TWI538229B - Method for manufacturing thin film solar cell panel - Google Patents

Method for manufacturing thin film solar cell panel Download PDF

Info

Publication number
TWI538229B
TWI538229B TW103146065A TW103146065A TWI538229B TW I538229 B TWI538229 B TW I538229B TW 103146065 A TW103146065 A TW 103146065A TW 103146065 A TW103146065 A TW 103146065A TW I538229 B TWI538229 B TW I538229B
Authority
TW
Taiwan
Prior art keywords
layer
back electrode
thin film
solar cell
film solar
Prior art date
Application number
TW103146065A
Other languages
Chinese (zh)
Other versions
TW201624739A (en
Inventor
侯惟仁
李昇翰
王智正
Original Assignee
新能光電科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新能光電科技股份有限公司 filed Critical 新能光電科技股份有限公司
Priority to TW103146065A priority Critical patent/TWI538229B/en
Priority to CN201510057379.4A priority patent/CN105990467A/en
Application granted granted Critical
Publication of TWI538229B publication Critical patent/TWI538229B/en
Publication of TW201624739A publication Critical patent/TW201624739A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

薄膜太陽能電池板的製造方法 Method for manufacturing thin film solar panel

本發明係關於一種降低薄膜太陽能電池串聯電阻的製造方法,尤其關於一種能夠降低電極層間接觸電阻的薄膜太陽能電池的製造方法。 The present invention relates to a manufacturing method for reducing the series resistance of a thin film solar cell, and more particularly to a method for manufacturing a thin film solar cell capable of reducing contact resistance between electrode layers.

薄膜太陽能電池是由基板、背電極層、吸收層、緩衝層及透明導電層所組成。圖1顯示一習知薄膜太陽能電池中一個電池單元(cell)的示意圖。薄膜太陽能電池單元100的一背電極層112設置於一基板111。背電極層112可以為例如一鉬金屬層。一吸收層113設置於背電極層112上。一緩衝層114設置於吸收層113上。設置一透明導電層115於緩衝層114上。透明導電層115可以為摻鎵的氧化鋅(Ga doped ZnO,GZO)、摻硼的氧化鋅(boron doped ZnO,BZO)、氧化銦錫(ITO)或摻鋁的氧化鋅(Al doped ZnO,AZO)層等。 The thin film solar cell is composed of a substrate, a back electrode layer, an absorbing layer, a buffer layer and a transparent conductive layer. Figure 1 shows a schematic diagram of a cell in a conventional thin film solar cell. A back electrode layer 112 of the thin film solar cell unit 100 is disposed on a substrate 111. The back electrode layer 112 may be, for example, a molybdenum metal layer. An absorbing layer 113 is disposed on the back electrode layer 112. A buffer layer 114 is disposed on the absorbing layer 113. A transparent conductive layer 115 is disposed on the buffer layer 114. The transparent conductive layer 115 may be gallium doped ZnO (GZO), boron doped ZnO (BZO), indium tin oxide (ITO) or aluminum doped zinc oxide (Al doped ZnO, AZO). ) layer and so on.

圖2顯示一習知薄膜太陽能電池的示意圖。以下將依據圖2所示說明習知薄膜太陽能電池的製造方法,其包含以下步驟。 Figure 2 shows a schematic of a conventional thin film solar cell. Hereinafter, a method of manufacturing a conventional thin film solar cell will be described with reference to FIG. 2, which comprises the following steps.

