment disclosed is directed to a method of detecting a magnetic field. The method includes: generating a voltage of a programmable rise/fall time to drive a detection coil surrounding a magnetic impedance element; shaping an output signal of the detection coil via a buffer unit having an adjustable bandwidth; by using a sampling sum A hold circuit and a chopper programmable gain amplifier amplify the buffered signal output by the buffer unit; process the amplified signal through a selectable algorithm to output the detection result; and check the detection result to control the generated voltage, buffer unit, sample And hold circuits, chopper programmable gain amplifiers, and algorithms.
茲配合下列圖示、實施例之詳細說明及申請專利範圍,將上述及本揭露之其他優點詳述於後。 The above and other advantages of the present disclosure will be described in detail below with reference to the following drawings, detailed description of the embodiments, and claims.
11‧‧‧振盪電路 11‧‧‧Oscillation circuit
12‧‧‧連接介面反相器 12‧‧‧Connected interface inverter
13‧‧‧電流調整電阻 13‧‧‧current adjustment resistor
14‧‧‧MI元件 14‧‧‧MI components
14‧‧‧數據通信模組 14‧‧‧Data Communication Module
15‧‧‧控制模組 15‧‧‧Control Module
16‧‧‧波形檢測電路 16‧‧‧ Waveform detection circuit
17‧‧‧放大器 17‧‧‧Amplifier
18‧‧‧可變電阻 18‧‧‧Variable resistor
220‧‧‧檢測線圈 220‧‧‧Detection coil
230‧‧‧激源單元 230‧‧‧Source unit
240‧‧‧信號檢測模組 240‧‧‧Signal Detection Module
241‧‧‧緩衝單元 241‧‧‧buffer unit
242‧‧‧信號放大單元 242‧‧‧Signal amplification unit
245‧‧‧信號處理單元 245‧‧‧Signal Processing Unit
246‧‧‧控制單元 246‧‧‧Control unit
610‧‧‧取樣和保持電路 610‧‧‧Sampling and holding circuit
611、612‧‧‧取樣開關 611, 612‧‧ ‧ sampling switch
613、614‧‧‧保持電容 613, 614‧‧ ‧ holding capacitor
620‧‧‧斬波可編程增益放大器 620‧‧‧Chopper programmable gain amplifier
621、622、623、624‧‧‧開關 621, 622, 623, 624‧‧ ‧ switch
625、626、627、628‧‧‧開關 625, 626, 627, 628‧‧ ‧ switch
710‧‧‧類比/數位轉換器 710‧‧‧ Analog/Digital Converter
720‧‧‧數位信號處理器 720‧‧‧Digital Signal Processor
901‧‧‧泵送高斯掃磁場 901‧‧‧ pumping Gaussian magnetic field
902‧‧‧覆蓋磁屏蔽盒至此檢測磁場的系統 902‧‧‧System covering magnetic shielding box to detect magnetic field
903‧‧‧不覆蓋磁屏蔽盒至此檢測磁場的系統 903‧‧‧A system that does not cover the magnetic shield box to detect the magnetic field
910‧‧‧掃描標準磁場 910‧‧‧Scan standard magnetic field
920‧‧‧進行全信號波形的取樣 920‧‧‧Sampling full signal waveforms
930‧‧‧確認掃描環境完成 930‧‧‧Confirm that the scanning environment is complete
940‧‧‧尋找新取樣邊緣 940‧‧‧ Looking for a new sampling edge
950‧‧‧比較波峰的頂部和底部值 950‧‧‧Comparing the top and bottom values of the crest
960‧‧‧在控制單元中調整延遲電路 960‧‧‧Adjust the delay circuit in the control unit
970‧‧‧改變激源單元中激源壓擺率 970‧‧‧Change the source slew rate in the source unit
980‧‧‧改變緩衝單元中緩衝器的頻寬 980‧‧‧Change the bandwidth of the buffer in the buffer unit
990‧‧‧選擇信號處理單元中數位信號處理(DSP)濾波 990‧‧‧Select digital signal processing (DSP) filtering in the signal processing unit
1010‧‧‧產生可編程上升/下降時間的電壓來驅動環繞一磁性阻抗元件的一檢測線圈 1010‧‧‧ Generates a programmable rise/fall time voltage to drive a sense coil around a magnetic impedance element
1020‧‧‧經由具有可調整頻寬的一緩衝單元將檢測線圈的輸出信號整型 1020‧‧‧Integrated output signal of the detection coil via a buffer unit with adjustable bandwidth
1030‧‧‧通過使用一取樣和保持電路和一斬波可編程增益放大器將緩衝單元輸出的緩衝信號放大 1030‧‧Amplify the buffered signal output from the buffer unit by using a sample and hold circuit and a chopper programmable gain amplifier
1040‧‧‧經由可選擇的演算法來處理放大後的信號以輸出檢測結果 1040‧‧‧Processing the amplified signal via an optional algorithm to output the test result
1050‧‧‧檢查檢測結果來控制產生的電壓,緩衝單元,取樣和保持電路,斬波可編程增益放大器,以及演算法 1050‧‧‧Check the test results to control the generated voltage, buffer unit, sample and hold circuit, chopper programmable gain amplifier, and algorithm
第一圖說明一用於檢測磁場的現有技術的基本電路圖。 The first figure illustrates a basic circuit diagram of the prior art for detecting a magnetic field.
