TWI545688B - A method for manufacturing electrostatic chuck and electrostatic chuck - Google Patents

A method for manufacturing electrostatic chuck and electrostatic chuck Download PDF

Info

Publication number
TWI545688B
TWI545688B TW103145981A TW103145981A TWI545688B TW I545688 B TWI545688 B TW I545688B TW 103145981 A TW103145981 A TW 103145981A TW 103145981 A TW103145981 A TW 103145981A TW I545688 B TWI545688 B TW I545688B
Authority
TW
Taiwan
Prior art keywords
insulating material
material layer
electrostatic chuck
layer
conductive electrode
Prior art date
Application number
TW103145981A
Other languages
Chinese (zh)
Other versions
TW201546950A (en
Inventor
Li Jhang
tao-tao Zuo
Siao-Ming He
Tu-Ciang Ni
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201546950A publication Critical patent/TW201546950A/en
Application granted granted Critical
Publication of TWI545688B publication Critical patent/TWI545688B/en

Links

Description

一種靜電夾盤及靜電夾盤的製造方法 Method for manufacturing electrostatic chuck and electrostatic chuck

本發明涉及半導體製造技術領域,尤其涉及一種靜電夾盤及靜電夾盤的製造方法。 The present invention relates to the field of semiconductor manufacturing technology, and in particular, to a method for manufacturing an electrostatic chuck and an electrostatic chuck.

如圖1所示,等離子處理裝置包括一個反應腔10,反應腔內10包括一個基座33,基座33內包括下電極。基座33上方包括靜電夾盤34,待處理的基片30設置在靜電夾盤34上,一個邊緣環36圍繞在靜電夾盤34周圍。一個具有較低頻率(如2Mhz~400Khz)的射頻電源通過一個匹配器連接到基座33內的下電極。反應腔10頂部還包括一個氣體分佈裝置40,如氣體噴淋頭、或者將反應氣體通入反應腔10的噴管。氣體分佈裝置40通過分流裝置或者開關閥門連接到一個氣源20。氣體噴淋頭可以作為上電極與基座33內的下電極配合構成電容,至少一個高頻射頻電源連接到上電極至少一端以產生電容耦合(CCP)電漿。也可以在反應腔10頂部上方安裝感應線圈,感應線圈連接到高頻射頻電源(大於13Mhz),產生的高頻電磁場穿過反應腔10頂部的絕緣窗進入基片30上方的空間,使反應氣體電離產生電漿。基片30被下方的靜電夾盤34固定在基座33上,其中靜電夾盤34內包括至少一個導電電極,該導電電極連接到一個直流電源,導電電極上的高壓直流電壓(700V-3000V)可以在基片30上感應產生電荷,基片30上的電荷與靜電夾盤34的電極相互靜電吸引使基片被牢牢固定在靜電夾盤34上。靜 電夾盤34的具體結構如圖2所示,包括一個位於底部的第一絕緣材料層340,導電電極341鋪設在第一絕緣材料層340上,一個第二絕緣材料層342覆蓋在導電電極341和第一絕緣材料層340上。其中第一絕緣材料層340、第二絕緣材料層342通常採用Al2O3或AlN以實現導電電極341與基片30之間或導電電極341與下方基座33之間絕緣,導電電極材料通常選自鎢或鉬以耐受高溫的加工環境。 As shown in Figure 1, the plasma processing apparatus includes a reaction chamber 10 that includes a susceptor 33 within which a lower electrode is included. Above the susceptor 33 includes an electrostatic chuck 34 on which the substrate 30 to be treated is disposed, and an edge ring 36 surrounds the electrostatic chuck 34. A radio frequency power source having a lower frequency (e.g., 2 Mhz to 400 Khz) is connected to the lower electrode in the susceptor 33 through a matching device. The top of the reaction chamber 10 also includes a gas distribution device 40, such as a gas shower head, or a nozzle for introducing a reaction gas into the reaction chamber 10. The gas distribution device 40 is connected to a gas source 20 by a flow dividing device or a switching valve. The gas showerhead can function as an upper electrode to cooperate with a lower electrode in the pedestal 33 to form a capacitor, and at least one high frequency RF power source is coupled to at least one end of the upper electrode to produce a capacitively coupled (CCP) plasma. An induction coil can also be mounted above the top of the reaction chamber 10. The induction coil is connected to a high frequency RF power source (greater than 13 Mhz), and the generated high frequency electromagnetic field passes through the insulating window at the top of the reaction chamber 10 into the space above the substrate 30 to make the reaction gas Ionization produces plasma. The substrate 30 is fixed to the susceptor 33 by an underlying electrostatic chuck 34, wherein the electrostatic chuck 34 includes at least one conductive electrode connected to a DC power source, a high voltage DC voltage (700V-3000V) on the conductive electrode. Charge can be induced on the substrate 30, and the charge on the substrate 30 and the electrodes of the electrostatic chuck 34 are electrostatically attracted to each other to secure the substrate to the electrostatic chuck 34. Quiet The specific structure of the electric chuck 34 is as shown in FIG. 2, and includes a first insulating material layer 340 at the bottom. The conductive electrode 341 is laid on the first insulating material layer 340, and a second insulating material layer 342 is covered on the conductive electrode 341. And a first insulating material layer 340. The first insulating material layer 340 and the second insulating material layer 342 are generally made of Al2O3 or AlN to insulate between the conductive electrode 341 and the substrate 30 or between the conductive electrode 341 and the lower base 33. The conductive electrode material is usually selected from tungsten. Or molybdenum to withstand high temperature processing environments.