步驟S02:形成一背電極層112於一基板111上。例如,可以沉積一鉬金屬層作為背電極層112。步驟S03:進行第一圖案化程序P1,用以將背電極層112分離。步驟S04:形成一吸收層113於背電極層112上。步驟S05:形成一緩衝層114於吸收層113上。步驟S06:進行第二圖案化程序P2,利用刀具以機械方式將作為半導體層的吸收層113及緩衝層114分離。步驟S07:形成一透明導電層115於緩衝層114上。例如,可以沉積一GZO、BZO、ITO或AZO層作為透明導 電層115,此時在吸收層及緩衝層被移除的區域中,背電極層112及透明導電層115會形成接觸界面A。步驟S08:進行第三圖案化程序P3,用以將二相鄰的電池單元100分離。如此,即可形成包含多數個串聯之電池單元100的薄膜太陽能電池200,當進行太陽光的照射時,會於薄膜太陽能電池200中形成電流路徑I。 Step S02: forming a back electrode layer 112 on a substrate 111. For example, a layer of molybdenum metal may be deposited as the back electrode layer 112. Step S03: A first patterning process P1 is performed to separate the back electrode layer 112. Step S04: forming an absorbing layer 113 on the back electrode layer 112. Step S05: forming a buffer layer 114 on the absorption layer 113. Step S06: The second patterning process P2 is performed, and the absorption layer 113 and the buffer layer 114 which are semiconductor layers are mechanically separated by a cutter. Step S07: forming a transparent conductive layer 115 on the buffer layer 114. For example, a GZO, BZO, ITO or AZO layer can be deposited as a transparent guide The electrical layer 115, at this time in the region where the absorption layer and the buffer layer are removed, the back electrode layer 112 and the transparent conductive layer 115 form a contact interface A. Step S08: Perform a third patterning process P3 for separating two adjacent battery cells 100. In this manner, the thin film solar cell 200 including a plurality of battery cells 100 connected in series can be formed, and when the sunlight is irradiated, the current path I is formed in the thin film solar cell 200.

依據習知技術,通常利用雷射進行第一圖案化程序P1,用以將背電極層112分離,並且再利用刀具,以機械式劃線方式,進行第二圖案化程序P2以及第三圖案化程序P3,藉以進行兩相鄰電池單元之吸收層與緩衝層及整個電池單元的分離。 According to the prior art, the first patterning process P1 is generally performed by laser for separating the back electrode layer 112, and the second patterning process P2 and the third patterning are performed by mechanical scribing using a tool. The program P3 is used to separate the absorption layer of the two adjacent battery cells from the buffer layer and the entire battery unit.

然而,依據習知技術,使用刀具移除薄膜太陽能電池單元100之吸收層與緩衝層的技術,其所製得的薄膜太陽能電池,有時會因背電極層112及透明導電層115的接觸電阻過大,而減少了薄膜太陽能電池的光電轉換效率。因此,有必要進一步改善習知薄膜太陽能電池的製造方法,以提高薄膜太陽能電池的光電轉換效率。 However, according to the prior art, the technique of removing the absorption layer and the buffer layer of the thin film solar cell unit 100 using a cutter, the resulting thin film solar cell sometimes has contact resistance due to the back electrode layer 112 and the transparent conductive layer 115. Too large, reducing the photoelectric conversion efficiency of the thin film solar cell. Therefore, it is necessary to further improve the manufacturing method of the conventional thin film solar cell to improve the photoelectric conversion efficiency of the thin film solar cell.

依本發明一實施例,提供一種薄膜太陽能電池的製造方法,該薄膜太陽能電池包含多個電池單元,該方法包含:形成一背電極層於一基板上;進行第一圖案化程序,利用一雷射切割該背電極層,以形成互相分離的該些電池單元的一背電極;形成一吸收層於該背電極層上;形成一緩衝層於該吸收層上;進行第二圖案化程序,利用以機械式劃線方式,移除兩相鄰電池單元間一分離區中的該吸收層及該緩衝層,以將兩相鄰電池單元的吸收層及緩衝層分離,再利用另一雷射照射至該分離區,該雷射所形成之一溝槽,自背電極二次 形成物層的表面往下延伸一預定深度H。(0<H≦背電極+二次形成物);形成一透明導電層於該緩衝層上,並使在該分離區中的該背電極層(於一實施例中更具體而言,為背電極層正面與側邊)與該透明導電層接觸而形成一接觸界面;以及進行第三圖案化程序,用以將二相鄰的電池單元分離。 According to an embodiment of the invention, a method for fabricating a thin film solar cell includes a plurality of battery cells, the method comprising: forming a back electrode layer on a substrate; performing a first patterning process, using a Cutting the back electrode layer to form a back electrode of the battery cells separated from each other; forming an absorbing layer on the back electrode layer; forming a buffer layer on the absorbing layer; performing a second patterning process, utilizing Removing the absorbing layer and the buffer layer in a separation zone between two adjacent battery cells by mechanical scribing to separate the absorbing layer and the buffer layer of two adjacent battery cells, and then using another laser irradiation To the separation zone, the laser forms a trench, which is twice from the back electrode The surface of the formed layer extends downward by a predetermined depth H. (0<H≦ back electrode + secondary formation); forming a transparent conductive layer on the buffer layer and causing the back electrode layer in the separation region (in one embodiment, more specifically, back) The front and side edges of the electrode layer are in contact with the transparent conductive layer to form a contact interface; and a third patterning process is performed to separate the two adjacent battery cells.

