TWI539509B - Method for cutting ingot, brick and wafer - Google Patents

Method for cutting ingot, brick and wafer Download PDF

Info

Publication number
TWI539509B
TWI539509B TW102124167A TW102124167A TWI539509B TW I539509 B TWI539509 B TW I539509B TW 102124167 A TW102124167 A TW 102124167A TW 102124167 A TW102124167 A TW 102124167A TW I539509 B TWI539509 B TW I539509B
Authority
TW
Taiwan
Prior art keywords
crystal
wafer
brick
square
cutting
Prior art date
Application number
TW102124167A
Other languages
Chinese (zh)
Other versions
TW201503249A (en
Inventor
鍾文泰
陳俞仲
Original Assignee
茂迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 茂迪股份有限公司 filed Critical 茂迪股份有限公司
Priority to TW102124167A priority Critical patent/TWI539509B/en
Publication of TW201503249A publication Critical patent/TW201503249A/en
Application granted granted Critical
Publication of TWI539509B publication Critical patent/TWI539509B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Description

晶圓棒的裁切方法、晶磚及晶圓片 Wafer rod cutting method, crystal tile and wafer

本發明是有關於一種晶圓棒的裁切方法、晶磚及晶圓片,特別是指一種矽晶圓棒的裁切方法,以及利用該裁切方法所裁切出的矽晶磚與矽晶圓片。 The invention relates to a cutting method of a wafer rod, a crystal brick and a wafer, in particular to a cutting method of a silicon wafer rod, and a twin crystal brick and a crucible cut by the cutting method. Wafer.

參閱圖1,已知半導體產業所使用的單晶矽晶片,主要是將經由拉晶製程形成的一單晶棒1切割(圖中示意出切割線10)出一預定大小的晶塊(Brick)11,再將該晶塊11切割出數個薄片狀的矽晶片111。而目前市場上的單晶棒1主流規格為直徑8吋(inch)的單晶棒1,並且切割形成邊長約為6吋×6吋的矽晶片111。已知的切割方法所形成的該晶塊11的上下左右四個角為弧角,使得切割出的矽晶片111呈現四角為弧形的類四邊形,而並非四角皆為直角的四邊形。 Referring to FIG. 1, a single crystal germanium wafer used in the semiconductor industry is known, mainly for cutting a single crystal rod 1 formed by a crystal pulling process (the cutting line 10 is illustrated) to a predetermined size of a crystal block (Brick). 11. The ingot 11 is then cut into a plurality of sheet-like germanium wafers 111. On the other hand, the mainstream specification of the single crystal rod 1 on the market is a single crystal rod 1 having a diameter of 8 inches, and is cut into a tantalum wafer 111 having a side length of about 6 吋 6 吋. The upper and lower left and right corners of the ingot 11 formed by the known cutting method are arc angles, so that the cut crucible wafer 111 exhibits a quadrangular shape in which the four corners are curved, and not the quadrangles in which the four corners are right angles.

而該單晶棒1切割出預定大小的晶塊11後,該單晶棒1的其餘部位則成為剩餘的邊料,無法再切成晶塊11與矽晶片111來使用,因此已知的裁切方式造成該單晶棒1的邊料利用率不佳,每片矽晶片111的製作成本較高,該裁切方式有待改良。 After the single crystal rod 1 is cut into the ingots 11 of a predetermined size, the remaining portion of the single crystal rod 1 becomes the remaining side material, and can no longer be cut into the ingot 11 and the crucible wafer 111, so that the known cut is performed. The cutting method causes the edge material utilization ratio of the single crystal rod 1 to be poor, and the manufacturing cost per wafer 111 is high, and the cutting method needs to be improved.

因此,本發明之目的,即在提供一種切割方式創新、可降低生產成本的晶圓棒的裁切方法,以及由該裁切方法裁切出的晶磚及晶圓片。 Accordingly, it is an object of the present invention to provide a method of cutting a wafer rod which is innovative in cutting method, which can reduce production cost, and a ceramic tile and a wafer which are cut by the cutting method.

於是,本發明晶圓棒的裁切方法,包含:提供一晶圓棒,該晶圓棒具有一個圓形的橫剖面。於該晶圓棒的該橫剖面上沿平行該晶圓棒的一軸向方向,裁切出一方形晶磚以及四個分別位於該方形晶磚四周的邊料晶磚,其中該方形晶磚的一個平行於該橫剖面的表面的對角線長度與該晶圓棒的直徑相同,且該表面的邊長為mL×mL,其中m為大於或等於2的整數,L為長度。將該方形晶磚裁切出m×m個方形的第一晶磚,每一第一晶磚的一個平行於該橫剖面的表面的邊長為L×L。將該四個邊料晶磚分別裁切出一個方形的第二晶磚,每一第二晶磚的一個垂直於該橫剖面的表面的邊長為L×L。 Thus, the method of cutting a wafer rod of the present invention comprises: providing a wafer rod having a circular cross section. On the cross section of the wafer rod, along a direction parallel to the wafer rod, a square crystal brick and four edge bricks respectively located around the square crystal brick are cut out, wherein the square crystal brick The length of a diagonal line parallel to the surface of the cross section is the same as the diameter of the wafer rod, and the side length of the surface is mL x mL, where m is an integer greater than or equal to 2, and L is a length. The square crystal brick is cut out into m×m square first crystal bricks, and a side of each first crystal brick parallel to the surface of the cross section has a length L×L. The four edge bricks are respectively cut into a square second brick, and a side of each second brick perpendicular to the surface of the cross section has a length L×L.

本發明的另一種晶圓棒的裁切方法,與上述第一種方法的差異主要為,本方法是將該方形晶磚裁切出m個方形的第一晶磚,每一第一晶磚的一個平行於該橫剖面的表面的邊長為L×mL。 Another method for cutting a wafer rod according to the present invention differs from the first method described above in that the method is to cut the square crystal brick into m square first crystal bricks, each of the first crystal bricks. The length of one side of the surface parallel to the cross section is L x mL.