靜電夾盤34與基片30之間的吸力滿足公式F=k V/d 2 (1),其中V為施加的直流電壓,d為基片30到電極341之間的距離也就是第二絕緣材料層342的厚度。所以要增加吸力最佳的辦法是減小d,但是隨著絕緣材料層342厚度的減小,第二絕緣材料層342中的雜質或者氣泡會導致第二絕緣材料層342被高壓擊穿。這會導致靜電夾盤34破損並嚴重影響基片30加工效果,所以現有技術通常採用調節電壓的方法獲得一個既不會導致第二絕緣材料層342擊穿也不會吸力不足的電壓區間。但是由於材料的限制這一區間可選擇範圍很小,現有技術中靜電夾盤34上方絕緣材料層的厚度通常為400μm-600μm。 The suction between the electrostatic chuck 34 and the substrate 30 satisfies the formula F = k V/d 2 (1), where V is the applied DC voltage and d is the distance between the substrate 30 and the electrode 341, which is the second insulation. The thickness of the material layer 342. Therefore, the best way to increase the suction is to reduce d, but as the thickness of the insulating material layer 342 is reduced, impurities or bubbles in the second insulating material layer 342 may cause the second insulating material layer 342 to be broken down by high voltage. This can cause the electrostatic chuck 34 to break and seriously affect the processing effect of the substrate 30. Therefore, the prior art generally adopts a method of adjusting the voltage to obtain a voltage interval that does not cause the second insulating material layer 342 to break down or the suction force is insufficient. However, the range of the insulating material above the electrostatic chuck 34 in the prior art is usually from 400 μm to 600 μm due to the limitation of the material.

另一方面在等離子處理過程中靜電夾盤34的溫度會頻繁變化,由於導電電極341和第二絕緣材料層342之間熱膨脹係數不同所以會發生相對位移,長時間工作後會導致第二絕緣材料層342上出現裂縫甚至從導電電極341上脫落。為了防止脫落如圖3所示,導電電極341上通常要設置高低不平的較粗糙的上表面以增加第二絕緣材料342和導電電極341之間的接觸面。粗糙的接觸面可以增加兩種材料之間的附著力,所以粗糙度越大 則兩種材料結合更牢固。但是粗糙度越大也會造成導電電極341上表面的突出部尖端放電擊穿第二絕緣材料層342。所以為了防止出現擊穿只能選擇較低粗糙度的導電電極341表面,或者更高厚度的絕緣材料層。這就容易造成絕緣材料層脫落或者吸力不夠的隱患。 On the other hand, the temperature of the electrostatic chuck 34 changes frequently during the plasma processing, and the relative displacement occurs due to the difference in thermal expansion coefficient between the conductive electrode 341 and the second insulating material layer 342, and the second insulating material is caused after a long time of operation. A crack appears on the layer 342 even from the conductive electrode 341. In order to prevent the peeling off, as shown in FIG. 3, a rough upper surface of the unevenness is usually provided on the conductive electrode 341 to increase the contact surface between the second insulating material 342 and the conductive electrode 341. Rough contact surfaces increase the adhesion between the two materials, so the greater the roughness The combination of the two materials is stronger. However, the greater the roughness, the discharge of the tip end of the upper surface of the conductive electrode 341 is broken through the second insulating material layer 342. Therefore, in order to prevent the occurrence of breakdown, only the surface of the conductive electrode 341 of lower roughness can be selected, or a layer of insulating material of a higher thickness. This easily causes the hidden layer of the insulating material or the hidden danger of insufficient suction.

所以等離子處理器的靜電夾盤34在現有技術基礎上存在提高靜電吸力和材料容易擊穿或脫落的矛盾,需要新的技術方案來解決這一矛盾,獲得更高的靜電吸力同時防止絕緣材料擊穿或脫落。 Therefore, the electrostatic chuck 34 of the plasma processor has the contradiction between improving the electrostatic attraction and the material to easily break down or falling off on the basis of the prior art, and requires a new technical solution to solve this contradiction, obtain higher electrostatic attraction and prevent the insulation material from being struck. Wear or fall off.

