TWI538941B - 填料粒子、樹脂組成物、潤滑脂及塗料組成物 - Google Patents
填料粒子、樹脂組成物、潤滑脂及塗料組成物 Download PDFInfo
- Publication number
- TWI538941B TWI538941B TW100112409A TW100112409A TWI538941B TW I538941 B TWI538941 B TW I538941B TW 100112409 A TW100112409 A TW 100112409A TW 100112409 A TW100112409 A TW 100112409A TW I538941 B TWI538941 B TW I538941B
- Authority
- TW
- Taiwan
- Prior art keywords
- particles
- filler particles
- filler
- zinc oxide
- present
- Prior art date
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本發明係關於一種由低導電性之氧化鋅粒子構成之填料粒子、樹脂組成物、潤滑脂及塗料組成物。
氧化鋅粒子作為填料粒子廣泛用於樹脂、塗料、潤滑脂等領域中。對此種作為填料粒子之氧化鋅粒子而言期待各種之功能。此種氧化鋅粒子之特徵之一為具有較高之導電性之性質。
此種較高之導電性,雖根據用途並未產生特別之問題,但存在由於具有導電性會對用作為填料時造成不良影響,且較難使用氧化鋅粒子作為填料之用途。尤其於電子材料、電氣產品之領域中,導電性能較多時候帶來不佳之結果。因此,要求抑制導電性之氧化鋅粒子。
抑制導電性之氧化鋅粒子,專利文獻1中所揭示者為眾所周知。於專利文獻1中揭示有藉由以1價摻雜劑摻雜而使外周部變成高電阻層之氧化鋅粉末。
專利文獻2中揭示有應用於作為變阻器粉末之用途之氧化鋅粒子,且揭示有以特定之比例添加各種金屬。然而,相關文獻中所揭示之氧化鋅粒子係揭示有使用為變阻器粉末者,不存在關於使用為填料之揭示。進而,雖揭示有添加其他金屬,但由於使用鋁作為必需成分,故而絕緣性易下降、難以充分地抑制導電性。即,輸送ZnO之電荷之載體係自由電子,顯示出N型半導體特性。認為若於ZnO添加Al3+,則相對於Zn2+,Al3+作為供給自由電子之施體而發揮作用,藉由ZnO之自由電子增加,而使導電性提高。
專利文獻3中揭示有取向性氧化鋅系壓電材料。然而,相關文獻中揭示的是作為壓電材料之氧化鋅,不存在關於使用為填料之揭示。
[專利文獻1]日本特開2007-84704號公報
[專利文獻2]日本特開2008-218749號公報
[專利文獻3]日本特開平8-310813號公報
鑒於上述情況,本發明之目的在於獲得一種具有穩定之絕緣性之填料粒子、以及含有其之樹脂組成物、潤滑脂及塗料組成物。
本發明係一種填料粒子,係由下述化學式(1)所示之複合氧化鋅構成:
ZnxMyO (1)
(式中,M為Mg、Co、Li、K、Na或Cu,若將M之價數設為n,則x+ny/2=1)。
上述填料粒子較佳為0.0001<ny/2<0.3。
本發明亦為一種樹脂組成物,係含有上述填料粒子。
本發明亦為一種潤滑脂,係含有上述填料粒子。
本發明亦為一種塗料組成物,係含有上述填料粒子。
本發明之填料由於係在維持氧化鋅原本所具有之性質之狀態下提高絕緣性,故而尤其於電子設備等期望高絕緣性之領域中,可較佳地用作填料。藉此,可獲得絕緣性優異之樹脂組成物、潤滑脂、塗料組成物等。
以下,詳細地說明本發明。
本發明係關於一種填料粒子,其特徵在於:係由ZnxMyO(式中,M為Mg、Co、Li、K、Na或Cu,若將M之價數設為n,則x+ny/2=1)所示之複合氧化鋅構成。即,本發明之填料粒子係由含有選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬的複合氧化鋅構成。
於本發明中,M所示之金屬元素之一部分或全部均勻存在於氧化鋅粒子內部。即,本發明係由ZnxMyO所示之複合氧化物構成之填料粒子。填料粒子為如上所述具有較高之導電性之粒子,故而無法用於要求絕緣性之用途中。若對其以一定之比例添加選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬,則添加之金屬以均勻分佈之固溶狀態被包含於氧化鋅粒子內部。藉此,藉由發現氧化鋅粒子之絕緣性提高、可用於需要絕緣性之用途中,從而完成本發明。
如此,僅於使特定之金屬為M之情形時,能製成添加金屬均勻分佈之固溶狀態之複合氧化鋅。於含有成為均勻之固溶狀態之金屬元素之情形時,雖可獲得較高之絕緣性,但於含有其他金屬元素之情形時,有時未充分地獲得絕緣性之提高效果。尤其,就絕緣性之觀點而言,不如不積極地添加作為不佳之金屬元素之鋁等,實質上較佳為不含有鋁,更具體而言,其含量較佳為相對於氧化鋅粒子之重量作為Al3+為0.0001重量%以下。
於本發明中,添加金屬均勻地分佈之固溶狀態之複合氧化鋅較佳為以下所示之△(%)未達60%。
(△(%)之測定方法)
如圖7所示,於填料粒子之剖面之影像上,製作沿直徑方向劃分之10個正方形。關於該等正方形,自圖7之左側,附上號碼1、2、3、4、5、6、7、8、9、10,根據各個正方形中之Zn及金屬M之定量分析值(重量%),求出各個正方形中之相對於ZnO100重量%之以金屬M之氧化物換算之定量分析值Q(重量%)。進而,藉由下式求出正方形1~10中之以金屬M之氧化物換算之定量分析值Q(重量%)之相對於正方形1~10中之以金屬M之氧化物換算之定量分析值之平均值A(重量%)的偏差:△(%)。
△(%)=|Q-A|/A×100
此時,
Q:各正方形1~10中之相對於ZnO100重量%之以金屬M之氧化物換算之定量分析值(重量%)
A:各正方形1~10中之相對於ZnO100重量%之以金屬M之氧化物換算之定量分析值的平均值(重量%)
於以此方式對所有正方形測定△(%)之情形時,較佳為於所有正方形中△(%)未達60%。
於作為先前技術而列舉之文獻中,亦揭示有於填料以外之領域中將其他金屬混合存在於氧化鋅中。然而,實際上,所獲得之氧化鋅較少成為通式ZnxMyO所示之結構,先前完全未知如上所述之見解。
為使該方面更明確,以下根據如圖所示之實施例之填料粒子之剖面的影像進行說明。
圖3、4係表示藉由波長色散型X射線分析而對實施例1之填料粒子(使Mg均勻存在於粒子內部之氧化鋅粒子)之剖面進行映射的Zn及Mg之存在位置的映射影像。圖5、6係分別表示於實施例1之填料粒子之剖面,存在於圖中央之直線上之Zn及Mg之強度的影像。
