TWI541382B - A coating for thermoelectric materials and a device containing the same - Google Patents

A coating for thermoelectric materials and a device containing the same Download PDF

Info

Publication number
TWI541382B
TWI541382B TW099124470A TW99124470A TWI541382B TW I541382 B TWI541382 B TW I541382B TW 099124470 A TW099124470 A TW 099124470A TW 99124470 A TW99124470 A TW 99124470A TW I541382 B TWI541382 B TW I541382B
Authority
TW
Taiwan
Prior art keywords
coating
metal
metal oxide
layer
thermoelectric
Prior art date
Application number
TW099124470A
Other languages
Chinese (zh)
Other versions
TW201204873A (en
Inventor
陳立東
何琳
夏緒貴
黃向陽
李小亞
Original Assignee
中國科學院上海硅酸鹽研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國科學院上海硅酸鹽研究所 filed Critical 中國科學院上海硅酸鹽研究所
Priority to TW099124470A priority Critical patent/TWI541382B/en
Publication of TW201204873A publication Critical patent/TW201204873A/en
Application granted granted Critical
Publication of TWI541382B publication Critical patent/TWI541382B/en

Links

Description

熱電材料塗膜及含其裝置 Thermoelectric material coating film and device therewith

本發明涉及一種熱電材料的塗層及其含有該材料的元件(或稱為器件)的結構和製備方法,屬於熱電材料及器件領域。 The invention relates to a coating of a thermoelectric material and a structure and a preparation method thereof for an element (or device) containing the same, and belongs to the field of thermoelectric materials and devices.

熱電發電是利用半導體熱電材料的賽貝克(seebeck)效應將熱能(溫差)直接轉化為電能的發電技術。熱電發電系統結構緊湊,性能可靠和移動性好,由於沒有運行部件運行時無噪聲、無磨損和無洩漏,是環境友好型的綠色能源技術,適用於低能量密度的回收利用,在工業廢熱和汽車排氣廢熱的回收利用等領域均具有廣泛的應用前景。熱電轉換效率主要取決於材料的無因次性能指數ZT=S2 σ T/κ,其中S是賽貝克系數,σ電導率,κ熱導率和T是絕對溫度。材料的ZT值愈高,熱電轉換的效率愈高。 Thermoelectric power generation is a power generation technology that directly converts thermal energy (temperature difference) into electrical energy by using the Seebeck effect of semiconductor thermoelectric materials. The thermoelectric power generation system is compact in structure, reliable in performance and good in mobility. It is environmentally friendly green energy technology because it has no running parts, no noise, no wear and no leakage. It is suitable for low energy density recycling, in industrial waste heat and The field of recycling and utilization of exhaust heat of automobiles has broad application prospects. The thermoelectric conversion efficiency mainly depends on the dimensionless performance index ZT=S 2 σ T/κ of the material, where S is the Seebeck coefficient, σ conductivity, κ thermal conductivity and T is the absolute temperature. The higher the ZT value of the material, the higher the efficiency of thermoelectric conversion.

由於具有大的晶胞、重的原子質量和大的載流子遷移率特徵,且Sb十二面體中存在填充原子的擾動作用,CoSb3基方鈷礦熱電材料在500-850K之間呈現優 異的高溫熱電性能,其中n-型YbyCo4Sb12(800K)和p-型CaxCeyCo2.5Fe1.25Sb12(750K)的ZT最高值分別達1.4和1.2。綜合性能、价格、安全性和製備方法,在眾多新型熱電材料體系中,CoSb3基方鈷礦是最有前途的商用中高溫熱電材料,有望替代目前普遍採用的PbTe熱電材料。 CoSb 3 based skutterudite thermoelectric materials are present between 500-850K due to their large unit cell, heavy atomic mass and large carrier mobility characteristics, and the presence of filling atoms in the Sb dodecahedron. Excellent high temperature thermoelectric properties, wherein the highest ZT values of n-type Yb y Co 4 Sb 12 (800K) and p-type Ca x Ce y Co 2.5 Fe 1.25 Sb 12 (750K) are 1.4 and 1.2, respectively. Comprehensive performance, price, safety and preparation methods. Among many new thermoelectric material systems, CoSb 3 square cobalt is the most promising commercial medium and high temperature thermoelectric material, which is expected to replace the commonly used PbTe thermoelectric materials.

由於CoSb3基方鈷礦熱電材料的最佳熱電性能位於500-850K之間,所以CoSb3基方鈷礦熱電器件中靠近高溫端的熱電元件工作溫度可以高達850K。由於Sb元素的高溫蒸氣壓很高(參圖1),850K下約為10Pa,較其它元素Fe、Co和Ce等高12個數量級(David R.Lide,CRC Handbook of Chemistry and Physics,CRC Press,2005),所以因Sb元素的高溫損失而導致的熱電器件性能惡化非常嚴重。 Since the best thermoelectric properties of the thermoelectric material CoSb 3 based skutterudite located between 500-850K, so CoSb 3 based skutterudite thermoelectric device near the end of the thermoelectric element temperature up to operating temperature of 850K. Due to the high vapor pressure of Sb element (see Figure 1), it is about 10Pa at 850K, which is 12 orders of magnitude higher than other elements Fe, Co and Ce (David R.Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2005), so the performance deterioration of the thermoelectric device due to the high temperature loss of the Sb element is very serious.

