TWI545229B - Ozone generating system by water electrolysis and ozone producing device thereof - Google Patents

Ozone generating system by water electrolysis and ozone producing device thereof Download PDF

Info

Publication number
TWI545229B
TWI545229B TW102125532A TW102125532A TWI545229B TW I545229 B TWI545229 B TW I545229B TW 102125532 A TW102125532 A TW 102125532A TW 102125532 A TW102125532 A TW 102125532A TW I545229 B TWI545229 B TW I545229B
Authority
TW
Taiwan
Prior art keywords
super
oxygen
layer
catalyst layer
gas diffusion
Prior art date
Application number
TW102125532A
Other languages
Chinese (zh)
Other versions
TW201504476A (en
Inventor
鐘國濱
葉佳鎮
呂宥霆
徐昇彥
蘇奕儒
林智遠
Original Assignee
元智大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元智大學 filed Critical 元智大學
Priority to TW102125532A priority Critical patent/TWI545229B/en
Publication of TW201504476A publication Critical patent/TW201504476A/en
Application granted granted Critical
Publication of TWI545229B publication Critical patent/TWI545229B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

水電解之超氧生成系統及其超氧製造裝置 Super oxygen generation system for water electrolysis and super oxygen production device thereof

本發明有關於水電解之超氧生成系統,特別是有關於利用超氧製造裝置的水電解之超氧生成系統。 The present invention relates to a super-oxygen generation system for water electrolysis, and more particularly to a super-oxygen generation system for water electrolysis using a super-oxygen production apparatus.

在近年的醫療科技中,超氧係為的一種公認安全、乾淨以及強效的氧化劑,目前已被廣泛運用製造消毒或解毒的用途上,其應用範圍廣及個人口腔衛生、居家清潔與洗滌,更甚至於工業加工或者廢水處理方面的使用。 In recent years, in the medical technology, superoxide is a recognized safe, clean and powerful oxidant, which has been widely used in the manufacture of disinfection or detoxification. It has a wide range of applications and personal oral hygiene, home cleaning and washing. Even more in industrial processing or wastewater treatment.

傳統用以快速製造超氧的方式大致可分為紫外線法、無聲放電法、尖端放電法等。紫外線法係利用紫外線對空氣中的氧分子(O2)作用而產生微量的超氧,其是由一個氧分子(O2)和氧原子(O)結合成三氧原子的物質(O3)。無聲放電法則是利用石英玻璃管、耐熱玻璃、陶瓷、不鏽鋼等誘電體,當直流高壓高頻電流通過時,與接地電極產生放電電暈現象,以電撃通過之空氣而產生分解反應,將氧分子(O2)之鏈鍵撃潰形成氧原子(從3O2成為2O3(以得到臭氧。尖端放電法則是利用電子變壓器產生高壓,並利用多根金屬針以尖端放電形成如同閃電電撃之電離作用,將氧分子(O2)之鏈鍵撃潰形成帶負電的氧原子(O),而氧原子再與空氣中的氧分子結合即可得臭氧(O3)。 Conventionally, the method for rapidly manufacturing super oxygen can be roughly classified into an ultraviolet method, a silent discharge method, a tip discharge method, and the like. The ultraviolet method uses ultraviolet rays to act on oxygen molecules (O 2 ) in the air to generate a trace amount of superoxide, which is a substance (O 3 ) in which an oxygen molecule (O 2 ) and an oxygen atom (O) are combined to form a trioxygen atom. . The silent discharge method utilizes a quartz glass tube, a heat-resistant glass, a ceramic, a stainless steel or the like. When a DC high-voltage high-frequency current passes, a discharge corona phenomenon is generated with the ground electrode, and a decomposition reaction is generated by the air passing through the electricity, and the oxygen molecule is generated. The chain bond of (O 2 ) collapses to form an oxygen atom (from 3O 2 to 2O 3 (to obtain ozone. The tip discharge method uses an electronic transformer to generate high voltage, and uses a plurality of metal needles to form a tip discharge to form an ionization effect like a lightning bolt). The oxygen bond (O 2 ) is cleaved to form a negatively charged oxygen atom (O), and the oxygen atom is combined with oxygen molecules in the air to obtain ozone (O 3 ).

然而,上述不論是紫外線法、無聲放電法甚至於是尖端放電法都是利用空氣中的氧分子為原料來作為電擊分解成帶負電的氧 原子,而空氣中除氧氣外,更存在著大量的氮氣,所以在電擊解離作用中,也會電擊到空氣中的氮氣進而產生氮氧化合物,更容易因空氣中的濕氣結合成對人體有害的亞硝酸類物質。 However, the above-mentioned ultraviolet method, silent discharge method or even tip discharge method utilizes oxygen molecules in the air as raw materials to be decomposed into negatively charged oxygen by electric shock. Atoms, in addition to oxygen in the air, there is a large amount of nitrogen, so in the electric shock dissociation, it will also strike the nitrogen in the air to produce nitrogen oxides, which is more likely to be harmful to the human body due to the moisture in the air. Nitrous acid.

本發明實施例提供一種水電解之超氧生成系統,設置於本體中,本體具有電壓源以及第一流體輸入端,水電解之超氧生成系統包括超氧製造裝置與氣體收集裝置,氣體收集裝置連接於超氧製造裝置。超氧製造裝置包括陽極觸媒層、陰極觸媒層、質子交換膜、陽極氣體擴散層、陰極氣體擴散層、微孔層以及抗蝕層。陽極觸媒層與陰極觸媒層分別接收電壓源之正電壓以及負電壓以構成迴路,質子交換膜配置於陽極觸媒層與陰極觸媒層之間,陽極氣體擴散層設置於陽極觸媒層之同側,陰極氣體擴散層設置於陰極觸媒層之同側,微孔層設置於陰極觸媒層與陰極氣體擴散層之間,以及抗蝕層設置於陽極氣體擴散層與陽極觸媒層之間。超氧製造裝置電解經由第一流體輸入端所灌入的純水,並於陽極觸媒層與陰極觸媒層分別產生超氧與氫氣。氣體收集裝置接收氧製造裝置所產生之超氧與氫氣。 Embodiments of the present invention provide a super-oxygen generation system for water electrolysis, which is disposed in a body, the body has a voltage source and a first fluid input end, and the super-oxygen generation system for water electrolysis comprises a super-oxygen production device and a gas collection device, and the gas collection device Connected to a super oxygen manufacturing unit. The superoxide manufacturing apparatus includes an anode catalyst layer, a cathode catalyst layer, a proton exchange membrane, an anode gas diffusion layer, a cathode gas diffusion layer, a microporous layer, and a resist layer. The anode catalyst layer and the cathode catalyst layer respectively receive a positive voltage and a negative voltage of the voltage source to form a loop, the proton exchange membrane is disposed between the anode catalyst layer and the cathode catalyst layer, and the anode gas diffusion layer is disposed on the anode catalyst layer On the same side, the cathode gas diffusion layer is disposed on the same side of the cathode catalyst layer, the microporous layer is disposed between the cathode catalyst layer and the cathode gas diffusion layer, and the resist layer is disposed on the anode gas diffusion layer and the anode catalyst layer between. The super-oxygen production device electrolyzes pure water poured through the first fluid input end, and generates super-oxygen and hydrogen gas respectively in the anode catalyst layer and the cathode catalyst layer. The gas collection device receives super oxygen and hydrogen generated by the oxygen production device.