第二圖是與所揭露的一實施範例一致的一示意圖,說明一種檢測磁場的系統。 The second figure is a schematic view consistent with an embodiment of the disclosure, illustrating a system for detecting a magnetic field.
第三圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的激源單元。 The third figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating the source unit of the system for detecting a magnetic field in the second figure.
第四a-四d圖是與所揭露的一實施範例一致的一示意圖,說明第 三圖中檢測磁場的系統的可編程的上升/下降時間的激源單元所產生的信號。 The fourth a-fourth diagram is a schematic diagram consistent with an disclosed embodiment, illustrating The signal generated by the source unit of the programmable rise/fall time of the system that detects the magnetic field in the three figures.
第五圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的緩衝單元的輸入信號和輸出信號。 The fifth figure is a schematic view consistent with an embodiment of the disclosure, illustrating the input and output signals of the buffer unit of the system for detecting magnetic fields in the second figure.
第六圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的信號放大單元。 The sixth drawing is a schematic view consistent with an embodiment of the disclosure, illustrating a signal amplifying unit of the system for detecting a magnetic field in the second figure.
第七圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的處理單元。 The seventh figure is a schematic view consistent with an embodiment of the disclosure, illustrating the processing unit of the system for detecting magnetic fields in the second figure.
第八圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的的處理單元的可調整頻寬。 The eighth figure is a schematic view consistent with an embodiment of the disclosure, illustrating the adjustable bandwidth of the processing unit of the system for detecting magnetic fields in the second figure.
第九a-九b圖是與所揭露的一實施範例一致的一示意圖,說明檢測磁場的系統的建立和優化控制單元的控制參數的流程圖。 The ninth a-ninth b-figure is a schematic diagram consistent with an embodiment of the disclosure, illustrating a flow chart for establishing a system for detecting a magnetic field and optimizing control parameters of the control unit.
第十圖是與所揭露的一實施範例一致的一示意圖,說明一種檢測磁場的方法。 The tenth figure is a schematic view consistent with an embodiment of the disclosure, illustrating a method of detecting a magnetic field.
本揭露實施例提供關於一種檢測磁場的技術,此檢測技術使用一磁性阻抗元件來檢測外部磁場的強度,其中磁性阻抗元件的阻抗依據外部磁場的變化而變動。更具體地說,本發明係關於由地磁或非常弱的電流產生非常弱的磁場的高靈敏度和高精度的檢測技術。 The disclosed embodiments provide a technique for detecting a magnetic field that uses a magnetic impedance element to detect the intensity of an external magnetic field, wherein the impedance of the magnetic impedance element varies according to changes in the external magnetic field. More specifically, the present invention relates to a highly sensitive and highly accurate detection technique for generating a very weak magnetic field from a geomagnetic or very weak current.