為了避免因熱電材料在高溫使用過程中的揮發而導致的器件性能惡化,必須對材料的表面進行塗覆封裝。這種對熱電材料在高溫使用環境下進行塗層保護的措施可以追溯到更早期的SiGe熱電材料。SiGe熱電元件的高溫端使用溫度可以高達1273K,通過塗覆Si3N4塗層可以很好地保護SiGe熱電材料,塗層的厚度為毫米級(Kelly C.E.Proceedings of the 10th intersociety energy conversion engineering conferenc,American Institute of Chemical Engineers,New York 1975,P.880-6)。針對 CoSb3基方鈷礦熱電材料中的Sb高溫揮發問題,Mohamed等提出正方鈷礦材料表面採用金屬塗層的方法來解決(Mohamed S.El-Genk等人Energy Conversion and Management,47(2006)174;Hamed H.Saber,Energy Conversion and Management,48(2007)1383)。建議對分段器件(p型元件:CeFe3.5Co0.5Sb12+Bi0.4Sb1.5Te3,n型元件:CoSb3+Bi2Te2.95Se0.05)可供塗層採用的金屬元素有Ta、Ti、Mo和V,金屬塗層的厚度應為1-10微米,理論推導結果顯示,金屬塗層的電導率愈高或者塗層的厚度愈厚,則峰值輸出功率愈高,但峰值轉換效率愈低。論文並未提及塗層的製備方法和四種塗層的實驗數據比較。 In order to avoid deterioration of device performance due to volatilization of the thermoelectric material during use at high temperatures, the surface of the material must be coated and packaged. This measure of coating protection of thermoelectric materials in high temperature applications can be traced back to earlier SiGe thermoelectric materials. The high temperature end of the SiGe thermoelectric element can be used up to 1273K. The SiGe thermoelectric material can be well protected by coating the Si 3 N 4 coating. The thickness of the coating is millimeter (Kelly CE Proceedings of the 10th intersociety energy conversion engineering conferenc, American Institute of Chemical Engineers, New York 1975, p. 880-6). Essential for the CoSb 3 based skutterudite thermoelectric materials Sb high temperature problems, Mohamed put forward surface material cobaltite square method to solve a metal coating (Mohamed S.El-Genk et al, Energy Conversion and Management, 47 (2006 ) 174; Hamed H. Saber, Energy Conversion and Management, 48 (2007) 1383). It is recommended to segment the device (p-type component: CeFe 3.5 Co 0.5 Sb 12 +Bi 0.4 Sb 1.5 Te 3 , n-type component: CoSb 3 +Bi 2 Te 2.95 Se 0.05 ). The metal elements available for coating are Ta, Ti. Mo, V, the thickness of the metal coating should be 1-10 microns, the theoretical derivation shows that the higher the conductivity of the metal coating or the thicker the coating, the higher the peak output power, but the higher the peak conversion efficiency low. The paper does not mention the preparation of the coating and the comparison of the experimental data of the four coatings.

Mohamed等提出在特定成分CoSb3基方鈷礦材料的表面塗覆金屬塗層的方法,雖然為Sb的高溫揮發問題提供了一種思路,但是涵蓋範圍過於狹窄,並且未能解決CoSb3基方鈷礦材料及其元件在實際使用環境中需要面對的材料高溫氧化問題。 Mohamed et al. proposed a method of coating a metal coating on the surface of a specific component CoSb 3 skutter cobalt ore material, although it provides a way of thinking about the high temperature volatilization problem of Sb, but the coverage is too narrow and fails to solve the CoSb 3 basal cobalt. The high temperature oxidation of materials that mineral materials and their components need to face in the actual use environment.

因此,本領域迫切需要一種可以解決高溫氧化問題的用於熱電材料的塗層及其含有該材料的器件。 Therefore, there is an urgent need in the art for a coating for a thermoelectric material that can solve the problem of high temperature oxidation and a device containing the same.

本發明的目的在於獲得一種可以解決高溫氧化問題的用於熱電材料的塗層。 It is an object of the present invention to obtain a coating for a thermoelectric material that can solve the problem of high temperature oxidation.

本發明的第二目的在於獲得可以解決高溫氧化問題的含有該材料的器件。 A second object of the present invention is to obtain a device containing the material which can solve the problem of high temperature oxidation.

本發明的第三目的在於獲得一種可以解決高溫氧化問題的用於熱電材料的塗層的製備方法。 A third object of the present invention is to obtain a method for preparing a coating for a thermoelectric material which can solve the problem of high temperature oxidation.

在本發明的第一方面,提供了一種塗層,其包括:含有熱電材料的熱電層;一層或多層金屬塗層,其中所述金屬塗層形成與所述熱電層接觸的表面以及相向表面;一層或多層金屬氧化物塗層,所述金屬氧化物塗層含有金屬氧化物,其中所述金屬氧化物塗層形成與所述相向表面接觸的表面。 In a first aspect of the invention, there is provided a coating comprising: a thermoelectric layer comprising a thermoelectric material; one or more metal coatings, wherein the metal coating forms a surface in contact with the thermoelectric layer and a facing surface; One or more layers of a metal oxide coating comprising a metal oxide, wherein the metal oxide coating forms a surface in contact with the opposing surface.

在一個具體實施方式中,所述熱電材料選自填充和/或摻雜方鈷礦。 In a specific embodiment, the thermoelectric material is selected from the group consisting of filled and/or doped skutterudite.

在一個具體實施方式中,所述填充和/或摻雜方鈷礦選自CoSb3基方鈷礦。 In a specific embodiment, the filled and/or doped skutterudite is selected from the group consisting of CoSb 3 skutter cobalt ore.

在一個具體實施方式中,所述金屬塗層含有Ta、Nb、Ti、Mo、V、Al、Zr、Ni、NiAl、TiAl、NiCr或其組合。 In a specific embodiment, the metal coating layer contains Ta, Nb, Ti, Mo, V, Al, Zr, Ni, NiAl, TiAl, NiCr, or a combination thereof.

在一個具體實施方式中,所述金屬氧化物塗層含有TiO2、Ta2O5、Nb2O5、Al2O3、ZrO2、NiO、SiO2或其組合。 In one specific embodiment, the metal oxide coating containing TiO 2, Ta 2 O 5, Nb 2 O 5, Al 2 O 3, ZrO 2, NiO, SiO 2 , or combinations thereof.

在一個具體實施方式中,其厚度為10-500微米。 In a specific embodiment, the thickness is from 10 to 500 microns.

在一個具體實施方式中,其厚度為50-200微米。 In a specific embodiment, the thickness is from 50 to 200 microns.

在一個具體實施方式中,所述金屬塗層的厚度為0.01-20微米。 In a specific embodiment, the metal coating has a thickness of from 0.01 to 20 microns.