於一實施例中,在進行第二圖案化程序的步驟中,該另一雷射所形成之一溝槽,自背電極層的表面往下延伸一預定深度H。 In one embodiment, in the step of performing the second patterning process, the other laser forms a trench extending downward from the surface of the back electrode layer by a predetermined depth H.

於一實施例中,背電極層為鉬(Mo)金屬層。 In one embodiment, the back electrode layer is a molybdenum (Mo) metal layer.

於一實施例中,形成一吸收層於背電極層上的步驟,更於背電極層中形成一二次形成物層。 In one embodiment, the step of forming an absorber layer on the back electrode layer forms a secondary formation layer in the back electrode layer.

於一實施例中,透明導電層為一GZO、BZO、ITO或AZO層。 In one embodiment, the transparent conductive layer is a GZO, BZO, ITO or AZO layer.

依據本發明一實施例,於第二圖案化程序中,以機械式劃線方式,移除兩相鄰電池單元間一分離區中的吸收層及緩衝層後,再利用一雷射照射至分離區,並且使雷射所形成之溝槽具有一預設之深度H。(0<H≦背電極+二次形成物)。如此可以減少背電極層中的二次形成物層,藉以降低背電極層及透明導電層間的接觸電阻,而增加薄膜太陽能電池的效率。 According to an embodiment of the present invention, in the second patterning process, the absorption layer and the buffer layer in a separation zone between two adjacent battery cells are removed by mechanical scribing, and then irradiated to separate by a laser. And the groove formed by the laser has a predetermined depth H. (0<H≦ back electrode + secondary formation). In this way, the secondary formation layer in the back electrode layer can be reduced, thereby reducing the contact resistance between the back electrode layer and the transparent conductive layer, thereby increasing the efficiency of the thin film solar cell.

100‧‧‧電池單元 100‧‧‧ battery unit

111‧‧‧基板 111‧‧‧Substrate

112‧‧‧背電極層 112‧‧‧ Back electrode layer

113‧‧‧吸收層 113‧‧‧absorbing layer

114‧‧‧緩衝層 114‧‧‧buffer layer

115‧‧‧透明導電層 115‧‧‧Transparent conductive layer

200‧‧‧薄膜太陽能電池 200‧‧‧Thin solar cells

300‧‧‧電池單元 300‧‧‧ battery unit

311‧‧‧基板 311‧‧‧Substrate

312‧‧‧背電極層 312‧‧‧ Back electrode layer

313‧‧‧吸收層 313‧‧‧Absorbent layer

314‧‧‧緩衝層 314‧‧‧buffer layer

315‧‧‧透明導電層 315‧‧‧Transparent conductive layer

316‧‧‧二次形成物層 316‧‧‧Secondary formation

400‧‧‧薄膜太陽能電池 400‧‧‧Thin film solar cells

圖1顯示一習知薄膜太陽能電池中一個電池單元(cell)的示意圖。 Figure 1 shows a schematic diagram of a cell in a conventional thin film solar cell.

圖2顯示一習知薄膜太陽能電池的示意圖。 Figure 2 shows a schematic of a conventional thin film solar cell.

圖3顯示本發明一實施例之薄膜太陽能電池的製造方法的流程圖。 Fig. 3 is a flow chart showing a method of manufacturing a thin film solar cell according to an embodiment of the present invention.

圖4顯示本發明一實施例薄膜太陽能電池之剖面的示意圖。 4 is a schematic view showing a cross section of a thin film solar cell according to an embodiment of the present invention.