本發明晶磚,包含:一方形的晶磚體,該晶磚體的材料包含氧,該晶磚體的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 The crystal brick of the present invention comprises: a square crystal brick body, the material of the crystal brick body containing oxygen, and the oxygen concentration of the highest and lowest oxygen concentration in the four corners of one surface of the crystal brick body The value is greater than 1.5 ppma.

本發明晶圓片,包含:一方形的基板,具有四 個彼此相對的角落,以及一個由通過該四個角落的兩條對角線所相交的中央位置。該基板的材料包含氧,該基板的四個角落中的氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 The wafer of the present invention comprises: a square substrate having four Opposite corners and a central location intersected by two diagonal lines passing through the four corners. The material of the substrate contains oxygen, and the oxygen concentration in the four corners of the substrate has a difference in oxygen concentration between the highest and the lowest two corners greater than 1.5 ppma.

本發明之功效:藉由上述創新的裁切方法,先將該晶圓棒切出該方形晶磚與該四個邊料晶磚,再分別裁切出預定大小的數個第一晶磚與數個第二晶磚,後續再裁切出晶圓片。由於邊料晶磚的使用可以提升晶圓棒的利用率,可降低每一晶圓片的生產成本,而且可以裁切出四角皆為直角的晶圓片,如此更可使單晶之晶圓片於組配成太陽能模組後,增加整體受光面積。 The effect of the invention: by the above innovative cutting method, the wafer rod is first cut out of the square crystal brick and the four edge material crystal bricks, and then a plurality of first crystal bricks of a predetermined size are respectively cut and A plurality of second crystal bricks are subsequently cut out of the wafer. Since the use of edge bricks can improve the utilization of the wafer rods, the production cost per wafer can be reduced, and wafers with right angles can be cut, so that the wafers of single crystal can be made. After the film is assembled into a solar module, the overall light receiving area is increased.

2、2’‧‧‧晶圓棒 2, 2'‧‧ ‧ wafer stick

20‧‧‧晶圓片 20‧‧‧ wafers

201‧‧‧基板 201‧‧‧Substrate

202‧‧‧角落 202‧‧‧ corner

203‧‧‧中央位置 203‧‧‧Central location

21‧‧‧方形晶磚 21‧‧‧square crystal brick

210‧‧‧晶磚體 210‧‧‧crystal brick body

211‧‧‧第一晶磚 211‧‧‧First crystal brick

212、213‧‧‧表面 212, 213‧‧‧ surface

214、215、216、217‧‧‧角落 214, 215, 216, 217‧‧ corner

218‧‧‧邊 218‧‧‧ side

22‧‧‧邊料晶磚 22‧‧‧ edge brick

220‧‧‧晶磚體 220‧‧‧crystal brick body

221‧‧‧第二晶磚 221‧‧‧Second crystal brick

222、223‧‧‧表面 222, 223‧‧‧ surface

224、225、226、227‧‧‧角落 224, 225, 226, 227‧‧ corner

23‧‧‧橫剖面 23‧‧‧ cross section

3‧‧‧軸向方向 3‧‧‧Axial direction

41‧‧‧第一方向 41‧‧‧First direction

42‧‧‧第二方向 42‧‧‧second direction

5‧‧‧坩鍋 5‧‧‧坩锅

51‧‧‧矽熔湯 51‧‧‧矽 molten soup

A‧‧‧對角線長度 A‧‧‧diagonal length

B‧‧‧箭頭 B‧‧‧ arrow

X、Y‧‧‧長度 X, Y‧‧‧ length

R‧‧‧直徑 R‧‧‧diameter

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一裁切流程示意圖,顯示一種以往裁切一單晶棒以得到數個矽晶片的方法;圖2是本發明晶圓棒的裁切方法之一第一較佳實施例的流程示意圖;圖3為製作一晶圓棒的裝置示意圖;圖4是以圖3裝置所製作出的該晶圓棒的立體示意圖;圖5是本發明將一第一晶磚裁切出數個晶圓片的示意圖;圖6是本發明將一第二晶磚裁切出數個晶圓片的示意 圖;圖7是本發明將另外一第二晶磚裁切出數個晶圓片的示意圖;圖8是本發明將一方形晶磚裁切出3×3個方形的第一晶磚的示意圖;及圖9是本發明晶圓棒的裁切方法之一第二較佳實施例的部分步驟的流程示意圖。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: FIG. 1 is a schematic illustration of a cutting process showing a method of previously cutting a single crystal rod to obtain a plurality of germanium wafers. 2 is a schematic flow chart of a first preferred embodiment of a method for cutting a wafer rod of the present invention; FIG. 3 is a schematic view of a device for fabricating a wafer rod; and FIG. 4 is a crystal produced by the device of FIG. FIG. 5 is a schematic view of the present invention for cutting a first wafer into a plurality of wafers; FIG. 6 is a schematic view of the present invention for cutting a second wafer into a plurality of wafers; Figure 7 is a schematic view of another second wafer cut out of a plurality of wafers according to the present invention; Figure 8 is a schematic view of the first crystal brick of the present invention for cutting a square crystal brick into 3 × 3 squares. And FIG. 9 is a schematic flow chart showing a part of steps of a second preferred embodiment of the wafer bar cutting method of the present invention.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖2,本發明晶圓棒的裁切方法之第一較佳實施例,包含以下步驟。 Referring to FIG. 2, a first preferred embodiment of the method for cutting a wafer rod of the present invention comprises the following steps.

步驟一:提供一晶圓棒2,該晶圓棒2為一個圓柱體,並具有一個圓形的橫剖面23,該橫剖面23所在的平面垂直於該晶圓棒2的一軸向方向3。具體而言,該晶圓棒2可以為一矽晶圓棒,並且可以使用直徑為5吋(inch)、8吋、9吋、18吋、27吋、36吋…等尺寸的晶圓棒2,該晶圓棒2沿該軸向方向3的軸向長度為X,X為大於零的自然數,本實施例的X=156mm。 Step 1: providing a wafer rod 2 having a cylindrical shape and having a circular cross section 23, the plane of the cross section 23 being perpendicular to an axial direction of the wafer rod 2 . Specifically, the wafer rod 2 may be a single wafer rod, and a wafer rod 2 having a diameter of 5 inches, 8 inches, 9 inches, 18 inches, 27 inches, 36 inches, etc. may be used. The axial length of the wafer rod 2 in the axial direction 3 is X, and X is a natural number greater than zero, and X = 156 mm in this embodiment.