本發明解決的問題是靜電夾盤絕緣材料層厚度對吸力增加和絕緣效果的影響,造成直流電壓選擇範圍受限。本發明提供一種靜電夾盤,包括:第一絕緣材料層,導電電極,第二絕緣材料層,其中導電電極位於所述第一絕緣材料層、二絕緣材料層中間,第二絕緣材料層上表面用於固定待處理基片,其特徵在於所述第二絕緣材料層為氟金雲母。 The problem solved by the present invention is that the thickness of the insulating material layer of the electrostatic chuck affects the suction force and the insulation effect, resulting in a limited selection range of the DC voltage. The present invention provides an electrostatic chuck comprising: a first insulating material layer, a conductive electrode, and a second insulating material layer, wherein the conductive electrode is located between the first insulating material layer and the second insulating material layer, and the upper surface of the second insulating material layer For fixing a substrate to be processed, characterized in that the second insulating material layer is fluorophlogopite.

其中所述第二絕緣材料層的厚度小於200μm,最佳的是在80μm-150μm之間,以縮短電極與基片的距離增加吸力。 Wherein the thickness of the second insulating material layer is less than 200 μm, and most preferably between 80 μm and 150 μm, to shorten the distance between the electrode and the substrate to increase the suction force.

其中所述靜電夾盤中導電電極與第二絕緣材料層之間接觸面的粗糙度大於0.3μm,最佳的是在0.4μm-0.8μm,以提供兩個材料層的吸附能力。 Wherein the roughness of the contact surface between the conductive electrode and the second insulating material layer in the electrostatic chuck is greater than 0.3 μm, most preferably between 0.4 μm and 0.8 μm, to provide the adsorption capacity of the two material layers.

其中所述第二絕緣材料層上表面還包括一層抗等離子腐蝕層或耐磨材料層,所述抗等離子腐蝕層包括氧化釔或氟化釔,所述耐磨材料層為氧化鋁材料製成,且厚度小於所述第二絕緣材料層。其中所述第一絕緣材料層的材料選自氧化鋁、氮化鋁、氟金雲母之一。 Wherein the upper surface of the second insulating material layer further comprises a layer of anti-plasma etching layer or anti-wearing material, the anti-plasma etching layer comprises cerium oxide or cerium fluoride, and the wear-resistant material layer is made of alumina material. And the thickness is smaller than the second insulating material layer. The material of the first insulating material layer is selected from one of alumina, aluminum nitride, and fluorophlogopite.

本發明還提供了一種靜電夾盤製造方法,包括形成第一絕緣材料層,所述第一絕緣材料層料選自氧化鋁或氮化鋁;在所述第一絕緣材料層上形成導電電極,所述導電電極材料選自鉬或鎢;在所述導電電極上方形成第二絕緣材料層,所述第二絕緣材料層為氟金雲母,其中所述第二絕緣材料層形成方法為物理氣相沉積。其中所述物理氣相沉積方法包括步驟:提供一個反應爐,所述反應爐內包括容納有氟金雲母的坩鍋;提供一個加熱裝置加熱所述坩鍋內的氟金雲母到大於1375℃;將所述形成有導電電極的第一絕緣材料層工件放入與坩鍋相對位置處,使工件具有小於300℃的溫度;本發明靜電夾盤製造方法還可以包括抗等離子腐蝕層形成步驟,在所述第二絕緣材料層上形成一層氧化釔或氟化釔。 The present invention also provides a method for manufacturing an electrostatic chuck, comprising forming a first insulating material layer, the first insulating material layer being selected from aluminum oxide or aluminum nitride; forming a conductive electrode on the first insulating material layer, The conductive electrode material is selected from molybdenum or tungsten; a second insulating material layer is formed over the conductive electrode, and the second insulating material layer is fluorophlogopite, wherein the second insulating material layer is formed by a physical gas phase Deposition. Wherein the physical vapor deposition method comprises the steps of: providing a reaction furnace comprising a crucible containing fluorophlogopite; providing a heating device to heat the fluorophlogopite in the crucible to greater than 1375 ° C; The workpiece of the first insulating material layer formed with the conductive electrode is placed at a position opposite to the crucible to make the workpiece have a temperature of less than 300 ° C; the electrostatic chuck manufacturing method of the present invention may further comprise a step of forming a plasma etching resistant layer, A layer of ruthenium oxide or ruthenium fluoride is formed on the second insulating material layer.

10‧‧‧反應腔 10‧‧‧Reaction chamber

20‧‧‧氣源 20‧‧‧ gas source

30‧‧‧基片 30‧‧‧Substrate

33‧‧‧基座 33‧‧‧Base

34‧‧‧靜電夾盤 34‧‧‧Electrostatic chuck

340‧‧‧第一絕緣材料層 340‧‧‧First insulating material layer

341‧‧‧導電電極 341‧‧‧Conductive electrode

342‧‧‧第二絕緣材料層 342‧‧‧Second layer of insulating material

36‧‧‧邊緣環 36‧‧‧Edge ring

40‧‧‧氣體分佈裝置 40‧‧‧ gas distribution device

100‧‧‧反應爐 100‧‧‧Reaction furnace

110‧‧‧坩鍋 110‧‧‧坩锅

120‧‧‧加熱源 120‧‧‧heat source

134‧‧‧靜電夾盤工件 134‧‧‧Electrical chuck workpiece

圖1是現有技術等離子處理裝置的結構示意圖。 1 is a schematic view showing the structure of a prior art plasma processing apparatus.