圖45、46係分別表示藉由波長色散型X射線分析而對比較例2之填料粒子(使Ca存在於粒子內部之氧化鋅粒子)之剖面進行映射的Zn及Ca之存在位置的映射影像。圖47、48係表示於比較例2之填料粒子之剖面,存在於圖中央之直線上之Zn及Ca之強度的影像。
於表示映射影像之圖中所映射成白色之點表示分別存在Zn、Mg、Ca,於表示線強度之圖中所示之波形狀之光譜表示存在於圖中央之直線上之Zn、Mg、Ca的強度。
根據圖3、4、5、6,明確:於實施例1中所獲得之本發明之填料粒子係Mg均勻存在直至氧化鋅粒子內部。另一方面,明確:如圖45、46、47、48所示之比較例2之填料粒子係於粒子表層Ca分佈不均。進而,於如圖52、53、54、55所示之比較例3之填料粒子中,雖Ni存在於粒子內部,但不均勻存在,而分佈不均地存在於粒子內部。即,於使用Mg作為金屬種類之情形時,本發明之填料粒子可以由完全之複合氧化鋅構成之均勻之固溶狀態而獲得,於使金屬種類為Ca或Ni之情形時,不均勻地固溶而於粒子內部或粒子表層中分佈不均。
此外,使用Co、Cu、Na作為M之情形時亦相同,M均勻存在於氧化鋅粒子內部,根據圖10、11、12、13、38、39、40、41(Co之情形);圖19、20、21、22(Na之情形);圖25、26、27、28(Cu之情形)而明確。
於上述化學式(1)中,若將M之價數設為n,則較佳為x+ny/2=1,0.0001<ny/2<0.3。若ny/2為0.0001以下,則有無法獲得充分之絕緣性能之虞。又,若ny/2為0.3以上,則有散熱性能下降之情形。上述ny/2之值更佳為0.0001<ny/2<0.2,進而較佳為0.0001<ny/2<0.06。
上述M為選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬元素。其中,就絕緣性能優異而言較佳為Mg、Co。本發明之填料粒子亦可含有2種以上之金屬元素作為上述M。再者,於使用2種以上之金屬作為M之情形時,較佳為x+Σ(ny/2)=1,Σ(ny/2)滿足上述數值範圍。
本發明之填料粒子於與高純度之氧化鋅相比之情形時絕緣性明顯較高。上述填料粒子,若於製成片時之絕緣性即體積電阻值為1015 Ω‧cm之樹脂填充62.9體積%作為放熱材料,則較佳為其片之體積電阻值可維持1011 Ω‧cm以上。
本發明之填料粒子可為具有任意之形狀、粒徑等者。形狀可為針狀、棒狀、板狀、球狀之任意者。粒徑亦無特別限定,較佳為中值粒徑(D50)為用作填料之氧化鋅之通常的粒徑即1~10000μm之範圍。上述中值粒徑(D50)係藉由雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)而測定之值。上述粒徑更佳為1~100μm。
關於本發明之填料粒子之製造方法並無特別限定,可藉由於通常之氧化鋅之製造方法中之任一步驟中添加特定量之金屬M之化合物而製造。眾所周知之氧化鋅粒子例如可列舉日本特開2009-249226號公報所揭示之氧化鋅粒子等,可藉由於該等氧化鋅粒子之製造方法之製造過程中之任一步驟中,添加特定量之金屬M之化合物而獲得。
本發明之填料粒子尤佳為密度4.0g/cm3以上、中值粒徑(D50)為17~10000μm之填料粒子(A),或者中值粒徑(D50)為1~20μm、D90/D10為4以下之填料粒子(B)。上述填料粒子(A)及(B)分別為具有優異之絕緣性者。以下,對該等進行詳細敍述。
(填料粒子(A))
上述填料粒子(A)可藉由具有步驟(1)及步驟(2)之氧化鋅粒子之製造方法而獲得;步驟(1)係於鋅源粒子混合具有選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬元素之金屬化合物而造粒,步驟(2)係煅燒藉由上述步驟(1)而獲得之造粒粒子。
上述步驟(1)係將鋅源粒子於水中再漿化(repulp),混合具有選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬元素之金屬化合物而造粒之步驟。
本發明之填料粒子(A)之製造方法係使用鋅源粒子作為原料。鋅源粒子只要為氧化鋅、硝酸鋅、硫酸鋅、碳酸鋅、氫氧化鋅、乙酸鋅等藉由煅燒而成為氧化鋅者即可,並無特別限定。上述鋅源粒子特佳為氧化鋅。上述鋅源粒子較佳為中值粒徑(D50)為0.01~1.0μm。上述鋅源粒子之中值粒徑(D50)係藉由雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)或者動態光散射型粒度分佈測定裝置ELS-Z2(大塚電子公司製造)而測定之值。
可用作為原料之氧化鋅並無特別限定,可使用藉由法國法、美國法等眾所周知之方法而製造之氧化鋅,但就雜質較少之方面而言,尤佳為使用藉由法國法而製造之氧化鋅。
上述金屬化合物,例如可列舉上述各金屬M之硝酸鹽、硫酸鹽、及乙酸鹽、檸檬酸鹽、丙酸鹽、丁酸鹽、乳酸鹽、草酸鹽、硬脂酸鹽等有機酸鹽,氫氧化物等。其中,就可有效地絕緣化之方面而言,較佳為乙酸鹽。上述金屬化合物可為1種,亦可併用2種以上。
上述金屬化合物,就製造步驟中之添加量反映到化學式(1)中之ny/2之值方面,較佳為與目標之ny/2之值相對應之添加量。
上述步驟(1)中之造粒,並未特別限定其方法,例如,可列舉將上述鋅源粒子及金屬化合物分散於水中而作為漿料並進行噴霧乾燥之方法等。又,可列舉於上述鋅源粒子添加金屬化合物之水溶液,使用斯巴達製粒機、斯巴達混合機、亨舍爾混合機、球形造粒機等進行混合、造粒之方法等。
於上述步驟(1)中,於製成漿料之情形時,除上述金屬M之化合物以外,亦可添加燒結促進成分。燒結促進成分,例如可列舉乙酸,可藉由添加乙酸作為燒結促進成分,於上述步驟(2)中獲得較僅添加金屬M之化合物之情形時更緻密地燒結之氧化鋅粒子。
於上述步驟(1)中,製成漿料之情形時,亦可使用分散劑。可較佳地用作分散劑者,並無特別限定,例如可列舉聚羧酸銨鹽(花王公司製造之POIZ532A)等。
於使用脂肪酸鹽作為有機酸鹽之情形時,由於有機酸鹽本身具有作為分散劑之功能,故而就可容易地獲得漿料之觀點而言較佳。
漿料之製備方法並無特別限定,例如,將上述成分添加於水中,於18~30℃下使其分散10~30分鐘,藉此可製成鋅源粒子之濃度100~1500g/l之均勻之漿料。
上述噴霧乾燥之方法並無特別限定,例如,可列舉將上述漿料於較佳為150~300℃左右之氣流中藉由二流體噴嘴或轉盤等進行噴霧,製作20~100μm左右之造粒粒子之方法。此時,較佳為控制漿料之濃度以使漿料之黏度成為50~3500cps。漿料之黏度係利用B型黏度計(東京計器公司製造)以60rpm之分擔量測定之值。利用次微米級之過濾器(過濾袋)捕獲於該氣流中被乾燥之造粒粒子。若漿料之黏度、乾燥溫度、氣流速度不在所期望之範圍內,則造粒粒子會變成中空或凹陷之形狀。