圖5顯示本發明一實施例之步驟中之薄膜太陽能電池的剖面示意圖。 Figure 5 is a cross-sectional view showing a thin film solar cell in the steps of an embodiment of the present invention.

圖3顯示本發明一實施例之薄膜太陽能電池的製造方法的流程圖。圖4顯示本發明一實施例薄膜太陽能電池之剖面的示意圖。如圖3及圖4所示,依據本發明一實施例,提供一種薄膜太陽能電池的製造方法,其中,該薄膜太陽能電池包含多個電池單元且於一實施例中其可以為銅銦鎵硒太陽能電池,且該方法包含以下步驟。 Fig. 3 is a flow chart showing a method of manufacturing a thin film solar cell according to an embodiment of the present invention. 4 is a schematic view showing a cross section of a thin film solar cell according to an embodiment of the present invention. As shown in FIG. 3 and FIG. 4, according to an embodiment of the invention, a method for fabricating a thin film solar cell is provided, wherein the thin film solar cell comprises a plurality of battery cells and in one embodiment it may be copper indium gallium selenide solar energy. A battery, and the method comprises the following steps.

步驟S12:形成一背電極層312於一基板311上。例如,可以沉積一鉬金屬層作為背電極層312。 Step S12: forming a back electrode layer 312 on a substrate 311. For example, a layer of molybdenum metal may be deposited as the back electrode layer 312.

步驟S14:進行第一圖案化程序,利用雷射切割背電極層312,以形成互相分離的該些電池單元300的背電極。 Step S14: performing a first patterning process of cutting the back electrode layer 312 by laser to form the back electrodes of the battery cells 300 separated from each other.

步驟S16:形成一吸收層313於背電極層312上。於一實施例中,吸收層313可以為硒化銅銦鎵層。 Step S16: forming an absorbing layer 313 on the back electrode layer 312. In an embodiment, the absorbing layer 313 can be a copper indium gallium selenide layer.

步驟S18:形成一緩衝層314於吸收層313上。於一實施例中,緩衝層314可以為硫化鎘層。 Step S18: forming a buffer layer 314 on the absorption layer 313. In an embodiment, the buffer layer 314 can be a cadmium sulfide layer.

步驟S20:進行第二圖案化程序,利用刀具以機械式劃線方式,移除兩相鄰電池單元300間一分離區Sa中的吸收層313及緩衝層314,以將兩相鄰電池單元300的吸收層313及緩衝層314分離,再利用一雷射照射至分離區Sa,並且使雷射所形成之溝槽具有一預設之深度H。(0<H≦背電極+二次形成物)。 Step S20: performing a second patterning process of removing the absorption layer 313 and the buffer layer 314 in a separation area Sa between two adjacent battery cells 300 by mechanical scribing to obtain two adjacent battery cells 300. The absorbing layer 313 and the buffer layer 314 are separated, and then irradiated to the separation region Sa by a laser, and the trench formed by the laser has a predetermined depth H. (0<H≦ back electrode + secondary formation).

步驟S22:形成一透明導電層315於緩衝層314上,此時在吸收層被移除的分離區Sa中,背電極層312及透明導電層315會形成接觸界面Sc。例如,可以沉積 一GZO、BZO、ITO或AZO層作為透明導電層315。 Step S22: forming a transparent conductive layer 315 on the buffer layer 314. At this time, in the separation region Sa in which the absorption layer is removed, the back electrode layer 312 and the transparent conductive layer 315 form a contact interface Sc. For example, it can be deposited A GZO, BZO, ITO or AZO layer is used as the transparent conductive layer 315.

步驟S24:進行第三圖案化程序,用以將二相鄰的電池單元300分離。如此,即可形成包含多數個串聯之電池單元300的薄膜太陽能電池400,當進行太陽光的照射時,會於薄膜太陽能電池400中形成電流路徑I。 Step S24: Perform a third patterning process for separating the two adjacent battery cells 300. In this manner, the thin film solar cell 400 including a plurality of battery cells 300 connected in series can be formed, and when the sunlight is irradiated, the current path I is formed in the thin film solar cell 400.