本發明實施例提供一種超氧製造裝置,用於水電解之超氧生成系統,超氧生成系統設置於本體中並具有電壓源以及氣體收集裝置,本體具有第一流體輸入端,超氧製造裝置包括陽極觸媒層、陰極觸媒層、質子交換膜、陽極氣體擴散層、陰極氣體擴散層、微孔層以及抗蝕層。陽極觸媒層與陰極觸媒層分別接收電壓源之正電壓以及負電壓,質子交換膜配置於陽極觸媒層與陰極觸媒層之間,陽極氣體擴散層設置於陽極觸媒層之同側,陰極氣體擴散層設置於陰極觸媒層之同側,微孔層設置於陰極觸媒層與陰極氣體擴散層之間,以及抗蝕層設置於陽極氣體擴散層與陽極觸媒 層之間。超氧製造裝置經由第一流體輸入端灌入純水後,將純水電解於陽極觸媒層與陰極觸媒層分別產生超氧與氫氣。氣體收集裝置接收超氧製造裝置所產生之超氧與氫氣。 An embodiment of the present invention provides a super oxygen production device for a super-oxygen generation system for water electrolysis. The super-oxygen generation system is disposed in the body and has a voltage source and a gas collection device. The body has a first fluid input end, and the super-oxygen production device The anode catalyst layer, the cathode catalyst layer, the proton exchange membrane, the anode gas diffusion layer, the cathode gas diffusion layer, the microporous layer, and the resist layer are included. The anode catalyst layer and the cathode catalyst layer respectively receive a positive voltage and a negative voltage of the voltage source, the proton exchange membrane is disposed between the anode catalyst layer and the cathode catalyst layer, and the anode gas diffusion layer is disposed on the same side of the anode catalyst layer The cathode gas diffusion layer is disposed on the same side of the cathode catalyst layer, the microporous layer is disposed between the cathode catalyst layer and the cathode gas diffusion layer, and the resist layer is disposed on the anode gas diffusion layer and the anode catalyst Between the layers. After the super-oxygen production device is filled with pure water through the first fluid input end, pure water is electrolyzed to the anode catalyst layer and the cathode catalyst layer to generate super oxygen and hydrogen, respectively. The gas collection device receives super oxygen and hydrogen generated by the super oxygen production device.

綜合上所述,本發明實施例所提供的水電解之超氧生成系統與超氧製造裝置在高電壓環境下,利用所設置的抗蝕層保護陽極氣體擴散層之結構,避免受到所產生的超氧破壞以及造成超氧生成濃度下降。同時,能夠有效提升整體超氧製造裝置的使用壽命,降低超氧生成的成本。 In summary, the super-oxygen generation system and the super-oxygen production device for water electrolysis provided by the embodiments of the present invention protect the structure of the anode gas diffusion layer by using the provided resist layer in a high voltage environment, thereby avoiding the occurrence of the generated Superoxide destruction and a decrease in superoxide production concentration. At the same time, it can effectively improve the service life of the overall super oxygen manufacturing device and reduce the cost of super oxygen generation.

為使能更進一步瞭解本發明之特徵及技術內容,請參閱以下有關本發明之詳細說明與附圖,但是此等說明與所附圖式僅係用來說明本發明,而非對本發明的權利範圍作任何的限制。 The detailed description of the present invention and the accompanying drawings are to be understood by the claims The scope is subject to any restrictions.

1、2、314、414‧‧‧超氧製造裝置 1, 2, 314, 414‧‧‧ super oxygen manufacturing equipment

313、413‧‧‧氣體收集裝置 313, 413‧‧‧ gas collection device

3131、4131‧‧‧氫氣儲存子單元 3131, 4131‧‧‧ Hydrogen storage subunit

3132、4132‧‧‧超氧儲存子單元 3132, 4132‧‧‧ superoxide storage subunit

415‧‧‧超氧水生成裝置 415‧‧‧Superoxide water generator

416‧‧‧富氫水生成裝置 416‧‧‧ Hydrogen-rich water generating device

3‧‧‧超氧生成系統 3‧‧‧Super Oxygen Generation System

4‧‧‧超氧水生成系統 4‧‧‧Superoxide water generation system

11、21、311、411‧‧‧電壓源 11, 21, 311, 411‧‧ ‧ voltage source

12、22‧‧‧質子交換膜 12, 22‧‧‧ Proton exchange membrane

13a、23a‧‧‧陽極觸媒層 13a, 23a‧‧‧Anode catalyst layer

13b、23b‧‧‧陰極觸媒層 13b, 23b‧‧‧ Cathode catalyst layer

14、24、312、412a‧‧‧第一流體輸入端 14, 24, 312, 412a‧‧‧ first fluid input

412b‧‧‧第二流體輸入端 412b‧‧‧Second fluid input

412c‧‧‧第三流體輸入端 412c‧‧‧ third fluid input

15a、25a‧‧‧陽極氣體擴散層 15a, 25a‧‧‧ anode gas diffusion layer

15b、25b‧‧‧陰極氣體擴散層 15b, 25b‧‧‧ cathode gas diffusion layer

16、17、26、27‧‧‧氣體輸出端 16, 17, 26, 27‧‧‧ gas output

28‧‧‧抗蝕層 28‧‧‧resist

29‧‧‧微孔層 29‧‧‧Microporous layer

31、41‧‧‧本體 31, 41‧‧‧ ontology

311a、411a‧‧‧正電壓端 311a, 411a‧‧‧ positive voltage terminal

311b、411b‧‧‧負電壓端 311b, 411b‧‧‧ negative voltage terminal

圖1為傳統超氧製造裝置反應示意圖;圖2A為本發明實施例之超氧製造裝置示意圖;圖2B為圖2A所述之超氧製造裝置內部元件結構示意圖;圖3為本發明實施例之水電解超氧生成系統示意圖;圖4為本發明實施例之水電解超氧水生成系統示意圖。 1 is a schematic view of a conventional super oxygen production apparatus; FIG. 2A is a schematic diagram of a super oxygen production apparatus according to an embodiment of the present invention; FIG. 2B is a schematic diagram of internal components of the super oxygen production apparatus shown in FIG. 2A; Schematic diagram of a water electrolysis super-oxygen generation system; FIG. 4 is a schematic diagram of a water electrolysis super-oxygen water generation system according to an embodiment of the present invention.

本發明利用水電解法來製造超氧避免上述製造超氧所帶來的害處。請參照圖1,圖1是傳統的超氧製造裝置示意圖。超氣製造裝置1包括陽極觸媒層13a、陰極觸媒層13b與質子交換膜12。陽極觸媒層13a與陰極觸媒層13b分別連接電壓源11之正、負電壓以構成迴路。在陽極觸媒層13a與陰極觸媒層13b更分別設置陽極氣體擴散層15a與陰極氣體擴散層15b。一般來說,在水電解生成氧氣與氫氣的環境下,電壓源11通常僅僅需要2.0伏特至2.5伏特之間即可製造並於氣體輸出端16獲得濃度高的氧氣以及微量的超氧氣體(與氧氣含量相比可以忽略)以及於氣體輸出端17獲得氫 氣,但在低電壓的環境下並不符合製造超氧氣體,原因就在於所產生的超氧氣體量太低。因此雖然水電解法已被廣泛地使用在氣體生成上,但應用於製作超氧氣體以及製作新式超氧製造裝置與相關的超氧生成系統仍是本領域人員研發的課題。 The present invention utilizes water electrolysis to produce super oxygen to avoid the harm caused by the above-mentioned superoxide production. Please refer to FIG. 1. FIG. 1 is a schematic view of a conventional super oxygen manufacturing apparatus. The super gas production apparatus 1 includes an anode catalyst layer 13a, a cathode catalyst layer 13b, and a proton exchange membrane 12. The anode catalyst layer 13a and the cathode catalyst layer 13b are respectively connected to the positive and negative voltages of the voltage source 11 to constitute a loop. An anode gas diffusion layer 15a and a cathode gas diffusion layer 15b are provided in the anode catalyst layer 13a and the cathode catalyst layer 13b, respectively. In general, in the environment where water is electrolyzed to generate oxygen and hydrogen, the voltage source 11 usually only needs to be manufactured between 2.0 volts and 2.5 volts and obtains a high concentration of oxygen and a trace amount of superoxide gas at the gas output end 16 (and Oxygen content is negligible compared to) and hydrogen is obtained at gas output 17 Gas, but in a low-voltage environment, does not conform to the manufacture of super-oxygen gas, because the amount of super-oxygen gas produced is too low. Therefore, although water electrolysis has been widely used for gas generation, it has been a subject of research and development in the art to apply superoxide gas and to manufacture a new super-oxygen production apparatus and related super-oxygen generation system.

〔超氧製造裝置的實施例〕 [Embodiment of Superoxide Manufacturing Apparatus]

請同時參照圖2A與2B,圖2A為本發明實施例的超氧製造裝置示意圖。圖2B為圖2A所述之超氧製造裝置2內部元件結構示意圖。圖2A中示出超氧製造裝置2包括陽極觸媒層23a、陰極觸媒層23b、質子交換膜22、陽極氣體擴散層25a、陰極氣體擴散層25b、微孔層29以及抗蝕層28。陽極觸媒層23a接收電壓源21之正電壓,陰極觸媒層23b接收電壓源21之負電壓,質子交換膜22配置於陽極觸媒層23a與陰極觸媒層23b之間,陽極氣體擴散層25a設置於陽極觸媒層23a之同側,陰極氣體擴散層25b設置於陰極觸媒層23b之同側,微孔層29設置於陰極觸媒層23a與陰極氣體擴散層25b之間,以及抗蝕層28設置於陽極氣體擴散層25a與陽極觸媒層23a之間。超氧製造裝置具有複數個墊片以及外殼(圖未示)用以固定陽極觸媒層23a、陰極觸媒層23b、陽極氣體擴散層25a以及陰極氣體擴散層25b的連結結構。 2A and 2B, FIG. 2A is a schematic diagram of a super oxygen manufacturing apparatus according to an embodiment of the present invention. FIG. 2B is a schematic view showing the internal components of the super oxygen manufacturing apparatus 2 of FIG. 2A. 2A shows a superoxide manufacturing apparatus 2 including an anode catalyst layer 23a, a cathode catalyst layer 23b, a proton exchange membrane 22, an anode gas diffusion layer 25a, a cathode gas diffusion layer 25b, a microporous layer 29, and a resist layer 28. The anode catalyst layer 23a receives the positive voltage of the voltage source 21, the cathode catalyst layer 23b receives the negative voltage of the voltage source 21, and the proton exchange membrane 22 is disposed between the anode catalyst layer 23a and the cathode catalyst layer 23b, and the anode gas diffusion layer 25a is disposed on the same side of the anode catalyst layer 23a, the cathode gas diffusion layer 25b is disposed on the same side of the cathode catalyst layer 23b, and the microporous layer 29 is disposed between the cathode catalyst layer 23a and the cathode gas diffusion layer 25b, and is resistant. The etch layer 28 is disposed between the anode gas diffusion layer 25a and the anode catalyst layer 23a. The super-oxygen production apparatus has a plurality of shims and a casing (not shown) for fixing the connection structure of the anode catalyst layer 23a, the cathode catalyst layer 23b, the anode gas diffusion layer 25a, and the cathode gas diffusion layer 25b.

復參閱圖2B,由圖2B可以更清楚看到,質子交換膜22位於最中間。圖中質子交換膜22左側為接收電壓源21之正電壓的陽極側,質子交換膜22右側為接收電壓源21之負電壓的陰極側。最靠近中間質子交換膜22的為陽極側的陽極觸媒層23a與陰極側的陰極觸媒層23b,以及陽極氣體擴散層25a與陰極氣體擴散層25b分別於陽極觸媒層23a與陰極觸媒層23b的外側。另外,更於陽極氣體擴散層25a旁邊設置抗蝕層28,詳細地說,抗蝕層28設置於陽極氣體擴散層25a的右側與陽極觸媒層23a的左側。 Referring again to Figure 2B, it can be seen more clearly from Figure 2B that the proton exchange membrane 22 is located in the middle. In the figure, the left side of the proton exchange membrane 22 is the anode side receiving the positive voltage of the voltage source 21, and the right side of the proton exchange membrane 22 is the cathode side receiving the negative voltage of the voltage source 21. The anode catalyst layer 23a on the anode side and the cathode catalyst layer 23b on the cathode side closest to the intermediate proton exchange membrane 22, and the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b are respectively on the anode catalyst layer 23a and the cathode catalyst. The outside of layer 23b. Further, a resist layer 28 is provided beside the anode gas diffusion layer 25a. Specifically, the resist layer 28 is provided on the right side of the anode gas diffusion layer 25a and the left side of the anode catalyst layer 23a.

在水電解生成超氧的環境下,一般電壓2.0伏特至2.5之間伏特所產生的超氧濃度不佳,並不符合經濟效益,因此本發明實施 例中所使用之電壓源21係為3伏特至6伏特之間,用以提高水電解反應所生成的超氧濃度。 In the environment where water electrolysis generates super oxygen, the super-oxygen concentration generated by a voltage of generally between 2.0 volts and 2.5 volts is not good, which is not economical, and therefore the present invention is implemented. The voltage source 21 used in the example is between 3 volts and 6 volts to increase the concentration of super oxygen generated by the water electrolysis reaction.

在本實施例中,質子交換膜21主要以高氟化離子交換樹脂(Nafion)構成,係為用以傳輸質子的電解質膜。在質子交換膜21的兩側分別是陽極觸媒層23a與陰極觸媒層23b,陽極觸媒層23a材料通常以二氧化鉛為主,而陰極觸媒層23b材料通常以鉑/碳等觸媒粉粒所製成。陽極觸媒層23a與陰極觸媒層23b的電化學反應分別於這兩層中進行,使得陽極觸媒層23a與陰極觸媒層23b分別產生超氧與氫氣。下列為陰、陽極之反應式:陽極半反應:3H2O→O3+6H++6e-(1.51V),陰極半反應:2H++2e-→H2In the present embodiment, the proton exchange membrane 21 is mainly composed of a highly fluorinated ion exchange resin (Nafion) and is an electrolyte membrane for transporting protons. On both sides of the proton exchange membrane 21 are an anode catalyst layer 23a and a cathode catalyst layer 23b, respectively. The anode catalyst layer 23a is usually made of lead dioxide, and the cathode catalyst layer 23b is usually made of platinum/carbon. Made of granules. The electrochemical reaction of the anode catalyst layer 23a and the cathode catalyst layer 23b is performed in the two layers, respectively, so that the anode catalyst layer 23a and the cathode catalyst layer 23b generate super oxygen and hydrogen, respectively. The following is a female, the anode reaction: Half-reaction at the anode: 3H 2 O → O 3 + 6H + + 6e - (1.51V), the cathode half reaction: 2H + + 2e - → H 2.

在本實施例中,分別設置陽極氣體擴散層25a與陰極氣體擴散層25b於陽極觸媒層23a與陰極觸媒層23b外側,陽極氣體擴散層25a與陰極氣體擴散層25b通常都使用碳紙或碳布等低孔隙度、多孔結構的親、疏水性材料,以避免水分阻塞氣體通道,妨礙氣體傳輸,使陽極觸媒層23a與陰極觸媒層23b能夠均勻的產生反應,提升反應物產生速率。反應物即經由陽極氣體擴散層25a與陰極氣體擴散層25b傳輸至陽極觸媒層23a與陰極觸媒層23b,而陽極觸媒層23a與陰極觸媒層23b的產生物亦經由陽極氣體擴散層25a與陰極氣體擴散層25b排出。 In the present embodiment, the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b are respectively disposed outside the anode catalyst layer 23a and the cathode catalyst layer 23b, and the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b are usually made of carbon paper or A low-porosity, porous structure of hydrophilic or hydrophobic material such as carbon cloth to prevent moisture from clogging the gas passage, hindering gas transmission, and uniformly reacting the anode catalyst layer 23a and the cathode catalyst layer 23b to increase the reaction rate. . The reactants are transmitted to the anode catalyst layer 23a and the cathode catalyst layer 23b via the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b, and the products of the anode catalyst layer 23a and the cathode catalyst layer 23b also pass through the anode gas diffusion layer. 25a is discharged from the cathode gas diffusion layer 25b.

舉例來說,如圖2所示,超氧製造裝置2透過第一流體輸入端24將純水輸入,經由陽極氣體擴散層25a與陰極氣體擴散層25b傳輸至陽極觸媒層23a與陰極觸媒層23b。經由陽極觸媒層23a與陰極觸媒層23b與電壓源21所形成的迴路進而產生的電解反應,將純水電解並分別於陽極觸媒層23a與陰極觸媒層23b產生超氧與氫氣。所產生的超氧與氫氣亦經由陽極氣體擴散層25a與陰極氣體擴散層25b排出,此時則藉由氣體輸出端26、27分別將超氧與氫氣做收集的動作。 For example, as shown in FIG. 2, the super-oxygen manufacturing apparatus 2 inputs pure water through the first fluid input end 24, and transmits it to the anode catalyst layer 23a and the cathode catalyst via the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b. Layer 23b. The pure water is electrolyzed through the electrolytic reaction generated by the anode catalyst layer 23a and the cathode catalyst layer 23b and the circuit formed by the voltage source 21, and super oxygen and hydrogen are generated in the anode catalyst layer 23a and the cathode catalyst layer 23b, respectively. The generated super oxygen and hydrogen are also discharged through the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b. At this time, superoxide and hydrogen are collected by the gas output ends 26 and 27, respectively.

另一方面,在氣體擴散層的使用上有時為了增加結構的機械強度,會適當的添加聚四氟乙烯(PTFE),讓碳纖維間結構緊密,使膜材不易損壞。本實施例中所述之陽極氣體擴散層25a與陰極氣體擴散層25b僅以碳紙或碳布做說明,並不以此為限,更可以是奈米碳管等具優良導電性之材料作為氣體擴散層的主要基材。 On the other hand, in order to increase the mechanical strength of the structure in the use of the gas diffusion layer, polytetrafluoroethylene (PTFE) may be appropriately added to make the structure between the carbon fibers tight, and the film is not easily damaged. The anode gas diffusion layer 25a and the cathode gas diffusion layer 25b described in the present embodiment are described by carbon paper or carbon cloth only, and are not limited thereto, and may be a material having excellent conductivity such as a carbon nanotube. The main substrate of the gas diffusion layer.

另外,設置於陰極觸媒層23b與陰極氣體擴散層25b之間的微孔層29,係用以對陰極氣體擴散層25b進一步地改善其在反應時被水阻塞的問題。在本發明實施例中,微孔層29以白金材質噴塗覆蓋於陰極氣體擴散層25b的內側。然而,隨著噴塗的量、厚度、電阻、透氣度、密度等因素都會影響微孔層29對陰極氣體擴散層25b產生影響。 Further, the microporous layer 29 provided between the cathode catalyst layer 23b and the cathode gas diffusion layer 25b serves to further improve the problem that the cathode gas diffusion layer 25b is blocked by water during the reaction. In the embodiment of the present invention, the microporous layer 29 is sprayed on the inner side of the cathode gas diffusion layer 25b with a platinum material. However, factors such as the amount, thickness, electrical resistance, gas permeability, density, etc. of the spray affect the influence of the microporous layer 29 on the cathode gas diffusion layer 25b.

為了提高超氧生成速度本實施例中提高了電壓源21的電壓為3伏特至6伏特之間以及增加了陽極氣體擴散層25a以及陰極氣體擴散層25b後,雖然能夠使得反應物產生的速度提升,但也因為使得陽極觸媒層23a那側所產生的超氧濃度提升,超氧所具有強烈的腐蝕性更隨著濃度的提升破壞力增強,亦會造成所設置的陽極氣體擴散層25a結構遭受損壞而失去原有功效,更甚至造成水分阻塞氣體通道以及妨礙氣體傳輸的反效果。 In order to increase the superoxide generation rate, the voltage of the voltage source 21 is increased between 3 volts and 6 volts in the embodiment, and after the anode gas diffusion layer 25a and the cathode gas diffusion layer 25b are increased, the speed of the reactants can be increased. However, because the super oxygen concentration generated on the side of the anode catalyst layer 23a is increased, the superoxide has strong corrosiveness and the destructive force increases as the concentration increases, and the anode gas diffusion layer 25a structure is also formed. It suffers from damage and loses its original function, and even causes moisture to block the gas passage and the adverse effect of obstructing gas transmission.

因此,在本實施例中,更設置了抗蝕層28於陽極氣體擴散層25a與陽極觸媒層23a之間,用以避免因為提高了超氧濃度反而破壞陽極氣體擴散層25a的結構。抗蝕層28為奈米碳管或銥等金屬材料所製成,並以具導電性的黏著劑將抗蝕層28均勻地附著於陽極氣體擴散層25a靠近陽極觸媒層23a的那一面上,本發明僅以此作為說例,並不以此作為限制。 Therefore, in the present embodiment, the resist layer 28 is further provided between the anode gas diffusion layer 25a and the anode catalyst layer 23a to prevent the structure of the anode gas diffusion layer 25a from being destroyed by the increase in the superoxide concentration. The resist layer 28 is made of a metal material such as a carbon nanotube or a crucible, and the resist layer 28 is uniformly adhered to the side of the anode gas diffusion layer 25a close to the anode catalyst layer 23a with a conductive adhesive. The present invention is only used as an example and is not intended to be limiting.

〔水電解之超氧生成系統的實施例〕 [Example of Super Oxygen Generation System for Water Electrolysis]

請一併參照圖3與圖2,圖3為本發明實施例的水電解之超氧生成系統示意圖。水電解之超氧生成系統3,設置於本體31中,本體31具有電壓源311以及第一流體輸入端312,水電解之超氧 生成系統包括超氧製造裝置314與氣體收集裝置313。 Please refer to FIG. 3 and FIG. 2 together. FIG. 3 is a schematic diagram of a super-oxygen generation system for water electrolysis according to an embodiment of the present invention. The super-oxygen generation system 3 for water electrolysis is disposed in the body 31. The body 31 has a voltage source 311 and a first fluid input end 312. The super-oxygen of water electrolysis The generation system includes a super oxygen production device 314 and a gas collection device 313.

超氧製造裝置314同圖2所示之超氧製造裝置2。超氧製造裝置314包括陽極觸媒層23a、陰極觸媒層23b、質子交換膜22、陽極氣體擴散層25a、陰極氣體擴散層25b、微孔層29以及抗蝕層28。陽極觸媒層23a接收電壓源正電壓,陰極觸媒層23b接收負電壓以構成迴路,質子交換膜22配置於陽極觸媒層23a與陰極觸媒層23b之間,陽極氣體擴散層25a設置於陽極觸媒層23a之同側,陰極氣體擴散層25b設置於陰極觸媒層23b之同側,微孔層29設置於陰極觸媒層23b與陰極氣體擴散層25b之間,以及抗蝕層28設置於陽極氣體擴散層25a與陽極觸媒層23a之間。超氧製造裝置2具有複數個墊片以及外殼(圖未示)用以固定陽極觸媒層23a、陰極觸媒層23b陽極氣體擴散層25a以及陰極氣體擴散層25b的連結結構。 The super oxygen production apparatus 314 is the same as the super oxygen production apparatus 2 shown in FIG. The superoxide manufacturing apparatus 314 includes an anode catalyst layer 23a, a cathode catalyst layer 23b, a proton exchange membrane 22, an anode gas diffusion layer 25a, a cathode gas diffusion layer 25b, a microporous layer 29, and a resist layer 28. The anode catalyst layer 23a receives the voltage source positive voltage, the cathode catalyst layer 23b receives the negative voltage to form a loop, the proton exchange membrane 22 is disposed between the anode catalyst layer 23a and the cathode catalyst layer 23b, and the anode gas diffusion layer 25a is disposed at On the same side of the anode catalyst layer 23a, the cathode gas diffusion layer 25b is disposed on the same side of the cathode catalyst layer 23b, the microporous layer 29 is disposed between the cathode catalyst layer 23b and the cathode gas diffusion layer 25b, and the resist layer 28 It is disposed between the anode gas diffusion layer 25a and the anode catalyst layer 23a. The super-oxygen production apparatus 2 has a plurality of spacers and a casing (not shown) for fixing the connection structure of the anode catalyst layer 23a, the cathode catalyst layer 23b, the anode gas diffusion layer 25a, and the cathode gas diffusion layer 25b.

超氧製造裝置314所產生的超氧與氫氣,經由連接於超氧製造裝置314的氣體收集裝置313收集儲存。氣體收集裝置313更進一步包括超氧儲存子單元3132以及氫氣儲存子單元3131,分別連接超氧製造裝置314的氣體輸出端26、27,用以接收儲存超氧製造裝置314產生的超氧與氫氣。超氧儲存子單元3131以及氫氣儲存子單元3132可以例如是高壓、低溫鋼瓶等氣體儲存設備。舉例來說,當超氧製造裝置314透過陽極觸媒層23a連接電壓源311之正電壓端311a以及陰極觸媒層23b連接電壓源311之負電壓端311b所構成的迴路,經電解反應分別於陽極觸媒層23a生成超氧以及於陰極觸媒層23b生成氫氣之後,將反應所生成的超氧與氫氣分別傳輸至超氧儲存子單元3132與氫氣儲存子單元3131做收集,以進行後續利用。 The super oxygen and hydrogen generated by the super oxygen production device 314 are collected and stored via the gas collection device 313 connected to the super oxygen production device 314. The gas collection device 313 further includes a super-oxygen storage sub-unit 3132 and a hydrogen storage sub-unit 3131, which are respectively connected to the gas output ends 26, 27 of the super-oxygen production device 314 for receiving the super-oxygen and hydrogen generated by the storage super-oxygen production device 314. . The super-oxygen storage subunit 3131 and the hydrogen storage subunit 3132 may be, for example, gas storage devices such as high pressure, low temperature cylinders. For example, when the superoxide manufacturing device 314 is connected to the positive voltage terminal 311a of the voltage source 311 through the anode catalyst layer 23a and the negative voltage terminal 311b of the cathode catalyst layer 23b connected to the voltage source 311, the electrolysis reaction is respectively After the anode catalyst layer 23a generates super oxygen and generates hydrogen gas in the cathode catalyst layer 23b, the super oxygen and hydrogen generated by the reaction are separately transferred to the super-oxygen storage sub-unit 3132 and the hydrogen storage sub-unit 3131 for collection for subsequent utilization. .

〔水電解之超氧水生成系統的實施例〕 [Example of Superhydrogen Water Production System for Water Electrolysis]

請同時參照圖2與圖4,圖4為本發明實施例的水電解之超氧水生成系統示意圖。水電解之超氧水生成系統4,設置於本體41 中,本體41具有電壓源411以及第一流體輸入端412a,水電解之超氧生成系統包括超氧製造裝置414、氣體收集裝置413以及超氧水生成裝置415。 Please refer to FIG. 2 and FIG. 4 simultaneously. FIG. 4 is a schematic diagram of a super-hydrogen water generating system for water electrolysis according to an embodiment of the present invention. The super-hydrogen water generating system 4 for water electrolysis is disposed on the body 41 The body 41 has a voltage source 411 and a first fluid input end 412a. The super-oxygen generation system for water electrolysis includes a super-oxygen production device 414, a gas collection device 413, and a super-oxygen water generation device 415.

超氧製造裝置414同圖2所示之超氧製造裝置2。超氧製造裝置414包括陽極觸媒層23a、陰極觸媒層23b、質子交換膜22、陽極氣體擴散層25a、陰極氣體擴散層25b、微孔層29以及抗蝕層28。陽極觸媒層23a接收電壓源411之正電壓端411a,陰極觸媒層23b接收電壓源411之負電壓端411b,質子交換膜22配置於陽極觸媒層23a與陰極觸媒層23b之間,陽極氣體擴散層25a設置於陽極觸媒層23a之同側,陰極氣體擴散層25a設置於陰極觸媒層23b之同側,微孔層29設置於陰極觸媒層23b與陰極氣體擴散層25b之間,以及抗蝕層28設置於陽極氣體擴散層25a與陽極觸媒層23a之間。 The super oxygen production apparatus 414 is the same as the super oxygen production apparatus 2 shown in FIG. The superoxide manufacturing apparatus 414 includes an anode catalyst layer 23a, a cathode catalyst layer 23b, a proton exchange membrane 22, an anode gas diffusion layer 25a, a cathode gas diffusion layer 25b, a microporous layer 29, and a resist layer 28. The anode catalyst layer 23a receives the positive voltage terminal 411a of the voltage source 411, the cathode catalyst layer 23b receives the negative voltage terminal 411b of the voltage source 411, and the proton exchange membrane 22 is disposed between the anode catalyst layer 23a and the cathode catalyst layer 23b. The anode gas diffusion layer 25a is disposed on the same side of the anode catalyst layer 23a, the cathode gas diffusion layer 25a is disposed on the same side of the cathode catalyst layer 23b, and the microporous layer 29 is disposed on the cathode catalyst layer 23b and the cathode gas diffusion layer 25b. The resist layer 28 is disposed between the anode gas diffusion layer 25a and the anode catalyst layer 23a.

在本實施例中之超氧製造裝置414,同樣採用質子交換膜22電解方式,其生成超氧之方式同水電解之超氧生成系統。將純水中的氫氣分離進而產生氫氣及氧氣,並在藉由電化學的原理使超氧產生。超氧製造裝置414經由本體41的第一流體輸入端412a灌入純水,並透過陽極觸媒層23a與陰極觸媒層23b分別接收電壓源411為3伏特至6伏特之間的正、負電壓端411a、411b,將純水電解並於陽極觸媒層23a與陰極觸媒層23b分別產生超氧與氫氣。 In the super oxygen production apparatus 414 of the present embodiment, the proton exchange membrane 22 electrolysis method is also employed, which generates a super oxygen generation system in the same manner as the water electrolysis super oxygen generation system. Hydrogen in pure water is separated to produce hydrogen and oxygen, and superoxide is produced by electrochemical principles. The superoxide manufacturing device 414 is filled with pure water through the first fluid input end 412a of the body 41, and receives positive and negative voltage sources 411 between 3 volts and 6 volts through the anode catalyst layer 23a and the cathode catalyst layer 23b, respectively. The voltage terminals 411a and 411b electrolyze pure water and generate super oxygen and hydrogen gas in the anode catalyst layer 23a and the cathode catalyst layer 23b, respectively.

超氧製造裝置414所產生的超氧與氫氣,經由連接於超氧製造裝置414的氣體收集裝置413收集儲存。氣體收集裝置413更進一步包括超氧儲存子單元4132以及氫氣儲存子單元4131,分別連接超氧製造裝置414的氣體輸出端26、27,用以接收儲存超氧製造裝置414產生的超氧與氫氣。超氧儲存子單元4132以及氫氣儲存子單元4131可以例如是高壓、低溫鋼瓶等氣體儲存設備。舉例來說,當超氧製造裝置414透過陽極觸媒層23a連接電壓源411 之正電壓端411a以及陰極觸媒層23b連接電壓源411之負電壓端411b所構成的迴路,經電解反應分別於陽極觸媒層23a生成超氧以及於陰極觸媒層23b生成氫氣之後,將反應所生成的超氧與氫氣分別傳輸至超氧儲存子單元4132與氫氣儲存子單元4131做收集。 The super oxygen and hydrogen generated by the super oxygen production device 414 are collected and stored via the gas collection device 413 connected to the super oxygen production device 414. The gas collection device 413 further includes a super-oxygen storage sub-unit 4132 and a hydrogen storage sub-unit 4131 connected to the gas output ends 26, 27 of the super-oxygen production device 414, respectively, for receiving the super-oxygen and hydrogen generated by the storage super-oxygen production device 414. . The super-oxygen storage subunit 4132 and the hydrogen storage subunit 4131 may be, for example, gas storage devices such as high pressure, low temperature cylinders. For example, when the super oxygen manufacturing device 414 is connected to the voltage source 411 through the anode catalyst layer 23a The circuit formed by the positive voltage terminal 411a and the cathode catalyst layer 23b connected to the negative voltage terminal 411b of the voltage source 411 is subjected to electrolytic reaction to generate superoxide in the anode catalyst layer 23a and hydrogen gas in the cathode catalyst layer 23b, respectively. The superoxide and hydrogen generated by the reaction are separately transferred to the super-oxygen storage subunit 4132 and the hydrogen storage subunit 4131 for collection.

在本實施例之水電解之超氧水生成系統更進一步包括超氧水生成裝置415與富氫水生成裝置416。超氧水生成裝置415用以透過第二流體輸入端412b灌入純水與氣體收集裝置413中超氧儲存子單元4132所儲存之超氧混和製成超氧水。富氫水生成裝置416用以透過第三流體輸入端412c灌入純水與氣體收集裝置413中氫氣儲存子單元4131所儲存之氫氣混和製成富氫水。值得一提的是,透過混和製成的超氧水,可以進一步藉由測量裝置測量出水電解之超氧生成系統所產生出的超氧濃度。 The super-oxygen water generating system of the water electrolysis of the present embodiment further includes a super-oxygen water generating device 415 and a hydrogen-rich water generating device 416. The super-oxygen water generating device 415 is configured to mix the pure water into the super-oxygen stored in the super-oxygen storage sub-unit 4132 in the gas collecting device 413 through the second fluid input end 412b to form super-oxygen water. The hydrogen-rich water generating device 416 is configured to mix the pure water with the hydrogen stored in the hydrogen storage subunit 4131 in the gas collecting device 413 through the third fluid input terminal 412c to form hydrogen-rich water. It is worth mentioning that, by mixing the super-oxygen water, the super-oxygen concentration generated by the super-oxygen generation system of water electrolysis can be further measured by a measuring device.

〔實施例可能之功效〕 [Effects of possible examples]

透過本發明實施例所提出的抗蝕層,能夠有效的保護原本用於提升反應物產生速率的氣體擴散層,在高電壓所產生高濃度超氧的環境下不受到超氧的腐蝕性破壞氣體擴散層之結構。進而造成未獲得設置氣體擴散層所帶來的好處(如改善水管理、增強結構強度以及增加導電度),反而因為了產生高濃度的超氧破壞氣體擴散層之結構導致反應中所產生的水無法順利傳輸以及造成氣體傳輸的阻礙使得生成超氧濃度下降,以至於無法長時間維持超氧生成的濃度。綜合上所述,本發明能夠有效的解決長久以來利用水電解生成超氧的高成本與低效率,因此更可以使得超氧製造裝置的使用壽命延長,讓超氧生成的成本有效的降低。 The resist layer proposed by the embodiment of the present invention can effectively protect the gas diffusion layer originally used for increasing the rate of reactant generation, and is not subjected to superoxide corrosive gas under the environment of high concentration of super oxygen generated by high voltage. The structure of the diffusion layer. Further, the benefits of providing a gas diffusion layer (such as improving water management, enhancing structural strength, and increasing electrical conductivity) are caused, but the water generated in the reaction is caused by a structure in which a high concentration of superoxide is destroyed to destroy the gas diffusion layer. The inability to transfer smoothly and the obstruction of gas transport causes the formation of superoxide concentration to drop, so that the concentration of superoxide generation cannot be maintained for a long time. In summary, the present invention can effectively solve the high cost and low efficiency of generating superoxide by water electrolysis for a long time, thereby further prolonging the service life of the super-oxygen production device and effectively reducing the cost of super-oxygen generation.

以上所述,僅為本發明最佳之具體實施例,惟本發明之特徵並不侷限於此,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾,皆可涵蓋在以下本案之專利範圍。 The above description is only the preferred embodiment of the present invention, but the features of the present invention are not limited thereto, and any one skilled in the art can easily change or modify it in the field of the present invention. Covered in the following patent scope of this case.

2‧‧‧超氧製造裝置 2‧‧‧Superoxide manufacturing equipment

21‧‧‧電壓源 21‧‧‧Voltage source

22‧‧‧質子交換膜 22‧‧‧Proton exchange membrane

23a‧‧‧陽極觸媒層 23a‧‧‧Anode catalyst layer

23b‧‧‧陰極觸媒層 23b‧‧‧ Cathode catalyst layer

24‧‧‧第一流體輸入端 24‧‧‧First fluid input

25a‧‧‧陽極氣體擴散層 25a‧‧‧Anode gas diffusion layer

25b‧‧‧陰極氣體擴散層 25b‧‧‧ Cathode gas diffusion layer

26、27‧‧‧氣體輸出端 26, 27‧‧‧ gas output

28‧‧‧抗蝕層 28‧‧‧resist

29‧‧‧微孔層 29‧‧‧Microporous layer

Claims (12)

一種水電解之超氧生成系統,設置於一本體中,該本體具有一電壓源以及一第一流體輸入端,該水電解之超氧生成系統包括:一超氧製造裝置,包括:一陽極觸媒層,接收該電壓源之一正電壓;一陰極觸媒層,接收該電壓源之一負電壓;一質子交換膜,配置於該陽極觸媒層與該陰極觸媒層之間;一陽極氣體擴散層,設置於該陽極觸媒層之同側;一陰極氣體擴散層,設置於該陰極觸媒層之同側;一微孔層,設置於該陰極觸媒層與該陰極氣體擴散層之間,噴塗覆蓋於該陰極氣體擴散層的內側,其中該微孔層之厚度相關聯於該陰極氣體擴散層之氣體傳輸效果;以及一抗蝕層,設置於該陽極氣體擴散層與該陽極觸媒層之間;其中該超氧製造裝置電解經由該第一流體輸入端所灌入之純水,並於該陽極觸媒層與該陰極觸媒層分別產生超氧與氫氣,且透過該抗蝕層避免生成的超氧破壞該陽極氣體擴散層之結構;一氣體收集裝置,連接該超氧製造裝置,用以接收該超氧製造裝置所產生之超氧與氫氣;以及一超氧水生成裝置,用以將水與該氣體收集裝置所儲存之超氧做混和製成超氧水。 A super-oxygen generation system for water electrolysis is disposed in a body having a voltage source and a first fluid input end, the super-oxygen generation system for water electrolysis comprising: a super-oxygen production device comprising: an anode contact The medium layer receives a positive voltage of the voltage source; a cathode catalyst layer receives a negative voltage of the voltage source; a proton exchange membrane disposed between the anode catalyst layer and the cathode catalyst layer; an anode a gas diffusion layer disposed on the same side of the anode catalyst layer; a cathode gas diffusion layer disposed on the same side of the cathode catalyst layer; a microporous layer disposed on the cathode catalyst layer and the cathode gas diffusion layer Spraying over the inside of the cathode gas diffusion layer, wherein the thickness of the microporous layer is associated with a gas transport effect of the cathode gas diffusion layer; and a resist layer disposed on the anode gas diffusion layer and the anode Between the catalyst layers; wherein the super-oxygen production device electrolyzes pure water poured through the first fluid input end, and generates super-oxygen and hydrogen gas respectively from the anode catalyst layer and the cathode catalyst layer, and transmits the Corrosion Preventing the generated super-oxygen from destroying the structure of the anode gas diffusion layer; a gas collection device connected to the super-oxygen production device for receiving super-oxygen and hydrogen generated by the super-oxygen production device; and a super-oxygen water generating device, It is used to mix water with super oxygen stored in the gas collecting device to form super-oxygen water. 如申請專利範圍第1項所述水電解之超氧生成系統,其中該抗蝕層為奈米碳管或導電金屬材料所製成。 The super-oxygen generation system for water electrolysis according to claim 1, wherein the anti-corrosion layer is made of a carbon nanotube or a conductive metal material. 如申請專利範圍第2項所述水電解之超氧生成系統,其中該導電金屬材料為銥。 The super-oxygen generation system for water electrolysis according to claim 2, wherein the conductive metal material is ruthenium. 如申請專利範圍第2項所述水電解之超氧生成系統,其中該抗蝕層為多孔結構。 The super-oxygen generation system for water electrolysis according to claim 2, wherein the resist layer has a porous structure. 如申請專利範圍第1項所述水電解之超氧生成系統,其中該陽 極氣體擴散層與陰極氣體擴散層為碳紙或碳布。 Such as the super-oxygen generation system for water electrolysis described in claim 1 of the patent scope, wherein the yang The polar gas diffusion layer and the cathode gas diffusion layer are carbon paper or carbon cloth. 如申請專利範圍第1項所述水電解之超氧生成系統,其中該電壓源之電壓為3伏特至6伏特之間。 The super-oxygen generation system for water electrolysis according to claim 1, wherein the voltage of the voltage source is between 3 volts and 6 volts. 如申請專利範圍第1項所述水電解之超氧生成系統,更包括:一富氫水生成裝置,連接於氣體收集裝置,用以將水與該氣體收集裝置所儲存之氫氣混和製成富氫水。 The super-oxygen generation system for water electrolysis according to claim 1, further comprising: a hydrogen-rich water generating device connected to the gas collecting device for mixing the water with the hydrogen stored in the gas collecting device to make the rich Hydrogen water. 一種超氧製造裝置,適用於一氣體收集裝置與一超氧水生成裝置,並且連接一電壓源與一第一流體輸入端,該超氧製造裝置包括:一陽極觸媒層,接收該電壓源之一正電壓;一陰極觸媒層,接收該電壓源之一負電壓;一質子交換膜,配置於該陽極觸媒層與該陰極觸媒層之間;一陽極氣體擴散層,設置於該陽極觸媒層之同側;一陰極氣體擴散層,設置於該陰極觸媒層之同側;一微孔層,設置於該陰極觸媒層與該陰極氣體擴散層之間,噴塗覆蓋於該陰極氣體擴散層的內側,其中該微孔層之厚度相關聯於該陰極氣體擴散層之氣體傳輸效果;以及一抗蝕層,設置於該陽極氣體擴散層與該陽極觸媒層之間;其中該超氧製造裝置電解經由該第一流體輸入端所灌入之純水後,於該陽極觸媒層與該陰極觸媒層分別產生超氧與氫氣,以及該氣體收集裝置接收該超氧製造裝置所產生之超氧與氫氣,並透過該超氧水生成裝置將水與該氣體收集裝置所儲存之超氧做混和製成超氧水,且透過該抗蝕層避免生成的超氧破壞該陽極氣體擴散層之結構。 A super oxygen manufacturing device is suitable for a gas collecting device and a super-oxygen water generating device, and is connected to a voltage source and a first fluid input terminal, the super-oxygen manufacturing device comprising: an anode catalyst layer, receiving the voltage source a positive voltage; a cathode catalyst layer receiving a negative voltage of the voltage source; a proton exchange membrane disposed between the anode catalyst layer and the cathode catalyst layer; an anode gas diffusion layer disposed on the anode a cathode gas diffusion layer disposed on the same side of the cathode catalyst layer; a microporous layer disposed between the cathode catalyst layer and the cathode gas diffusion layer, spray coated thereon An inner side of the cathode gas diffusion layer, wherein a thickness of the microporous layer is associated with a gas transport effect of the cathode gas diffusion layer; and a resist layer disposed between the anode gas diffusion layer and the anode catalyst layer; The super-oxygen production device electrolyzes the pure water poured through the first fluid input end, generates super-oxygen and hydrogen gas respectively in the anode catalyst layer and the cathode catalyst layer, and the gas collecting device receives the super-oxidation system. The super oxygen and hydrogen generated by the device are mixed with the super oxygen stored in the gas collecting device through the super-oxygen water generating device to form super-oxygen water, and the generated super-oxygen is prevented from being destroyed by the resist layer. The structure of the anode gas diffusion layer. 如申請專利範圍第8項所述之超氧製造裝置,其中該抗蝕層為奈米碳管或導電金屬材料所製成。 The super-oxygen production apparatus according to claim 8, wherein the resist layer is made of a carbon nanotube or a conductive metal material. 如申請專利範圍第9項所述之超氧製造裝置,其中該導電金屬材料為銥。 The super-oxygen production apparatus according to claim 9, wherein the conductive metal material is ruthenium. 如申請專利範圍第8項所述之超氧製造裝置,其中該抗蝕層為多孔結構。 The super oxygen production apparatus according to claim 8, wherein the resist layer has a porous structure. 如申請專利範圍第8項所述之超氧製造裝置,其中該電壓源之電壓為3伏特至6伏特之間。 The superoxide manufacturing apparatus of claim 8, wherein the voltage source has a voltage of between 3 volts and 6 volts.
TW102125532A 2013-07-17 2013-07-17 Ozone generating system by water electrolysis and ozone producing device thereof TWI545229B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102125532A TWI545229B (en) 2013-07-17 2013-07-17 Ozone generating system by water electrolysis and ozone producing device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102125532A TWI545229B (en) 2013-07-17 2013-07-17 Ozone generating system by water electrolysis and ozone producing device thereof

Publications (2)

Publication Number Publication Date
TW201504476A TW201504476A (en) 2015-02-01
TWI545229B true TWI545229B (en) 2016-08-11

Family

ID=53018808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102125532A TWI545229B (en) 2013-07-17 2013-07-17 Ozone generating system by water electrolysis and ozone producing device thereof

Country Status (1)

Country Link
TW (1) TWI545229B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI634941B (en) * 2016-06-17 2018-09-11 Yuan Ze University Gas and liquid supply system for therapeutic purpose
TWI586266B (en) * 2016-06-17 2017-06-11 元智大學 Aquaculture system
TWI646046B (en) * 2017-02-24 2019-01-01 普生股份有限公司 Instant manufacturing, instant pressurized gas and liquid production system and its gas instant manufacturing machine
CN110512227A (en) * 2018-05-21 2019-11-29 洪昆喨 Electro-catalysis discharge reactor, hydrogen generating system and hydrogen production process
CN111206265B (en) * 2018-11-21 2021-06-04 元智大学 Air-water circulating system and multifunctional water electrolysis device thereof
TWI682068B (en) * 2018-11-21 2020-01-11 元智大學 Liquid-gas cycling system and multifunctional water electrolysis device

Also Published As

Publication number Publication date
TW201504476A (en) 2015-02-01

Similar Documents

Publication Publication Date Title
TWI545229B (en) Ozone generating system by water electrolysis and ozone producing device thereof
US5460705A (en) Method and apparatus for electrochemical production of ozone
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
JP4903405B2 (en) Ozone water generation method and ozone water generation apparatus
JP5254531B2 (en) Ozone mist generator
WO2007126818A3 (en) Single crystal diamond electrode and electrolytic cell comprising such electrode
TWI467057B (en) Cleaning method by electrolytic sulfuric acid and manufacturing method of semiconductor device
CN102869616A (en) Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
WO2006092612A3 (en) Oxygen generation apparatus and method
JP5096054B2 (en) Ozone generation method
JP2006233297A (en) Electrolyzer, electrochemical reaction type membrane apparatus and porous conductor
US20140076724A1 (en) Cell module, ozone generator thereof and methods for generating ozone using the same
KR101900752B1 (en) Device and method for treating indoor carbon dioxide
TW201000677A (en) A sulfuric acid electrolytic cell and a sulfuric acid recycle type cleaning system applying the sulfuric acid electrolytic cell
JP5408653B2 (en) Ozone generation method and ozone generation apparatus
JP2010216007A (en) Water electrolyzer
TW200424133A (en) Process for preparing mixed electrolyzed water
JP2009106884A (en) Water treatment and gas treatment apparatus
JP3298431B2 (en) Ozone / hydrogen peroxide generator
JP2012144779A (en) Method for production of electrolysis electrode
JP5095670B2 (en) Electrolyzer
JP2007070701A (en) Solid polymer electrolyte type ozone generation apparatus
KR102329190B1 (en) A skin care apparatus and method using plasma discharge
KR102163939B1 (en) plasma sterilized water manufacturing device
JPH022825A (en) Electrolytic ozonizer having waste gas decomposing function and method for decomposing waste gas with the same ozonizer