步驟二:於該晶圓棒2的該橫剖面23上沿平行該軸向方向3裁切出一方形晶磚21以及四個分別位於該方形晶磚21四周的邊料晶磚22。其中,該方形晶磚21為四方體,該方形晶磚21的幾何中心點與該晶圓棒2的幾何中心點都位於該軸向方向3上。該方形晶磚21的四個上下左 右設置且沿該軸向方向3延伸的邊218皆對應地位於該晶圓棒2的圓周上。該方形晶磚21的平行於該晶圓棒2的該橫剖面23的一表面212的對角線長度A,與該晶圓棒2的直徑R相同。該方形晶磚21的平行於該橫剖面23的該表面212的邊長為mL×mL,其中m為大於或等於2的整數,L為長度並且為大於零的自然數。在本實施例中,m=2,L=156mm(約等於6吋),且L等於該晶圓棒2的軸向長度X。但實際上L與X也可以不相等,一般而言,於實際製作時,X通常為L的數倍。總結來說,本發明的晶圓棒2的軸向長度X可以大於或等於nL,其中n為正整數。 Step 2: A square crystal brick 21 and four edge bricks 22 respectively located around the square crystal brick 21 are cut along the axial direction 3 of the cross section 23 of the wafer rod 2. Wherein, the square crystal brick 21 is a square body, and the geometric center point of the square crystal brick 21 and the geometric center point of the wafer rod 2 are located in the axial direction 3 . The four upper and lower left of the square crystal brick 21 The sides 218 disposed to the right and extending along the axial direction 3 are correspondingly located on the circumference of the wafer rod 2. The diagonal length A of a surface 212 of the square tile 21 parallel to the cross section 23 of the wafer rod 2 is the same as the diameter R of the wafer rod 2. The side length of the surface 212 of the square tile 21 parallel to the cross section 23 is mL x mL, where m is an integer greater than or equal to 2, and L is a length and is a natural number greater than zero. In the present embodiment, m = 2, L = 156 mm (about equal to 6 吋), and L is equal to the axial length X of the wafer rod 2. However, in fact, L and X may not be equal. Generally speaking, in actual production, X is usually several times L. In summary, the axial length X of the wafer stick 2 of the present invention may be greater than or equal to nL, where n is a positive integer.

具體來說,步驟二是先取一切割用的方形線網,該方形線網由同一條切割鋼線纏繞而成,該方形線網圈界出的面積大小約對應該方形晶磚21的表面212的大小。接著利用該方形線網直接沿該軸向方向3對該晶圓棒2進行切割,從而可將該晶圓棒2切出該方形晶磚21與該四個邊料晶磚22。 Specifically, the second step is to first take a square wire mesh for cutting, the square wire mesh is wound by the same cutting steel wire, and the square wire mesh circle has an area corresponding to the surface 212 of the square crystal brick 21 . the size of. The wafer rod 2 is then cut directly along the axial direction 3 by the square wire web, so that the wafer rod 2 can be cut out of the square crystal brick 21 and the four edge material bricks 22.

步驟三:將該方形晶磚21裁切出m×m個方形的第一晶磚211,每一第一晶磚211的一個平行於該橫剖面23的一表面213的邊長為L×L。在本實施例中,可以裁切出2×2=4個方形的第一晶磚211。每一第一晶磚211沿該軸向方向3的長度與該晶圓棒2沿該軸向方向3的長度相同為X,也等於L。本步驟的具體裁切方式如下:首先定義平行該晶圓棒2的橫剖面23且互相垂直的一第一方向41與一第二方向42,且該第一方向41與該第二方向42也分 別垂直該軸向方向3。取一切割用的十字形線網,該十字形線網由同一條切割鋼線纏繞交叉而成,該十字形線網的兩線段分別沿該第一方向41與該第二方向42延伸並互相交叉。將該十字形線網沿該軸向方向3對該方形晶磚21切割後,如此就可以將該方形晶磚21均勻地裁切出四等分以得到該四個第一晶磚211。 Step 3: The square crystal brick 21 is cut out into m×m square first crystal bricks 211, and a side of each first brick 211 parallel to a surface 213 of the cross section 23 is L×L. . In the present embodiment, the first crystal brick 211 of 2 × 2 = 4 squares can be cut. The length of each of the first bricks 211 in the axial direction 3 is the same as the length of the wafer rod 2 in the axial direction 3, which is also equal to L. The specific cutting manner of this step is as follows: firstly, a first direction 41 and a second direction 42 parallel to the cross section 23 of the wafer rod 2 and perpendicular to each other are defined, and the first direction 41 and the second direction 42 are also Minute Do not perpendicular to the axial direction 3. Taking a cross-shaped wire mesh for cutting, the cross-shaped wire mesh is formed by winding the same cutting steel wire, and the two wire segments of the cross-shaped wire mesh respectively extend along the first direction 41 and the second direction 42 and mutually cross. After the cross-shaped wire web is cut along the axial direction 3, the square crystal brick 21 is cut into four equal parts to obtain the four first crystal bricks 211.

步驟三的裁切方式僅是舉例說明,不限於此。例如也可以使用其他的裁切工具,先使該裁切工具的延伸方向平行該第一方向41且沿該軸向方向3而切下第一刀,接著再使該裁切工具的延伸方向平行該第二方向42且沿該軸向方向3切下第二刀,如此也可以得到該四個第一晶磚211。 The cutting method of the third step is merely an example and is not limited thereto. For example, other cutting tools can also be used. First, the extending direction of the cutting tool is parallel to the first direction 41 and the first knife is cut along the axial direction 3, and then the extending direction of the cutting tool is parallel. The second direction 42 and the second knife are cut along the axial direction 3, so that the four first bricks 211 can also be obtained.