藉由煅燒以此方式所獲得之粒子,可獲得上述填料粒子(A)。煅燒條件並無特別限定,較佳為煅燒溫度700~1500℃下進行1~3小時煅燒,煅燒係藉由靜置煅燒而進行。上述靜置煅燒可於富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中進行。上述煅燒更佳為於1000~1200℃下進行。若藉由上述方法而進行煅燒,則可獲得幾乎無粒子之間之融著、緻密地燒結至粒子內部之填料粒子。
若於未達700℃下進行煅燒,就有未充分地燒結至粒子內部之虞方面而言不佳。若超過1500℃,就進行粒子之間之融著方面而言不佳。
以此方式所獲得之填料粒子(A)較佳為中值粒徑(D50)為17~10000μm。上述中值粒徑之下限更佳為20μm。又,上限更佳為1000μm,進而較佳為100μm。填料粒子之粒子尺寸,就較大者會增加樹脂組成物中之傳熱路徑,藉由與其他填料組合可期待因最密填充效果引起之高導熱化之觀點而言較佳。因此,藉由使中值粒徑(D50)在上述範圍內,於用作散熱性填料之情形時具有更優異之性能。
再者,於本說明書中,中值粒徑(D50)係藉由雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)而測定之值,或者係藉由利用目視觀察之統計方法獲得者。目視觀察可藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)、或JSM-7000F(日本電子公司製造)而進行。
(填料粒子(B))
上述填料粒子(B)之中值粒徑(D50)為1~20μm,D90/D10為4以下。即,其特徵在於:與先前之氧化鋅粒子相比粒徑較大,且D90與D10之比較小(即,粒徑極大之粗大粒子之數量較少)。此種填料粒子雖為大粒子,但幾乎無50μm以上之粗大粒子之混入,粒度分佈陡峭,故而可獲得優異之散熱性。上述填料粒子(B)之粒徑之分佈係藉由雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)而測定之值。
上述中值粒徑(D50)之下限為1.0μm,更佳為1.5μm。上述中值粒徑(D50)之上限為20μm,更佳為17μm。
上述填料粒子(B)較佳為50μm以上之粗大粒子之比例為0.05重量%以下。50μm以上之粗大粒子之比例可依據JIS K 1410氧化鋅-篩分試驗而測定。
上述填料粒子(B),例如可藉由將鋅源粒子於溴化銨或氯化銨等鹵化物,及含有選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬元素的金屬化合物之存在下煅燒而製造。以下,詳細敍述上述填料粒子(B)之製造方法。
上述填料粒子(B)之製造方法係使用鋅源粒子作為原料。鋅源粒子只要為氧化鋅、硝酸鋅、硫酸鋅、碳酸鋅、氫氧化鋅、乙酸鋅、氯化鋅等藉由煅燒而成為氧化鋅者即可,並無特別限定。上述鋅源粒子尤佳為氧化鋅。上述鋅源粒子較佳為中值粒徑(D50)為0.01~1.0μm。上述鋅源粒子之中值粒徑(D50)係藉由雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)或者動態光散射型粒度分佈測定裝置ELS-Z2(大塚電子公司製造)而測定之值。
可用作原料之氧化鋅並無特別限定,可使用藉由法國法、美國法等眾所周知之方法而製造之氧化鋅,但就雜質較少之觀點而言,尤佳為使用藉由法國法而製造之氧化鋅。
上述填料粒子(B)之製造方法,其特徵在於:於溴化銨或氯化銨等鹵化物,以及含有選自由Mg、Co、Li、K、Na及Cu所組成之群中之至少一種金屬元素之金屬化合物之存在下進行煅燒。上述金屬化合物並無特別限定,可使用上述填料粒子(A)之製造方法中所列舉之化合物,或氯化物、溴化物等含有鹵素之金屬化合物,其中,較佳為溴化鎂等溴化物。於無機粒子之製造時,為使粒徑增大,有時於助焊劑存在下進行煅燒。若使用金屬M之溴化物作為此種煅燒時之助焊劑,則與使用其他化合物作為助焊劑之情形時相比,所獲得之填料粒子(B)之粒徑之分佈陡峭。
又,於使用氯化物、溴化物等含有鹵素之金屬化合物作為金屬化合物之情形時,未必必需使用溴化銨或氯化銨等鹵化物,但可使用溴化銨或氯化銨等鹵化物作為燒結促進成分。
上述填料粒子(B)可藉由下述方法製造:將以眾所周知之方法混合上述鋅源粒子、及溴化銨或氯化銨等鹵化物、及上述金屬化合物,且將獲得之混合物煅燒而製造。上述煅燒於工業上例如較佳為藉由隧道窯或梭式窯進行之靜置煅燒。就藉由靜置煅燒,可使粒子彼此融著,有效地引起粒子成長,高效地獲得粒徑較大之氧化鋅粒子之觀點而言,故而較佳。
上述煅燒較佳為於600~1200℃下進行。若於未達600℃下進行煅燒,則就有粒徑未充分增大之虞之觀點而言不佳。若超過1200℃,則就有粗大粒子之產生增多、產率下降之虞之觀點而言不佳。
藉由上述方法而製造之填料粒子(B),於其粒徑分佈中變得陡峭,但於必需獲得更陡峭者之情形時,或為了除去以較低之比例被含有之粗大粒子,亦可進行粉碎/利用篩進行之分級。粉碎方法並無特別限定,例如,可列舉霧化器等。又藉由篩進行分級之方法,可列舉濕式分級、乾式分級。
本發明之填料粒子之用途並無特別限定,可尤佳用作散熱性之填料。即,氧化鋅粒子,由於導熱性較高,故而可較佳用作散熱性填料。本發明之填料粒子由於係以維持此種散熱性能之狀態下抑制導電性者,故而可較佳用作電子設備等用途中所使用之散熱性填料。
於使用本發明之填料粒子作為散熱性填料之情形時,較佳為密度為4.0g/cm3以上,更佳為4.5g/cm3以上。如上述範圍所示之高密度之填料粒子,由於於粒子內部為中空部較少之緻密之粒子,故而易產生導熱,作為散熱性填料具有尤其優異之性能。若密度未達4.0g/cm3,則有無法獲得充分之散熱性能之虞。
於用作散熱性填料之情形時,本發明之填料粒子較佳為球狀粒子。若為球狀粒子,則可最密填充,故而可提高散熱性填料之比例。藉此,就可賦予更高之散熱性能之觀點而言較佳。粒子之形狀可藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)、或JSM-7000F(日本電子公司製造)而觀察。上述填料粒子較佳為縱橫比為1.0~1.5。於用於散熱性填料之情形時,可獲得縱橫比接近1.0、填料之取向性消除、無論自哪個方向加壓成型亦均勻填充有填料之樹脂成型體。上述縱橫比之上限更佳為1.10。