依據申請人之實驗得知,前述之製造方法能夠減少背電極層312及透明導電層315間接觸電阻,同時還能夠維持良好的產品製造良率。其原因申請人將詳細說明於如下。 According to the applicant's experiment, the above manufacturing method can reduce the contact resistance between the back electrode layer 312 and the transparent conductive layer 315 while maintaining good product manufacturing yield. The reason for the applicant will be described in detail below.

再請參照圖3及4,於前述步驟S06之形成一吸收層313於背電極層312上後,由於吸收層313中的元素很容易會滲透入背電極層312中,而在背電極層312中形成一二次形成物層316。於一實施例中,二次形成物層316可以為例如MoSe層或MoS層。 Referring to FIGS. 3 and 4, after forming an absorbing layer 313 on the back electrode layer 312 in the foregoing step S06, since the elements in the absorbing layer 313 easily penetrate into the back electrode layer 312, and in the back electrode layer 312. A secondary formation layer 316 is formed in the middle. In an embodiment, the secondary formation layer 316 can be, for example, a MoSe layer or a MoS layer.

依據習知技術,使用刀具以機械方式移除吸收層113及緩衝層114時,不易將二次形成物層316完全地去除。由於二次形成物層316之電阻比背電極層之電阻高,因此會增加背電極層312及透明導電層315間的接觸電阻,而降低了薄膜太陽能電池400的效率。 According to the prior art, when the absorbing layer 113 and the buffer layer 114 are mechanically removed using a cutter, it is difficult to completely remove the secondary formation layer 316. Since the resistance of the secondary formation layer 316 is higher than that of the back electrode layer, the contact resistance between the back electrode layer 312 and the transparent conductive layer 315 is increased, and the efficiency of the thin film solar cell 400 is lowered.

為解決此一問題,申請人曾嘗試採用多種解決方式,例如採用控制刀具力道的解決方式。具體而言,增加刀具對二次形成物層316的去除力道。依據實驗得知,刀具對於二次形成物層316的去除能力小,若所使用之力道過大時,反而會損壞電池單元300,而造成製造良率的降低。 In order to solve this problem, the applicant has tried various solutions, such as the solution to control the force of the tool. Specifically, the removal force of the tool to the secondary formation layer 316 is increased. According to experiments, the removal ability of the tool for the secondary formation layer 316 is small, and if the force used is too large, the battery unit 300 is damaged, which causes a decrease in manufacturing yield.

申請人還曾嘗試增加劃線次數來使二次形成物層變薄,來降低背電極層312及透明導電層315間的接觸電阻。然而,其效果不佳,而且也會影響生產速度。 Applicants have also attempted to increase the number of scribing times to thin the secondary formation layer to reduce the contact resistance between the back electrode layer 312 and the transparent conductive layer 315. However, its effect is not good and it will also affect the speed of production.

於一實施例,預定深度H大於二次形成物層316的膜厚。藉以使透明導電層315直接接觸於未被污染的背電極層312。 In one embodiment, the predetermined depth H is greater than the film thickness of the secondary formation layer 316. Thereby, the transparent conductive layer 315 is directly in contact with the uncontaminated back electrode layer 312.

綜上所述,依據本發明一實施例,於第二圖案化程序中,利用刀具以機械式劃線方式,移除兩相鄰電池單元300間一分離區Sa中的吸收層313及緩衝層314後,再利用一雷射照射至分離區Sa,並且使雷射所形成之溝槽具有一預設之深度H。(0<H≦背電極+二次形成物)。應了解的是,於一實施例中,可以不限定預設深度H的尺寸,只要二次形成物層316的厚度即可。由於減少背電極層312中的二次形成物層316,就能夠降低背電極層312及透明導電層315間的接觸電阻,而增加薄膜太陽能電池400的效率。 In summary, according to an embodiment of the present invention, in the second patterning process, the absorbing layer 313 and the buffer layer in a separation region Sa between two adjacent battery cells 300 are removed by mechanical scribing in a second patterning process. After 314, a laser is used to illuminate the separation zone Sa, and the trench formed by the laser has a predetermined depth H. (0<H≦ back electrode + secondary formation). It should be understood that, in an embodiment, the size of the preset depth H may not be limited as long as the thickness of the second formation layer 316 is sufficient. Since the secondary formation layer 316 in the back electrode layer 312 is reduced, the contact resistance between the back electrode layer 312 and the transparent conductive layer 315 can be reduced, and the efficiency of the thin film solar cell 400 is increased.

300‧‧‧電池單元 300‧‧‧ battery unit

311‧‧‧基板 311‧‧‧Substrate

312‧‧‧背電極層 312‧‧‧ Back electrode layer

313‧‧‧吸收層 313‧‧‧Absorbent layer

314‧‧‧緩衝層 314‧‧‧buffer layer

315‧‧‧透明導電層 315‧‧‧Transparent conductive layer

316‧‧‧背電極層的二次形成物 316‧‧‧Secondary formation of the back electrode layer

400‧‧‧薄膜太陽能電池 400‧‧‧Thin film solar cells

Claims (6)

一種降低薄膜太陽能電池串聯電阻的製造方法,該薄膜太陽能電池包含多個電池單元,該方法包含:形成一背電極層於一基板上;進行第一圖案化程序,利用一雷射切割該背電極層,以形成互相分離的該些電池單元的一背電極;形成一吸收層於該背電極層上;形成一緩衝層於該薄膜層上;進行第二圖案化程序,利用以機械式劃線方式,移除兩相鄰電池單元間一分離區中的該吸收層及緩衝層,以將兩相鄰電池單元的吸收層及緩衝層分離,再利用另一雷射照射至該分離區,以形成一溝槽;形成一透明導電層於該緩衝層上,使該透明導電層填充於由該另一雷射所形成之該溝槽,並使在該分離區之該溝槽中的該背電極層及該透明導電層接觸而形成一接觸界面;以及進行第三圖案化程序,用以將二相鄰的電池單元分離。 A manufacturing method for reducing series resistance of a thin film solar cell, the thin film solar cell comprising a plurality of battery cells, the method comprising: forming a back electrode layer on a substrate; performing a first patterning process, cutting the back electrode by using a laser a layer to form a back electrode of the battery cells separated from each other; forming an absorbing layer on the back electrode layer; forming a buffer layer on the film layer; performing a second patterning process, using a mechanical scribe line In one aspect, the absorbing layer and the buffer layer in a separation region between two adjacent battery cells are removed to separate the absorbing layer and the buffer layer of two adjacent battery cells, and then irradiated to the separation region by another laser to Forming a trench; forming a transparent conductive layer on the buffer layer, filling the transparent conductive layer with the trench formed by the other laser, and causing the back in the trench in the separation region The electrode layer and the transparent conductive layer are in contact to form a contact interface; and a third patterning process is performed to separate the two adjacent battery cells. 如請求項1所述的薄膜太陽能電池的製造方法,其中,該進行第二圖案化程序的步驟中,該另一雷射所形成之該溝槽,自該背電極二次形成物層的表面往下延伸一預定深度H。 The method of manufacturing a thin film solar cell according to claim 1, wherein in the step of performing the second patterning process, the trench formed by the other laser is from the surface of the secondary electrode formation layer Extending a predetermined depth H downward. 如請求項1所述的薄膜太陽能電池的製造方法,其中,該另一雷射之照射面積小於或等於該分離區的面積。 The method of manufacturing a thin film solar cell according to claim 1, wherein the irradiation area of the other laser is less than or equal to the area of the separation region. 如請求項2所述的薄膜太陽能電池的製造方法,其中,該背電極層為鉬 (Mo)金屬層。 The method of manufacturing a thin film solar cell according to claim 2, wherein the back electrode layer is molybdenum (Mo) metal layer. 如請求項4所述的薄膜太陽能電池的製造方法,其中,該形成一吸收層於該背電極層上的步驟,更於該背電極層中形成二次形成物層,而該預定深度H大於0且小於或等於背電極及二次形成物的厚度。 The method of manufacturing a thin film solar cell according to claim 4, wherein the step of forming an absorbing layer on the back electrode layer further forms a secondary formation layer in the back electrode layer, and the predetermined depth H is greater than 0 and less than or equal to the thickness of the back electrode and the secondary formation. 如請求項2所述的薄膜太陽能電池的製造方法,其中,該透明導電層為摻鎵的氧化鋅(GZO)、摻硼的氧化鋅(BZO)、氧化銦錫(ITO)或摻鋁的氧化鋅(AZO)層。 The method of manufacturing a thin film solar cell according to claim 2, wherein the transparent conductive layer is gallium-doped zinc oxide (GZO), boron-doped zinc oxide (BZO), indium tin oxide (ITO) or aluminum-doped oxidation. Zinc (AZO) layer.
TW103146065A 2014-12-29 2014-12-29 Method for manufacturing thin film solar cell panel TWI538229B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103146065A TWI538229B (en) 2014-12-29 2014-12-29 Method for manufacturing thin film solar cell panel
CN201510057379.4A CN105990467A (en) 2014-12-29 2015-02-04 Method for manufacturing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103146065A TWI538229B (en) 2014-12-29 2014-12-29 Method for manufacturing thin film solar cell panel

Publications (2)

Publication Number Publication Date
TWI538229B true TWI538229B (en) 2016-06-11
TW201624739A TW201624739A (en) 2016-07-01

Family

ID=56755916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103146065A TWI538229B (en) 2014-12-29 2014-12-29 Method for manufacturing thin film solar cell panel

Country Status (2)

Country Link
CN (1) CN105990467A (en)
TW (1) TWI538229B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL422635A1 (en) * 2017-08-25 2019-03-11 Eos Spółka Z Ograniczoną Odpowiedzialnością Method for manufacturing a photovoltaic component and the photovoltaic component
EP3753050A4 (en) * 2018-02-15 2021-12-08 (CNBM) Bengbu Design & Research Institute for Glass Industry Co., Ltd. Method for producing a thin-film solar module
WO2023220911A1 (en) * 2022-05-17 2023-11-23 Cnbm Research Institute For Advanced Glass Materials Group Co., Ltd. Layer stack for thin-film photovoltaic modules and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101091475B1 (en) * 2009-06-30 2011-12-07 엘지이노텍 주식회사 Solar cell and method of fabircating the same
KR101072089B1 (en) * 2009-09-30 2011-10-10 엘지이노텍 주식회사 Solar cell and method of fabircating the same
JP2013508945A (en) * 2009-10-15 2013-03-07 エルジー イノテック カンパニー リミテッド Photovoltaic power generation apparatus and manufacturing method thereof

Also Published As

Publication number Publication date
TW201624739A (en) 2016-07-01
CN105990467A (en) 2016-10-05

Similar Documents

Publication Publication Date Title
CN104051581B (en) Solar cell laser scribing methods
JP4439477B2 (en) Photovoltaic element and manufacturing method thereof
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
US8048706B1 (en) Ablative scribing of solar cell structures
EP2416376A2 (en) Solar photovoltaic power generation apparatus and manufacturing method thereof
US20120094425A1 (en) Ablative scribing of solar cell structures
CN108140686B (en) Method for manufacturing solar cell
JP6202308B2 (en) Method for producing compound thin film solar cell
TWI538229B (en) Method for manufacturing thin film solar cell panel
KR20130109786A (en) Solar cell and manufacturing method thereof
JP4773543B2 (en) Solar cell module with edge space
TW201724538A (en) Thin film type solar cell and method of manufacturing the same
CN103081124B (en) Photovoltaic device and production method thereof
KR20140142416A (en) Solar cell and method of manufacturing of the same
CN104350612B (en) Solar cell and method for manufacturing same
JP5749392B2 (en) Thin film solar cell and manufacturing method thereof
EP2755240A1 (en) Method for manufacturing solar cell
KR101241714B1 (en) Solar cell and method for repairing the same
JP2014022591A (en) Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same
TWI477342B (en) Laser scribing method
CN111384200B (en) Preparation method of solar cell
JP4773544B2 (en) Method for manufacturing solar cell module with edge space
JP2013536996A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP2014018746A (en) Washing apparatus, and apparatus for producing thin film solar cell including the same
KR101219861B1 (en) Solar cell and manufacturing method of the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees