JP2014022591A - Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same - Google Patents

Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same Download PDF

Info

Publication number
JP2014022591A
JP2014022591A JP2012160475A JP2012160475A JP2014022591A JP 2014022591 A JP2014022591 A JP 2014022591A JP 2012160475 A JP2012160475 A JP 2012160475A JP 2012160475 A JP2012160475 A JP 2012160475A JP 2014022591 A JP2014022591 A JP 2014022591A
Authority
JP
Japan
Prior art keywords
substrate
wiping member
wiping
insulating substrate
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012160475A
Other languages
Japanese (ja)
Inventor
Akimori Kunie
明守 国江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012160475A priority Critical patent/JP2014022591A/en
Publication of JP2014022591A publication Critical patent/JP2014022591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Cleaning In General (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance the removal performance of extraneous matter in a cleaning apparatus.SOLUTION: The cleaning apparatus includes a wiping member 110 having a wiping surface 111 coming into contact with the upper surface of a substrate 2, a drive mechanism 120 for moving the wiping member 110 and the substrate 2 relatively in a state where the wiping member 110 is in contact with the upper surface of the substrate 2, and a suction mechanism 130 having a suction opening 131 facing the edge of the wiping surface 111 on the front side in the direction of relative movement of the wiping member 110 for the substrate 2 by the drive mechanism 120.

Description

本発明は、洗浄装置およびそれを含む薄膜太陽電池の製造装置に関し、特に、薄膜太陽電池が形成された基板上の異物を除去する洗浄装置およびそれを含む薄膜太陽電池の製造装置に関する。   The present invention relates to a cleaning device and an apparatus for manufacturing a thin film solar cell including the same, and more particularly to a cleaning device for removing foreign matter on a substrate on which the thin film solar cell is formed and an apparatus for manufacturing a thin film solar cell including the same.

薄膜太陽電池の製造方法を開示した先行文献として、特開2009−206279号公報(特許文献1)がある。特許文献1に記載された薄膜太陽電池の製造方法は、透光性絶縁基板の表面に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングを形成するストリング形成工程と、透光性絶縁基板の表面の外周部に形成されている薄膜光電変換素子部分を光ビームによって除去して非導電性表面領域を全周に形成する膜除去工程と、膜除去工程で発生して非導電性表面領域に付着した導電性付着物を除去する清浄化工程とを含む。   As a prior document disclosing a method for manufacturing a thin film solar cell, there is JP 2009-206279 A (Patent Document 1). In the method for manufacturing a thin-film solar cell described in Patent Document 1, a plurality of thin-film photoelectric conversion elements in which a first electrode layer, a photoelectric conversion layer, and a second electrode layer are sequentially stacked on the surface of a light-transmitting insulating substrate are mutually connected. A string forming step for forming strings electrically connected in series, and a thin film photoelectric conversion element portion formed on the outer peripheral portion of the surface of the light-transmitting insulating substrate are removed by a light beam to completely remove the non-conductive surface region. A film removing step formed around the periphery, and a cleaning step of removing conductive deposits generated in the film removing step and attached to the non-conductive surface region.

特開2009−206279号公報JP 2009-206279 A

拭き取り部材で基板を拭き取って付着物を除去する場合、拭き取り方向の前方側の拭き取り部材の側面に除去した付着物が蓄積する。基板の縁まで拭き取り部材が移動した際、拭き取り部材の上記側面に蓄積していた付着物が、基板の側面に回り込むことがある。また、拭き取り部材を基板から離した際、拭き取り部材の上記側面に蓄積していた付着物が落下して再度基板上に付着することがある。さらに、拭き取り部材の上記側面に蓄積していた付着物の量が所定量を超えると、拭き取り部材の上記側面から溢れて基板上に残留する。これらのように、付着物が基板上に残留することは好ましくない。   When removing a deposit by wiping the substrate with a wiping member, the removed deposit accumulates on the side surface of the wiping member on the front side in the wiping direction. When the wiping member moves to the edge of the substrate, the deposits accumulated on the side surface of the wiping member may wrap around the side surface of the substrate. Further, when the wiping member is separated from the substrate, the deposits accumulated on the side surface of the wiping member may drop and adhere to the substrate again. Furthermore, when the amount of deposits accumulated on the side surface of the wiping member exceeds a predetermined amount, it overflows from the side surface of the wiping member and remains on the substrate. As described above, it is not preferable that deposits remain on the substrate.

本発明は上記の問題点に鑑みてなされたものであって、付着物の除去性能を向上した洗浄装置およびそれを含む薄膜太陽電池の製造装置を提供することを目的とする。   This invention is made | formed in view of said problem, Comprising: It aims at providing the washing | cleaning apparatus which improved the removal performance of the deposit | attachment, and the manufacturing apparatus of a thin film solar cell including the same.

本発明に基づく洗浄装置は、上面の周縁部の内側に薄膜太陽電池が形成された基板の周縁部に付着した異物を除去する洗浄装置である。洗浄装置は、基板の上面と接触する拭き取り面を有する拭き取り部材と、拭き取り部材と基板の上面とを互いに接触させた状態で相対的に移動させる駆動機構と、駆動機構による拭き取り部材の基板に対する相対的移動方向の前方側における拭き取り面の縁に向いた吸込み口を有する吸引機構とを備える。   The cleaning apparatus based on this invention is a cleaning apparatus which removes the foreign material adhering to the peripheral part of the board | substrate with which the thin film solar cell was formed inside the peripheral part of the upper surface. The cleaning device includes a wiping member having a wiping surface that contacts the upper surface of the substrate, a driving mechanism that moves the wiping member and the upper surface of the substrate in contact with each other, and a relative relationship between the wiping member by the driving mechanism and the substrate. And a suction mechanism having a suction port facing the edge of the wiping surface on the front side in the general movement direction.

本発明の一形態においては、洗浄装置は、駆動機構による拭き取り部材の基板に対する相対的移動方向の後方側における拭き取り面の縁に向いた吸込み口を有する他の吸引機構をさらに備える。   In one form of this invention, the washing | cleaning apparatus is further equipped with the other suction mechanism which has the suction inlet which faced the edge of the wiping surface in the back side of the relative movement direction with respect to the board | substrate of the wiping member by a drive mechanism.