圖2是現有技術靜電夾盤結構示意圖。 2 is a schematic view showing the structure of a prior art electrostatic chuck.

圖3是圖2中A處的局部放大圖。 Figure 3 is a partial enlarged view of a portion A in Figure 2 .

圖4是本發明靜電夾盤絕緣材料塗覆裝置。 Figure 4 is an electrostatic chuck insulating material coating apparatus of the present invention.

本發明要解決等離子處理裝置中靜電夾盤吸力和材料容易擊穿或脫落的矛盾,提出用新的材料替代原有氧化鋁(Al2O3)或氮化鋁(AlN)。現有技術中常用的氧化鋁或氮化鋁材料的擊穿特性在40KV/mm,在不改變材料情況下,現有技術靜電夾盤中諸如絕緣層厚度、導電電極表面粗糙度、施加的直流電壓大小等均受到限制可選擇範圍很小,在設計靜電夾盤時必須考慮等離子處理裝置長期運行的需要優化選擇,這些優化選 擇需要大量實驗和分析成本高昂。 The invention solves the contradiction between the electrostatic chuck suction force and the material easily breaking or falling off in the plasma processing device, and proposes to replace the original alumina (Al 2 O 3 ) or aluminum nitride (AlN) with a new material. The breakdown characteristics of alumina or aluminum nitride materials commonly used in the prior art are 40 KV/mm, such as the thickness of the insulating layer, the surface roughness of the conductive electrode, and the magnitude of the applied DC voltage in the prior art electrostatic chuck without changing the material. The selection range is limited, and the design of the electrostatic chuck must be considered in the long-term operation of the plasma processing apparatus. These optimization options require a lot of experimentation and analysis cost.

本發明選用氟金雲母(fluorophlogopite)作為靜電夾盤34的第一絕緣材料層340或者第二絕緣材料層342的構成材料,氟金雲母的擊穿特性為>200kV/mm,相對現有的材料40Kv/mm增強了5倍以上。氟金雲母可以是人工合成的,所以材料性質均一穩定,內含雜質少不易被擊穿,長期使用也能保持其特性。由於本發明第二絕緣材料層342選用了氟金雲母所以第二絕緣材料層342的厚度選擇可以比原有厚度明顯減少到200μm以下(如80μm-150μm),仍能保證在相同直流電壓下不會被擊穿。同時如吸力公式(1)中所表述的,吸力會隨著厚度減小成平方關係的迅速增加,所以厚度減小到原有1/5會使吸力變為原有的25倍,要獲得與現有技術類似的吸力只需要原有電壓幅度的1/25左右。採用本發明氟金雲母的作為靜電夾盤絕緣材料層的材料可以極大的減小絕緣材料層的厚度,也可以採用更低的直流電壓,減小功率損耗的同時保證不會被擊穿。另一方面由於氟金雲母的採用,導電電極上的粗糙度選擇也可以獲得更大的範圍,比如採用表面粗糙度大於0.3μm(如0.4μm-0.8μm)時能夠保證絕緣材料長時間工作不脫落的同時也不會被擊穿。 The invention selects fluorophlogopite as the constituent material of the first insulating material layer 340 or the second insulating material layer 342 of the electrostatic chuck 34, and the breakdown characteristic of the fluorophlogopite is >200 kV/mm, compared with the existing material 40Kv. /mm has been enhanced by more than 5 times. Fluorphlogopite can be artificially synthesized, so the material properties are uniform and stable, and the inclusion of impurities is less likely to be broken down, and its properties can be maintained for long-term use. Since the second insulating material layer 342 of the present invention is selected from the fluorophlogopite, the thickness of the second insulating material layer 342 can be significantly reduced to less than 200 μm (for example, 80 μm to 150 μm), and the same DC voltage can be ensured. Will be broken down. At the same time, as expressed in the suction formula (1), the suction will increase rapidly as the thickness decreases to a square relationship, so reducing the thickness to the original 1/5 will cause the suction to become 25 times the original. Similar suction in the prior art requires only about 1/25 of the original voltage amplitude. The use of the fluorophlogopite of the present invention as a material for the electrostatic chuck insulating material layer can greatly reduce the thickness of the insulating material layer, and can also use a lower DC voltage to reduce power loss while ensuring that it is not broken down. On the other hand, due to the use of fluorophlogopite, the roughness selection on the conductive electrode can also be obtained in a larger range. For example, when the surface roughness is greater than 0.3 μm (such as 0.4 μm-0.8 μm), the insulating material can be ensured for a long time. It will not be broken down at the same time.