本發明之填料粒子較佳為依據JIS K 5101-12-1顏料試驗方法-視密度或者外觀比容(靜置法)而進行之視密度為2.50g/ml以上。此種視密度係成為粒子緻密化、高密度且形狀整齊均勻之指標的值。此種視密度較高之填料粒子,由於粒子本身為高密度,故而具有散熱性能優異、可進一步提高對樹脂之填充率之優點。
本發明之填料粒子較佳為依據JIS R 1639-2而進行測定之振實容積密度(tap bulk density)為3.10g/cm3以上。此種振實容積密度較高之填料粒子,由於粒子本身為高密度,故而具有散熱性能優異、可進一步提高對樹脂之填充率之優點。
本發明之填料粒子較佳為粒子中之90%以上之粒子為縱橫比1.10以下。即,若混合存在縱橫比較高且球形度較低之粒子,則用作填料時之填充率易降低。因此,較佳為圓球形狀之粒子以較高之比例存在。再者,粒子中之90%以上之粒子為縱橫比1.10以下係指測定電子顕微鏡照片中存在於視野中之所有粒子之縱橫比,藉由此種操作測定有關合計250個粒子之縱橫比之情形時,90%以上之粒子為縱橫比1.10以下。
本發明之填料粒子可用作樹脂組成物、潤滑脂、塗料組成物中之填料成分。
於用作樹脂組成物中之填料之情形時,所使用之樹脂可為熱塑性樹脂亦可為熱硬化性樹脂,可列舉:環氧樹脂、苯酚樹脂、聚苯硫醚(PPS)樹脂、聚酯系樹脂、聚醯胺、聚醯亞胺、聚苯乙烯、聚乙烯、聚丙烯、聚氯乙烯、聚偏二氯乙烯、氟樹脂、聚甲基丙烯酸甲酯、乙烯-丙烯酸乙酯共聚物(EEA)樹脂、聚碳酸酯、聚胺基甲酸酯、聚縮醛、聚苯醚、聚醚醯亞胺、丙烯腈-丁二烯-苯乙烯共聚物(ABS,)樹脂、環氧、苯酚、液晶樹脂(LCP)、矽樹脂、丙烯酸樹脂等樹脂。
本發明之樹脂組成物可為(1)藉由將熱塑性樹脂與上述填料粒子於溶融狀態下混練而獲得之熱成型用之樹脂組成物,(2)藉由將熱硬化性樹脂與上述填料粒子混練後使其加熱硬化而獲得之樹脂組成物,(3)使上述填料粒子分散於樹脂溶液或分散液中之塗料用之樹脂組成物。
本發明之樹脂組成物中之上述填料粒子之摻合量可根據散熱性能或樹脂組成物之硬度等樹脂組成物之性能而任意決定。為充分表現上述填料粒子之散熱性能,較佳為相對於樹脂組成物中之固形物成分總量含有60體積%以上、更佳為68體積%以上之填料粒子。
於本發明之樹脂組成物為熱成型用之樹脂組成物之情形時,可根據用途自由地選擇樹脂成分。例如,於使熱源與放熱板接著、密著之情形時,只要選擇如矽樹脂或丙烯酸樹脂之類接著性較高、硬度較低之樹脂即可。
於本發明之樹脂組成物為塗料用之樹脂組成物之情形時,樹脂可為具有硬化性者,亦可為不具有硬化性者。塗料可為含有有機溶劑之溶劑系者,亦可為樹脂溶解或分散於水中之水系者。
本發明之填料粒子亦可與含有礦物油或合成油之基礎油混合而用作潤滑脂中之填料粒子。於用作此種潤滑脂之情形時,可使用α-烯烴、雙酯、多元醇酯、偏苯三甲酸酯、聚苯醚、烷基苯醚等作為合成油。又,亦可用作與聚矽氧油混合而成之散熱性潤滑脂。
本發明之填料粒子,於用作散熱性填料之情形時,亦可併用其他成分而使用。可併用而使用之其他成分可列舉:氧化鎂、氧化鈦、氧化鋁等金屬氧化物,氮化鋁、氮化硼、碳化矽、氮化矽、氮化鈦、金屬矽、鑽石等氧化鋅以外之散熱性填料,樹脂,界面活性劑等。
本發明之填料粒子,因為就絕緣性能方面較優異,故可特佳地用於電子設備領域中所使用之散熱性填料。進而,亦可用於塗料/油墨用顏料等領域中。
[實施例]
以下,列舉實施例說明本發明,但本發明並不限定於該等實施例。
(實施例1)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為金屬M之化合物之乙酸鎂四水合物161.4g(相對於微細氧化鋅之重量為26.9重量%),製備濃度為590g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1200℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為29.0μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖1。
(實施例2)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合作為金屬M之化合物之乙酸鈷四水合物61.8g(相對於微細氧化鋅之重量為10.3重量%),混合作為燒結促進成分之乙酸3.66g(相對於微細氧化鋅之重量為0.61重量%),製備濃度為340g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1200℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為31.7μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖8。
(實施例3)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為金屬M之化合物之乙酸鋰3.0g(相對於微細氧化鋅之重量為0.5重量%),混合作為燒結促進成分之乙酸3.66g(相對於微細氧化鋅之重量為0.61重量%),製備濃度為500g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1000℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為31.9μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖15。
(實施例4)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為金屬M之化合物之乙酸鉀6.0g(相對於微細氧化鋅之重量為1.0重量%),製備濃度為1470g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1000℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為34.4μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖16。
(實施例5)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為金屬M之化合物之乙酸鈉20.3g(相對於微細氧化鋅之重量為3.38重量%),製備濃度為690g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1100℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為33.4μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖17。
(實施例6)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為金屬M之化合物之乙酸銅(I)35.04g(相對於微細氧化鋅之重量為5.84重量%),混合作為燒結促進成分之乙酸3.0g(相對於微細氧化鋅之重量為0.50重量%),製備濃度為240g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1150℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為28.7μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖23。
(實施例7)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g、及作為金屬M之化合物之氯化鎂六水合物156g(相對於微細氧化鋅之重量為26.0重量%)、及作為燒結促進成分之溴化銨12g(相對於微細氧化鋅之重量為1.0重量%)放入塑膠袋中,並乾式混合30秒鐘,將混合粉放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1000℃下煅燒3小時。
將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得中值粒徑(D50)為9.1μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖29。
(實施例8)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g、及作為金屬M之化合物之溴化鈷六水合物133.5g(相對於微細氧化鋅之重量為22.25重量%)放入塑膠袋中,並乾式混合30秒鐘,將混合粉放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於800℃下煅燒3小時。
將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得中值粒徑(D50)為8.2μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖36。
(比較例1)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合分散劑(花王公司製造之POIZ532A)21.0g(相對於微細氧化鋅之重量為3.50重量%),混合作為燒結促進成分之乙酸3.66g(相對於微細氧化鋅之重量為0.61重量%),製備濃度為600g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1200℃下靜置煅燒3小時。將其冷卻後,分散於1.0升之水中後,使其通過200網目(網眼75μm)之篩,並將通過之漿料過濾、乾燥,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為28.5μm之填料粒子。
(比較例2)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合作為金屬M之化合物之乙酸鈣一水合物96.0g(相對於微細氧化鋅之重量為16.0重量%),混合作為燒結促進成分之乙酸3.66g(相對於微細氧化鋅之重量為0.61重量%),製備濃度為320g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1200℃下靜置煅燒3小時。將其冷卻後,使其通過200網目(網眼75μm)之篩,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為28.7μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖43。
(比較例3)
將微細氧化鋅(堺化學工業公司製造,中值粒徑(D50)0.2μm)600g於水中再漿化,混合作為金屬M之化合物之乙酸鎳四水合物102g(相對於微細氧化鋅之重量為17.0重量%),混合作為燒結促進成分之乙酸3.66g(相對於微細氧化鋅之重量為0.61重量%),製備濃度為330g/l之漿料。繼而,藉由利用實驗室噴霧乾燥機DCR型(阪本技研公司製造)對該漿料噴霧乾燥而獲得造粒粒子。將其放入富鋁紅柱石製、富鋁紅柱石-菫青石製等之研缽中,並於1200℃下靜置煅燒3小時。將其冷卻後,使其通過200網目(網眼75μm)之篩,藉此獲得幾乎無粒子彼此之融著、緻密地燒結至粒子內部之球狀且中值粒徑(D50)為33.3μm之填料粒子。藉由掃描式電子顯微鏡JSM-5400(日本電子公司製造)觀察所獲得之填料粒子之尺寸/形態。所獲得之電子顕微鏡照片示於圖50。
關於實施例及比較例之各個填料粒子,根據以下之基準進行評估,結果示於表1、2。
(中值粒徑(D50)、D10、D90)
稱量填料粒子1.0g,分散於0.025重量%六偏磷酸鈉水溶液100ml中,將該分散液投入至雷射繞射/散射式粒度分佈測定裝置LA-750(堀場製作所公司製造)之由0.025重量%六偏磷酸鈉水溶液填滿之試樣浴中,於循環速度:15、超音波強度:7、超音波時間:3分鐘之設定條件下進行測定。室溫下之氧化鋅之折射率為1.9~2.0,水之折射率為1.3,故而相對折射率設定成1.5而求出中值粒徑(D50)、D10、D90。
(縱橫比)
關於以掃描式電子顯微鏡JSM-5400(日本電子公司製造)所拍攝之電子顕微鏡照片之100個粒子,以尺測量通過粒子之中心之長軸與短軸之長度,求出長軸/短軸之比,將其平均值設為縱橫比。進而,對250個粒子測定縱橫比,算出縱橫比為1.10以下者之個數之比例(%)。
(密度)
測量清洗、乾燥之容量:100ml之給呂薩克比重瓶之重量a(g)直至位數為0.1mg,添加蒸餾水至標線處,測量其重量b(g)直至位數為0.1mg。繼而,將該給呂薩克比重瓶乾燥之後,放入試樣5g並測量重量,算出試樣之重量c(g)。添加蒸餾水直至覆蓋試樣,於真空乾燥器中除去蒸餾水中之空氣。添加蒸餾水至標線處,測量其重量d(g)直至位數為0.1mg,藉由下式算出密度。
密度(g/cm3)=c/((b-a)+c-(d-a))
(視密度)
依據JIS K 5101-12-1顏料試驗方法-視密度或外觀比容(靜置法)測定視密度。
(振實容積密度)
依據JIS R 1639-2進行振實容積密度之測定。
(填料之填充率)
將(i)EEA樹脂(日本聚乙烯公司製造之Rexpearl A1150)及實施例1~8之填料粒子、(ii)EEA樹脂及比較例1~3之填料粒子,依據表1、2進行摻合。填料之填充率(體積%)係將EEA樹脂之比重假定為0.945、將氧化鋅粒子之比重假定為5.55而求出者。於使填料之重量為a(g)、填料之比重為A、EEA樹脂之重量為b(g)、EEA樹脂之比重為B之時,藉由下式算出填料之填充率(體積%)。
填料之填充率(體積%)=(a/A)/(a/A+b/B)×100
(樹脂組成物之片之製成)
以表1、2所示之填料之填充率(體積%)之比例將(i)EEA樹脂及實施例1~8之填料粒子、(ii)EEA樹脂及比較例1~3之填料粒子,利用LABO PLASTMILL(東洋精機製作所公司製造),以混合機之轉速40rpm,於150℃下加熱混練10分鐘。
取出填料與樹脂之混練物,放置於厚度2mm之不鏽鋼製之鑄模版(150mm×200mm)之中央,自上下以不鏽鋼製之板(200mm×300mm)夾住,設置於微型試驗壓機-10(東洋精機製作所公司製造)之試樣台,一面於150℃下加熱一面於0.5MPa下加壓5分鐘,進而將壓力提高至25MPa一面於150℃下加熱一面加壓3分鐘。
繼而,設置於蒸氣壓機(Gonno油壓機製作所公司製造)之試樣台,通過蒸氣而於加熱之狀態將壓力提高至25MPa之後,通過冷卻水而於25MPa下冷卻5分鐘,藉此獲得樹脂組成物之片。
(體積電阻值)
將所獲得之片放入調整成30℃之高溫槽內,放置30分鐘以上後,於高溫槽內將片用70mmΦ之黃銅製之負電極板及100mmΦ之黃銅製之正電極板夾住,施加直流500V之電壓,測定充電1分鐘後之體積電阻。測定係以數位超高電阻/微小電流計(ADC股份有限公司製造)而進行。
體積電阻值σ(Ω‧cm)係藉由下式而求出。
σ=πd2/4t×Ru
t:試驗片(片)之厚度(cm)
d:最內側之電極之直徑
Ru:體積電阻(Ω)(導熱率)
繼而,利用打孔機將片切成55mmΦ之形狀,成為55mm 、厚度2.0mm之成型體,並設置於AUTOA HC-110(英弘精機公司製造之熱流計法)之試樣台上,進行導熱率之測定。AUTOA HC-110係測定前以厚度6.45mm之Pyrex標準板進行校正。藉由將高溫加熱器之溫度設定為35℃、低溫加熱器之溫度設定為15℃並進行測定,而求出25℃下達到熱平衡狀態之時之導熱率(W/m.K)。結果示於表1、2。
根據實施例及比較例之結果已知,本發明之填料粒子係金屬M均勻存在於粒子內部者,導熱性優異且顯示出良好之絕緣性能。如此形成有金屬M均勻分佈於粒子內部之固溶體之填料粒子係尤其於絕緣性能方面較優異,較未形成固溶體且金屬M未均勻分佈於粒子內部之填料粒子具有更優異之絕緣性能。
(樹脂組成物之片之切割)
樹脂組成物之片之切割係藉由截面拋光儀(日本電子製造)而進行。將上述所製成之摻合有填料粒子之樹脂組成物之片切片成1mm以下之厚度,於該薄膜垂直照射Ar離子束並進行蝕刻,藉此進行片之切割。
藉由掃描式電子顯微鏡JSM-7000F(日本電子製造)觀察所獲得之填料粒子之剖面,藉由以下所詳述之測定方法,利用波長色散型X射線分析進行映射及線分析,利用能量分散型X射線分析進行定量分析。映射及線強度分析之結果之影像示於圖3~6(實施例1);圖10~13(實施例2);圖19~22(實施例5);圖25~28(實施例6);圖31~34(實施例7);圖38~41(實施例8);圖45~48(比較例2);圖52~55(比較例3)。進而,利用能量分散型X射線分析進行之定量分析的結果示於表3。
(Zn及金屬M之映射)
填料粒子之剖面之Zn及金屬M的映射係藉由掃描式電子顯微鏡JSM-7000F(日本電子公司製造)之波長色散型X射線分析模式而進行,影像解析係藉由解析軟件INCA(Oxford Instruments公司製造)而進行。
(Zn及金屬M之線強度分析)
填料粒子之剖面之Zn及金屬M的線強度分析係藉由掃描式電子顯微鏡JSM-7000F(日本電子公司製造)之波長色散型X射線分析模式而進行映射,結果藉由解析軟件INCA(Oxford Instruments公司製造)對於映射影像中央之直線上檢測出之Zn及金屬M之強度進行影像解析並表示。
(Zn及金屬M之定量分析、△(%)之測定方法)
填料粒子之剖面之Zn及金屬M之定量分析係藉由掃描式電子顯微鏡JSM-7000F(日本電子公司製造)之能量分散型X射線分析模式而進行填料粒子之剖面之映射,藉由解析軟件INCA(Oxford Instruments公司製造)表示影像上所製成之各正方形中之定量分析值。
於圖7(實施例1)、圖14(實施例2)、圖35(實施例7)、圖42(實施例8)、圖49(比較例2)、圖56(比較例3)之填料粒子之剖面之影像上,關於沿直徑方向所劃分之10個正方形,自各圖之左側附上號碼1、2、3、4、5、6、7、8、9、10,根據各個正方形中所檢測出之Zn及金屬M之強度,將Zn及金屬M之含量數值化,藉此成為定量分析值(重量%)。繼而,根據各個正方形中之Zn及金屬M之定量分析值(重量%),求出各個正方形中之相對於ZnO100重量%之以金屬M之氧化物換算的定量分析值Q(重量%)。進而,藉由下式求出正方形1~10中之以金屬M之氧化物換算之定量分析值Q(重量%)之相對於正方形1~10中之以金屬M之氧化物換算之定量分析值之平均值A(重量%)的偏差:△(%)。
△(%)=|Q-A|/A×100
此時,
Q:各正方形1~10中之相對於ZnO100重量%之以金屬M之氧化物換算之定量分析值(重量%)
A:各正方形1~10中之相對於ZnO100重量%之以金屬M之氧化物換算之定量分析值的平均值(重量%)
結果示於表3。
根據表3之結果明確於添加有Mg、Co之實施例1、2、7、8之填料粒子中,1~10之各個正方形中之相對於金屬M之平均值的偏差:△(%)未達60(%),金屬M均勻分佈於氧化鋅粒子內部,成為固溶狀態。
另一方面,明確於添加有Ca、Ni之比較例2、3之填料粒子中,1~10之各個正方形中之相對於金屬M之平均值的偏差:△(%)為60(%)以上,金屬M於氧化鋅粒子表層或內部分佈不均,未成為均勻之固溶狀態。
進而,亦根據各圖之結果明確本發明之填料粒子係金屬M均勻分佈至氧化鋅粒子內部,成為固溶狀態;相對於此,比較例之填料粒子係金屬M於氧化鋅粒子表層或內部分佈不均,未成為均勻之固溶狀態。
[產業上之可利用性]
本發明之填料粒子可較佳地用於使用填料之各種用途。例如,可添加至樹脂組成物、潤滑脂、塗料組成物等。尤其,可較佳地用於要求散熱性能與絕緣性能此兩者之類的用途。
圖1:藉由實施例1而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖2:藉由實施例1而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖3:表示藉由實施例1而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖4:表示藉由實施例1而獲得之本發明之填料粒子之剖面的利用Mg之波長色散型X射線分析獲得之映射的影像。
圖5:表示藉由實施例1而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖6:表示藉由實施例1而獲得之本發明之填料粒子之剖面的利用Mg之波長色散型X射線分析獲得之線強度的影像。
圖7:表示藉由能量分散型X射線分析對藉由實施例1而獲得之本發明之填料粒子之剖面的Zn與Mg進行定量分析之位置的影像。
圖8:藉由實施例2而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖9:藉由實施例2而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖10:表示藉由實施例2而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖11:表示藉由實施例2而獲得之本發明之填料粒子之剖面的利用Co之波長色散型X射線分析獲得之映射的影像。
圖12:表示藉由實施例2而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖13:表示藉由實施例2而獲得之本發明之填料粒子之剖面的利用Co之波長色散型X射線分析獲得之線強度的影像。
圖14:表示藉由能量分散型X射線分析對藉由實施例2而獲得之本發明之填料粒子之剖面的Zn與Co進行定量分析之位置的影像。
圖15:藉由實施例3而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖16:藉由實施例4而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖17:藉由實施例5而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖18:藉由實施例5而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖19:表示藉由實施例5而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖20:表示藉由實施例5而獲得之本發明之填料粒子之剖面的利用Na之波長色散型X射線分析獲得之映射的影像。
圖21:表示藉由實施例5而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖22:表示藉由實施例5而獲得之本發明之填料粒子之剖面的利用Na之波長色散型X射線分析獲得之線強度的影像。
圖23:藉由實施例6而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖24:藉由實施例6而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖25:表示藉由實施例6而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖26:表示藉由實施例6而獲得之本發明之填料粒子之剖面的利用Cu之波長色散型X射線分析獲得之映射的影像。
圖27:表示藉由實施例6而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖28:表示藉由實施例6而獲得之本發明之填料粒子之剖面的利用Cu之波長色散型X射線分析獲得之線強度的影像。
圖29:藉由實施例7而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖30:藉由實施例7而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖31:表示藉由實施例7而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖32:表示藉由實施例7而獲得之本發明之填料粒子之剖面的利用Mg之波長色散型X射線分析獲得之映射的影像。
圖33:表示藉由實施例7而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖34:表示藉由實施例7而獲得之本發明之填料粒子之剖面的利用Mg之波長色散型X射線分析獲得之線強度的影像。
圖35:表示藉由能量分散型X射線分析對藉由實施例7而獲得之本發明之填料粒子之剖面的Zn與Mg進行定量分析之位置的影像。
圖36:藉由實施例8而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖37:藉由實施例8而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖38:表示藉由實施例8而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖39:表示藉由實施例8而獲得之本發明之填料粒子之剖面的利用Co之波長色散型X射線分析獲得之映射的影像。
圖40:表示藉由實施例8而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖41:表示藉由實施例8而獲得之本發明之填料粒子之剖面的利用Co之波長色散型X射線分析獲得之線強度的影像。
圖42:表示藉由能量分散型X射線分析對藉由實施例8而獲得之本發明之填料粒子之剖面的Zn與Co進行定量分析之位置的影像。
圖43:藉由比較例2而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖44:藉由比較例2而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖45:表示藉由比較例2而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖46:表示藉由比較例2而獲得之本發明之填料粒子之剖面的利用Ca之波長色散型X射線分析獲得之映射的影像。