在一個具體實施方式中,所述金屬塗層的厚度為0.2-2微米。 In a specific embodiment, the metal coating has a thickness of 0.2 to 2 microns.

在一個具體實施方式中,所述熱電層具有厚度為LT,所述金屬塗層和金屬氧化物塗層各自具有厚度為LM&MOx,其中LM&MOx≦LT,且(LT-LM&MOx)/LT≦0.4。 In a specific embodiment, the thermoelectric layer has a thickness L T , and the metal coating and the metal oxide coating each have a thickness of L M & MOx , wherein L M & MO x ≦ L T , and (L T -L M&MOx ) / L T ≦ 0.4.

本發明的第二方面在於獲得一種含有本發明的塗層的器件。 A second aspect of the invention resides in obtaining a device comprising a coating of the invention.

本發明的第三方面在於獲得所述的塗層的製備方法,其包括:提供含有熱電材料的熱電層;在所述熱電層上形成一層或多層金屬塗層,其中所述金屬塗層形成與所述熱電層接觸的表面以及另一相向表面;在所述金屬塗層上形成一層或多層金屬氧化物塗層,所述金屬氧化物塗層含有金屬氧化物,其中所述金屬氧化物形成與所述金屬塗層的相向表面接觸的表面。 A third aspect of the present invention is to provide a method of producing the coating, comprising: providing a thermoelectric layer containing a thermoelectric material; forming one or more metal coating layers on the thermoelectric layer, wherein the metal coating is formed and a surface in contact with the thermoelectric layer and another facing surface; forming one or more layers of a metal oxide coating on the metal coating, the metal oxide coating containing a metal oxide, wherein the metal oxide is formed The surface of the metal coating that is in contact with the facing surface.

在某些實施方式中,所述全部或部分金屬塗層由以下方法形成:熱蒸發電弧噴塗法,電漿噴塗法、火焰噴鍍法、真空濺射法、電化學蒸汽沉積電鍍法、或無電沉積法(electroless deposition)。 In some embodiments, the all or part of the metal coating is formed by thermal evaporation arc spraying, plasma spraying, flame spraying, vacuum sputtering, electrochemical vapor deposition plating, or no electricity. Electroless deposition.

在某些實施方式中,所述全部或部分金屬氧化物塗層由以下方法形成:熱蒸發沉積法、真空濺射法、電漿噴塗法、溶膠法(sol-gel)、化學溶液沉積法 (chemical solution deposition)、或化學蒸汽沉積法(chemical vapor deposition)。 In some embodiments, the all or part of the metal oxide coating is formed by a thermal evaporation deposition method, a vacuum sputtering method, a plasma spray method, a sol-gel method, or a chemical solution deposition method. (chemical solution deposition), or chemical vapor deposition.

在某些實施方式中,通過對所述金屬塗層的至少部分氧化,使得所述金屬氧化物塗層與所述金屬塗層的相向表面接觸。 In certain embodiments, the metal oxide coating is contacted with the facing surface of the metal coating by at least partial oxidation of the metal coating.

圖1示出了一些元素的高溫蒸氣壓。 Figure 1 shows the high temperature vapor pressure of some of the elements.

圖2為具有多層塗層的CoSb3基方鈷礦π型器件。 2 is a CoSb 3 based skutterudite π-type device with a multilayer coating.

圖3為對應於圖2中多層包覆體熱電元件(左:圓形,右:方形)的俯視剖面圖。 3 is a top cross-sectional view corresponding to the multilayered package thermoelectric element of FIG. 2 (left: circular, right: square).

圖4為Yb0.3Co4Sb12核心包覆體材料界面SEM照片。 Figure 4 is a SEM photograph of the interface of the Yb 0.3 Co 4 Sb 12 core cladding material.

本發明人經過廣泛而深入的研究,通過改進製備工藝,採用物理及化學的方法,在熱電材料(以CoSb3基方鈷礦材料作為代表)的表面形成金屬和氧化物兩類多層塗層,達到高溫下既阻止Sb揮發又抑制材料氧化的雙重問題,提高CoSb3基方鈷礦材料及其器件的耐久性和使用可靠性。在此基礎上完成了本發明。 The inventors have conducted extensive and intensive research to form a multilayer coating of metal and oxide on the surface of a thermoelectric material (represented by a CoSb 3 skutter cobalt ore material) by an improved preparation process using physical and chemical methods. It achieves the dual problem of preventing Sb volatilization and inhibiting oxidation of materials at high temperature, and improves the durability and reliability of CoSb 3 skutter cobalt ore and its devices. The present invention has been completed on this basis.

本發明針對熱電材料(典型地如CoSb3基方鈷礦材料)及元件使用的需要及現有相關技術的缺乏,利 用物理或者化學的製備方法在CoSb3基方鈷礦材料或者元件的表面塗覆金屬和氧化物兩類物質的多層塗層,以阻止高溫使用情形下Sb元素的揮發和材料的氧化。 The present invention is directed to the surface of a CoSb 3 skutterite material or component by physical or chemical preparation methods for the needs of thermoelectric materials (typically such as CoSb 3 skutter cobalt ore) and the use of components and the lack of prior art. A multilayer coating of two types of metals and oxides to prevent volatilization of Sb elements and oxidation of materials in high temperature applications.