本発明に基づく薄膜太陽電池の製造装置は、上記のいずれかの洗浄装置を含む。   The thin-film solar cell manufacturing apparatus according to the present invention includes any of the above-described cleaning apparatuses.

本発明によれば、洗浄装置における付着物の除去性能を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, the removal performance of the deposit | attachment in a cleaning apparatus can be improved.

本発明の一実施形態に係る薄膜太陽電池ストリングの構成を示す平面図である。It is a top view which shows the structure of the thin film solar cell string which concerns on one Embodiment of this invention. 同実施形態に係る薄膜太陽電池ストリングの構成を示す断面図である。It is sectional drawing which shows the structure of the thin film solar cell string which concerns on the same embodiment. 透光性絶縁基板上に透明電極層を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the transparent electrode layer on the translucent insulated substrate. 第1分離溝を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the 1st separation groove was formed. 光電変換層を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the photoelectric converting layer was formed. コンタクトラインを形成した状態を示す断面図である。It is sectional drawing which shows the state in which the contact line was formed. 裏面電極層を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the back surface electrode layer was formed. 第2分離溝を形成した状態を示す断面図である。It is sectional drawing which shows the state in which the 2nd separation groove was formed. 周縁溝を形成した状態を示す断面図である。It is sectional drawing which shows the state which formed the peripheral groove | channel. トリミングした状態を示す断面図である。It is sectional drawing which shows the state trimmed. 同実施形態に係る洗浄装置により基板の周縁部に付着した異物を除去している状態を示す側面図である。It is a side view which shows the state which has removed the foreign material adhering to the peripheral part of the board | substrate with the washing | cleaning apparatus which concerns on the same embodiment. 同実施形態の変形例に係る洗浄装置により基板の周縁部に付着した異物を除去している状態を示す側面図である。It is a side view which shows the state which has removed the foreign material adhering to the peripheral part of the board | substrate with the washing | cleaning apparatus which concerns on the modification of the embodiment.

以下、本発明の一実施形態に係る洗浄装置について図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。   Hereinafter, a cleaning apparatus according to an embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.

まず、洗浄対象となる基板を含む薄膜太陽電池ストリングの構成について説明する。図1は、本発明の一実施形態に係る薄膜太陽電池ストリングの構成を示す平面図である。図2は、本実施形態に係る薄膜太陽電池ストリングの構成を示す断面図である。図2(A)は図1のIIA−IIA線矢印方向から見た断面図であり、図2(B)は図1のIIB−IIB線矢印方向から見た断面図である。   First, the structure of the thin film solar cell string including the substrate to be cleaned will be described. FIG. 1 is a plan view showing the configuration of a thin-film solar cell string according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing the configuration of the thin-film solar cell string according to this embodiment. 2A is a cross-sectional view as seen from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 2B is a cross-sectional view as seen from the direction of the arrow IIB-IIB in FIG.

図1,2に示すように、薄膜太陽電池ストリング1は、透光性絶縁基板2と、透明電極層3と、光電変換層4と、裏面電極層5と、バスバー電極10とを備えている。透光性絶縁基板2上に、透明電極層3、光電変換層4および裏面電極層5がこの順序で積層されている。   As shown in FIGS. 1 and 2, the thin film solar cell string 1 includes a translucent insulating substrate 2, a transparent electrode layer 3, a photoelectric conversion layer 4, a back electrode layer 5, and a bus bar electrode 10. . On the translucent insulating substrate 2, the transparent electrode layer 3, the photoelectric conversion layer 4, and the back electrode layer 5 are laminated in this order.

透光性絶縁基板2は、上面2aと下面2bとを有している。透光性絶縁基板2としては、耐熱性および透光性を有するガラス基板またはポリイミドなどの樹脂基板を用いることができる。   The translucent insulating substrate 2 has an upper surface 2a and a lower surface 2b. As the translucent insulating substrate 2, a glass substrate having heat resistance and translucency or a resin substrate such as polyimide can be used.

透明電極層3は、導電膜であって、第1分離溝6によって複数の領域に分離されている。第1分離溝6は光電変換層4で埋められている。透明電極層3の材料としては、たとえば、SnO2(酸化スズ)、ITO(Indium Tin Oxide)またはZnO(酸化亜鉛)などを用いることができる。 The transparent electrode layer 3 is a conductive film and is separated into a plurality of regions by the first separation groove 6. The first separation groove 6 is filled with the photoelectric conversion layer 4. As a material for the transparent electrode layer 3, for example, SnO 2 (tin oxide), ITO (Indium Tin Oxide), ZnO (zinc oxide), or the like can be used.

光電変換層4は、積層された複数の半導体層から構成されている。光電変換層4を構成する各半導体層の材料は特に限定されず、たとえば、シリコン系半導体、CIS(CuInSe2)化合物半導体、または、CIGS(Cu(In,Ga)Se2)化合物半導体などを用いることができる。 The photoelectric conversion layer 4 is composed of a plurality of stacked semiconductor layers. The material of each semiconductor layer constituting the photoelectric conversion layer 4 is not particularly limited. For example, a silicon-based semiconductor, a CIS (CuInSe 2 ) compound semiconductor, or a CIGS (Cu (In, Ga) Se 2 ) compound semiconductor is used. be able to.

以下、各半導体層がシリコン系半導体からなる場合を例にとって説明する。「シリコン系半導体」とは、非晶質シリコンまたは微結晶シリコン、非晶質シリコンまたは微結晶シリコンに炭素、ゲルマニウムまたはその他の不純物が添加された半導体(シリコンカーバイド、シリコンゲルマニウムなど)を意味する。   Hereinafter, a case where each semiconductor layer is made of a silicon-based semiconductor will be described as an example. The “silicon-based semiconductor” means a semiconductor (silicon carbide, silicon germanium, or the like) in which carbon, germanium, or other impurities are added to amorphous silicon or microcrystalline silicon, amorphous silicon or microcrystalline silicon.