所揭露的一實施例是關於一種檢測磁場的系統。第二圖是與所揭露的一實施範例一致的一示意圖,說明一種檢測磁場的系統。參考第二圖,此系統包括由一檢測線圈220所包圍的一磁性阻抗元件210,一激源單元230產生可編程上升/下降時間的電壓信號來驅動磁性阻抗元件210,和一信號檢測模組240檢測檢測線圈220輸出的 信號,其中信號檢測模組240包括具有可調整頻寬的一緩衝單元241將檢測線圈220的輸出信號整型,一信號放大單元242將緩衝單元241輸出的緩衝信號放大,一信號處理單元245通過施加可選擇的演算法將放大單元242放大的信號進行信號處理,以輸出檢測結果,並且一控制單元246連接信號處理單元245以產生激源單元230、緩衝單元241、信號放大單元242和信號處理單元245的控制參數。 One disclosed embodiment relates to a system for detecting a magnetic field. The second figure is a schematic view consistent with an embodiment of the disclosure, illustrating a system for detecting a magnetic field. Referring to the second figure, the system includes a magnetic impedance element 210 surrounded by a detection coil 220. A source unit 230 generates a programmable rise/fall time voltage signal to drive the magnetic impedance element 210, and a signal detection module. 240 detects the output of the detection coil 220 The signal detection module 240 includes a buffer unit 241 having an adjustable bandwidth to shape the output signal of the detection coil 220, and a signal amplification unit 242 amplifies the buffer signal output by the buffer unit 241, and a signal processing unit 245 passes A signal that is amplified by the amplifying unit 242 is subjected to signal processing to output a detection result, and a control unit 246 is connected to the signal processing unit 245 to generate the source unit 230, the buffer unit 241, the signal amplifying unit 242, and signal processing. Control parameters of unit 245.
參考第二圖,磁性阻抗元件210阻抗依據外部磁場的變化而變動。激源單元230產生可編程上升/下降時間的信號來驅動磁性阻抗元件210。激源單元230產生的信號可以由第三圖所示的電路圖來實現。如第三圖所示,兩個電壓V1和V2被施加於兩個開關S1和S2耦接兩個並聯RC電路R1C1和R2C2的電路中,以連接磁性阻抗元件210的兩個端點來驅動磁性阻抗元件210。 Referring to the second figure, the impedance of the magnetic impedance element 210 varies according to changes in the external magnetic field. The source unit 230 generates a signal of programmable rise/fall time to drive the magnetic impedance element 210. The signal generated by the source unit 230 can be implemented by the circuit diagram shown in the third figure. As shown in the third figure, two voltages V1 and V2 are applied to the circuits in which the two switches S1 and S2 are coupled to the two parallel RC circuits R1C1 and R2C2 to connect the two end points of the magnetic impedance element 210 to drive the magnetic Impedance element 210.
因此在第三圖中,經由兩個電壓V1和V2,開關S1和S2切換時序Φ1和Φ2,以及平行RC電路R1C1和R2C2,磁性阻抗元件210的兩個端點的信號Ⅵ如第四圖所示。在第四a圖,兩個電壓V1和V2是兩個不同的直流電壓,開關S1和S2的切換時序Φ1和Φ2相同。在第四b圖中,兩個電壓V1和V2是兩個不同的直流電壓,開關S1和S2的切換時序Φ1和Φ2是不同的時鐘時序。在第四c圖中,兩個電壓V1和V2是兩個不同的電壓,即V1是一個直流電壓,V2是一個兩階級電壓,開關S1和S2的切換時序Φ1和Φ2是兩個不同的時鐘的時間。如第四d圖所示,兩個電壓V1和V2是兩個不同的直流電壓,開關S1和S2的切換時序Φ1和Φ2是兩個相反的時鐘時序,以及R1C1和R2C2的元件值是不同的。上述兩個電壓V1和V2的不同電壓值,開關S1和S2的切換時序Φ1和Φ2,以及平行RC電路R1C1和R2C2的元件值是可編程的,並且控制單 元246通過產生相應的控制參數來控制。因此,激源單元230產生的信號是可編程上升/下降時間的信號。 Therefore, in the third figure, the switches S1 and S2 switch the timings Φ1 and Φ2, and the parallel RC circuits R1C1 and R2C2 via the two voltages V1 and V2, and the signal VI of the two end points of the magnetic impedance element 210 is as shown in the fourth figure. Show. In the fourth a diagram, the two voltages V1 and V2 are two different DC voltages, and the switching timings Φ1 and Φ2 of the switches S1 and S2 are the same. In the fourth b-picture, the two voltages V1 and V2 are two different DC voltages, and the switching timings Φ1 and Φ2 of the switches S1 and S2 are different clock timings. In the fourth c-picture, the two voltages V1 and V2 are two different voltages, that is, V1 is a DC voltage, V2 is a two-stage voltage, and the switching timings Φ1 and Φ2 of the switches S1 and S2 are two different clocks. time. As shown in the fourth d-d, the two voltages V1 and V2 are two different DC voltages, the switching timings Φ1 and Φ2 of the switches S1 and S2 are two opposite clock timings, and the component values of R1C1 and R2C2 are different. . The different voltage values of the above two voltages V1 and V2, the switching timings Φ1 and Φ2 of the switches S1 and S2, and the component values of the parallel RC circuits R1C1 and R2C2 are programmable, and the control list Element 246 is controlled by generating corresponding control parameters. Therefore, the signal generated by the source unit 230 is a programmable rise/fall time signal.