本發明涉及一種具有多層塗層結構的熱電材料及其元件的製備方法,屬於熱電材料及器件領域。材料的組成物稱為SKT/M/MOx,其中SKT包括但不限於CoSb3基方鈷礦化合物、摻雜CoSb3基方鈷礦化合物、CoSb3基填充方鈷礦化合物、摻雜的CoSb3基填充方鈷礦化合物;M代表金屬塗層,包括但不限於Ta、Nb、Ti、Mo、V、Al、Zr、Ni、NiAl、TiAl、NiCr中的一種或其中二或更多成分構成的合金;MOx代表金屬氧化塗層,包括但不限於TiO2、Ta2O5、Nb2O5、Al2O3、ZrO2、NiO、SiO2中的一種或其中二或更多的複合物或其中二或更多種氧化物構成的多層結構。SKT/M/MOx所呈現的材料或元件具有同蕊多層包覆結構,即在SKT材料表面包覆一層金屬M層,且在M層表面包覆一層或多層MOx層。包覆層的作用在於抑制SKT中Sb的揮發和SKT材料的氧化。金屬M層的主要作用在於改善MOx包覆層的致密度、連續性和結合強度。製備包覆層的方法包括熱蒸發法、物理濺射法、電弧噴法、電漿熱噴塗法、電化學沉積法、化學氣相沉積法、溶液化學沉積法和脈沖電沉積法等。塗層的總厚通常10-500微米,其中M層的厚度為0.01-20微米,MOx層的厚度為9.99-499.9微米。本發明作為一種CoSb3基方鈷礦同蕊多層材料的製 備方法可以有效地阻止材料中Sb的高溫揮發和SKT的氧化,高溫老化結果顯示具有包覆層π型元件的轉換效率1000小時高溫老化試驗後仍然基本保持不變,而無包覆層的相同π形元件的轉換效率1000小時老化後降低70%。本發明顯著地提高了CoSb3基方鈷礦材料及其器件的耐久性,使其作為實用的熱電材料與器件在室溫約600℃範圍內可以長期工作。 The invention relates to a method for preparing a thermoelectric material and a component thereof having a multi-layer coating structure, and belongs to the field of thermoelectric materials and devices. The composition of the material is called SKT/M/MO x , where SKT includes, but is not limited to, CoSb 3 octagonal cobalt ore compound, doped CoSb 3 -based skutterudite compound, CoSb 3 -based skutterudite compound, doped CoSb 3 -based filled skutterudite compound; M represents a metal coating, including but not limited to one of Ta, Nb, Ti, Mo, V, Al, Zr, Ni, NiAl, TiAl, NiCr or two or more of them alloy; MO x represents a metal oxide coating, including, but not limited to, TiO 2, Ta 2 O 5, Nb 2 O 5, Al 2 O 3, ZrO 2 one kind 2, NiO, SiO, or wherein two or more A composite or a multilayer structure composed of two or more oxides. The material or component presented by SKT/M/MO x has a multi-layer cladding structure, that is, a metal M layer is coated on the surface of the SKT material, and one or more layers of MO x are coated on the surface of the M layer. The role of the coating is to inhibit the volatilization of Sb in SKT and the oxidation of the SKT material. The main role of the metal M layer is to improve the density, continuity and bonding strength of the MO x cladding layer. The method for preparing the coating layer includes thermal evaporation, physical sputtering, arc spraying, plasma thermal spraying, electrochemical deposition, chemical vapor deposition, solution chemical deposition, and pulse electrodeposition. The total thickness of the coating is typically from 10 to 500 microns, with the M layer having a thickness of from 0.01 to 20 microns and the MO x layer having a thickness of from 9.99 to 499.9 microns. The invention can effectively prevent the high temperature volatilization of Sb and the oxidation of SKT in the material as a preparation method of the CoSb 3 based skutter ore multi-layer material. The high temperature aging results show that the conversion efficiency of the coated layer π-type component is 1000 hours and high temperature aging. After the test, it remained substantially unchanged, while the conversion efficiency of the same π-shaped element without the coating layer was reduced by 70% after 1000 hours of aging. The invention significantly improves the durability of the CoSb 3 skutter cobalt ore material and its device, and can be used as a practical thermoelectric material and device for a long period of time at a temperature of about 600 ° C.

本文中,所述“相向”(opposing)係指兩者的位置關系是相互面對的。 As used herein, "opposing" means that the positional relationship between the two faces each other.

以下將詳細說明本發明的各種態樣。 Various aspects of the invention will be described in detail below.

如圖2和圖3所示,示出了經過塗覆的同蕊多層結構的塗層或者元件,其結構的通式可描述為SKT/M/MOx,(參圖2和圖3),即熱電材料(SKT)/塗層(M/MOx)的結構。 As shown in Figures 2 and 3, a coating or element of a coated multi-layered structure is shown, the structure of which can be described as SKT/M/MO x (see Figures 2 and 3). That is, the structure of the thermoelectric material (SKT) / coating (M / MO x ).

其中SKT可由CoSb3基方鈷礦材料、摻雜CoSb3基方鈷礦化合物、CoSb3基填充方鈷礦化合物、摻雜的CoSb3基填充方鈷礦化合物進行選擇,以及以上化合物為主相的複合材料;還可以是籠型化合物熱電材料、半哈斯勒熱電材料、BiTe基材料、摻雜的BiTe基化合物,BiTe基填充化合物,摻雜的BiTe基填充化合物、以及以上化合物為主相的複合材料。優選地SKT係由CoSb3基方鈷礦材料、摻雜CoSb3基方鈷礦化合物、CoSb3基填充方鈷礦化合物、摻雜的CoSb3基填充方鈷礦化合物、以及以上化合物為主相的複合材料進行選擇。 Wherein SKT by CoSb 3 based skutterudite materials, doped CoSb 3 based skutterudite compounds, CoSb 3 based filled skutterudite compounds, doped CoSb 3 based filled skutterudite compound selected, and the above compound as a main phase Composite material; may also be a cage compound thermoelectric material, a semi-Hasler thermoelectric material, a BiTe-based material, a doped BiTe-based compound, a BiTe-based filling compound, a doped BiTe-based filling compound, and the above compound as a main phase Composite material. Preferably, the SKT is composed of a CoSb 3 octagonal cobalt ore material, a CoSb 3 -based skutterudite compound, a CoSb 3 -based skutterudite compound, a doped CoSb 3 -based skutterudite compound, and the above compounds. The composite is chosen.

金屬塗層M是金屬或合金的薄膜狀塗層,包括但不限於Ta、Nb、Ti、Mo、V、Al、Zr、Ni、NiAl、TiAl、NiCr中的一種或其中二或更多成分構成的合金。 The metal coating M is a film-like coating of a metal or an alloy, including but not limited to one of Ta, Nb, Ti, Mo, V, Al, Zr, Ni, NiAl, TiAl, NiCr or two or more of them. Alloy.