また、「微結晶シリコン」とは、結晶粒径が小さい(数十Åから数千Å程度)結晶シリコンと非晶質シリコンとの混合相の状態のシリコンを意味する。微結晶シリコンは、たとえば、結晶シリコンの薄膜をプラズマCVD(Chemical Vapor Deposition)法などの非平衡プロセスを用いて低温で作製した場合に形成される。   The term “microcrystalline silicon” means silicon in a mixed phase state of crystalline silicon and amorphous silicon having a small crystal grain size (several tens to thousands of centimeters). Microcrystalline silicon is formed, for example, when a thin film of crystalline silicon is produced at a low temperature using a non-equilibrium process such as a plasma CVD (Chemical Vapor Deposition) method.

光電変換層4においては、透明電極層3側から順にp型半導体層、i型半導体層およびn型半導体層が積層されてpin構造が形成されている。   In the photoelectric conversion layer 4, a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer are stacked in this order from the transparent electrode layer 3 side to form a pin structure.

p型半導体層には、ボロン、アルミニウムなどのp型不純物原子がドープされており、n型半導体層にはリンなどのn型不純物原子がドープされている。i型半導体層は、完全にノンドープである半導体層であってもよく、微量の不純物を含む弱p型または弱n型で光電変換機能を十分に備えている半導体層であってもよい。   The p-type semiconductor layer is doped with p-type impurity atoms such as boron and aluminum, and the n-type semiconductor layer is doped with n-type impurity atoms such as phosphorus. The i-type semiconductor layer may be a completely non-doped semiconductor layer, or may be a weak p-type or weak n-type semiconductor layer having a small amount of impurities and sufficiently equipped with a photoelectric conversion function.

光電変換層4は、pin構造が複数重ねられたタンデム型でもよい。たとえば、光電変換層4が、透明電極層3上にa−Si:Hp層、a−Si:Hi層、a−Si:Hn層をこの順に積層した上部半導体層と、上部半導体層上にμc−Si:Hp層、μc−Si:Hi層、μc−Si:Hn層をこの順に積層した下部半導体層とから構成されてもよい。   The photoelectric conversion layer 4 may be a tandem type in which a plurality of pin structures are stacked. For example, the photoelectric conversion layer 4 includes an upper semiconductor layer in which an a-Si: Hp layer, an a-Si: Hi layer, and an a-Si: Hn layer are stacked in this order on the transparent electrode layer 3, and μc on the upper semiconductor layer. -Si: Hp layer, (micro | micron | mu) c-Si: Hi layer, and (micro | micron | mu) c-Si: Hn layer may be comprised from the lower semiconductor layer laminated | stacked in this order.

また、光電変換層4を上部半導体層、中部半導体層および下部半導体層からなる3層構造としてもよい。たとえば、上部および中部半導体層にアモルファスシリコン(a−Si)、下部半導体層に微結晶シリコン(μc−Si)を用いてもよい。光電変換層4の材料および積層構造の組み合わせは、特に限定されるものではない。なお、本実施形態においては、薄膜太陽電池の光入射側に位置する半導体層を上部半導体層、光入射側とは反対側に位置する半導体層を下部半導体層とする。   The photoelectric conversion layer 4 may have a three-layer structure including an upper semiconductor layer, a middle semiconductor layer, and a lower semiconductor layer. For example, amorphous silicon (a-Si) may be used for the upper and middle semiconductor layers, and microcrystalline silicon (μc-Si) may be used for the lower semiconductor layers. The combination of the material and laminated structure of the photoelectric conversion layer 4 is not particularly limited. In the present embodiment, the semiconductor layer located on the light incident side of the thin-film solar cell is the upper semiconductor layer, and the semiconductor layer located on the opposite side to the light incident side is the lower semiconductor layer.

裏面電極層5は導電膜である。裏面電極層5の構成および材料は、特に限定されないが、たとえば、裏面電極層5は、透明導電膜と金属膜とが積層された積層構造を有する。透明導電膜は、ZnO、ITOまたはSnO2などからなる。金属膜は、銀またはアルミニウムなどの金属からなる。 The back electrode layer 5 is a conductive film. The configuration and material of the back electrode layer 5 are not particularly limited. For example, the back electrode layer 5 has a laminated structure in which a transparent conductive film and a metal film are laminated. The transparent conductive film is made of ZnO, ITO, SnO 2 or the like. The metal film is made of a metal such as silver or aluminum.

なお、裏面電極層5は金属膜のみから構成されてもよいが、透明導電膜を光電変換層4側に配置した方が、光電変換層4で吸収されなかった光を裏面電極層5で反射する際の反射率が向上し、高い変換効率の薄膜太陽電池を得ることができる点で好ましい。   The back electrode layer 5 may be composed of only a metal film. However, the back electrode layer 5 reflects light that is not absorbed by the photoelectric conversion layer 4 when the transparent conductive film is disposed on the photoelectric conversion layer 4 side. This is preferable in that the reflectance during the process is improved and a thin film solar cell with high conversion efficiency can be obtained.

裏面電極層5および光電変換層4は、第2分離溝8によって複数のセル領域11に分離されている。光電変換層4には、貫通部であるコンタクトライン7が形成されている。   The back electrode layer 5 and the photoelectric conversion layer 4 are separated into a plurality of cell regions 11 by the second separation grooves 8. In the photoelectric conversion layer 4, contact lines 7 that are penetrating portions are formed.

コンタクトライン7は、裏面電極層5によって埋められており、隣り合うセル領域11間を電気的に直列に接続している。このように直列接続された複数のセル領域11の端子として、バスバー電極10が裏面電極層5上に設けられている。バスバー電極10は、銀ペーストなどのろう材によって裏面電極層5と電気的に接続されている。   The contact line 7 is filled with the back electrode layer 5 and electrically connects the adjacent cell regions 11 in series. Bus bar electrodes 10 are provided on the back electrode layer 5 as terminals of the plurality of cell regions 11 connected in series in this way. The bus bar electrode 10 is electrically connected to the back electrode layer 5 by a brazing material such as silver paste.

以下、薄膜太陽電池ストリングの製造方法について説明する。
図3は、透光性絶縁基板上に透明電極層を形成した状態を示す断面図である。図3(A)は透明電極層を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図3(B)は透明電極層を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。図3に示すように、まず、透光性絶縁基板2の上面2a上に透明電極層3を形成する。
Hereinafter, the manufacturing method of a thin film solar cell string is demonstrated.
FIG. 3 is a cross-sectional view showing a state in which a transparent electrode layer is formed on a translucent insulating substrate. 3A is a cross-sectional view of the state in which the transparent electrode layer is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 3B is the state in which the transparent electrode layer is formed in FIG. It is sectional drawing seen from the IIB line arrow direction. As shown in FIG. 3, first, the transparent electrode layer 3 is formed on the upper surface 2 a of the translucent insulating substrate 2.

図4は、第1分離溝を形成した状態を示す断面図である。図4(A)は第1分離溝を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図4(B)は第1分離溝を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 4 is a cross-sectional view showing a state where the first separation groove is formed. 4A is a cross-sectional view of the state in which the first separation groove is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 4B is the state in which the first separation groove is formed in FIG. It is sectional drawing seen from the IIB-IIB line arrow direction.

図4に示すように、透明電極層3を複数の領域に分離するために、透光性絶縁基板2を通過させて光ビームLM1(レーザ光)を透明電極層3に選択的に照射する。光ビームLM1の波長は、光の吸収が主に透明電極層3において生じるように選択され、たとえばYAG(Yttrium Aluminum Garnet)レーザの基本波長である1064nmである。この光ビームLM1によるレーザスクライブにより、透明電極層3を複数の領域に分離する第1分離溝6が形成される。   As shown in FIG. 4, in order to separate the transparent electrode layer 3 into a plurality of regions, the transparent electrode layer 3 is selectively irradiated with the light beam LM1 (laser light) through the translucent insulating substrate 2. The wavelength of the light beam LM1 is selected so that light absorption occurs mainly in the transparent electrode layer 3, and is, for example, 1064 nm, which is the fundamental wavelength of a YAG (Yttrium Aluminum Garnet) laser. The first separation groove 6 that separates the transparent electrode layer 3 into a plurality of regions is formed by laser scribing with the light beam LM1.

図5は、光電変換層を形成した状態を示す断面図である。図5(A)は光電変換層を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図5(B)は光電変換層を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 5 is a cross-sectional view showing a state where a photoelectric conversion layer is formed. 5A is a cross-sectional view of the state in which the photoelectric conversion layer is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 5B shows the state in which the photoelectric conversion layer is formed in FIG. It is sectional drawing seen from the IIB line arrow direction.

図5に示すように、第1分離溝6を埋めるように透明電極層3を覆う光電変換層4を形成する。たとえば、200nm以上5μm以下の厚さとなるようにCVD法により光電変換層4を成膜する。   As shown in FIG. 5, the photoelectric conversion layer 4 covering the transparent electrode layer 3 is formed so as to fill the first separation groove 6. For example, the photoelectric conversion layer 4 is formed by a CVD method so as to have a thickness of 200 nm to 5 μm.

図6は、コンタクトラインを形成した状態を示す断面図である。図6(A)はコンタクトラインを形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図6(B)はコンタクトラインを形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 6 is a cross-sectional view showing a state where contact lines are formed. 6A is a cross-sectional view of the state in which the contact line is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 6B is the state in which the contact line is formed in the line IIB-IIB in FIG. It is sectional drawing seen from the arrow direction.

図6に示すように、透光性絶縁基板2を通過させて透明電極層3および光電変換層4に光ビームLM2を照射する。光ビームLM2の波長は、光の吸収が主に光電変換層4において生じるように選択され、たとえばYAGレーザの第2高調波長である532nmである。これにより、光電変換層4の一部がアブレーションされることでコンタクトライン7が形成される。なお、YAGレーザの第2高調波の代わりに、YVO4(Yttrium Vanadate)レーザを用いてもよい。 As shown in FIG. 6, the transparent electrode layer 3 and the photoelectric conversion layer 4 are irradiated with the light beam LM2 through the translucent insulating substrate 2. The wavelength of the light beam LM2 is selected so that light absorption occurs mainly in the photoelectric conversion layer 4, and is, for example, 532 nm, which is the second harmonic wavelength of the YAG laser. Thereby, the contact line 7 is formed by ablating a part of the photoelectric conversion layer 4. A YVO 4 (Yttrium Vanadate) laser may be used instead of the second harmonic of the YAG laser.

図7は、裏面電極層を形成した状態を示す断面図である。図7(A)は裏面電極層を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図7(B)は裏面電極層を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 7 is a cross-sectional view showing a state in which a back electrode layer is formed. 7A is a cross-sectional view of the state in which the back electrode layer is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 7B is the state in which the back electrode layer is formed in FIG. It is sectional drawing seen from the IIB line arrow direction.

図7に示すように、コンタクトライン7を埋めるように光電変換層4を覆う裏面電極層5を形成する。たとえば、裏面電極層5をCVD法により成膜する。   As shown in FIG. 7, the back electrode layer 5 covering the photoelectric conversion layer 4 is formed so as to fill the contact line 7. For example, the back electrode layer 5 is formed by a CVD method.

図8は、第2分離溝を形成した状態を示す断面図である。図8(A)は第2分離溝を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図8(B)は第2分離溝を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 8 is a cross-sectional view showing a state in which the second separation groove is formed. 8A is a cross-sectional view of the state where the second separation groove is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 8B is the state where the second separation groove is formed. It is sectional drawing seen from the IIB-IIB line arrow direction.

図8に示すように、透光性絶縁基板2を通過させて透明電極層3、光電変換層4および裏面電極層5に光ビームLM3を照射する。光ビームLM3の波長は、光の吸収が主に光電変換層4において生じるように選択され、たとえばYAGレーザの第2高調波長である532nmである。これにより光電変換層4および裏面電極層5の一部がアブレーションされることで第2分離溝8が形成される。   As shown in FIG. 8, the transparent electrode layer 3, the photoelectric conversion layer 4, and the back electrode layer 5 are irradiated with the light beam LM3 through the translucent insulating substrate 2. The wavelength of the light beam LM3 is selected so that light absorption occurs mainly in the photoelectric conversion layer 4, and is, for example, 532 nm, which is the second harmonic wavelength of the YAG laser. Thereby, a part of the photoelectric conversion layer 4 and the back electrode layer 5 is ablated to form the second separation groove 8.

図9は、周縁溝を形成した状態を示す断面図である。図9(A)は周縁溝を形成した状態を図1のIIA−IIA線矢印方向から見た断面図であり、図9(B)は周縁溝を形成した状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 9 is a cross-sectional view showing a state in which the peripheral groove is formed. 9A is a cross-sectional view of the state in which the peripheral groove is formed as viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 9B is the state in which the peripheral groove is formed in the line IIB-IIB in FIG. It is sectional drawing seen from the arrow direction.

図9に示すように、透光性絶縁基板2を通過させて透明電極層3、光電変換層4および裏面電極層5に、光ビームLM4を照射する。光ビームLM4の波長は、光の吸収が主に光電変換層4において生じるように選択され、たとえばYAGレーザの第2高調波長である532nmである。これにより光電変換層4および裏面電極層5の一部がアブレーションされることで、第2分離溝8の長手方向の両端(図9(A)の左右端)の各々の近傍に周縁溝9が形成される。   As shown in FIG. 9, the transparent electrode layer 3, the photoelectric conversion layer 4, and the back electrode layer 5 are irradiated with the light beam LM4 through the translucent insulating substrate 2. The wavelength of the light beam LM4 is selected so that light absorption occurs mainly in the photoelectric conversion layer 4, and is, for example, 532 nm, which is the second harmonic wavelength of the YAG laser. As a result, the photoelectric conversion layer 4 and a part of the back electrode layer 5 are ablated, so that the peripheral groove 9 is formed in the vicinity of both ends in the longitudinal direction of the second separation groove 8 (left and right ends in FIG. 9A). It is formed.

図10は、トリミングした状態を示す断面図である。図10(A)はトリミングした状態を図1のIIA−IIA線矢印方向から見た断面図であり、図10(B)はトリミングした状態を図1のIIB−IIB線矢印方向から見た断面図である。   FIG. 10 is a cross-sectional view showing a trimmed state. 10A is a cross-sectional view of the trimmed state viewed from the direction of the arrow IIA-IIA in FIG. 1, and FIG. 10B is a cross-sectional view of the trimmed state viewed from the direction of the arrow IIB-IIB in FIG. FIG.

図10に示すように、周縁溝9のさらに外側(図10(A)の破線部の外側)の領域と、第2分離溝8の延在方向に沿った外側(図10(B)の左右側)の領域とに、光ビームLM5を照射する。光ビームLM5の波長は、光の吸収が主に透明電極層3において生じるように選択され、たとえばYAGレーザの基本波長である1064nmである。これにより、透明電極層3、光電変換層4および裏面電極層5の一部がアブレーションされる。   As shown in FIG. 10, the region on the outer side of the peripheral groove 9 (outside the broken line portion in FIG. 10A) and the outer side along the extending direction of the second separation groove 8 (the left and right sides in FIG. 10B). Side) is irradiated with the light beam LM5. The wavelength of the light beam LM5 is selected so that light absorption occurs mainly in the transparent electrode layer 3, and is, for example, 1064 nm, which is the fundamental wavelength of a YAG laser. Thereby, a part of transparent electrode layer 3, the photoelectric converting layer 4, and the back surface electrode layer 5 is ablated.

このトリミングにより、透光性絶縁基板2の縁から内側へ所定幅の領域である周縁部において、透光性絶縁基板2上に形成されていた積層膜が除去されて、周縁部の内側に薄膜太陽電池となる積層膜が位置するようになる。   By this trimming, the laminated film formed on the translucent insulating substrate 2 is removed from the periphery of the translucent insulating substrate 2 to the inner side from the edge of the translucent insulating substrate 2, and a thin film is formed inside the peripheral portion. A laminated film to be a solar cell is positioned.

アブレーションによってトリミングした場合、除去した積層膜の破片が再び透光性絶縁基板2の上面の周縁部に異物として付着することがある。この異物は、薄膜太陽電池の絶縁不良の原因となることがあるため除去する必要がある。   When trimming is performed by ablation, the fragments of the removed laminated film may adhere as foreign matter to the peripheral edge of the upper surface of the translucent insulating substrate 2 again. This foreign matter needs to be removed because it may cause insulation failure of the thin film solar cell.

そこで、本実施形態に係る洗浄装置を用いて透光性絶縁基板2の周縁部に付着した異物を除去する。図11は、本実施形態に係る洗浄装置により基板の周縁部に付着した異物を除去している状態を示す側面図である。   Therefore, the foreign matter adhering to the peripheral portion of the translucent insulating substrate 2 is removed using the cleaning apparatus according to the present embodiment. FIG. 11 is a side view showing a state in which foreign matter adhering to the peripheral edge of the substrate is removed by the cleaning apparatus according to the present embodiment.

図11に示すように、本実施形態に係る洗浄装置100は、透光性絶縁基板2の上面と接触する拭き取り部材110と、拭き取り部材110と透光性絶縁基板2の上面とを互いに接触させた状態で相対的に移動させる駆動機構120とを備えている。   As shown in FIG. 11, the cleaning apparatus 100 according to the present embodiment brings the wiping member 110 in contact with the upper surface of the translucent insulating substrate 2, and the wiping member 110 and the upper surface of the translucent insulating substrate 2 into contact with each other. And a drive mechanism 120 that relatively moves in the state.

駆動機構120としては、拭き取り部材110と透光性絶縁基板2の上面とを互いに接触させた状態で相対的に移動させられるものであればよく、モータを駆動源とする駆動機構、または、人力により駆動される駆動機構などでもよい。   The drive mechanism 120 may be any mechanism that can be moved relatively while the wiping member 110 and the upper surface of the translucent insulating substrate 2 are in contact with each other. The drive mechanism etc. which are driven by may be used.

また、本実施形態においては、拭き取り部材110を駆動機構120により移動させているが、駆動機構はこれに限られず、透光性絶縁基板2を移動させる駆動機構でもよい。すなわち、駆動機構としては、停止している拭き取り部材に透光性絶縁基板2の上面の周縁部を接触させつつ透光性絶縁基板2を移動させて、拭き取り部材により透光性絶縁基板2の上面の周縁部を擦らせる駆動機構でもよい。   In this embodiment, the wiping member 110 is moved by the drive mechanism 120. However, the drive mechanism is not limited to this, and a drive mechanism for moving the translucent insulating substrate 2 may be used. That is, as the drive mechanism, the translucent insulating substrate 2 is moved while the peripheral edge of the upper surface of the translucent insulating substrate 2 is brought into contact with the stopped wiping member, and the translucent insulating substrate 2 is moved by the wiping member. A drive mechanism that rubs the peripheral edge of the upper surface may be used.

本実施形態においては、拭き取り部材110は、シリコン樹脂から形成されている。ただし、拭き取り部材110の材料はこれに限られず、たとえば、発泡ウレタンなどの発泡樹脂でもよい。   In the present embodiment, the wiping member 110 is made of silicon resin. However, the material of the wiping member 110 is not limited to this, and may be a foamed resin such as urethane foam.

駆動機構120により拭き取り部材110は、透光性絶縁基板2に対して相対的に矢印30で示す方向に移動させられる。その結果、透光性絶縁基板2の上面の周縁部に付着していた異物20は、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の前方側における拭き取り面111の縁でこそぎ取られる。   The wiping member 110 is moved in the direction indicated by the arrow 30 relative to the translucent insulating substrate 2 by the drive mechanism 120. As a result, the foreign matter 20 adhering to the peripheral edge of the upper surface of the translucent insulating substrate 2 is moved in the direction of relative movement of the wiping member 110 relative to the translucent insulating substrate 2 by the driving mechanism 120 (the direction indicated by the arrow 30). It is scraped off at the edge of the wiping surface 111 on the front side.

本実施形態に係る洗浄装置100は、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の前方側における拭き取り面111の縁に向いた吸込み口131を有する吸引機構130を備えている。   The cleaning apparatus 100 according to the present embodiment has a suction port facing the edge of the wiping surface 111 on the front side in the relative movement direction (direction indicated by the arrow 30) of the wiping member 110 with respect to the light-transmissive insulating substrate 2 by the driving mechanism 120. A suction mechanism 130 having 131 is provided.

吸引機構130は、駆動機構120と連結されている。ただし、吸引機構130の取り付け構造は上記に限られず、たとえば、拭き取り部材110に直接連結されていてもよい。   The suction mechanism 130 is connected to the drive mechanism 120. However, the attachment structure of the suction mechanism 130 is not limited to the above, and may be directly connected to the wiping member 110, for example.

吸込み口131は、拭き取り部材110の幅より大きな内幅を有している。そのため、拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の前方側における拭き取り面111の縁全体を吸引することができる。   The suction port 131 has an inner width larger than the width of the wiping member 110. Therefore, the entire edge of the wiping surface 111 on the front side in the relative movement direction (direction indicated by the arrow 30) of the wiping member 110 with respect to the translucent insulating substrate 2 can be sucked.

なお、吸引機構130は、位置調節可能に駆動機構120に連結されていてもよい。この場合、吸込み口131の向き、および、吸込み口131と透光性絶縁基板2の上面との距離を調節できるため、異物20を確実に吸引することができる。   The suction mechanism 130 may be coupled to the drive mechanism 120 so that the position thereof can be adjusted. In this case, since the direction of the suction port 131 and the distance between the suction port 131 and the upper surface of the translucent insulating substrate 2 can be adjusted, the foreign matter 20 can be reliably sucked.

駆動機構120および吸引機構130は図示しない制御部に接続されており、制御部からの指令により、駆動機構120および吸引機構130の各動作が制御されている。   The drive mechanism 120 and the suction mechanism 130 are connected to a control unit (not shown), and each operation of the drive mechanism 120 and the suction mechanism 130 is controlled by a command from the control unit.

本実施形態においては、駆動機構120の稼働時に吸引機構130が稼働するように、制御部により駆動機構120および吸引機構130を制御している。ただし、制御部の制御はこれに限られない。   In the present embodiment, the drive mechanism 120 and the suction mechanism 130 are controlled by the control unit so that the suction mechanism 130 operates when the drive mechanism 120 is operated. However, the control of the control unit is not limited to this.

たとえば、拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の前方側における拭き取り面111の縁でこそぎ取られた異物20の量を検知するセンサを設け、このセンサの検出結果を制御部に送り、異物20の量が所定量に達した時点から吸引機構130が稼働するように、制御部により吸引機構130を制御してもよい。センサとしては、レーザセンサなどの計測センサを用いることができる。   For example, a sensor that detects the amount of foreign matter 20 scraped off at the edge of the wiping surface 111 on the front side in the relative movement direction (direction indicated by arrow 30) of the wiping member 110 with respect to the translucent insulating substrate 2 is provided. The detection result of this sensor may be sent to the control unit, and the suction mechanism 130 may be controlled by the control unit so that the suction mechanism 130 operates from the time when the amount of the foreign matter 20 reaches a predetermined amount. A measurement sensor such as a laser sensor can be used as the sensor.

さらに、拭き取り部材110の透光性絶縁基板2上の位置を位置センサで検出し、拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の前方側における拭き取り面111の縁が透光性絶縁基板2の縁に接近した際に、吸引機構130が稼働するように制御部により吸引機構130を制御してもよい。   Further, the position of the wiping member 110 on the translucent insulating substrate 2 is detected by a position sensor, and the wiping surface on the front side in the relative movement direction of the wiping member 110 with respect to the translucent insulating substrate 2 (direction indicated by the arrow 30). The suction mechanism 130 may be controlled by the control unit so that the suction mechanism 130 operates when the edge of 111 approaches the edge of the translucent insulating substrate 2.

吸引機構130が稼働することにより、こそぎ取られた異物20が吸込み口131から吸引されて透光性絶縁基板2の上面から除去される。そのため、こそぎ取った異物20が再び透光性絶縁基板2の上面に付着することを抑制できる。このように、吸引機構130を設けることにより、洗浄装置100における異物20の除去性能を向上できる。   By operating the suction mechanism 130, the scraped foreign matter 20 is sucked from the suction port 131 and removed from the upper surface of the translucent insulating substrate 2. Therefore, it is possible to suppress the scraped foreign matter 20 from adhering to the upper surface of the translucent insulating substrate 2 again. Thus, by providing the suction mechanism 130, the removal performance of the foreign matter 20 in the cleaning apparatus 100 can be improved.

ここで、本実施形態の変形例に係る洗浄装置について説明する。図12は、本実施形態の変形例に係る洗浄装置により基板の周縁部に付着した異物を除去している状態を示す側面図である。図12に示すように、変形例に係る洗浄装置101は、2つの吸引機構を有している。   Here, a cleaning apparatus according to a modification of the present embodiment will be described. FIG. 12 is a side view showing a state in which foreign matter adhering to the peripheral portion of the substrate is removed by the cleaning device according to the modification of the present embodiment. As shown in FIG. 12, the cleaning device 101 according to the modification has two suction mechanisms.

洗浄装置101は、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印30で示す方向)の後方側における拭き取り面111の縁に向いた吸込み口131を有する他の吸引機構130をさらに備えている。   The cleaning apparatus 101 has another suction port 131 facing the edge of the wiping surface 111 on the rear side in the relative movement direction of the wiping member 110 with respect to the translucent insulating substrate 2 by the driving mechanism 120 (direction shown by the arrow 30). A suction mechanism 130 is further provided.

透光性絶縁基板2の上面の周縁部の異物20をより確実に除去するために2度拭きをする場合、または、周縁部の幅が拭き取り部材110の幅より広いときに一筆書き的に拭き取り部材110を透光性絶縁基板2に対して移動させて拭き取る場合などにおいて、洗浄装置101の拭き取り方向を反対方向にすることがある。すなわち、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向を、矢印31で示す方向にすることがある。   When wiping twice in order to more reliably remove the foreign matter 20 at the peripheral edge of the upper surface of the translucent insulating substrate 2, or when the width of the peripheral edge is wider than the width of the wiping member 110, wipe it off with a single stroke. When the member 110 is moved and wiped with respect to the translucent insulating substrate 2, the wiping direction of the cleaning device 101 may be set in the opposite direction. That is, the relative movement direction of the wiping member 110 with respect to the translucent insulating substrate 2 by the driving mechanism 120 may be set to the direction indicated by the arrow 31.

この場合、透光性絶縁基板2の上面の周縁部に付着していた異物21は、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印31で示す方向)の前方側における拭き取り面111の縁でこそぎ取られる。   In this case, the foreign material 21 adhering to the peripheral portion of the upper surface of the translucent insulating substrate 2 is moved in the direction of relative movement of the wiping member 110 with respect to the translucent insulating substrate 2 by the driving mechanism 120 (the direction indicated by the arrow 31). It is scraped off at the edge of the wiping surface 111 on the front side.

変形例に係る洗浄装置101は、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向(矢印31で示す方向)の前方側における拭き取り面111の縁に向いた吸込み口131を有する吸引機構130を備え、その吸引機構130が稼働することにより、こそぎ取られた異物21が吸込み口131から吸引されて透光性絶縁基板2の上面から除去される。   The cleaning apparatus 101 according to the modification includes a suction port 131 facing the edge of the wiping surface 111 on the front side in the relative movement direction (direction indicated by the arrow 31) of the wiping member 110 with respect to the translucent insulating substrate 2 by the driving mechanism 120. When the suction mechanism 130 is operated, the scraped foreign matter 21 is sucked from the suction port 131 and removed from the upper surface of the translucent insulating substrate 2.

そのため、こそぎ取った異物21が再び透光性絶縁基板2の上面に付着することを抑制できる。このように、吸引機構130を設けることにより、洗浄装置100における異物21の除去性能を向上できる。   Therefore, it is possible to suppress the scraped foreign matter 21 from adhering to the upper surface of the translucent insulating substrate 2 again. Thus, by providing the suction mechanism 130, the removal performance of the foreign matter 21 in the cleaning apparatus 100 can be improved.

なお、2つの吸引機構130の両方を同時に稼働させることにより、洗浄装置101における異物の除去性能を向上するようにしてもよい。この場合、仮に、駆動機構120による拭き取り部材110の透光性絶縁基板2に対する相対的移動方向の前方側に位置する吸引機構130で異物の一部を除去できなかった場合、上記相対的移動方向の後方側に位置する吸引機構130でその異物の一部を除去することができる。その結果、洗浄装置101の除去性能を安定して向上することができる。   Note that the foreign matter removal performance of the cleaning apparatus 101 may be improved by operating both of the two suction mechanisms 130 simultaneously. In this case, if a part of the foreign matter cannot be removed by the suction mechanism 130 located on the front side in the relative movement direction of the wiping member 110 with respect to the translucent insulating substrate 2 by the driving mechanism 120, the relative movement direction is described above. A part of the foreign matter can be removed by the suction mechanism 130 located on the rear side of the. As a result, the removal performance of the cleaning apparatus 101 can be stably improved.

上記の洗浄後、図2に示すように、第2分離溝8の延在方向に直交する方向の両端の裏面電極層5の表面上に、第2分離溝8の延在方向と同じ方向に延在するバスバー電極10を形成する。以上の工程により、本実施形態に係る薄膜太陽電池ストリング1が得られる。すなわち、透光性絶縁基板2の上面の周縁部の内側に薄膜太陽電池が形成され、周縁部に付着した異物は洗浄装置により除去されている。   After the above cleaning, as shown in FIG. 2, on the surface of the back electrode layer 5 at both ends in the direction orthogonal to the extending direction of the second separating groove 8, in the same direction as the extending direction of the second separating groove 8. An extended bus bar electrode 10 is formed. Through the above steps, the thin-film solar cell string 1 according to this embodiment is obtained. That is, the thin-film solar cell is formed inside the peripheral portion of the upper surface of the translucent insulating substrate 2, and the foreign matter attached to the peripheral portion is removed by the cleaning device.

本実施形態においては、洗浄装置における付着物の除去性能を向上して、除去した異物の再付着を抑制することにより、基板上面の周縁部に付着した異物による絶縁不良を低減することができる。この洗浄装置を含む薄膜太陽電池の製造装置を用いることにより、絶縁不良による薄膜太陽電池の歩留まりの低下を抑制できる。   In this embodiment, it is possible to reduce insulation defects due to foreign matter attached to the peripheral portion of the upper surface of the substrate by improving the removal performance of the attached matter in the cleaning apparatus and suppressing reattachment of the removed foreign matter. By using a thin-film solar cell manufacturing apparatus including this cleaning device, it is possible to suppress a decrease in the yield of thin-film solar cells due to poor insulation.

今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   It should be thought that embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 薄膜太陽電池ストリング、2 透光性絶縁基板、2a 上面、2b 下面、3 透明電極層、4 光電変換層、5 裏面電極層、6 第1分離溝、7 コンタクトライン、8 第2分離溝、9 周縁溝、10 バスバー電極、11 セル領域、20,21 異物、100,101 洗浄装置、110 拭き取り部材、111 拭き取り面、120 駆動機構、130 吸引機構、131 吸込み口。   DESCRIPTION OF SYMBOLS 1 Thin film solar cell string, 2 Translucent insulated substrate, 2a upper surface, 2b lower surface, 3 Transparent electrode layer, 4 Photoelectric conversion layer, 5 Back surface electrode layer, 6 1st separation groove, 7 Contact line, 8 2nd separation groove, 9 peripheral groove, 10 bus bar electrode, 11 cell region, 20, 21 foreign matter, 100, 101 cleaning device, 110 wiping member, 111 wiping surface, 120 driving mechanism, 130 suction mechanism, 131 suction port.

Claims (3)

上面の周縁部の内側に薄膜太陽電池が形成された基板の該周縁部に付着した異物を除去する洗浄装置であって、
前記基板の前記上面と接触する拭き取り面を有する拭き取り部材と、
前記拭き取り部材と前記基板の前記上面とを互いに接触させた状態で相対的に移動させる駆動機構と、
前記駆動機構による前記拭き取り部材の前記基板に対する相対的移動方向の前方側における前記拭き取り面の縁に向いた吸込み口を有する吸引機構と
を備える、洗浄装置。
A cleaning device that removes foreign matter adhering to the peripheral portion of the substrate on which the thin-film solar cell is formed inside the peripheral portion of the upper surface,
A wiping member having a wiping surface in contact with the upper surface of the substrate;
A drive mechanism for relatively moving the wiping member and the upper surface of the substrate in contact with each other;
A cleaning apparatus comprising: a suction mechanism having a suction port facing an edge of the wiping surface on a front side in a relative movement direction of the wiping member by the driving mechanism with respect to the substrate.
前記駆動機構による前記拭き取り部材の前記基板に対する相対的移動方向の後方側における前記拭き取り面の縁に向いた吸込み口を有する他の吸引機構をさらに備える、請求項1に記載の洗浄装置。   The cleaning apparatus according to claim 1, further comprising another suction mechanism having a suction port facing an edge of the wiping surface on a rear side in a relative movement direction of the wiping member to the substrate by the driving mechanism. 請求項1または2に記載の洗浄装置を含む、薄膜太陽電池の製造装置。   An apparatus for manufacturing a thin-film solar cell, comprising the cleaning device according to claim 1.
JP2012160475A 2012-07-19 2012-07-19 Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same Pending JP2014022591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160475A JP2014022591A (en) 2012-07-19 2012-07-19 Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160475A JP2014022591A (en) 2012-07-19 2012-07-19 Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same

Publications (1)

Publication Number Publication Date
JP2014022591A true JP2014022591A (en) 2014-02-03

Family

ID=50197135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160475A Pending JP2014022591A (en) 2012-07-19 2012-07-19 Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same

Country Status (1)

Country Link
JP (1) JP2014022591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024150A (en) * 2015-07-28 2017-02-02 株式会社ディスコ Substrate processing method and processing device
CN108246723A (en) * 2018-01-18 2018-07-06 苏州新材料研究所有限公司 Strip surface cleaning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024150A (en) * 2015-07-28 2017-02-02 株式会社ディスコ Substrate processing method and processing device
CN108246723A (en) * 2018-01-18 2018-07-06 苏州新材料研究所有限公司 Strip surface cleaning device

Similar Documents

Publication Publication Date Title
US8822809B2 (en) Solar cell apparatus and method for manufacturing the same
JP5328363B2 (en) Method for manufacturing solar cell element and solar cell element
US20090205710A1 (en) Thin film type solar cell and method for manufacturing the same
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
US20100078064A1 (en) Monolithically-integrated solar module
JP6055787B2 (en) Solar cell and manufacturing method thereof
KR101144808B1 (en) Manufacturing Method For Thin-Film Type Solar Cell And The Same thereof
JP5220134B2 (en) Photoelectric conversion cell and photoelectric conversion module
US20140273329A1 (en) Solar cell laser scribing methods
KR101139453B1 (en) Thin-Film Type Solar Cell and Manufacturing Method thereof
JP5820265B2 (en) Back electrode type solar cell and manufacturing method thereof
US20100126559A1 (en) Semi-Transparent Thin-Film Photovoltaic Modules and Methods of Manufacture
CN108767066B (en) Thin film solar cell preparation method and edge isolation method thereof
CN103081123A (en) Device for generating solar power and method for manufacturing same
KR20100004540A (en) Thin film type solar cell, and method for manufacturing the same
JP2014022591A (en) Cleaning apparatus and manufacturing apparatus of thin film solar cell including the same
KR101243877B1 (en) solar cell and method for manufacturing the same
KR101047170B1 (en) Solar cell and manufacturing method
KR101098325B1 (en) Solar cell and method for fabricating the same
KR101039149B1 (en) Solar cell and method for fabricating the same
EP2528106A1 (en) Photovoltaic power generation device and manufacturing method thereof
JP2014018746A (en) Washing apparatus, and apparatus for producing thin film solar cell including the same
KR101460619B1 (en) Thin film type Solar Cell, and Method for manufacturing the same
KR20100032720A (en) Thin film solar cell and the method for fabricating thereof
US20120024340A1 (en) Solar Cells With Localized Silicon/Metal Contact For Hot Spot Mitigation and Methods of Manufacture