由於本發明應用場合需要精確控制其厚度,如果靜電夾盤34上的第二絕緣材料層342不均勻會導致基片30固定時不平,這會導致基片30在進行高精度處理(如CD小於60nm的蝕刻)時圖形失真。同時厚度不均會導致靜電夾盤34上熱阻不同,基片30上的的溫度也會不均勻,基片30處理均一性也會受影響。所以在應用到半導體處理領域中作為靜電夾盤34時,氟金雲母鍍層的厚度在很薄的情況下還必須很均勻。現有技術氟金雲母常 見的為固體片狀或顆粒,這些固體或者顆粒的尺寸遠不能適應半導體領域這種高精度加工的需要。常用的等離子噴塗(plasma spray),可以獲得較均勻的鍍層,但是由於噴塗的顆粒較大,在形成的鍍層內不同顆粒間存在大量孔洞,所以電絕緣性能顯著降低,而且不均勻的孔洞分佈會在不同的區域產生不同的擊穿特性所以仍不能滿足半導體處理裝置的需要。同樣的,用燒結(sinter)方法製備本發明的氟金雲母也會因為顆粒間的孔洞太多無法控制而不適合應用於靜電夾盤上。 Since the application of the present invention requires precise control of its thickness, if the second insulating material layer 342 on the electrostatic chuck 34 is uneven, the substrate 30 may be uneven when it is fixed, which may cause the substrate 30 to be processed with high precision (for example, the CD is less than 60 nm). The etch is) when the graphics are distorted. At the same time, the uneven thickness causes the thermal resistance on the electrostatic chuck 34 to be different, the temperature on the substrate 30 is also uneven, and the uniformity of the processing of the substrate 30 is also affected. Therefore, when applied to the electrostatic chuck 34 in the field of semiconductor processing, the thickness of the fluorophlogopite coating must be uniform even in the case of a very thin film. Prior art fluorophlogopite often Seen as solid flakes or granules, the size of these solids or granules is far from being adapted to the needs of such high precision processing in the semiconductor field. The commonly used plasma spray can obtain a relatively uniform coating, but because of the large particle size, there are a large number of holes between different particles in the formed coating, so the electrical insulation performance is significantly reduced, and the uneven pore distribution will be Different breakdown characteristics are produced in different regions and therefore still fail to meet the needs of semiconductor processing devices. Similarly, the preparation of the fluorophlogopite of the present invention by the sinter method is also unsuitable for application to an electrostatic chuck because the pores between the particles are too much to control.

為此發明人選用一種新的塗覆氟金雲母絕緣層的方法:物理氣相沉積(PVD)。如圖4所示為發明靜電夾盤絕緣材料塗覆裝置,圖中包括反應爐100,位於反應爐100內的坩鍋110,坩鍋110內放置塗覆材料氟金雲母,與坩鍋110相對的上方為待塗覆的靜電夾盤工件134。位於反應爐100側壁的加熱源120向坩鍋110內的塗覆材料發射電子束以加熱氟金雲母固體材料,使其表面溫度大於熔點1375℃,隨後氣化上升。上方的靜電夾盤工件134具有小於300℃的較低溫度(如200℃左右),氣化上升的氟金雲母材料會冷凝沉積在電夾盤工件134表面形成均勻且緻密的絕緣材料層。本發明中的靜電夾盤工件134可以是如圖2中包括第一絕緣材料層340和導電電極341的組合,通過物裡氣相沉積在導電電極341上生長一層第二絕緣材料層342。也可以是第二絕緣材料層342和導電電極341的組合,通過物理氣相沉積生長一第一絕緣材料層340。在進行氟金雲母絕緣材料塗覆時,除了可以用電子束加熱,也可以在坩鍋110下方設置一個加熱器同樣能實現本發明的氟金雲母材料的物理氣相沉積。 To this end, the inventors chose a new method of coating a fluorophlogopite insulating layer: physical vapor deposition (PVD). As shown in FIG. 4, the invention relates to an electrostatic chuck insulation material coating device, which comprises a reaction furnace 100, a crucible 110 located in the reaction furnace 100, and a coating material of fluorophlogopite mica placed in the crucible 110, as opposed to the crucible 110. Above is the electrostatic chuck workpiece 134 to be coated. The heat source 120 located on the side wall of the reaction furnace 100 emits an electron beam to the coating material in the crucible 110 to heat the fluorophlogopite solid material to a surface temperature greater than the melting point of 1375 ° C, followed by gasification. The upper electrostatic chuck workpiece 134 has a lower temperature (e.g., about 200 ° C) of less than 300 ° C, and the vaporized rising fluorophlogopite material is condensed and deposited on the surface of the electric chuck workpiece 134 to form a uniform and dense layer of insulating material. The electrostatic chuck workpiece 134 in the present invention may be a combination of a first insulating material layer 340 and a conductive electrode 341 as shown in FIG. 2, and a second insulating material layer 342 is grown on the conductive electrode 341 by vapor deposition in the object. A combination of the second insulating material layer 342 and the conductive electrode 341 may also be used to grow a first insulating material layer 340 by physical vapor deposition. When the fluorophlogopite insulating material is coated, physical vapor deposition of the fluorophlogopite material of the present invention can be achieved by providing a heater under the crucible 110 in addition to electron beam heating.