需要說明的是,本實施例使用18吋的晶圓棒2,m=2,因此切出2×2=4個方形的第一晶磚211;參閱圖8,當使用27吋晶圓棒時,可切出3×3=9個方形的第一晶磚211;當使用36吋晶圓棒時,可切出4×4=16個方形的第一晶磚211。要切出3×3或是4×4或更多的第一晶磚211時,切割用的線網必須有相對應的設計,該切割線網上有密佈交叉的切割線段,該切割線網是由同一條切割鋼線纏繞成的。 It should be noted that, in this embodiment, 18 吋 wafer rod 2 is used, m=2, so 2×2=4 square first crystal bricks 211 are cut out; referring to FIG. 8, when 27 吋 wafer rods are used The first crystal brick 211 of 3×3=9 squares can be cut out; when the 36吋 wafer rod is used, the first crystal brick 211 of 4×4=16 squares can be cut out. When cutting out the first crystal brick 211 of 3×3 or 4×4 or more, the wire mesh for cutting must have a corresponding design, and the cutting wire mesh has a cutting line segment which is closely intersected, and the cutting wire mesh It is wound from the same cut steel wire.

步驟四:將該四個邊料晶磚22分別裁切出一個方形的第二晶磚221,每一第二晶磚221的一個垂直於該晶圓棒2的橫剖面23的表面222的邊長為L×L,每一第二晶磚221的一個平行於該橫剖面23的表面223的邊長為L ×Y,本實施例的Y為一小於L的長度。如此就完成該晶圓棒2的裁切。 Step 4: The four edge bricks 22 are respectively cut into a square second brick 221, and one of each second brick 221 is perpendicular to the side of the surface 222 of the cross section 23 of the wafer rod 2. The length is L×L, and one side of each second brick 221 parallel to the surface 223 of the cross section 23 has a length L. ×Y, Y of the present embodiment is a length smaller than L. This completes the cutting of the wafer rod 2.

補充說明,本實施例的每一第一晶磚211的材料包含氧,每一第一晶磚211的其中一表面(具體來說即為平行於該橫剖面23的該表面213)的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於2.5ppma。本實施例的每一第二晶磚221的材料包含氧,每一第二晶磚221的其中一表面(具體來說為垂直於該橫剖面23的該表面222)的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。第一晶磚211與第二晶磚221的上述氧濃度差異,與晶圓棒2的製作過程有關。 In addition, the material of each of the first bricks 211 of the embodiment includes oxygen, and one surface of each of the first bricks 211 (specifically, the surface 213 parallel to the cross section 23) In the corner, the difference in oxygen concentration between the highest and lowest oxygen concentrations is greater than 2.5 ppma. The material of each of the second bricks 221 of the present embodiment includes oxygen, and oxygen is applied to each of the four corners of one surface of each of the second bricks 221 (specifically, the surface 222 perpendicular to the cross section 23). The difference in oxygen concentration between the two corners with the highest and lowest concentrations is greater than 1.5 ppma. The difference in oxygen concentration of the first crystal brick 211 and the second crystal brick 221 is related to the manufacturing process of the wafer rod 2.

參閱圖3、4,製作一晶圓棒2’時,主要是於一坩鍋5容裝矽熔湯51,並經由拉晶製成得到該晶圓棒2’。其中該坩鍋5持續加熱以使矽熔湯51保持熔融態,而該坩鍋5材料主要為SiO2,在高溫下會產生氧,並且在拉晶過程中,氧會如圖3的箭頭B所示向上進入被逐漸往上拉起的晶圓棒2’中,由於晶圓棒2’為向上拉晶形成,因此其頂部呈尖頭狀,當該晶圓棒2’製作完成後再將該尖頭狀的頂部裁掉。而該晶圓棒2’以上下方向來看,愈接近該晶圓棒2’的頂部,氧濃度愈高(圖中標示OH示意),愈下方則氧濃度愈低(圖中標示OL示意);以徑向方向來看,愈接近晶圓棒2’的中心,氧濃度愈高,愈接近該晶圓棒2’的圓周,氧濃度愈低。 Referring to Figures 3 and 4, when a wafer rod 2' is fabricated, the crucible 51 is mainly filled in a crucible 5, and the wafer rod 2' is obtained by pulling crystal. Wherein the crucible 5 is continuously heated to keep the crucible soup 51 in a molten state, and the material of the crucible 5 is mainly SiO 2 , oxygen is generated at a high temperature, and during the crystal pulling process, the oxygen will be as shown by the arrow B in FIG. 3 . As shown in the upward direction of the wafer rod 2' which is gradually pulled up, since the wafer rod 2' is formed by upward pulling, the top of the wafer rod 2 is pointed, and when the wafer rod 2' is completed, The pointed top is cut off. While the wafer rod 2 'run-down direction, the closer the wafer stick 2' the top of the higher oxygen concentration (denoted schematically O H), the more the lower the lower the oxygen concentration (denoted O L In the radial direction, the closer to the center of the wafer rod 2', the higher the oxygen concentration, the closer to the circumference of the wafer rod 2', the lower the oxygen concentration.

參閱圖2,因此本案的每一第一晶磚211在該 表面213上的四個角落中,以其中一個相當於位於該晶圓棒2的中心部位的角落214的氧濃度最高,另外三個角落215、216、217的氧濃度較低,一般來說,第一晶磚211的最高與最低的兩個角落的氧濃度差異可達2.5ppma以上。每一第二晶磚221在該表面222的四個角落中,以愈靠近原本為該晶圓棒2的頂部的兩個角落224、225的氧濃度較高,另外兩個較遠離該晶圓棒2的頂部的角落226、227的氧濃度較低,一般來說,第二晶磚221的最高與最低的兩個角落的氧濃度差異可達1.5ppma以上。 Referring to FIG. 2, therefore, each of the first bricks 211 in the present case is in the Among the four corners on the surface 213, one of the corners 214 corresponding to the central portion of the wafer rod 2 has the highest oxygen concentration, and the other three corners 215, 216, 217 have a low oxygen concentration. Generally, The difference in oxygen concentration between the highest and lowest two corners of the first brick 211 can be more than 2.5 ppma. Each of the second bricks 221 is in the four corners of the surface 222 so that the oxygen concentration is higher toward the two corners 224, 225 which are originally the top of the wafer rod 2, and the other two are farther away from the wafer. The oxygen concentration of the corners 226, 227 at the top of the rod 2 is relatively low. Generally, the difference in oxygen concentration between the highest and lowest corners of the second brick 221 can be 1.5 ppm or more.

綜合以上說明可知,本發明可提供一種晶磚,該晶磚包含一方形的晶磚體210、220,該晶磚體210、220的材料包含氧,該晶磚體210、220的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 Based on the above description, the present invention can provide a crystal brick comprising a square crystal brick body 210, 220, the material of the crystal brick body 210, 220 containing oxygen, one surface of the crystal brick body 210, 220 In the four corners, the difference in oxygen concentration between the highest and lowest oxygen concentrations is greater than 1.5 ppma.

參閱圖5、6、7,本發明在裁切得到該數個第一晶磚211與該數個第二晶磚221,可再利用適當的切割線網裁切第一晶磚211與第二晶磚221來得到數個晶圓片。第一晶磚211的裁切方向(圖5)主要是沿垂直該軸向方向3之方向而切出數個呈薄片狀的晶圓片20。而裁切其中兩個第二晶磚221時(圖6),則沿平行於該軸向方向3之方向而切出數個呈薄片狀的晶圓片20。裁切另外兩個第二晶磚221時(圖7),則沿平行於該軸向方向3之方向而切出數個呈薄片狀的晶圓片20。無論是由第一晶磚211或第二晶磚221裁切出的晶圓片20皆為四角為直角的方形,且邊長為 L×L。上述裁切方式與各晶磚的設置方向及裁切方向僅為舉例,實施時不限於此。 Referring to Figures 5, 6, and 7, the present invention cuts the plurality of first crystal bricks 211 and the plurality of second crystal bricks 221, and then cuts the first crystal bricks 211 and the second by using a suitable cutting wire web. The tile 221 is used to obtain a plurality of wafers. The cutting direction of the first brick 211 (Fig. 5) is mainly to cut a plurality of wafer-like wafers 20 in the direction perpendicular to the axial direction 3. When two of the second bricks 221 are cut (Fig. 6), a plurality of wafer-like wafers 20 are cut in a direction parallel to the axial direction 3. When the other two second bricks 221 are cut (Fig. 7), a plurality of wafer-like wafers 20 are cut in a direction parallel to the axial direction 3. The wafers 20 cut by the first brick 211 or the second brick 221 are squares with square corners and the sides are L × L. The above cutting method and the setting direction and the cutting direction of each of the crystal blocks are merely examples, and the implementation is not limited thereto.

由於本實施例的晶圓片20是由上述第一晶磚211與第二晶磚221裁切得到,因此晶圓片20的氧濃度分布也會有類似於第一晶磚211或第二晶磚221的分布。本實施例的每一晶圓片20包含一方形的基板201,該基板201具有四個彼此相對的角落202,以及一個由通過該四個角落202的兩條對角線所相交的中央位置203。該基板201的材料包含氧,該基板201的該四個角落202中的氧濃度最高與最低的兩個角落202的氧濃度差值大於1.5ppma。 Since the wafer 20 of the embodiment is cut by the first brick 211 and the second brick 221, the oxygen concentration distribution of the wafer 20 is similar to that of the first brick 211 or the second crystal. The distribution of bricks 221 Each wafer 20 of the present embodiment includes a square substrate 201 having four opposite corners 202 and a central location 203 intersecting by two diagonal lines passing through the four corners 202. . The material of the substrate 201 contains oxygen, and the difference in oxygen concentration between the highest and lowest corners 202 of the four corners 202 of the substrate 201 is greater than 1.5 ppma.

具體來說,由第二晶磚221切出的每一晶圓片20的一方形的基板的四個角落中的氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma;由第一晶磚211切出的每一晶圓片20的一方形的基板的四個角落中的氧濃度最高與最低的兩個角落的氧濃度差值大於2.5ppma。而且如圖5所示,該基板201的氧濃度最高的該角落202比該中央位置203處的氧濃度高。補充說明,圖5的該第一晶磚211是以圖2的該四個第一晶磚211中位於左上角的該第一晶磚211為例,而圖2的其他三個第一晶磚211所裁切出的晶圓片,其角落與中央處的氧濃度差異也會有類似於圖5的晶圓片20的氧濃度差異。 Specifically, the oxygen concentration in the four corners of the square substrate of each wafer 20 cut out by the second ceramic tile 221 is the highest and the lowest oxygen concentration difference between the two corners is greater than 1.5 ppma; The oxygen concentration in the four corners of a square substrate of each wafer 20 cut out by a single brick 211 is the highest and the lowest oxygen concentration difference between the two corners is greater than 2.5 ppma. Further, as shown in FIG. 5, the corner 202 of the substrate 201 having the highest oxygen concentration is higher than the oxygen concentration at the center position 203. In addition, the first crystal brick 211 of FIG. 5 is exemplified by the first crystal brick 211 located in the upper left corner of the four first crystal bricks 211 of FIG. 2 , and the other three first crystal bricks of FIG. 2 . The difference in oxygen concentration between the corners and the center of the wafer cut out of 211 will also have a difference in oxygen concentration similar to that of the wafer 20 of FIG.