承上述,將激源單元230產生的信號施加到磁性阻抗元件210的兩個端點,根據其阻抗即產生一電流通過磁性阻抗元件210。檢測線圈220是圍繞,例如纏繞在磁性阻抗元件210上,因而感應一電壓信號於檢測線圈的兩個端點,其中此電壓信號根據電流與磁場成正比。 In the above, the signal generated by the source unit 230 is applied to both end points of the magnetic impedance element 210, and a current is generated through the magnetic impedance element 210 according to the impedance thereof. The detecting coil 220 is wound around, for example, wound on the magnetic impedance element 210, thereby inducing a voltage signal at both ends of the detecting coil, wherein the voltage signal is proportional to the magnetic field according to the current.
檢測線圈220輸出一個電壓信號後,信號檢測模組240檢測到檢測線圈上的信號。信號檢測模組240的緩衝單元241具有可調整的頻寬,可以將檢測線圈輸出信號的形狀整型,以減少在峰值附近取樣點的信號變化。第五圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的緩衝單元的輸入信號和輸出信號。緩衝單元提供了一個選擇的頻寬的頻率響應於檢測線圈來減少因峰值取樣抖動的信號的變化。如第五圖所示,針對相同的取樣抖動△t,緩衝單元的輸出信號變化△V被減少。根據一實施範例,可調整頻寬是可調整的,由控制單元246通過產生相應的控制參數來控制。 After the detection coil 220 outputs a voltage signal, the signal detection module 240 detects the signal on the detection coil. The buffer unit 241 of the signal detection module 240 has an adjustable bandwidth, and the shape of the detection coil output signal can be shaped to reduce the signal variation of the sampling point near the peak. The fifth figure is a schematic view consistent with an embodiment of the disclosure, illustrating the input and output signals of the buffer unit of the system for detecting magnetic fields in the second figure. The buffer unit provides a frequency of the selected bandwidth in response to the detection coil to reduce variations in the signal due to peak sample jitter. As shown in the fifth figure, for the same sampling jitter Δt, the output signal change ΔV of the buffer unit is reduced. According to an embodiment, the adjustable bandwidth is adjustable and is controlled by control unit 246 by generating corresponding control parameters.
根據一實施範例,信號放大單元242連接到緩衝器單元241以提供放大功能,以便進行進一步處理。第六圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的信號放大單元。如第六圖所示,信號放大單元242包括一個取樣和保持電路610和一個斬波(Chopping)可編程增益放大器(Programmable Gain Amplifier,PGA)620,將從緩衝單元的緩衝信號放大。該取樣和保持電路610包括取樣開關611和612,和保持電容613和614,以保持從緩衝單元的兩個端子輸出的緩衝電壓的峰值。斬波可編程增益放大器(PGA) 620包括開關621、622、623和624,用於將取樣和保持電路610的兩個端子輸入的保持信號Vip和Vim作斬波,一個可編程增益放大器(PGA)用於放大,和開關625、626、627和628用於發送輸出信號Vop和Vom到信號處理單元245。放大單元242的優點是減少閃爍噪聲和由於不平衡的信號不匹配的噪聲。取樣開關611和612的開關時間,開關621-628的開關時間和可編程增益放大器(PGA)的放大是可編程的,並且由控制單元246通過產生相應的控制參數來作控制。因此,信號放大單元242的放大的信號是可編程的放大信號。 According to an embodiment, signal amplification unit 242 is coupled to buffer unit 241 to provide an amplification function for further processing. The sixth drawing is a schematic view consistent with an embodiment of the disclosure, illustrating a signal amplifying unit of the system for detecting a magnetic field in the second figure. As shown in the sixth diagram, the signal amplifying unit 242 includes a sample and hold circuit 610 and a Chopping Programmable Gain Amplifier (PGA) 620 to amplify the buffered signal from the buffer unit. The sample and hold circuit 610 includes sampling switches 611 and 612, and holding capacitors 613 and 614 to maintain peaks of the buffer voltage output from the two terminals of the buffer unit. Chopper programmable gain amplifier (PGA) 620 includes switches 621, 622, 623, and 624 for chopping the hold signals Vip and Vim input to the two terminals of the sample and hold circuit 610, a programmable gain amplifier (PGA) for amplification, and a switch 625, 626, 627, and 628 are used to transmit the output signals Vop and Vom to the signal processing unit 245. An advantage of the amplification unit 242 is to reduce flicker noise and noise due to unbalanced signal mismatch. The switching times of the sampling switches 611 and 612, the switching times of the switches 621-628 and the amplification of the programmable gain amplifier (PGA) are programmable and controlled by the control unit 246 by generating corresponding control parameters. Therefore, the amplified signal of the signal amplifying unit 242 is a programmable amplified signal.
如第二圖所示,信號處理單元245連接到放大器242,通過施加可選擇的演算法來處理放大後的信號,以輸出檢測結果。第七圖是與所揭露的一實施範例一致的一示意圖,說明第二圖中檢測磁場的系統的處理單元。參考第七圖,信號處理單元包括一類比/數位轉換器(ADC)710和一個數位信號處理器720。其中,類比/數位轉換器710將放大單元輸出的類比信號轉換成數位數據,並且數位信號處理器720進行不同的信號處理演算法,例如數位信號濾波,以便為不同的應用減少頻帶外噪聲。如第八圖是與所揭露的一實施範例一致的一示意圖,用於信號處理的可調整頻寬是由第七圖的數位信號處理器來實現。用於信號處理的可調整頻寬是可調整的,並通過控制單元246產生相應的控制參數來控制。 As shown in the second figure, signal processing unit 245 is coupled to amplifier 242, which processes the amplified signal by applying a selectable algorithm to output a detection result. The seventh figure is a schematic view consistent with an embodiment of the disclosure, illustrating the processing unit of the system for detecting magnetic fields in the second figure. Referring to the seventh diagram, the signal processing unit includes an analog/digital converter (ADC) 710 and a digital signal processor 720. Wherein, the analog/digital converter 710 converts the analog signal output by the amplifying unit into digital data, and the digital signal processor 720 performs different signal processing algorithms, such as digital signal filtering, to reduce out-of-band noise for different applications. As shown in the eighth figure, which is consistent with an embodiment of the disclosed embodiment, the adjustable bandwidth for signal processing is implemented by the digital signal processor of the seventh figure. The adjustable bandwidth for signal processing is adjustable and controlled by control unit 246 to generate corresponding control parameters.
根據一實施範例,控制單元246連接信號處理單元245,以產生激源單元、緩衝單元、信號放大單元和信號處理單元的控制參數。控制單元連接、處理單元,產生控制參數,例如激源單元中開關的切換時序和電壓值,緩衝單元的頻寬參數,信號放大單元的開關時序,以及信號處理單元中的濾波參數。控制單元可以包括時序延遲 電路來調整開關的切換時序。此外,控制單元246可以進一步包括一個記憶體,用於存儲更新的控制參數。 According to an embodiment, the control unit 246 is coupled to the signal processing unit 245 to generate control parameters for the source unit, the buffer unit, the signal amplifying unit, and the signal processing unit. The control unit is connected to the processing unit to generate control parameters such as switching timing and voltage values of the switches in the source unit, bandwidth parameters of the buffer unit, switching timing of the signal amplifying unit, and filtering parameters in the signal processing unit. Control unit can include timing delay The circuit adjusts the switching timing of the switch. Additionally, control unit 246 can further include a memory for storing updated control parameters.
承上述,第九a-九b圖是與所揭露的一實施範例一致的一示意圖,說明檢測磁場的系統的建立和優化控制單元的控制參數的流程圖。參考第九a圖,系統的建立是以兩個步驟使用泵送高斯掃描磁場901到此檢測磁場的系統,其中第一步驟是覆蓋磁屏蔽盒至此檢測磁場的系統902,和第二步驟是不覆蓋磁屏蔽盒至此檢測磁場的系統903。而優化控制單元的控制參數的流程圖如第九b圖所示。在第九b圖中,首先系統掃描標準磁場(步驟910),然後在控制單元中使用延遲電路,產生時序進行全信號波形的取樣(步驟920),以確認掃描環境完成(步驟930)。然後如果需要的話,經由比較波峰的頂部和底部值(步驟950),系統尋找新取樣邊緣(步驟940),並在控制單元中調整延遲電路(步驟960)。最後,系統通過改變激源單元中激源壓擺率(上升/下降時間)(步驟970),改變緩衝單元中緩衝器的頻寬(步驟980),以及選擇信號處理單元中數位信號處理(DSP)濾波(步驟990)以優化系統性能,來獲得更好的檢測結果。 In view of the above, the ninth a-9th diagram is a schematic diagram consistent with an embodiment of the disclosure, illustrating a method of establishing a system for detecting a magnetic field and optimizing a control parameter of the control unit. Referring to Figure 9a, the system is established in a two-step system using a pumping Gaussian scanning magnetic field 901 to detect the magnetic field, wherein the first step is to cover the magnetic shield box to the system 902 for detecting the magnetic field, and the second step is A system 903 that covers the magnetic shield box to detect the magnetic field. The flow chart for optimizing the control parameters of the control unit is shown in Figure IXb. In Figure 9b, the system first scans the standard magnetic field (step 910) and then uses the delay circuit in the control unit to generate a timing to sample the full signal waveform (step 920) to confirm that the scanning environment is complete (step 930). Then, if necessary, by comparing the top and bottom values of the peaks (step 950), the system looks for a new sampling edge (step 940) and adjusts the delay circuit in the control unit (step 960). Finally, the system changes the bandwidth of the buffer in the buffer unit by changing the source slew rate (rise/fall time) in the source unit (step 970) (step 980), and selecting the digital signal processing (DSP) in the signal processing unit. Filtering (step 990) to optimize system performance for better detection results.
另一實施範例涉及一種檢測磁場的方法。第十圖是與所揭露的一實施範例一致的一示意圖,說明一種檢測磁場的方法。該檢測磁場的方法包括:產生可編程上升/下降時間的電壓來驅動環繞一磁性阻抗元件的一檢測線圈(步驟1010);經由具有可調整頻寬的一緩衝單元將檢測線圈的輸出信號整型(步驟1020);通過使用一取樣和保持電路和一斬波可編程增益放大器將緩衝單元輸出的緩衝信號放大(步驟1030);經由可選擇的演算法來處理放大後的信號以輸出檢測結果(步驟1040);以及檢查檢測結果來控制產生的電壓,緩衝單元,取樣和保持電路,斬波可編程增益放大器,以及演算法(步驟1050)。 Another embodiment relates to a method of detecting a magnetic field. The tenth figure is a schematic view consistent with an embodiment of the disclosure, illustrating a method of detecting a magnetic field. The method for detecting a magnetic field includes: generating a voltage of a programmable rise/fall time to drive a detection coil surrounding a magnetic impedance element (step 1010); and shaping an output signal of the detection coil via a buffer unit having an adjustable bandwidth (Step 1020): amplifying the buffered signal output by the buffer unit by using a sample and hold circuit and a chopper programmable gain amplifier (step 1030); processing the amplified signal via a selectable algorithm to output the detection result ( Step 1040); and checking the detection results to control the generated voltage, buffer unit, sample and hold circuit, chopper programmable gain amplifier, and algorithm (step 1050).
承上述,根據一實施範例,在步驟1050中的控制可以包括使用一個記憶體,用於儲存更新後的控制狀態。處理放大的信號的可選擇的演算法可以例如是信號濾波。 In view of the above, according to an embodiment, the control in step 1050 can include using a memory for storing the updated control state. An alternative algorithm for processing the amplified signal may for example be signal filtering.
本實施範例提供一種磁場檢測技術,使用一具有可調整的壓擺率的信號產生器,一緩衝器為信號整形以減少取樣抖動的影響,一取樣和保持電路和一個斬波PGA作為差動信號的放大以減少信號不平衡的影響,以及一數位信號處理作為不同的應用的濾波,以減少頻帶外噪聲。此磁場檢測技術具有靈活性和可靠性,提供了一種用於由地磁或非常弱的電流產生非常弱磁場的高靈敏度和高精度的檢測。 This embodiment provides a magnetic field detection technique using a signal generator having an adjustable slew rate, a buffer for signal shaping to reduce the effects of sample jitter, a sample and hold circuit and a chopping PGA as a differential signal The amplification is to reduce the effects of signal imbalance, and a digital signal processing is filtered as a different application to reduce out-of-band noise. This magnetic field detection technology is flexible and reliable, providing a highly sensitive and highly accurate detection for generating very weak magnetic fields from geomagnetic or very weak currents.
以上所述者皆僅為本揭露實施例,不能依此限定本揭露實施之 範圍。大凡本發明申請專利範圍所作之均等變化與修飾,皆應屬於本 發明專利涵蓋之範圍。 The above descriptions are only examples of the disclosure, and the disclosure is not limited thereto. range. The equal changes and modifications made by the scope of the patent application of the present invention should belong to this The scope of the invention patent covers.
210‧‧‧磁性阻抗元件 210‧‧‧Magnetic impedance components
220‧‧‧檢測線圈 220‧‧‧Detection coil
230‧‧‧激源單元 230‧‧‧Source unit
240‧‧‧信號檢測模組 240‧‧‧Signal Detection Module
241‧‧‧緩衝單元 241‧‧‧buffer unit
242‧‧‧信號放大單元 242‧‧‧Signal amplification unit
245‧‧‧信號處理單元 245‧‧‧Signal Processing Unit
246‧‧‧控制單元 246‧‧‧Control unit
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103104481A TWI546553B (en) | 2014-02-11 | 2014-02-11 | System and method of detecting ultra weak magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103104481A TWI546553B (en) | 2014-02-11 | 2014-02-11 | System and method of detecting ultra weak magnetic field |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201531727A TW201531727A (en) | 2015-08-16 |
TWI546553B true TWI546553B (en) | 2016-08-21 |
Family
ID=54343099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103104481A TWI546553B (en) | 2014-02-11 | 2014-02-11 | System and method of detecting ultra weak magnetic field |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI546553B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623827B (en) * | 2017-01-05 | 2018-05-11 | I-Shou University | An adjustment method of an air clock and a detection system for use with the adjustment method |
-
2014
- 2014-02-11 TW TW103104481A patent/TWI546553B/en active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI623827B (en) * | 2017-01-05 | 2018-05-11 | I-Shou University | An adjustment method of an air clock and a detection system for use with the adjustment method |
Also Published As
Publication number | Publication date |
---|---|
TW201531727A (en) | 2015-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20160065152A1 (en) | System and Method for Low Distortion Capacitive Signal Source Amplifier | |
TWI432742B (en) | Rf power sensor with chopping amplifier and method for measuring rf power in connection with high frequency pulsed rf signals | |
US9588189B2 (en) | System and method of detecting ultra weak magnetic field | |
KR20140038333A (en) | System and method for a programmable gain amplifier | |
EP2653846A1 (en) | Sensor circuit and a method of calibration | |
US9645193B2 (en) | Impedance source ranging apparatus and method | |
US9863808B2 (en) | Output-current detection chip for diode sensors, and diode sensor device | |
EP2884659B1 (en) | Harmonics Cancellation Circuit for a Power Amplifier | |
US20180234762A1 (en) | Microphone system having high acoustical overload point | |
JP2014087065A (en) | Active shunt ammeter and method of measuring current flowing through device under test | |
US20160187385A1 (en) | Amplification circuit and current sensor having the same | |
CN110431383B (en) | Apparatus and method for calibrating a capacitive sensor interface | |
TWI546553B (en) | System and method of detecting ultra weak magnetic field | |
US9097806B2 (en) | Preamplifier for charged particle detection | |
US20150234017A1 (en) | Magnetic field detecting device | |
JP5588413B2 (en) | Wideband low noise sensor amplifier circuit | |
CN115483894A (en) | Power amplifier | |
TWI603578B (en) | Integrated technique for enhanced power amplifier forward power detection | |
CN107850681B (en) | Filter circuit for suppressing signal distortion | |
CN104865538B (en) | Detect the system and method in superweak magnetic field, buffer cell, stimulus unit | |
JP6801414B2 (en) | Moisture detector | |
JP2013029349A (en) | Impulse current detection device | |
EP3918351A1 (en) | Analog based speaker thermal protection in class-d amplifiers | |
JP7176030B2 (en) | Short pulse generation circuit, short pulse generation method, and sampling oscilloscope using the same | |
JP2019015519A (en) | Signal receiving circuit and measuring instrument |