MOx是金屬氧化物的塗層,可以是TiO2、Ta2O5、Nb2O3、Al2O3、ZrO2、NiO、SiO2中的一種或其中二或更多的複合物,或其中二或更多種氧化物構成的複合物或其中二或更多種氧化物構成的多層結構。 MO x is a coating of a metal oxide, and may be one of TiO 2 , Ta 2 O 5 , Nb 2 O 3 , Al 2 O 3 , ZrO 2 , NiO, SiO 2 or a composite of two or more thereof, Or a composite composed of two or more oxides or a multilayer structure composed of two or more oxides thereof.

本發明提供了一種含多層塗覆層的CoSb3基方鈷礦化合物材料及其器件的製備方法,此製備方法的核心是通過物理或者化學的方法在外層或外面幾層形成附著力強、致密度高和連續性好的氧化物層,而內層是一層或者多層的金屬層,該金屬過渡層既可以阻止Sb元素的高溫揮發,又可以提高氧化物層與方鈷礦材料之間的結合強度。 The invention provides a CoSb 3 skutter cobalt compound material containing a multi-layer coating layer and a preparation method thereof. The core of the preparation method is to form a strong adhesion on the outer layer or the outer layer by physical or chemical methods. An oxide layer with high density and continuity, and the inner layer is one or more layers of metal. The metal transition layer can prevent the high temperature volatilization of the Sb element and improve the bonding between the oxide layer and the skutterudite material. strength.

所述全部或部分金屬塗層可以由以下方法形成:熱蒸發法、電弧噴塗法、電漿噴塗法、火焰噴鍍法、真空濺射法、電化學蒸汽沉積法、電鍍法、或無電沉積法(electroless depositlon)。 The all or part of the metal coating may be formed by thermal evaporation, arc spraying, plasma spraying, flame spraying, vacuum sputtering, electrochemical vapor deposition, electroplating, or electroless deposition. (electroless depositlon).

所述全部或部分金屬氧化物塗層可以由以下方法形成:熱蒸發法、真空濺射法、電漿噴塗法、溶膠法(sol-gel)、化學溶液沉積法(chemical solution deposition)、或化學蒸汽沉積法(chemical vapor depositlon)。 The all or part of the metal oxide coating may be formed by thermal evaporation, vacuum sputtering, plasma spraying, sol-gel, chemical solution deposition, or chemistry. Chemical vapor deposit (chemical vapor deposit).

在本發明的一個優選實施方式中,本發明優選地採用填充(和/或者)摻雜的CoSb3基方鈷礦化合物材料或者元件為核蕊,利用熱蒸發法、物理濺射法、電弧噴塗法、脈沖電沉積法、電化學沉積法或電鍍法等方法在方鈷礦材料的表面形成一層或多層的M過渡層材料。接著,在M層的表面通過熱蒸發法、物理濺射法、電漿熱噴塗法、Sol-Gel法、化學溶液沉積法(Chemical Solution Deposition;和化學氣相沉積法(Chemical Vapor Deposition)等方法生成一層或多層氧化物MOx層。對於那些容易氧化的金屬元素,MOx層還可以通過金屬M層在合適的氧氣分壓下直接氧化獲得,此時氧氣分壓及其溫度是控制厚度的重要工藝參數。 In a preferred embodiment of the invention, the invention preferably employs a filled (and/or) doped CoSb 3 -based skutterudite compound material or component as a core, by thermal evaporation, physical sputtering, arc spraying One or more layers of M transition layer material are formed on the surface of the skutterudite material by a method such as pulse electrodeposition, electrochemical deposition or electroplating. Next, the surface of the M layer is subjected to methods such as thermal evaporation, physical sputtering, plasma thermal spraying, Sol-Gel, chemical solution deposition, and chemical vapor deposition (Chemical Vapor Deposition). One or more oxide MO x layers are formed. For those metal elements which are easily oxidized, the MO x layer can also be directly oxidized by a metal M layer under a suitable partial pressure of oxygen, at which time the partial pressure of oxygen and its temperature are controlled by thickness. Important process parameters.

兩類塗層中,內層M過渡層相對較薄,為0.01-20微米,主要是為了增加MOx層的結合強度。M層的總厚度取決於方鈷礦材料核蕊及M層本身的成分、熱導率及電導率,形成M層的方法、MOx層的成分等因素,控制M層厚度的關鍵是要防止形成熱流與電流的快速旁路通道。外層MOx保護層相對較厚,MOx層的厚度取決於材料成分、形成MOx層的方法、MOx層的致密度和熱導率等。兩類塗層的總厚度為10-500微米。 In the two types of coatings, the inner layer M transition layer is relatively thin, 0.01-20 microns, mainly to increase the bonding strength of the MO x layer. The total thickness of the M layer depends on the composition of the core and the M layer itself, the thermal conductivity and electrical conductivity of the skutterudite material, the method of forming the M layer, the composition of the MO x layer, etc. The key to controlling the thickness of the M layer is to prevent A fast bypass path that creates heat flow and current. The outer MO x protective layer is relatively thick, and the thickness of the MO x layer depends on the material composition, the method of forming the MO x layer, the density and thermal conductivity of the MO x layer, and the like. The two types of coatings have a total thickness of from 10 to 500 microns.

如果CoSb3基方鈷礦多層包覆材料被作為熱電元件來構成器件時,元件外圍塗層的長(高)度應小於或等於元件的長(高)度,若小於元件長(高)度時,元件靠近低溫端可留有不大於元件總長度40%的無塗層區域。塗 層的長(高)度取決於元件的長(高)度、高溫端的溫度、塗層特別是M過渡層的厚度和方鈷礦元件核蕊的熱性能。在π型器件中,如果元件表面塗層的長度小於元件的長度,p型和n型元件上的塗層長度可以不一樣長,只要兩元件上未塗覆部分的使用溫度接近即可。 If the CoSb 3 skutter cobalt multi-layer cladding material is used as a thermoelectric element to form a device, the length (high) of the peripheral coating of the component should be less than or equal to the length (high) of the component, if less than the length (high) of the component When the component is near the low temperature end, an uncoated region not exceeding 40% of the total length of the component may be left. The length (height) of the coating depends on the length (high) of the component, the temperature at the high temperature end, the thickness of the coating, especially the M transition layer, and the thermal properties of the core of the skutterite component. In a π-type device, if the length of the surface coating of the element is less than the length of the element, the length of the coating on the p-type and n-type elements may be different as long as the temperature of use of the uncoated portion of the two elements is close.

本發明的優點在於: The advantages of the invention are:

1.採用本發明製備的π型器件其高溫環境下持續使用的耐久性及其可靠性有明顯地改善。儘管與無塗層材料組成的器件相比,塗層包覆體材料構成的器件在熱電轉換效率和電功率方面略有下降,但是高溫(850K)長時間(1000小時)運行性能的惡化不明顯,而無塗層保護的器件在高溫長時間運行後,熱電轉換效率下降約70%。 1. The π-type device prepared by the present invention has a marked improvement in durability and reliability in continuous use in a high temperature environment. Although the device composed of the coating-coated material has a slight decrease in thermoelectric conversion efficiency and electric power compared with the device composed of the uncoated material, the deterioration of the running performance at a high temperature (850K) for a long time (1000 hours) is not significant. The non-coating protection device has a thermoelectric conversion efficiency of about 70% after long-term operation at high temperatures.

2.塗層材料可以有效地阻止SKU材料中Sb元素的高溫揮發和SKU的氧化;其中,M層的主要作用包括(1)阻止Sb元素的高溫揮發、(2)提高MOx層的附著力、致密度、連續性以及結合強度。 2. The coating material can effectively prevent the high temperature volatilization of Sb element and the oxidation of SKU in SKU material; among them, the main functions of M layer include (1) preventing the high temperature volatilization of Sb element, and (2) improving the adhesion of MO x layer. , density, continuity and bonding strength.

如無具體說明,本發明的各種原料均可以通過市售得到;或根據本領域的常規方法製備得到。除非另有定義或說明,本文中所使用的所有專業與科學用語與本領域技術熟練人員所熟悉的意義相同。此外任何與所記載內容相似或均等的方法及材料皆可應用於本發明方法中。 Unless otherwise specified, various starting materials of the present invention can be obtained commercially, or can be prepared according to conventional methods in the art. All professional and scientific terms used herein have the same meaning as those skilled in the art, unless otherwise defined or indicated. Furthermore, any methods and materials similar or equivalent to those described may be employed in the methods of the invention.

本發明的其他態樣由於本文的公開內容對本領域的技術人員而言是顯而易見的。 Other aspects of the invention will be apparent to those skilled in the art from this disclosure.

下面結合具體實施例,進一步闡述本發明。應理解,這些實施例僅用於說明本發明而不用於限制本發明的範圍。下列實施例中未注明具體條件的實驗方法,通常按照常規條件,或按照制造廠商所建議的條件進行。除非另外說明,否則所有的份數為重量份,所有的百分比為重量百分比,所述的聚合物分子量為數均分子量。 The invention is further illustrated below in conjunction with specific embodiments. It is to be understood that the examples are not intended to limit the scope of the invention. The experimental methods in the following examples which do not specify the specific conditions are usually carried out according to conventional conditions or according to the conditions recommended by the manufacturer. Unless otherwise stated, all parts are by weight, all percentages are by weight, and the molecular weight of the polymer is number average molecular weight.

除非另有定義或說明,本文中所使用的所有專業與科學用語與本領域技術墊墓人員所熟悉的意義相同。此外任何與所記載內容相似或均等的方法及材料皆可應用於本發明方法中。 Unless otherwise defined or indicated, all of the professional and scientific terms used herein have the same meaning as those skilled in the art. Furthermore, any methods and materials similar or equivalent to those described may be employed in the methods of the invention.

實施例1: Example 1:

CoSb3基填充n型方鈷礦材料標稱成分為Ba0.24Co4Sb12,將燒結好的塊體材料加工成3 x 3 x 15mm3的長方體樣品。先在材料的四周表面採用電弧噴塗法形成一層約5微米NiCrMo(Ni:Cr:Mo=68:24:8)層,電弧噴塗的工藝參數為:電弧電壓28-30V,工作電流180-200A,氣體壓力0.4-0.6MPa,噴塗距離150-200mm。再在NiCrMo塗層上用電漿噴塗的方法形成一層約60微米SiO2,電漿噴塗的工藝參數為:噴塗距離70-100mm,送粉率0.5-1g/min,噴塗電流70-100A,離子氣Ar流量1-1.5L/min,送粉氣Ar流量1-3L/min。 The nominal composition of the CoSb 3 -based filled n-type skutterudite material is Ba 0.24 Co 4 Sb 12 , and the sintered bulk material is processed into a 3 x 3 x 15 mm 3 cuboid sample. Firstly, a layer of about 5 micron NiCrMo (Ni:Cr:Mo=68:24:8) is formed by arc spraying on the peripheral surface of the material. The arc spraying process parameters are: arc voltage 28-30V, working current 180-200A, The gas pressure is 0.4-0.6 MPa and the spraying distance is 150-200 mm. A layer of about 60 micron SiO 2 is formed by plasma spraying on the NiCrMo coating. The process parameters of the plasma spraying are: spraying distance 70-100mm, powder feeding rate 0.5-1g/min, spraying current 70-100A, ion The gas Ar flow rate is 1-1.5 L/min, and the flow rate of the powdered Ar gas is 1-3 L/min.