圖47:表示藉由比較例2而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖48:表示藉由比較例2而獲得之本發明之填料粒子之剖面的利用Ca之波長色散型X射線分析獲得之線強度的影像。
圖49:表示藉由能量分散型X射線分析對藉由比較例2而獲得之本發明之填料粒子之剖面的Zn與Ca進行定量分析之位置的影像。
圖50:藉由比較例3而獲得之本發明之填料粒子的掃描式電子顯微鏡照片。
圖51:藉由比較例3而獲得之本發明之填料粒子之剖面的掃描式電子顯微鏡照片。
圖52:表示藉由比較例3而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之映射的影像。
圖53:表示藉由比較例3而獲得之本發明之填料粒子之剖面的利用Ni之波長色散型X射線分析獲得之映射的影像。
圖54:表示藉由比較例3而獲得之本發明之填料粒子之剖面的利用Zn之波長色散型X射線分析獲得之線強度的影像。
圖55:表示藉由比較例3而獲得之本發明之填料粒子之剖面的利用Ni之波長色散型X射線分析獲得之線強度的影像。
圖56:表示藉由能量分散型X射線分析對藉由比較例3而獲得之本發明之填料粒子之剖面的Zn與Ni進行定量分析之位置的影像。
Claims (5)
- 一種填料粒子,係由下述化學式(1)所示之複合氧化鋅構成:ZnxMyO (1)(式中,M為Mg、Co、Li、K、Na或Cu,若將M之價數設為n,則x+ny/2=1);且中值粒徑(D50)為1~10000μm。
- 如申請專利範圍第1項之填料粒子,其中,0.0001<ny/2<0.3。
- 一種樹脂組成物,含有申請專利範圍第1或2項之填料粒子。
- 一種潤滑脂,含有申請專利範圍第1或2項之填料粒子。
- 一種塗料組成物,含有申請專利範圍第1或2項之填料粒子。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010101500 | 2010-04-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201207016A TW201207016A (en) | 2012-02-16 |
TWI538941B true TWI538941B (zh) | 2016-06-21 |
Family
ID=46762078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100112409A TWI538941B (zh) | 2010-04-26 | 2011-04-11 | 填料粒子、樹脂組成物、潤滑脂及塗料組成物 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI538941B (zh) |
-
2011
- 2011-04-11 TW TW100112409A patent/TWI538941B/zh active
Also Published As
Publication number | Publication date |
---|---|
TW201207016A (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4771027B2 (ja) | 酸化亜鉛粒子、その製造方法、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 | |
JP6724332B2 (ja) | 酸化マグネシウム粒子、その製造方法、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物 | |
US8399092B2 (en) | Zinc oxide particle having high bulk density, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition | |
JP3738454B2 (ja) | 複合金属酸化物粉末およびその製造方法 | |
TWI803653B (zh) | 負熱膨脹材及其製造方法、以及複合材料 | |
EP2455339A1 (en) | Magnesium oxide particles, method for producing same, heat dissipating filler, resin composition, heat dissipating grease, and heat dissipating coating composition | |
US20110081548A1 (en) | Zinc oxide particle, method for producing it, exoergic filler, exoergic resin composition, exoergic grease and exoergic coating composition | |
WO2017061402A1 (ja) | リン酸タングステン酸ジルコニウムの製造方法 | |
JP5700852B2 (ja) | フィラー粒子、樹脂組成物、グリース及び塗料組成物 | |
JP5617410B2 (ja) | 酸化亜鉛粒子、樹脂組成物、グリース、塗料組成物及び化粧料 | |
US20110014469A1 (en) | Magnesium oxide particle, method for producing it, exoergic filler, resin composition, exoergic grease and exoergic coating composition | |
JP5552883B2 (ja) | 低導電性酸化亜鉛粒子、放熱性フィラー、放熱性樹脂組成物、放熱性グリース、放熱性塗料組成物及び低導電性酸化亜鉛粒子の製造方法 | |
TWI538941B (zh) | 填料粒子、樹脂組成物、潤滑脂及塗料組成物 | |
WO2020004072A1 (ja) | 負熱膨張材、その製造方法及び複合材料 | |
WO2023181781A1 (ja) | 負熱膨張材、その製造方法及び複合材料 | |
JP7410249B2 (ja) | 負熱膨張材、その製造方法及び複合材料 |