由於本發明靜電夾盤34是應用於等離子處理器的,在利用等 離子對基片30進行處理時,靜電夾盤34的部分區域(如邊緣環36與靜電夾盤34之間存在的間隙區域)會暴露於電漿,所以需要對靜電夾盤34表面進行防護。本發明靜電夾盤34上可以在覆蓋有氟金雲母層的基礎上再覆蓋一層抗等離子腐蝕層,典型的如氧化銥Y2O3或者YF3。抗等離子腐蝕層的塗覆方法也可以是上述物理氣相沉積方法。在基片30夾持、去夾持、從靜電夾盤34上移開等動作中會發生基片30與靜電夾盤34的摩擦,由於氟金雲母機械強度不夠所以運行一段時間後會發生嚴重磨損。為了提高採用氟金雲母作為絕緣層材料的靜電夾盤的耐用性,可以在氟金雲母層上表面沉積一個薄層的氧化鋁(Al2O3),其厚度以能夠耐摩擦就可以,比如可以是小於50μm。這樣耐磨材料層和氟金雲母層的總和仍遠小於傳統靜電夾盤的第二絕緣材料層的厚度400μm-600μm。由於防止擊穿的需求主要由氟金雲母層實現了,所以耐磨的氧化鋁薄層沒有這方面的問題,因此氧化鋁薄層可以用各種塗覆方法如:等離子噴塗、燒結、PVD等。 Since the electrostatic chuck 34 of the present invention is applied to a plasma processor, a portion of the electrostatic chuck 34 (such as a gap region between the edge ring 36 and the electrostatic chuck 34) is treated when the substrate 30 is processed by plasma. It will be exposed to the plasma, so the surface of the electrostatic chuck 34 needs to be protected. The electrostatic chuck 34 of the present invention may be coated with a layer of anti-plasma corrosion on the basis of a layer covered with a fluorophlogopite, typically such as yttrium oxide Y 2 O 3 or YF 3 . The coating method of the plasma etching resistant layer may also be the above physical vapor deposition method. The friction between the substrate 30 and the electrostatic chuck 34 occurs when the substrate 30 is clamped, removed, or removed from the electrostatic chuck 34. Since the mechanical strength of the fluorophlogopite is insufficient, the operation may occur after a certain period of operation. abrasion. In order to improve the durability of the electrostatic chuck using fluorophlogopite as the insulating layer material, a thin layer of alumina (Al 2 O 3 ) may be deposited on the surface of the fluorophlogopite layer, the thickness of which can be resistant to friction, such as It can be less than 50 μm. Thus, the sum of the wear resistant material layer and the fluorophlogopite layer is still much smaller than the thickness of the second insulating material layer of the conventional electrostatic chuck of 400 μm to 600 μm. Since the demand for preventing breakdown is mainly achieved by the fluorophlogopite layer, the wear-resistant alumina thin layer has no such problem, and thus the alumina thin layer can be coated by various coating methods such as plasma spraying, sintering, PVD, and the like.

本發明利用氟金雲母,特別是利用物理氣相沉積的氟金雲母作為靜電夾盤的絕緣材料層,可以顯著的降低絕緣層厚度,減小直流電壓幅度,增加絕緣材料層和導電電極之間的吸附力,同時還能保證絕緣材料層的均勻。 The invention utilizes fluorophlogopite, especially the fluorophlogopite which is deposited by physical vapor deposition as the insulating material layer of the electrostatic chuck, can significantly reduce the thickness of the insulating layer, reduce the DC voltage amplitude, and increase the between the insulating material layer and the conductive electrode. The adsorption force also ensures the uniformity of the insulating material layer.

雖然本發明披露如上,但本發明並非限定於此。任何本領域技術人員,在不脫離本發明的精神和範圍內,均可作各種更動與修改,因此本發明的保護範圍應當以申請專利範圍所限定的範圍為準。 Although the present invention has been disclosed above, the present invention is not limited thereto. Any changes and modifications may be made by those skilled in the art without departing from the spirit and scope of the invention, and the scope of the invention should be determined by the scope of the claims.

340‧‧‧第一絕緣材料層 340‧‧‧First insulating material layer

341‧‧‧導電電極 341‧‧‧Conductive electrode

342‧‧‧第二絕緣材料層 342‧‧‧Second layer of insulating material

Claims (10)

一種靜電夾盤,包括:第一絕緣材料層、導電電極、第二絕緣材料層,其中導電電極位於所述第一絕緣材料層、第二絕緣材料層中間,第二絕緣材料層上表面用於固定待處理基片,其特徵在於:所述第二絕緣材料層為氟金雲母。 An electrostatic chuck includes: a first insulating material layer, a conductive electrode, and a second insulating material layer, wherein the conductive electrode is located between the first insulating material layer and the second insulating material layer, and the upper surface of the second insulating material layer is used for The substrate to be processed is fixed, characterized in that the second insulating material layer is fluorophlogopite. 如請求項1所述的靜電夾盤,其中,所述第二絕緣材料層的厚度小於200μm。 The electrostatic chuck according to claim 1, wherein the second insulating material layer has a thickness of less than 200 μm. 如請求項2所述的靜電夾盤,其特徵在於,所述第二絕緣材料層厚度在80μm-150μm之間。 The electrostatic chuck according to claim 2, wherein the second insulating material layer has a thickness of between 80 μm and 150 μm. 如請求項1所述靜電夾盤,其中,所述導電電極與第二絕緣材料層之間接觸面的粗糙度大於0.3μm。 The electrostatic chuck according to claim 1, wherein a roughness of a contact surface between the conductive electrode and the second insulating material layer is greater than 0.3 μm. 如請求項4所述的靜電夾盤,其中,所述導電電極與第二絕緣材料層之間接觸面的粗糙度為0.4μm-0.8μm。 The electrostatic chuck according to claim 4, wherein a roughness of a contact surface between the conductive electrode and the second insulating material layer is from 0.4 μm to 0.8 μm. 如請求項1所述的靜電夾盤,其中,所述第二絕緣材料層上表面還包括一層抗等離子腐蝕層或耐磨材料層,所述抗等離子腐蝕層包括氧化釔或氟化釔,所述耐磨材料層為氧化鋁材料製成,且厚度小於所述第二絕緣材料層。 The electrostatic chuck according to claim 1, wherein the upper surface of the second insulating material layer further comprises a layer of anti-plasma etching layer or a wear resistant material, and the anti-plasma etching layer comprises cerium oxide or lanthanum fluoride. The layer of wear resistant material is made of an alumina material and has a thickness smaller than that of the second layer of insulating material. 如請求項1所述的靜電夾盤,其中,所述第一絕緣材料層的材料選自氧化鋁、氮化鋁、氟金雲母其中之一。 The electrostatic chuck according to claim 1, wherein the material of the first insulating material layer is selected from one of alumina, aluminum nitride, and fluorophlogopite. 一種靜電夾盤製造方法,包括形成第一絕緣材料層,所述第一絕緣材料層料選自氧化鋁或氮化鋁;在所述第一絕緣材料層上形成導電電極,所述導電電極材料選自鉬或鎢;在所述導電電極上方形成第二絕緣材料層,所述第二絕緣材料層為氟金雲母,其中所述第二絕緣材料層形成方法為物理氣相沉積。 A method for manufacturing an electrostatic chuck, comprising forming a first insulating material layer selected from aluminum oxide or aluminum nitride; forming a conductive electrode on the first insulating material layer, the conductive electrode material Selecting from molybdenum or tungsten; forming a second insulating material layer over the conductive electrode, the second insulating material layer being fluorophlogopite, wherein the second insulating material layer forming method is physical vapor deposition. 如請求項8所述靜電夾盤製造方法,其中,所述物理氣相沉積方法包括步驟:提供一個反應爐,所述反應爐內包括容納有氟金雲母的坩鍋; 提供一個加熱裝置加熱所述坩鍋內的氟金雲母到大於1375℃;將所述形成有導電電極的第一絕緣材料層工件放入與坩鍋相對位置處,使工件具有小於300℃的溫度。 The electrostatic chuck manufacturing method according to claim 8, wherein the physical vapor deposition method comprises the steps of: providing a reaction furnace comprising a crucible containing fluorophlogopite; Providing a heating device for heating the fluorophlogopite in the crucible to greater than 1375 ° C; placing the first insulating material layer forming the conductive electrode in a position opposite to the crucible, so that the workpiece has a temperature of less than 300 ° C . 如請求項8所述靜電夾盤製造方法,其中,還包括抗等離子腐蝕層形成步驟,在所述第二絕緣材料層上形成一層氧化釔或氟化釔。 The electrostatic chuck manufacturing method according to claim 8, further comprising a plasma etching resistant layer forming step of forming a layer of tantalum oxide or hafnium fluoride on the second insulating material layer.
TW103145981A 2014-06-12 2014-12-29 A method for manufacturing electrostatic chuck and electrostatic chuck TWI545688B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410261390.8A CN105225997B (en) 2014-06-12 2014-06-12 A kind of manufacture method of electrostatic chuck and electrostatic chuck

Publications (2)

Publication Number Publication Date
TW201546950A TW201546950A (en) 2015-12-16
TWI545688B true TWI545688B (en) 2016-08-11

Family

ID=54994862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103145981A TWI545688B (en) 2014-06-12 2014-12-29 A method for manufacturing electrostatic chuck and electrostatic chuck

Country Status (2)

Country Link
CN (1) CN105225997B (en)
TW (1) TWI545688B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326253B2 (en) 2016-04-27 2022-05-10 Applied Materials, Inc. Atomic layer deposition of protective coatings for semiconductor process chamber components
US9850573B1 (en) 2016-06-23 2017-12-26 Applied Materials, Inc. Non-line of sight deposition of erbium based plasma resistant ceramic coating
US10186400B2 (en) 2017-01-20 2019-01-22 Applied Materials, Inc. Multi-layer plasma resistant coating by atomic layer deposition
US11279656B2 (en) 2017-10-27 2022-03-22 Applied Materials, Inc. Nanopowders, nanoceramic materials and methods of making and use thereof
US10443126B1 (en) 2018-04-06 2019-10-15 Applied Materials, Inc. Zone-controlled rare-earth oxide ALD and CVD coatings
US11667575B2 (en) 2018-07-18 2023-06-06 Applied Materials, Inc. Erosion resistant metal oxide coatings
JP6587223B1 (en) * 2018-07-30 2019-10-09 Toto株式会社 Electrostatic chuck
US11180847B2 (en) 2018-12-06 2021-11-23 Applied Materials, Inc. Atomic layer deposition coatings for high temperature ceramic components
US10858741B2 (en) 2019-03-11 2020-12-08 Applied Materials, Inc. Plasma resistant multi-layer architecture for high aspect ratio parts
TWI765518B (en) * 2021-01-07 2022-05-21 財團法人工業技術研究院 Electrostatic chuck and method for manufacturing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5325261A (en) * 1991-05-17 1994-06-28 Unisearch Limited Electrostatic chuck with improved release
AU2451897A (en) * 1996-04-10 1997-10-29 Virginia Tech Intellectual Properties, Inc. Process for providing a glass-ceramic dielectric layer on an electrically conductive substrate and electrostatic chucks made by the process
US6875927B2 (en) * 2002-03-08 2005-04-05 Applied Materials, Inc. High temperature DC chucking and RF biasing cable with high voltage isolation for biasable electrostatic chuck applications
KR101058748B1 (en) * 2008-09-19 2011-08-24 주식회사 아토 Electrostatic chuck and its manufacturing method
US9181619B2 (en) * 2010-02-26 2015-11-10 Fujifilm Corporation Physical vapor deposition with heat diffuser
US20120196242A1 (en) * 2011-01-27 2012-08-02 Applied Materials, Inc. Substrate support with heater and rapid temperature change
US20120227667A1 (en) * 2011-03-10 2012-09-13 Applied Materials, Inc. Substrate carrier with multiple emissivity coefficients for thin film processing

Also Published As

Publication number Publication date
TW201546950A (en) 2015-12-16
CN105225997B (en) 2018-01-23
CN105225997A (en) 2016-01-06

Similar Documents

Publication Publication Date Title
TWI545688B (en) A method for manufacturing electrostatic chuck and electrostatic chuck
US11680308B2 (en) Plasma erosion resistant rare-earth oxide based thin film coatings
TWI673823B (en) Ceramic heater and esc with enhanced wafer edge performance
TWI389248B (en) Plasma resistant coatings for plasma chamber components
US8619406B2 (en) Substrate supports for semiconductor applications
US20150311043A1 (en) Chamber component with fluorinated thin film coating
CN103794460A (en) Coating used for improving semiconductor device performance
US20140177123A1 (en) Single-body electrostatic chuck
TWI657529B (en) Electrostatic chuck, manufacturing method thereof and plasma processing device
TWI593011B (en) Edge ring assembly for plasma processing chamber and method of manufacture thereof
KR20010015664A (en) Insulating ceramic coated metallic part in a plasma sputter reactor
TW201417211A (en) Performance enhancement of coating packaged esc for semiconductor apparatus
KR20070085946A (en) Encapsulated wafer processing device and process for making thereof
TWI738455B (en) Method and product for processing electrostatic chuck using atomic layer deposition process, and operation method of plasma processing device
US20180240649A1 (en) Surface coating for plasma processing chamber components
WO2017099919A1 (en) Amalgamated cover ring
CN104241183A (en) Manufacturing method of electrostatic suction cup, electrostatic suction cup and plasma processing device
US11309208B2 (en) Electrostatic chuck and method for manufacturing protrusions thereof
CN104241181A (en) Method for manufacturing electrostatic chuck, electrostatic chuck and plasma processing device thereof
WO2019152528A1 (en) Electrostatic chuck (esc) pedestal voltage isolation
KR100677169B1 (en) The Electrostatic Churk for Flat Panel Display
CN219626626U (en) Electrostatic chuck and plasma processing apparatus
US20230051800A1 (en) Methods and apparatus for plasma spraying silicon carbide coatings for semiconductor chamber applications
WO2020252020A1 (en) Sealant coating for plasma processing chamber components