實施例2; Example 2;

CoSb3基填充n型方鈷礦材料標稱成分為Ba0.18Ce0.06Co4Sb12,將燒結好的塊體材料加工成3 x 3 x 15mm3的長方體樣品。先在材料的四周表面採用磁控濺射法形成一層約2微米的Al層。Al靶直徑為75mm,厚度為5mm,濺射氣體為高純氬氣(Ar純度為99.999%),氬氣流量為15mL/min。鍍膜時系統的背景真空為10Pa,工作氣壓為0.2Pa。此外,樣品溫度為常溫(20℃),濺射功率為40W,薄膜沉積速率約為約12nm/min。最後,含鋁塗層的樣品被置於150℃的空氣中氧化1小時使其表面生成Al2O3塗層。 The nominal composition of the CoSb 3 -based filled n-type skutterudite material is Ba 0.18 Ce 0.06 Co 4 Sb 12 , and the sintered bulk material is processed into a 3 x 3 x 15 mm 3 cuboid sample. A layer of Al of about 2 microns was first formed by magnetron sputtering on the peripheral surface of the material. The Al target has a diameter of 75 mm and a thickness of 5 mm, and the sputtering gas is high purity argon gas (Ar purity is 99.999%), and the argon gas flow rate is 15 mL/min. The system has a background vacuum of 10 Pa and a working pressure of 0.2 Pa. Further, the sample temperature was normal temperature (20 ° C), the sputtering power was 40 W, and the film deposition rate was about 12 nm/min. Finally, the aluminum-coated sample was oxidized in air at 150 ° C for 1 hour to form an Al 2 O 3 coating on the surface.

實施例3: Example 3:

此實施例為採用CoSb3基填充型方鈷礦同蕊多層包覆體元件構成的π型器件。p型元件的標稱成分為Ce0.9Co2.5Fe1.5Sb12,n型元件的標稱成分為Yb0.3Co4Sb12。將燒結好的塊體材料加工成3 x 3 x 15mm3的長方體樣品。先在p型和n型元件的一端(含端面)分別用碳紙遮蓋約3.5和5.5mm,同時在另一端用相同材料塗覆遮蓋住端面。採用電弧噴塗法在兩元件的裸露表面噴塗一層約6微米的Mo塗層,再用電漿噴塗法在Mo塗層上噴塗一層約20微米的ZrO2。最後去除遮蓋用碳紙,獲得塗層長度分別為16.5和14.5mm的p型和n型元件(參圖4)。 Examples of CoSb 3 using the filled skutterudite-based core with a multilayer cover element consisting of π-type device of this embodiment. The nominal composition of the p-type element is Ce 0.9 Co 2.5 Fe 1.5 Sb 12 , and the nominal composition of the n-type element is Yb 0.3 Co 4 Sb 12 . The sintered bulk material was processed into a 3 x 3 x 15 mm 3 rectangular parallelepiped sample. First, the end faces (including the end faces) of the p-type and n-type members were covered with carbon paper by about 3.5 and 5.5 mm, respectively, while the other end was coated with the same material to cover the end faces. A 6-micron Mo coating was applied to the exposed surface of the two components by arc spraying, and a 20 μm ZrO 2 was sprayed onto the Mo coating by plasma spraying. Finally, the carbon paper for covering was removed to obtain p-type and n-type elements having coating lengths of 16.5 and 14.5 mm, respectively (see Fig. 4).

在本發明所提及所有文獻都在本申請中引用作為參考,就如同每一篇文獻被單調引用作為參考。此外 應理解,在閱讀本發明上述內容之後,本領域技術人員可以對本發明作各種改變或修改,這些均等形式同樣落於本申請之申請專利範圍所界定之範圍內。 All documents mentioned in the present application are hereby incorporated by reference in their entireties as if they do In addition It is to be understood that various changes and modifications may be made by those skilled in the art in the light of the scope of the invention.

Claims (15)

一種塗層,其用於熱電材料,其特徵在於,包括:含有一熱電材料的一熱電層;一層或多層金屬塗層,其中所述金屬塗層形成與所述熱電層接觸的一表面以及另一相向表面;一層或多層金屬氧化物塗層,所述金屬氧化物塗層含有金屬氧化物,其中所述金屬氧化物塗層形成與所述相向表面接觸的一表面。 A coating for a thermoelectric material, comprising: a thermoelectric layer comprising a thermoelectric material; one or more metal coatings, wherein the metal coating forms a surface in contact with the thermoelectric layer and a facing surface; one or more layers of a metal oxide coating comprising a metal oxide, wherein the metal oxide coating forms a surface in contact with the opposing surface. 如請求項1所述的塗層,其中所述熱電材料選自填充和/或摻雜方鈷礦。 The coating of claim 1 wherein the thermoelectric material is selected from the group consisting of filled and/or doped skutterudite. 如請求項2所述的塗層,其中所述填充和/或摻雜方鈷礦選自CoSb3基方鈷礦。 The coating of claim 2, wherein the filled and/or doped skutterudite is selected from the group consisting of CoSb 3 octagonal cobalt ore. 如請求項1所述的塗層,其中所述金屬塗層含有Ta、Nb、Ti、Mo、V、Al、Zr,Ni、NiAl、TiAl、NiCr或其組合。 The coating of claim 1, wherein the metal coating comprises Ta, Nb, Ti, Mo, V, Al, Zr, Ni, NiAl, TiAl, NiCr, or a combination thereof. 如請求項1所述的塗層,其中所述金屬氧化物塗層含有TiO2、Ta2O5、Nb2O5、Al2O3、ZrO2、NiO、SiO2或其組合。 The coating of the requested item 1, wherein said metal oxide coating containing TiO 2, Ta 2 O 5, Nb 2 O 5, Al 2 O 3, ZrO 2, NiO, SiO 2 , or combinations thereof. 如請求項1所述的塗層,其中所述塗層之厚度為10-500微米。 The coating of claim 1 wherein the coating has a thickness of from 10 to 500 microns. 如請求項6所述的塗層,其中所述塗層之厚 度為50-200微米。 The coating of claim 6 wherein the coating is thick The degree is 50-200 microns. 如請求項1所述的塗層,其中所述金屬塗層的厚度為0.01-20微米。 The coating of claim 1 wherein the metal coating has a thickness of from 0.01 to 20 microns. 如請求項8所述的塗層,其中所述金屬塗層的厚度為0.2-2微米。 The coating of claim 8 wherein the metal coating has a thickness of from 0.2 to 2 microns. 如請求項1所述的塗層,其中所述熱電層具有LT的高度,且所述金屬塗層和所述金屬氧化物塗層各自具有LM&MOx的高度,其中LM&MOx≦LT,且(LT-LM&MOx/LT)≦0.4。 The coating of the requested item 1, wherein the pyroelectric layer having a height of L T, and the metal coating and the metal oxide coating each having a height of L M & MOx, where L M & MOx ≦ L T, and (L T -L M&MOx /L T )≦0.4. 一種含有如請求項1所述的塗層的器件。 A device comprising the coating of claim 1. 一種用於製備如請求項1所述的塗層的製備方法,其包含以下步驟:提供含有一熱電材料的一熱電層;在所述熱電層上形成一層或多層金屬塗層,其中所述金屬塗層形成與所述熱電層接觸的一表面以及另一相向表面;在所述金屬塗層上形成一層或多層金屬氧化物塗層,所述金屬氧化物塗層含有金屬氧化物,其中所述金屬氧化物塗層形成與所述金屬塗層的所述相向表面接觸的一表面。 A method for preparing a coating according to claim 1, comprising the steps of: providing a thermoelectric layer containing a thermoelectric material; forming one or more metal coating layers on the thermoelectric layer, wherein the metal Forming a surface in contact with the thermoelectric layer and another opposing surface; forming one or more layers of a metal oxide coating on the metal coating, the metal oxide coating comprising a metal oxide, wherein The metal oxide coating forms a surface that is in contact with the opposing surface of the metal coating. 如請求項12所述的製備方法,包含以下步驟: 藉由以下一或多個方式形成所述全部或部分的所述金屬塗層:熱蒸發法、電弧噴塗法、電漿噴塗法、火焰噴鍍法、真空濺射法、電化學蒸汽沉積法、電鍍法、或無電沉積法(electroless deposition)。 The preparation method of claim 12, comprising the steps of: Forming all or part of the metal coating by one or more of the following methods: thermal evaporation, arc spray, plasma spray, flame spray, vacuum sputtering, electrochemical vapor deposition, Electroplating, or electroless deposition. 如請求項12所述的製備方法,包含以下步驟:藉由以下一或多個方式形成所述全部或部分的所述金屬氧化物塗層:熱蒸發法、真空濺射法、電漿噴塗法、溶膠法(sol-gel)、化學溶液沉積法(chemical solution deposition)、或化學蒸汽沉積法(chemical vapor deposition)。 The preparation method according to claim 12, comprising the steps of: forming all or part of the metal oxide coating layer by one or more of the following methods: thermal evaporation method, vacuum sputtering method, plasma spraying method , sol-gel, chemical solution deposition, or chemical vapor deposition. 如請求項12所述的製備方法,包含以下步驟:對所述金屬塗層進行至少部分氧化,使得所述金屬氧化物塗層與所述金屬塗層的所述相向表面接觸。 The preparation method of claim 12, comprising the step of at least partially oxidizing the metal coating such that the metal oxide coating is in contact with the facing surface of the metal coating.
TW099124470A 2010-07-26 2010-07-26 A coating for thermoelectric materials and a device containing the same TWI541382B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099124470A TWI541382B (en) 2010-07-26 2010-07-26 A coating for thermoelectric materials and a device containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099124470A TWI541382B (en) 2010-07-26 2010-07-26 A coating for thermoelectric materials and a device containing the same

Publications (2)

Publication Number Publication Date
TW201204873A TW201204873A (en) 2012-02-01
TWI541382B true TWI541382B (en) 2016-07-11

Family

ID=46761398

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099124470A TWI541382B (en) 2010-07-26 2010-07-26 A coating for thermoelectric materials and a device containing the same

Country Status (1)

Country Link
TW (1) TWI541382B (en)

Also Published As

Publication number Publication date
TW201204873A (en) 2012-02-01

Similar Documents

Publication Publication Date Title
EP2460182B1 (en) A coating for thermoelectric materials and a device containing the same
KR101876947B1 (en) Thermoelectric Device using Bulk Material of Nano Structure and Thermoelectric Module having The Same, and Method of Manufacture The Same
JP4446064B2 (en) Thermoelectric conversion element and thermoelectric conversion module
TWI469933B (en) New compound semiconductors and their application
AU2012340268A1 (en) Thermoelectric devices with interface materials and methods of manufacturing the same
CN104465976B (en) Shielded thermoelectric element, the thermo-electric device comprising the thermoelectric element and forming method thereof
US20140096809A1 (en) Thermoelectric device, thermoelectric module including the thermoelectric device, thermoelectric apparatus including the thermoelectric module, and method of manufacturing the same
KR20100045190A (en) Bulk thermoelectric material and thermoelectric device comprising same
US20120145214A1 (en) Thermoelectric conversion material, and thermoelectric conversion module using same
TWI480226B (en) New compound semiconductors and their application
JP2014179375A (en) Thermoelectric conversion element
JP6305335B2 (en) Thermoelectric conversion material, thermoelectric conversion module using the same, and method of manufacturing thermoelectric conversion material
TWI541382B (en) A coating for thermoelectric materials and a device containing the same
US8454860B2 (en) Aluminum-containing zinc oxide-based n-type thermoelectric conversion material
TWI467788B (en) New compound semiconductors and their application
CN112864300B (en) Bismuth telluride base alloy film-perovskite oxide heterojunction composite thermoelectric material and preparation and application thereof
JP2013179130A (en) Thermoelectric conversion module
WO2010140669A1 (en) Thermoelectric material
Werner et al. From Thermoelectric Powder Directly to Thermoelectric Generators: Flexible Bi2Te3 Films on Polymer Sheets Prepared by the Powder Aerosol Deposition Method at Room Temperature
JP2004288841A (en) Oxychalcogenide and thermoelectric material
WO2024060115A1 (en) Thermoelectric device containing protective layer and manufacturing method therefor
JPH0250983A (en) Heat-resistant parts
CN109930186B (en) Skutterudite-based thermoelectric material surface Al-Ni-Al composite coating
KR102198279B1 (en) Metalizing structure for skutterudite thermoelectric material including ito layer
KR102560139B1 (en) Plated Bi-Sb-Te alloy-sintered body and its manufacturing method