參閱圖2、5,綜上所述,藉由本發明的創新裁切方法,先將該晶圓棒2切出該方形晶磚21與該四個邊料晶磚22,再切出預定大小的第一晶磚211與第二晶磚 221,後續再裁切出該數個晶圓片20。由於邊料晶磚22的使用可以提升晶圓棒2整體的利用率,以18吋晶圓棒為例,該晶圓棒的正面上的有效裁切面積可達80.8%左右,可降低每一晶圓片20的生產成本。而且若需要裁切出主流規格且四角皆為直角的晶圓片20也相當方便,本發明對於產業利用有非常大的幫助。其中,由於傳統的單晶晶圓片的四角為弧形,因此於組裝成太陽能電池模組後,模組中的電池之間會因晶圓片的弧角而產生很多地方為空缺的區域,這些空缺區域無法吸收光線;而本發明可以裁切出四角皆為直角的晶圓片,如此可使單晶的晶圓片於組配成電池模組後,增加模組整體受光面積。因此,以本發明的晶圓片組配成的模組,與同樣大小的傳統模組相比較,可以提升光吸收率與利用率。 Referring to Figures 2 and 5, in summary, by the innovative cutting method of the present invention, the wafer rod 2 is first cut out of the square crystal brick 21 and the four edge bricks 22, and then cut to a predetermined size. First crystal brick 211 and second crystal brick 221. The plurality of wafers 20 are subsequently cut out. Since the use of the edge brick 22 can improve the overall utilization of the wafer rod 2, taking an 18-inch wafer rod as an example, the effective cutting area on the front side of the wafer rod can reach about 80.8%, which can reduce each The production cost of the wafer 20. Moreover, if it is necessary to cut the wafer 20 of the mainstream specifications and the corners are right angles, the present invention is very helpful for industrial utilization. Wherein, since the four corners of the conventional single crystal wafer are curved, after assembling the solar cell module, the cells in the module may have many vacant areas due to the arc angle of the wafer. These vacant areas are incapable of absorbing light; and the present invention can cut wafers having square corners at right angles, so that the single crystal wafers can be integrated into a battery module to increase the overall light receiving area of the module. Therefore, the module assembled by the wafer set of the present invention can improve the light absorption rate and the utilization ratio compared with the conventional module of the same size.

參閱圖9,本發明晶圓棒的裁切方法之第二較佳實施例,與該第一較佳實施例大致相同,以下主要說明不同的地方。 Referring to Fig. 9, a second preferred embodiment of the method for cutting a wafer rod of the present invention is substantially the same as the first preferred embodiment, and the following mainly describes different places.

本實施例的步驟三中,是將該邊長為mL×mL的方形晶磚21裁切出m個方形的第一晶磚211,每一第一晶磚211的一個平行於該晶圓棒的橫剖面的表面213的邊長為L×mL。需要說明的是,本實施例使用直徑為18吋的晶圓棒,且m=2,因此切出2個方形的第一晶磚211,從表面213來看可稱為長方形體;當使用27吋晶圓棒2時,可切出3個方形的第一晶磚211;當使用36吋晶圓棒2時,可切出4個方形的第一晶磚211。 In the third step of the embodiment, the square crystal bricks 21 having a side length of mL×mL are cut into m square first crystal bricks 211, and one of each of the first crystal bricks 211 is parallel to the wafer rod. The surface 213 of the cross section has a side length of L x mL. It should be noted that, in this embodiment, a wafer rod having a diameter of 18 , is used, and m=2, so that two square first crystal bricks 211 are cut out, which may be referred to as a rectangular body when viewed from the surface 213; When the wafer rod 2 is rubbed, three square first crystal bricks 211 can be cut out; when 36 wafer rods 2 are used, four square first crystal bricks 211 can be cut out.

本實施例的每一第一晶磚211的材料包含氧,每一第一晶磚211的其中一表面(具體來說為該表面213)的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma;且進一步地,該差值大於2.5ppma。其中,在圖9的每一第一晶磚211上標示有OH與OL,用於示意每一第一晶磚211整體之氧濃度最高與最低的部位。 The material of each of the first bricks 211 of the embodiment includes oxygen, and the oxygen concentration is the highest and the lowest of the four corners of one surface (specifically, the surface 213) of each of the first bricks 211. The difference in oxygen concentration in the corner is greater than 1.5 ppma; and further, the difference is greater than 2.5 ppma. Wherein each of the first crystal marked on tile 211 in FIG. 9 are O H and O L, a schematic of the overall oxygen concentration of each of the first crystal tile 211 the highest portion and the lowest.

而後續可將每一第一晶磚211裁切成數個邊長皆為L×L的薄片形的晶圓片20。每一晶圓片20的一方形的基板的四個角落中的氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。其中,在圖9的晶圓片20上標示有OH與OL,用於示意每一晶圓片20本身的氧濃度最高與最低的部位。 Then, each of the first bricks 211 can be subsequently cut into a plurality of sheet-shaped wafers 20 each having an L×L side length. The difference in oxygen concentration between the highest and lowest corners of the four corners of a square substrate of each wafer 20 is greater than 1.5 ppma. Here, O H and O L are indicated on the wafer 20 of FIG. 9 for indicating the highest and lowest oxygen concentration of each wafer 20 itself.

須注意的是,晶圓片20與第一晶磚211上標有OH與OL的部位,只是用於代表其各自本身的氧濃度高低分布,並非代表兩者之標有OH部位的氧濃度相同,也並非代表兩者之標有OL部位的氧濃度相同。 It should be noted that the portions of the wafer 20 and the first crystal brick 211 marked with O H and O L are only used to represent the respective oxygen concentration distributions of the respective crystal bricks, and do not represent the O H sites of the two. the same oxygen concentration, is not representative of both the labeled with the same oxygen concentration O L site.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

2‧‧‧晶圓棒 2‧‧‧ wafer stick

21‧‧‧方形晶磚 21‧‧‧square crystal brick

210‧‧‧晶磚體 210‧‧‧crystal brick body

211‧‧‧第一晶磚 211‧‧‧First crystal brick

212、213‧‧‧表面 212, 213‧‧‧ surface

214、215、216、217‧‧‧角落 214, 215, 216, 217‧‧ corner

218‧‧‧邊 218‧‧‧ side

22‧‧‧邊料晶磚 22‧‧‧ edge brick

220‧‧‧晶磚體 220‧‧‧crystal brick body

221‧‧‧第二晶磚 221‧‧‧Second crystal brick

222、223‧‧‧表面 222, 223‧‧‧ surface

224、225、226、227‧‧‧角落 224, 225, 226, 227‧‧ corner

23‧‧‧橫剖面 23‧‧‧ cross section

3‧‧‧軸向方向 3‧‧‧Axial direction

41‧‧‧第一方向 41‧‧‧First direction

42‧‧‧第二方向 42‧‧‧second direction

A‧‧‧對角線長度 A‧‧‧diagonal length

X、Y‧‧‧長度 X, Y‧‧‧ length

R‧‧‧直徑 R‧‧‧diameter

Claims (13)

一種晶圓棒的裁切方法,包含:提供一晶圓棒,該晶圓棒具有一個圓形的橫剖面;於該晶圓棒的該橫剖面上沿平行該晶圓棒的一軸向方向,裁切出一方形晶磚以及四個分別位於該方形晶磚四周的邊料晶磚,其中該方形晶磚的一個平行於該橫剖面的表面的對角線長度與該晶圓棒的直徑相同,且該表面的邊長為mL×mL,其中m為大於或等於2的整數,L為長度;將該方形晶磚裁切出m×m個方形的第一晶磚,每一第一晶磚的一個平行於該橫剖面的表面的邊長為L×L;及將該四個邊料晶磚分別裁切出一個方形的第二晶磚,每一第二晶磚的一個垂直於該橫剖面的表面的邊長為L×L。 A method for cutting a wafer rod, comprising: providing a wafer rod having a circular cross section; and an axial direction parallel to the wafer rod on the cross section of the wafer rod Cutting a square crystal brick and four edge bricks respectively located around the square crystal brick, wherein a diagonal length of the surface of the square brick parallel to the cross section and a diameter of the wafer rod The same, and the side length of the surface is mL×mL, wherein m is an integer greater than or equal to 2, and L is a length; the square crystal brick is cut out into m×m square first crystal bricks, each first a side of the crystal tile parallel to the cross-section of the cross-section is L×L; and the four slabs are respectively cut into a square second crystal brick, one perpendicular to each of the second crystal bricks The side of the cross section has a side length of L x L. 如請求項1所述的晶圓棒的裁切方法,其中,每一第二晶磚的材料包含氧,每一第二晶磚的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 The method for cutting a wafer rod according to claim 1, wherein the material of each of the second crystal bricks comprises oxygen, and the oxygen concentration is the highest and lowest among the four corners of one surface of each of the second crystal bricks. The difference in oxygen concentration between the two corners is greater than 1.5 ppma. 如請求項1或2所述的晶圓棒的裁切方法,其中,每一第一晶磚的材料包含氧,每一第一晶磚的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於2.5ppma。 The method for cutting a wafer rod according to claim 1 or 2, wherein the material of each of the first crystal bricks contains oxygen, and the oxygen concentration is the highest among the four corners of one surface of each of the first crystal bricks. The difference in oxygen concentration between the two lowest corners is greater than 2.5 ppma. 如請求項1所述的晶圓棒的裁切方法,其中,該晶圓棒的直徑大於或等於18吋。 The method of cutting a wafer rod according to claim 1, wherein the diameter of the wafer rod is greater than or equal to 18 吋. 如請求項1所述的晶圓棒的裁切方法,其中,該晶圓棒的軸向長度為X,X大於或等於nL,其中n為正整數。 The method of cutting a wafer rod according to claim 1, wherein the wafer rod has an axial length of X and X is greater than or equal to nL, wherein n is a positive integer. 一種晶圓棒的裁切方法,包含:提供一晶圓棒,該晶圓棒具有一個圓形的橫剖面;於該晶圓棒的該橫剖面上沿平行該晶圓棒的一軸向方向,裁切出一方形晶磚以及四個分別位於該方形晶磚四周的邊料晶磚,該方形晶磚的一個平行於該橫剖面的表面的對角線長度與該晶圓棒的直徑相同,且該表面的邊長為mL×mL,其中m為大於或等於2的整數,L為長度;將該方形晶磚裁切出m個方形的第一晶磚,每一第一晶磚的一個平行於該橫剖面的表面的邊長為L×mL;及將該四個邊料晶磚分別裁切出一個方形的第二晶磚,每一第二晶磚的一個垂直於該橫剖面的表面的邊長為L×L。 A method for cutting a wafer rod, comprising: providing a wafer rod having a circular cross section; and an axial direction parallel to the wafer rod on the cross section of the wafer rod Cutting a square crystal brick and four edge bricks respectively located around the square brick, the diagonal length of a surface of the square brick parallel to the cross section being the same as the diameter of the wafer rod And the side length of the surface is mL×mL, wherein m is an integer greater than or equal to 2, and L is a length; the square crystal brick is cut out into m square first crystal bricks, each of the first crystal bricks a side parallel to the surface of the cross section has a side length of L×mL; and the four side grain bricks are respectively cut out to form a square second crystal brick, one perpendicular to the cross section of each second crystal brick The side of the surface is L × L. 如請求項6所述的晶圓棒的裁切方法,其中,每一第二晶磚的材料包含氧,每一第二晶磚的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 The method for cutting a wafer rod according to claim 6, wherein the material of each of the second crystal bricks comprises oxygen, and the oxygen concentration is the highest and lowest among the four corners of one surface of each of the second crystal bricks. The difference in oxygen concentration between the two corners is greater than 1.5 ppma. 如請求項6或7所述的晶圓棒的裁切方法,其中,每一 第一晶磚的材料包含氧,每一第一晶磚的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於2.5ppma。 A method of cutting a wafer rod according to claim 6 or 7, wherein each The material of the first crystal brick contains oxygen, and in the four corners of one surface of each of the first crystal bricks, the oxygen concentration difference between the highest and lowest two corners is greater than 2.5 ppma. 如請求項6所述的晶圓棒的裁切方法,其中,該晶圓棒的直徑大於或等於18吋。 The method of cutting a wafer rod according to claim 6, wherein the diameter of the wafer rod is greater than or equal to 18 吋. 如請求項6所述的晶圓棒的裁切方法,其中,該晶圓棒的軸向長度為X,X大於或等於nL,其中n為正整數。 The method of cutting a wafer rod according to claim 6, wherein the wafer rod has an axial length of X and X is greater than or equal to nL, wherein n is a positive integer. 一種透過請求項1或6所述的晶圓棒的裁切方法所獲得的晶磚,包含:一方形的晶磚體,該晶磚體的材料包含氧,該晶磚體的其中一表面的四個角落中,氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 A crystal brick obtained by the cutting method of the wafer rod according to claim 1 or 6, comprising: a square crystal brick body, the material of the crystal brick body containing oxygen, one surface of the crystal brick body In the four corners, the difference in oxygen concentration between the highest and lowest oxygen concentrations is greater than 1.5 ppma. 一種透過請求項11所述的晶磚而裁切獲得的晶圓片,包含:一方形的基板,具有四個彼此相對的角落,以及一個由通過該四個角落的兩條對角線所相交的中央位置;該基板的材料包含氧,該基板的四個角落中的氧濃度最高與最低的兩個角落的氧濃度差值大於1.5ppma。 A wafer obtained by cutting a tile according to claim 11 comprising: a square substrate having four opposite corners and one intersecting by two diagonal lines passing through the four corners The central location; the material of the substrate contains oxygen, and the oxygen concentration in the four corners of the substrate is the highest and the lowest oxygen concentration difference between the two corners is greater than 1.5 ppma. 如請求項12所述的晶圓片,其中,該基板之氧濃度最高的該角落比該中央位置處的氧濃度高。 The wafer of claim 12, wherein the corner of the substrate having the highest oxygen concentration is higher than the concentration of oxygen at the central location.
TW102124167A 2013-07-05 2013-07-05 Method for cutting ingot, brick and wafer TWI539509B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102124167A TWI539509B (en) 2013-07-05 2013-07-05 Method for cutting ingot, brick and wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102124167A TWI539509B (en) 2013-07-05 2013-07-05 Method for cutting ingot, brick and wafer

Publications (2)

Publication Number Publication Date
TW201503249A TW201503249A (en) 2015-01-16
TWI539509B true TWI539509B (en) 2016-06-21

Family

ID=52718498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102124167A TWI539509B (en) 2013-07-05 2013-07-05 Method for cutting ingot, brick and wafer

Country Status (1)

Country Link
TW (1) TWI539509B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022960A1 (en) * 2019-08-07 2021-02-11 常州时创能源股份有限公司 Utilization method for silicon rod leftover material

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109747055B (en) * 2019-03-04 2020-12-04 常州时创能源股份有限公司 Preparation method and application of monocrystalline silicon wafer
CN111745844B (en) * 2019-03-26 2022-08-23 新余赛维铸晶技术有限公司 Border seed crystal and preparation method and application thereof
CN110712308A (en) * 2019-10-23 2020-01-21 常州时创能源科技有限公司 Cutting method of edge leather
CN110640917A (en) * 2019-10-23 2020-01-03 常州时创能源科技有限公司 Multi-wire cutting device for silicon rod edge leather
CN110625834A (en) * 2019-11-01 2019-12-31 常州时创能源科技有限公司 Method for cutting crystalline silicon edge leather
CN110789010A (en) * 2019-11-01 2020-02-14 常州时创能源科技有限公司 Cutting process of crystal silicon edge leather
CN110789011A (en) * 2019-11-07 2020-02-14 北京昌日新能源科技有限公司 Novel photovoltaic right-angle monocrystalline silicon piece and manufacturing method thereof
CN111037766A (en) * 2019-12-19 2020-04-21 江苏高照新能源发展有限公司 Manufacturing method of low-cost monocrystalline silicon wafer for photovoltaic cell
CN110978303A (en) * 2019-12-20 2020-04-10 江苏高照新能源发展有限公司 Cutting method for improving utilization rate of silicon single crystal rod
CN112829094A (en) * 2020-12-31 2021-05-25 常州时创能源股份有限公司 Method for preparing monocrystalline silicon wafer by using silicon rod head and tail materials and application
CN112847852A (en) * 2020-12-31 2021-05-28 常州时创能源股份有限公司 Method for preparing silicon wafer by using silicon rod head tailing and application
CN113601738B (en) * 2021-07-16 2022-12-23 宇泽半导体(云南)有限公司 Processing method for processing rectangular photovoltaic cell silicon wafer by using native single crystal silicon rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022960A1 (en) * 2019-08-07 2021-02-11 常州时创能源股份有限公司 Utilization method for silicon rod leftover material

Also Published As

Publication number Publication date
TW201503249A (en) 2015-01-16

Similar Documents

Publication Publication Date Title
TWI539509B (en) Method for cutting ingot, brick and wafer
JP6048654B2 (en) Manufacturing method of semiconductor wafer
JP2001094127A (en) Substrate for solar cell, the solar cell, solar cell module and method for production thereof
KR20160148004A (en) Methods and apparati for making thin semi-conductor wafers with locally controlled regions that are relatively thicker than other regions and such wafers
TWI629382B (en) Improved production of crystalline silicon
TWI490378B (en) Method for producing silicon ingots
US20130330909A1 (en) Method for cutting brittle sheet-shaped structure
TW201414887A (en) System and method of growing silicon ingots from seeds in a crucible and manfacture of seeds used therein
TWI593838B (en) Arrangement method of seed crystals and manufacturing method of monocrystalline-like ingot
TWI598201B (en) Beamless ingot slicing
CN104476687B (en) Multi-wire saw guide wheel and wiring method thereof
JP2012160727A (en) Nanostructuring process for silicon ingot surface, wafer manufacturing method, and wafer using the same
CN103560143A (en) Automobile rectification chip and method for manufacturing rectification base material thereof
US20150308011A1 (en) Methods for producing rectangular seeds for ingot growth
TWI293474B (en) A wafer dicting process for optical electronic packing
JP2005108964A (en) Process for producing substrate of solar cell and substrate of solar cell
JP6047456B2 (en) Diffusion wafer manufacturing method
JP2010150080A (en) Method for processing silicon block
US8900972B2 (en) Systems and methods for producing seed bricks
JP2014045159A (en) Solar cell unit, solar cell unit with wiring sheet and solar cell module
CN203589038U (en) Vehicle rectification chip
KR101621764B1 (en) Single crystal rod for solid-state laser and manufacturing method thereof
US20100006906A1 (en) Semiconductor device, single crystalline silicon wafer, and single crystalline silicon ingot
TWI723415B (en) Silicon carbide crystal and silicon carbide seed sheet
US20140137794A1 (en) Method of Preparing A Directional Solidification System Furnace

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees