TWI537222B - A co-treatment process of sludge - Google Patents

A co-treatment process of sludge Download PDF

Info

Publication number
TWI537222B
TWI537222B TW104120047A TW104120047A TWI537222B TW I537222 B TWI537222 B TW I537222B TW 104120047 A TW104120047 A TW 104120047A TW 104120047 A TW104120047 A TW 104120047A TW I537222 B TWI537222 B TW I537222B
Authority
TW
Taiwan
Prior art keywords
waste
carbon dioxide
mixed waste
mixed
solid
Prior art date
Application number
TW104120047A
Other languages
Chinese (zh)
Other versions
TW201700412A (en
Inventor
謝哲隆
張慶源
廖依如
Original Assignee
國立宜蘭大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立宜蘭大學 filed Critical 國立宜蘭大學
Priority to TW104120047A priority Critical patent/TWI537222B/en
Application granted granted Critical
Publication of TWI537222B publication Critical patent/TWI537222B/en
Publication of TW201700412A publication Critical patent/TW201700412A/en

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

混合廢棄物共處理方法 Mixed waste co-processing method

本發明涉及一種混合廢棄物共處理方法,尤指一種在電漿環境下處理混合廢棄物的混合廢棄物共處理方法。 The invention relates to a mixed waste co-processing method, in particular to a mixed waste co-processing method for treating mixed waste in a plasma environment.

我國事業污泥產出量,經統計資料顯示,101年污泥清除量約為237萬公噸。其中有害污泥與一般污泥分別為11.5萬和224萬公噸。上述統計未包含公共下水污泥。依據內政部營建署資料顯示,下水污泥於101年產出量為7.7萬公噸,約占前述事業污泥3%。換算日產量為213.3公噸,主要產出地區集中於人口稠密地區,包括大台北、桃園、高雄以及台南等都會地區。其中台北市迪化汙水處理廠產出之下水污泥佔了50%的產出量。 According to statistics, the sludge removal volume in China is about 2.37 million metric tons. Among them, the harmful sludge and general sludge are 115,000 and 2.24 million metric tons respectively. The above statistics do not include public sewage sludge. According to the information from the Construction Department of the Ministry of the Interior, the output of sewage sludge in 2007 was 77,000 metric tons, accounting for about 3% of the aforementioned commercial sludge. The daily output is 213.3 metric tons, and the main output areas are concentrated in densely populated areas, including metropolitan areas such as Taipei, Taoyuan, Kaohsiung and Tainan. Among them, the sewage sludge produced by the Taipei Dihua Wastewater Treatment Plant accounts for 50% of the output.

現今,我國國內事業污泥處理,面對了處理機構處理容量不足、產源未妥善分類影響處理作業、處理技術待提升等亟待解決的問題。 Nowadays, China's domestic sewage treatment has faced problems that need to be solved, such as insufficient processing capacity of the processing organization, unreasonable classification of production sources, and processing problems to be improved.

事業廢棄物中間處理技術種類繁多,依照其處理目標與技術可分做六大類,分別是: There are many kinds of intermediate treatment technologies for business wastes. According to their treatment targets and technologies, they can be divided into six categories:

一、物理/化學處理:破碎、分選、乾燥等,將廢棄物處理至適宜盡興進一步處理或是處置之方法。 1. Physical/chemical treatment: crushing, sorting, drying, etc., and treating the waste to a method suitable for further processing or disposal.

二、焚化處理:焚化處理技術乃熱處理技術之一,主要目的是為減少最終處置之廢棄物體積,由於其技術成熟,已被廣泛應用於各種類型廢棄 物處理。 2. Incineration treatment: Incineration treatment technology is one of heat treatment technologies. The main purpose is to reduce the waste volume of final disposal. Due to its mature technology, it has been widely used in various types of waste. Material handling.

三、濕式氧化法處理:濕式氧化處理法主要是透過加濕加速氧化,減少有機物質腐敗造成惡臭的機率,並透過氧化,將高活性不安定之物質氧化使其轉成安定態,達到安定化之目的。 3. Wet oxidation treatment: The wet oxidation treatment method mainly accelerates oxidation through humidification, reduces the chance of fouling caused by organic substance spoilage, and oxidizes the high-activity unstable substance to turn into a stable state through oxidation. The purpose of stability.

四、生物法處理:生物處理法分成好氧、缺氧、厭氧三種類型,區別方式以其所使用微生物種類,微生物分解廢棄物質需要的生存環境即為命名上所稱呼的好氧、缺氧、厭氧者,透過微生物分解使之凝結、分解或者重組,達到處理目的。 4. Biological treatment: The biological treatment method is divided into three types: aerobic, anoxic and anaerobic. The difference is the type of microorganisms used, and the living environment required for microbial decomposition of waste is the aerobic and lack of the name. Oxygen, anaerobic, through the decomposition of microorganisms to coagulate, decompose or recombine, to achieve the purpose of treatment.

五、特殊廢棄物之處理方法:個別因為其性質須分別處理之廢棄物,例如具毒性有害事業廢棄物,在進行焚化處理操作時,須確保操作環境為全密閉式,並且操作溫度高於一般焚化操作的要求,一般焚化爐要求焚化區溫度約需介於900~1050℃之間,而有害廢棄物之焚化溫度要求焚化爐出口中心溫度須高於1000℃,並破壞率高於99.99%以上才得排出。 5. Treatment methods for special wastes: Individual wastes that must be disposed of separately due to their nature, such as toxic and hazardous business wastes, must be ensured that the operating environment is fully enclosed and the operating temperature is higher than normal. Incineration operation requirements, the general incinerator requires the incineration zone temperature to be between 900~1050 °C, and the incineration temperature of hazardous waste requires the incinerator outlet center temperature to be higher than 1000 °C, and the destruction rate is higher than 99.99%. Have to be discharged.

六、固化處理:個別廢棄物於露天棄置、衛生掩埋時,會有雨水融洗出重金屬之疑慮,又或者有毒物質溶出,對土地造成不可逆轉之危害。是故,對最終處置前之廢棄物進行固化,減少其於最終處置後對環境之影響。 6. Curing treatment: When individual wastes are disposed of in the open air and buried in the sanitation, there will be doubts about the rainwater washing out heavy metals, or the toxic substances will be dissolved, causing irreversible damage to the land. Therefore, the waste before final disposal is solidified to reduce its environmental impact after final disposal.

事業污泥隸屬於事業廢棄物中的一種,其特徵是至少80wt.%以上的高含水分,進行傳統熱處理會大量消耗能源,並減少處理效益,產生大量焚化灰渣及飛灰。 The business sludge belongs to one of the commercial wastes, and is characterized by a high moisture content of at least 80 wt.% or more. The conventional heat treatment consumes a large amount of energy, reduces the treatment efficiency, and generates a large amount of incineration ash and fly ash.

目前我國現行之事業污泥清理技術,依其操作目的可分作有機物破壞和水分去除兩種,有機物破壞包括焚化、水解、消化和濕式氧化等,去除水分則依其原理有機械擠壓脫水或加溫乾燥等,最終處置則以 掩埋為主要施行手段。 At present, China's current business sludge cleaning technology can be divided into organic matter destruction and water removal according to its operation purpose. Organic matter destruction includes incineration, hydrolysis, digestion and wet oxidation, etc., and removal of water is based on mechanical extrusion and dehydration. Or warm and dry, etc., the final disposal is Buried as the main means of implementation.

焚化處理廢棄物之優點為方便、減積減重率高,但衍生的灰渣與飛灰皆是嚴重的二次公害,尤其飛灰所含有的大量重金屬,飄散到空氣中易形成嚴重的二次公害。其餘如水解、消化與濕式氧化,亦會產生衍生廢棄物,無法使之受到完全處理。 The advantages of incinerating waste are convenience and the rate of weight loss is high, but the derived ash and fly ash are serious secondary pollution, especially the heavy metals contained in fly ash, which are easy to form in the air. Secondary pollution. The rest, such as hydrolysis, digestion and wet oxidation, also produce derivatized waste that cannot be completely treated.

本發明之主要目的在於提供一種混合廢棄物共處理方法,其係以固態二氧化碳來源在電漿環境中作為氣態二氧化碳的來源,提升固態廢棄物裂解產生可燃性氣體的效率,並減少二氧化碳的排放及處理固態廢棄物的成本。 The main object of the present invention is to provide a mixed waste co-processing method which uses a solid carbon dioxide source as a source of gaseous carbon dioxide in a plasma environment, improves the efficiency of solid waste cracking to generate flammable gas, and reduces carbon dioxide emissions. The cost of handling solid waste.

為了達成前述之目的,本發明將提供一種混合廢棄物共處理方法,包括下列步驟:(A)將一固態廢棄物和一固態二氧化碳來源混合形成一混合廢棄物;(B)啟動一電漿熱處理設備,當該電漿熱處理設備的溫度條件在500至800℃之間時,將該混合廢棄物添加入該電漿熱處理設備中;以及(C)添加至少一種含氧載體進入該電漿熱處理設備,使該混合廢棄物之中的固態廢棄物在電漿環境下,與該含氧載體及該混合廢棄物之中的固態二氧化碳來源所釋放出的氣態二氧化碳進行熱氣化裂解反應,以產生一預定量之可燃性氣體。 In order to achieve the foregoing objects, the present invention provides a mixed waste co-processing method comprising the steps of: (A) mixing a solid waste with a solid carbon dioxide source to form a mixed waste; (B) initiating a plasma heat treatment a device, when the temperature condition of the plasma heat treatment device is between 500 and 800 ° C, adding the mixed waste to the plasma heat treatment device; and (C) adding at least one oxygen carrier into the plasma heat treatment device And causing the solid waste in the mixed waste to undergo a thermal gasification cracking reaction with the gaseous carbon dioxide released from the oxygen-containing carrier and the solid carbon dioxide source in the mixed waste in a plasma environment to generate a predetermined A quantity of flammable gas.

根據一較佳實施例,該含氧載體為水蒸氣,該水蒸氣與該混合廢棄物分開或同時加入該電漿熱處理設備。其中該水蒸氣之添加量介於1~100%相對濕度,該混合廢棄物之中的固態二氧化碳來源所釋放出的二氧化碳的體積濃度介於1~80%。 According to a preferred embodiment, the oxygen-containing carrier is water vapor which is added to the plasma heat treatment apparatus separately or simultaneously with the mixed waste. The water vapor is added in an amount of 1 to 100% relative humidity, and the solid carbon dioxide source in the mixed waste has a volume concentration of carbon dioxide of 1 to 80%.

根據一較佳實施例,該固態廢棄物與該固態二氧化碳來源的質量混合比率為1:1、1:1.5或1:2。 According to a preferred embodiment, the mass mixing ratio of the solid waste to the solid carbon dioxide source is 1:1, 1:1.5 or 1:2.

根據一較佳實施例,該固態廢棄物與該固態二氧化碳來源經由一混合造粒步驟形成為顆粒狀的混合廢棄物。 According to a preferred embodiment, the solid waste and the solid carbon dioxide source are formed into a granular mixed waste via a mixing granulation step.

根據一較佳實施例,該固態二氧化碳來源為含碳酸鹽類的物質。其中該碳酸鹽類為碳酸鈣。較佳地,該含碳酸鈣的物質為綠泥。 According to a preferred embodiment, the solid carbon dioxide source is a carbonate-containing material. Wherein the carbonate is calcium carbonate. Preferably, the calcium carbonate-containing material is green mud.

根據一較佳實施例,該固態廢棄物為污泥廢棄物。其中該混合廢棄物為含有二氧化碳之污泥廢棄物、焙燒後固態二氧化碳污泥及/或前處理後固態二氧化碳污泥。 According to a preferred embodiment, the solid waste is sludge waste. The mixed waste is sludge waste containing carbon dioxide, solid carbon dioxide sludge after calcination, and/or pre-treated solid carbon dioxide sludge.

本發明的功效在於,混合廢棄物之中的固態二氧化碳來源會釋放出氣態二氧化碳,然後與含氧載體一同提高混合廢棄物之中的固態廢棄物在電漿環境下的裂解效果,使最終產生的氫氣、一氧化碳、甲烷及二氧化碳等可燃性氣體的累積產出質量大於純固態廢棄物經過熱氣化裂解處理後所產出的上述各種可燃性氣體的累積產出質量,提升固態廢棄物裂解產生可燃性氣體的效率,並減少二氧化碳的排放及處理固態廢棄物的成本。 The effect of the invention is that the solid carbon dioxide source in the mixed waste releases gaseous carbon dioxide, and then together with the oxygen carrier, the cracking effect of the solid waste in the mixed waste in the plasma environment is improved, so that the final result is generated. The cumulative output quality of flammable gases such as hydrogen, carbon monoxide, methane and carbon dioxide is greater than the cumulative output quality of the above various combustible gases produced by the thermal solidification of the solid solid waste, which improves the flammability of solid waste cracking. Gas efficiency and reduce carbon dioxide emissions and the cost of handling solid waste.

100‧‧‧電漿熱處理設備 100‧‧‧Micropaste heat treatment equipment

1‧‧‧氮氣瓶 1‧‧‧Nitrogen bottle

2‧‧‧電源供應與冷卻系統 2‧‧‧Power supply and cooling system

3‧‧‧流量控制器 3‧‧‧Flow controller

4‧‧‧溫度監測系統 4‧‧‧ Temperature Monitoring System

5‧‧‧投料裝置 5‧‧‧Feeding device

6‧‧‧坩鍋 6‧‧‧坩锅

7‧‧‧電漿火炬 7‧‧‧Plastic Torch

8‧‧‧出口管線 8‧‧‧Export pipeline

9‧‧‧蒸餾水裝置 9‧‧‧ distilled water unit

10‧‧‧蠕動幫浦 10‧‧‧ creeping pump

11‧‧‧質量流量計 11‧‧‧Mass flow meter

12‧‧‧氣體分析儀器 12‧‧‧Gas Analysis Instruments

S1~S3‧‧‧步驟 S1~S3‧‧‧ steps

第一圖是本發明之混合廢棄物共處理方法之流程圖。 The first figure is a flow chart of the method for co-processing mixed waste of the present invention.

第二圖是本發明之混合廢棄物共處理方法所使用的電漿熱處理設備之示意圖。 The second figure is a schematic view of the plasma heat treatment equipment used in the mixed waste co-processing method of the present invention.

第三圖是本發明之混合廢棄物共處理方法所產生的H2瞬間濃度圖。 The third figure is a H 2 instantaneous concentration map produced by the mixed waste co-processing method of the present invention.

第四圖是本發明之混合廢棄物共處理方法所產生的CO瞬間濃度圖。 The fourth figure is a graph of the instantaneous concentration of CO generated by the mixed waste co-processing method of the present invention.

第五圖是本發明之混合廢棄物共處理方法所產生的CH4瞬間濃度圖。 The fifth figure is a transient concentration diagram of CH 4 produced by the mixed waste co-processing method of the present invention.

第六圖是本發明之混合廢棄物共處理方法所產生的CO2瞬間濃度圖。 Figure 6 is a graph showing the instantaneous concentration of CO 2 produced by the mixed waste co-processing method of the present invention.

第七圖是尚未處理的純下水污泥廢棄物之一千倍放大之SEM圖像。 The seventh figure is an SEM image of one thousand times magnification of pure sewage sludge waste that has not been treated.

第八圖是尚未處理的綠泥之一千倍放大之SEM圖像。 The eighth image is an SEM image of a thousand times magnification of untreated green mud.

第九圖是純下水污泥廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像。 The ninth image is an SEM image of one thousand times magnification of the residue of pure sewage sludge after plasma heat treatment.

第十圖是純下水污泥廢棄物在電漿熱處理中以每分鐘三公升的流速通入氣態CO2處理之後的殘渣之一千倍放大之SEM圖像。 The tenth figure is an SEM image of one thousand times magnification of the residue of the pure sewage sludge waste after being subjected to gaseous CO 2 treatment at a flow rate of three liters per minute in the plasma heat treatment.

第十一圖是下水污泥廢棄物和綠泥的質量混合比率為1:1的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像。 The eleventh figure is an SEM image of one thousand times magnification of the residue of the mixed waste of the sewage sludge waste and the green mud by a mass mixing ratio of 1:1 after the plasma heat treatment.

第十二圖是下水污泥廢棄物和綠泥的質量混合比率為1:1.5的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像。 The twelfth image is an SEM image of a thousand times magnification of the residue of the mixed waste of the sewage sludge waste and the green mud at a mass mixing ratio of 1:1.5 after the plasma heat treatment.

第十三圖是下水污泥廢棄物和綠泥的質量混合比率為1:2的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像。 The thirteenth image is an SEM image of a thousand-fold magnification of the residue of the mixed waste of the sewage sludge and the green mud in a mass mixing ratio of 1:2 after the plasma heat treatment.

以下配合圖式及元件符號對本發明之實施方式做更詳細的說明,俾使熟習該項技藝者在研讀本說明書後能據以實施。 The embodiments of the present invention will be described in more detail below with reference to the drawings and the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt;

請參閱第一圖及第二圖,第一圖為本發明之混合廢棄物共處理方法之流程圖,第二圖為本發明之混合廢棄物共處理方法之電漿熱處理設備之示意圖。本發明係提供一種混合廢棄物共處理方法,包括下列步驟: Please refer to the first figure and the second figure. The first figure is a flow chart of the mixed waste co-processing method of the present invention, and the second figure is a schematic view of the plasma heat treatment equipment of the mixed waste co-processing method of the present invention. The invention provides a method for co-processing mixed waste, comprising the following steps:

步驟S1:將一固態廢棄物和一固態二氧化碳來源混合形成一混合廢棄物。其中,該固態廢棄物與該固態二氧化碳來源的質量混合比率為1:1、1:1.5或1:2。其中,該固態廢棄物與該固態二氧化碳來源的質量混合比率可隨著不同種類的固態廢棄物的性質而有所變化,並非以此為限。其中,該固態廢棄物與該固態二氧化碳來源經由一混合造粒步驟形成為顆粒狀的混合廢棄物。其中,該固態廢棄物的外觀可能為粉狀、顆粒狀、磚狀、圓柱狀、不規則狀或其他形狀者,而該固態廢棄物的形式可能為乾式、濕式或半乾式。在本實施例中,該固態廢棄物為污泥廢棄物,該污泥廢棄物可能是下水污泥廢棄物、事業污泥廢棄物、工業污泥廢棄物、畜牧業污泥廢棄物、農業污泥廢棄物或其他類別的污泥廢棄物。該固態二氧化碳來源為含碳酸鹽類的物質。其中,該碳酸鹽類為碳酸鈣,因此該固態二氧化碳來源為含碳酸鈣的物質。較佳地,該含碳酸鈣的物質為綠泥。其中,該混合廢棄物為含有二氧化碳之污泥廢棄物、焙燒後固態二氧化碳污泥及/或前處理後固態二氧化碳污泥。其中,該顆粒狀的混合廢棄物放置於一乾燥皿中備存。 Step S1: mixing a solid waste and a solid carbon dioxide source to form a mixed waste. Wherein the mass mixing ratio of the solid waste to the solid carbon dioxide source is 1:1, 1:1.5 or 1:2. The mass mixing ratio of the solid waste to the solid carbon dioxide source may vary depending on the nature of the different types of solid waste, and is not limited thereto. Wherein, the solid waste and the solid carbon dioxide source are formed into a granular mixed waste through a mixed granulation step. The solid waste may be in the form of powder, granules, bricks, cylinders, irregulars or other shapes, and the solid waste may be in the form of dry, wet or semi-dry. In this embodiment, the solid waste is sludge waste, which may be sewage sludge waste, commercial sludge waste, industrial sludge waste, livestock sludge waste, and agricultural waste. Mud waste or other types of sludge waste. The solid carbon dioxide source is a carbonate-containing material. Wherein, the carbonate is calcium carbonate, so the solid carbon dioxide source is a calcium carbonate-containing material. Preferably, the calcium carbonate-containing material is green mud. The mixed waste is sludge waste containing carbon dioxide, solid carbon dioxide sludge after calcination, and/or solid carbon dioxide sludge after pretreatment. Wherein, the granular mixed waste is placed in a drying dish for storage.

步驟S2:啟動一電漿熱處理設備100,當該電漿熱處理設備 100的溫度條件在500至800℃之間時,將該該混合廢棄物添加入該電漿熱處理設備100中。其中,該電漿熱處理設備100可能是熱電漿、冷電漿、高周波電漿、火炬電漿、微波電漿、非傳輸型電漿或傳輸型電漿。在本實施例中,該電漿熱處理設備100為熱電漿的一種,該電漿熱處理設備100包含一氮氣瓶1、一電源供應與冷卻系統2、一流量控制器3、一溫度監測系統4、一投料裝置5、一坩鍋6、一電漿火炬7、一出口管線8、一蒸餾水裝置9、一蠕動幫浦10、一質量流量計11、一氣體分析儀器12及一反應槽。首先,將該混合廢棄物放置於該投料裝置5。然後,該流量控制器3控制該氮氣瓶1內的純度為99.99%的氮氣通入該電漿火炬7的流量,並且透過該電源供應與冷卻系統2提供該電漿火炬7所需之電壓、電流的控制面板以及回流管線所需之冷卻系統,使該電漿火炬7內的氮氣產生高溫氮氣電漿,並將該高溫氮氣電漿送至該反應槽中。該溫度監測系統4用以檢測該電漿火炬7內部爐體的溫度。當該反應槽內的溫度達到500至800℃之間時,利用該投料裝置5上的一推桿將該混合廢棄物推入該反應槽中,以進行熱氣化裂解處理。其中該混合廢棄物的投料方式可能為批次式或是連續式。其中該混合廢棄物每批次反應投料時,該混合廢棄物中的固態廢棄物為10公克。該混合廢棄物中的固態二氧化碳來源則視混合比率而有所不同。舉例來說,在該固態廢棄物與該固態二氧化碳來源的質量混合比率為1:1時,該混合廢棄物中的固態二氧化碳來源為10公克。藉此,該混合廢棄物的每批次總重量為20公克。在該固態廢棄物與該固態二氧化碳來源的質量混合比率為1:1.5時,該混合廢棄物中的固態二氧化碳來源為15公克。藉此,該混合廢棄物的每批次總重量為25公克。在該固態廢棄物與該固態二氧化碳來源的質量混合比率為 1:2時,該混合廢棄物中的固態二氧化碳來源為20公克。藉此,該混合廢棄物的每批次總重量為30公克。以此類推。該電漿熱處理設備的操作溫度為873K。其中該電漿火炬7為小型非傳輸型直流式系統,其中心高達10,000℃以上的熾熱溫度可產生1,400-1,650℃的高溫操作環境,其強烈之熱輻射使得熱傳效率優於傳統火焰,高溫反應趨之反應速率亦比燃燒快10倍以上,藉此,其能提供的熱氣化裂解處理的效果比傳統熱裂解爐為佳。 Step S2: starting a plasma heat treatment device 100, when the plasma heat treatment device When the temperature condition of 100 is between 500 and 800 ° C, the mixed waste is added to the plasma heat treatment apparatus 100. The plasma heat treatment device 100 may be a thermal plasma, a cold plasma, a high-frequency plasma, a torch plasma, a microwave plasma, a non-transmission type plasma, or a transmission type plasma. In this embodiment, the plasma heat treatment apparatus 100 is a kind of thermal plasma, and the plasma heat treatment apparatus 100 includes a nitrogen cylinder, a power supply and cooling system 2, a flow controller 3, and a temperature monitoring system 4. A feeding device 5, a crucible 6, a plasma torch 7, an outlet line 8, a distilled water device 9, a peristaltic pump 10, a mass flow meter 11, a gas analysis device 12, and a reaction tank. First, the mixed waste is placed in the charging device 5. Then, the flow controller 3 controls the flow rate of nitrogen gas having a purity of 99.99% in the nitrogen gas cylinder 1 into the plasma torch 7, and the voltage required to supply the plasma torch 7 through the power supply and cooling system 2, The control panel of the current and the cooling system required for the return line cause the nitrogen in the plasma torch 7 to generate a high temperature nitrogen plasma, and the high temperature nitrogen plasma is sent to the reaction tank. The temperature monitoring system 4 is configured to detect the temperature of the furnace body inside the plasma torch 7. When the temperature in the reaction tank reaches between 500 and 800 ° C, the mixed waste is pushed into the reaction tank by a push rod on the charging device 5 to perform a thermal gasification cracking treatment. The mixed waste may be fed in batch or continuous mode. When the mixed waste is charged in each batch, the solid waste in the mixed waste is 10 grams. The source of solid carbon dioxide in the mixed waste will vary depending on the mixing ratio. For example, when the mass mixing ratio of the solid waste to the solid carbon dioxide source is 1:1, the solid carbon dioxide source in the mixed waste is 10 grams. Thereby, the total weight of the mixed waste per batch is 20 grams. When the mass mixing ratio of the solid waste to the solid carbon dioxide source is 1:1.5, the solid carbon dioxide source in the mixed waste is 15 grams. Thereby, the total weight of the mixed waste per batch is 25 grams. The mass mixing ratio between the solid waste and the solid carbon dioxide source is At 1:2, the source of solid carbon dioxide in the mixed waste is 20 grams. Thereby, the total weight of the mixed waste per batch is 30 grams. And so on. The plasma heat treatment equipment has an operating temperature of 873K. The plasma torch 7 is a small non-transmission type DC system, and the hot temperature above 10,000 ° C in the center can generate a high temperature operating environment of 1,400-1,650 ° C, and its strong heat radiation makes the heat transfer efficiency superior to the traditional flame, high temperature. The reaction tends to have a reaction rate that is more than 10 times faster than combustion, whereby the thermal gasification cracking treatment can provide a better effect than conventional thermal cracking furnaces.

步驟S3:添加至少一種含氧載體進入該電漿熱處理設備,使該混合廢棄物之中的固態廢棄物在電漿環境下,與該含氧載體及該混合廢棄物之中的固態二氧化碳來源所釋放出的氣態二氧化碳進行熱氣化裂解反應,以產生一預定量之可燃性氣體。更具體而言,該含氧載體為水蒸氣,係由該蒸餾水裝置9所提供,並且透由該蠕動幫浦10控制該蒸餾水裝置9所供應的水蒸氣通入該反應槽的流量。其中該水蒸氣之添加量介於1~100%相對濕度,且該混合廢棄物之中的固態二氧化碳來源所釋放出的氣態二氧化碳的體積濃度介於1~80%。其中,該水蒸氣的添加量可隨著不同種類的固態廢棄物的性質而有所變化,並非以此為限。當然該水蒸氣亦可由該混合廢棄物本身提供無妨。所產生的氣體通過該出口管線8的位於冷卻水管上方的採樣口之後進入一採樣袋中收集。其中所產生的氣體以一公升採樣袋收集,每30秒採收一袋,採樣體積約500到800ml之間。使用氣體分析儀器12分析主要氣體,並換算氣體濃度及回收率,並將氣體做定量及定性分析。其中該氣體分析儀器12可針對氣化氣體的特性,選用氣相層析熱導偵測器(GC-TCD)及氣相色譜質譜儀(GC-MS),以分析氣體種類及氣體濃度,並且做定性與定量分析。所產生的氣體當中包含可燃性氣體,所述可燃性氣體 包含氫氣(H2)、一氧化碳(CO)、甲烷(CH4)及二氧化碳(CO2)。氣化後的混合廢棄物的殘渣則收集於設置於該反應槽內的坩鍋6之中。該等可燃性氣體可經由其他技術轉換成變成熱能、電能和機械能,或更進一步形成液態燃料,例如FT(Fisher Tropsch)合成柴油、甲醇、乙醇、二甲基醚、液化石油氣等。 Step S3: adding at least one oxygen-containing carrier into the plasma heat treatment device, so that the solid waste in the mixed waste is in a plasma environment, and the oxygen-containing carrier and the solid carbon dioxide source in the mixed waste The released gaseous carbon dioxide undergoes a thermal gasification cracking reaction to produce a predetermined amount of flammable gas. More specifically, the oxygen-containing carrier is water vapor supplied from the distilled water unit 9, and the flow rate of the water vapor supplied from the distilled water unit 9 to the reaction tank is controlled by the peristaltic pump 10. The amount of the water vapor added is between 1% and 100% relative humidity, and the volume of the gaseous carbon dioxide released by the solid carbon dioxide source in the mixed waste is between 1% and 80%. The amount of the water vapor added may vary depending on the nature of the different types of solid waste, and is not limited thereto. Of course, the water vapor can also be supplied by the mixed waste itself. The generated gas is collected into a sampling bag through the sampling port of the outlet line 8 above the cooling water pipe. The gas produced is collected in a one liter sampling bag, and one bag is taken every 30 seconds, and the sampling volume is between 500 and 800 ml. The gas analysis instrument 12 is used to analyze the main gas, and the gas concentration and recovery rate are converted, and the gas is quantitatively and qualitatively analyzed. The gas analysis instrument 12 can select a gas chromatography thermal conductivity detector (GC-TCD) and a gas chromatography mass spectrometer (GC-MS) for analyzing gas characteristics and gas concentration, and Do qualitative and quantitative analysis. The generated gas contains a combustible gas containing hydrogen (H 2 ), carbon monoxide (CO), methane (CH 4 ), and carbon dioxide (CO 2 ). The residue of the mixed waste after vaporization is collected in a crucible 6 provided in the reaction tank. The flammable gases may be converted to thermal, electrical, and mechanical energy via other techniques, or further formed into a liquid fuel, such as FT (Fisher Tropsch) synthetic diesel, methanol, ethanol, dimethyl ether, liquefied petroleum gas, and the like.

其中,該水蒸氣與該混合廢棄物可以分開加入該電漿熱處理設備100中,也可以同時加入該電漿熱處理設備100中。 The water vapor and the mixed waste may be separately added to the plasma heat treatment apparatus 100, or may be simultaneously added to the plasma heat treatment apparatus 100.

實施例: Example:

本實施例的固態廢棄物係選用下水污泥廢棄物(Sewage Sludge,簡稱SW),而固態二氧化碳來源係選用綠泥(Green Liquor Dreg Sludge,簡稱GLD),並且以1:1、1:1.5及1:2三種下水污泥廢棄物與綠泥的質量混合比率進行混合造粒,並將混合造粒後所形成的混合廢棄物進行步驟S2及步驟S3。所得到的實驗結果請參閱第三至六圖,第三圖為本發明之混合廢棄物共處理方法所產生的H2瞬間濃度圖,第四圖為本發明之混合廢棄物共處理方法所產生的CO瞬間濃度圖,第五圖為本發明之混合廢棄物共處理方法所產生的CH4瞬間濃度圖,第六圖為本發明之混合廢棄物共處理方法所產生的CO2瞬間濃度圖。從第三至六圖所顯示的實驗結果發現,濃度最高點皆出現在0.75至1.25分鐘之間,超過95%以上的氣體產物均在5分鐘內產生,因此之後實驗以採集前5分鐘氣體產物進行分析比較,並且將所述可燃性氣體的累積產出質量及產率結果整理於下列表一之中,以及將所述可燃性氣體的提昇倍率結果整理於下列表二之中。 The solid waste in this embodiment is selected from Sewage Sludge (SW), and the solid carbon dioxide source is Green Liquor Dreg Sludge (GLD), and is 1:1, 1:1.5 and 1:2 The mixing ratio of the three kinds of sewage sludge waste to the green mud is mixed and granulated, and the mixed waste formed by the mixed granulation is subjected to steps S2 and S3. For the experimental results obtained, please refer to the third to sixth figures. The third figure is the H 2 instantaneous concentration diagram generated by the mixed waste co-processing method of the present invention, and the fourth figure is the mixed waste co-processing method of the present invention. The CO instantaneous concentration map, the fifth graph is the instantaneous concentration diagram of CH 4 produced by the mixed waste co-processing method of the present invention, and the sixth graph is the instantaneous concentration of CO 2 generated by the mixed waste co-processing method of the present invention. From the experimental results shown in the third to sixth graphs, it was found that the highest concentration point appeared between 0.75 and 1.25 minutes, and more than 95% of the gas products were produced within 5 minutes, so the experiment was followed by the gas product 5 minutes before the collection. Analytical comparison is performed, and the cumulative output quality and yield results of the combustible gas are summarized in Table 1 below, and the results of the boosting magnification of the combustible gas are summarized in Table 2 below.

a.氣體產率=(氣體質量/全部樣品質量)×100% a. Gas yield = (gas quality / total sample quality) × 100%

b.氣體提昇倍率=混合廢棄物的氣體產量/純下水污泥廢棄物的氣體產量 b. Gas lift rate = gas production of mixed waste / gas production of pure sewage sludge waste

請參閱第三圖,為本發明之混合廢棄物共處理方法所產生的H2瞬間濃度圖,其中◆代表純下水污泥廢棄物,▲代表下水污泥廢棄物 與綠泥的質量混合比率為1:1的混合廢棄物,■代表下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物,●代表下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物。從第三圖可知,純下水污泥廢棄物的氫氣最高產出時間為0.75分鐘,而三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的氫氣最高產出時間為1.25分鐘。由此可知,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的氫氣最高產出時間比純下水污泥廢棄物的氫氣最高產出時間要稍為晚一點。很明顯地,綠泥會對於下水污泥廢棄物的氫氣最高產出時間略有影響。除此之外,從第三圖還可暸解,純下水污泥廢棄物的氫氣最高瞬間濃度為155,392百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的氫氣最高瞬間濃度為372,194百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的氫氣最高瞬間濃度為300,931百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的氫氣最高瞬間濃度為309,338百萬分濃度(ppmv)。換句話說,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的氫氣最高瞬間濃度皆大於純下水污泥廢棄物的氫氣最高瞬間濃度。其中又以下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的氫氣最高瞬間濃度為最高,而下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物以及下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的氫氣最高瞬間濃度的差距並不大。 Please refer to the third figure, which is the instantaneous concentration diagram of H 2 produced by the mixed waste co-processing method of the present invention, wherein ◆ represents pure sewage sludge waste, and ▲ represents the mass mixing ratio of sewage sludge waste to green mud. 1:1 mixed waste, ■ represents the mixed mixture of the sewage sludge waste and the green mud in a mass ratio of 1:1.5, ● represents the mass mixing ratio of the sewage sludge waste and the green mud is 1:2. Mix waste. As can be seen from the third figure, the maximum hydrogen production time of the pure sewage sludge waste is 0.75 minutes, and the maximum hydrogen production time of the mixed waste of the sewage sludge waste mixed with the green mud of three different mass mixing ratios is 1.25 minutes. It can be seen that the maximum hydrogen production time of the mixed wastes of the mixed sewage sludge and the green mud of the three different mass mixing ratios is slightly later than the maximum hydrogen production time of the pure sewage sludge waste. Obviously, the green mud will have a slight impact on the maximum hydrogen production time of the sewage sludge waste. In addition, as can be seen from the third figure, the highest instantaneous concentration of hydrogen in pure sewage sludge waste is 155,392 parts per million (ppmv), and the mass mixing ratio of sewage sludge to green mud is 1:1. The highest instantaneous concentration of hydrogen in the mixed waste is 372,194 parts per million (ppmv), and the mass of the mixed waste of the sewage sludge and the green mud is 1:1.5. The highest instantaneous concentration of hydrogen is 300,931 parts per minute. (ppmv), the maximum instantaneous concentration of hydrogen in the mixed waste of the sewage sludge waste and the green mud of 1:2 is 309,338 parts per million (ppmv). In other words, the highest instantaneous concentration of hydrogen in the mixed waste of the mixed sludge and the green mud of the three different mass mixing ratios is greater than the highest instantaneous concentration of the pure sewage sludge. Among them, the highest instantaneous concentration of hydrogen in the mixed waste of the following water sludge waste and green mud is 1:1, and the mixing ratio of the sewage sludge waste to the green mud is 1:1.5. The difference between the highest instantaneous concentration of hydrogen in the mixed waste with a mass ratio of waste and sewage sludge waste to green mud is 1:2.

以氫氣累積產出質量來看,如表一所示,純下水污泥廢棄物的氫氣累積產出質量為147mg,下水污泥廢棄物與綠泥的質量混合比率為 1:1的混合廢棄物的氫氣累積產出質量為2,116mg,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的氫氣累積產出質量為1,306mg,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的氫氣累積產出質量為1,933mg。換句話說,如表二所示,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的氫氣累積產出質量為純下水污泥廢棄物的氫氣累積產出質量的14.39倍,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的氫氣累積產出質量為純下水污泥廢棄物的氫氣累積產出質量的8.88倍,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的氫氣累積產出質量為純下水污泥廢棄物的氫氣累積產出質量的13.15倍。由上可知,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的氫氣累積產出質量皆大於純下水污泥廢棄物的氫氣累積產出質量。 In terms of the cumulative output quality of hydrogen, as shown in Table 1, the cumulative production quality of pure sewage sludge waste is 147 mg, and the mass mixing ratio of sewage sludge to green mud is The cumulative mass of hydrogen produced by the 1:1 mixed waste is 2,116 mg, and the cumulative mass of hydrogen produced by the mixed waste of the sewage sludge and the green mud is 1:1.5, and the cumulative output of hydrogen is 1,306 mg. The cumulative mass of hydrogen produced by the mixed waste with a mass ratio of waste to green mud of 1:2 is 1,933 mg. In other words, as shown in Table 2, the mass cumulative output of the mixed waste of the sewage sludge waste and the green mud is 1:1, and the cumulative output quality of the hydrogen is the cumulative output quality of the pure sewage sludge waste. 14.39 times, the mass cumulative output of the mixed waste of the sewage sludge waste and the green mud of 1:1.5 is 8.88 times of the cumulative output quality of the pure sewage sludge waste, and the sewage sludge is discarded. The cumulative mass of hydrogen produced by the mixed waste with a mass ratio of 1 to 2 is 13.15 times that of the cumulative output of hydrogen of pure sewage sludge. It can be seen from the above that the cumulative production quality of the mixed waste of the mixed sewage sludge and the green mud of the three different mass mixing ratios is greater than the cumulative output quality of the pure sewage sludge waste.

其中本實施例中的綠泥(含碳酸鈣的固態二氧化碳來源)在熱氣化裂解處理的過程中會釋放出氣態二氧化碳,用以取代先前技術中的從外部通入反應槽的二氧化碳。請參閱第四圖,為本發明之混合廢棄物共處理方法所產生的CO瞬間濃度圖,其中◆代表純下水污泥廢棄物,▲代表下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物,■代表下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物,●代表下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物。從第四圖可知,純下水污泥廢棄物的一氧化碳最高瞬間濃度為82,886百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的一氧化碳最高瞬間濃度為100,799百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳最高瞬間濃度為81,913百萬分濃度(ppmv),下水污 泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的一氧化碳最高瞬間濃度為273,197百萬分濃度(ppmv)。換句話說,下水污泥廢棄物與綠泥的質量混合比率為1:1以及1:2的混合廢棄物的一氧化碳最高瞬間濃度皆大於純下水污泥廢棄物的一氧化碳最高瞬間濃度,但是下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳最高瞬間濃度略小於純下水污泥廢棄物的一氧化碳最高瞬間濃度。 The green mud (a source of solid carbon dioxide containing calcium carbonate) in the present embodiment releases gaseous carbon dioxide during the thermal gasification cracking treatment to replace the carbon dioxide from the outside into the reaction tank in the prior art. Please refer to the fourth figure, which is the instantaneous concentration diagram of CO generated by the mixed waste co-processing method of the present invention, wherein ◆ represents pure sewage sludge waste, and ▲ represents the mass mixing ratio of sewage sludge waste to green mud is 1 :1 mixed waste, ■ represents a mixed waste ratio of sewage sludge waste and green mud of 1:1.5, ● represents a mixing ratio of sewage sludge waste and green mud mass ratio of 1:2 Waste. As can be seen from the fourth figure, the highest instantaneous concentration of carbon monoxide in pure sewage sludge waste is 82,886 parts per million (ppmv), and the mixture of sewage sludge and green mud has a mass ratio of 1:1. The instantaneous concentration is 100,799 parts per million (ppmv), and the mixture of sewage sludge and green mud has a mass ratio of 1:1.5. The highest instantaneous concentration of carbon monoxide is 81,913 parts per million (ppmv). The highest instantaneous concentration of carbon monoxide in the mixed waste of 1:2 for the mass ratio of mud waste to green mud is 273,197 parts per million (ppmv). In other words, the maximum instantaneous concentration of carbon monoxide in the mixture of sewage sludge and green mud is 1:1 and 1:2, and the maximum instantaneous concentration of carbon monoxide is higher than the highest instantaneous concentration of carbon monoxide in pure sewage sludge, but sewage The highest instantaneous concentration of carbon monoxide in the mixed waste with a mass ratio of mud waste to green mud of 1:1.5 is slightly lower than the highest instantaneous concentration of carbon monoxide in pure sewage sludge waste.

以一氧化碳累積產出質量來看,如表一所示,純下水污泥廢棄物的一氧化碳累積產出質量為1,333mg,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的一氧化碳累積產出質量為5,915mg,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳累積產出質量為7,570mg,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的一氧化碳累積產出質量為26,589mg。換句話說,如表二所示,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的一氧化碳累積產出質量為純下水污泥廢棄物的一氧化碳累積產出質量的4.44倍,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳累積產出質量為純下水污泥廢棄物的一氧化碳累積產出質量的5.68倍,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的一氧化碳累積產出質量為純下水污泥廢棄物的一氧化碳累積產出質量的19.95倍。由上可知,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的一氧化碳累積產出質量皆大於純下水污泥廢棄物的一氧化碳累積產出質量。 In terms of the cumulative output quality of carbon monoxide, as shown in Table 1, the cumulative output of carbon monoxide in pure sewage sludge waste is 1,333 mg, and the mixing ratio of sewage sludge to green mud is 1:1. The cumulative output of carbon monoxide is 5,915 mg, and the mass of carbon monoxide accumulated by the mixed waste of sewage sludge and green mud is 1:1.5. The cumulative output of carbon monoxide is 7,570 mg, and the sewage sludge and green mud The cumulative output of carbon monoxide in the mixed waste with a mass mixing ratio of 1:2 is 26,589 mg. In other words, as shown in Table 2, the carbon monoxide cumulative output quality of the mixed waste of the sewage sludge waste and the green mud is 1:1, and the quality of the carbon monoxide cumulative output of the pure sewage sludge waste is 4.44 times, the mass ratio of carbon monoxide accumulated in the mixed waste of sewage sludge and green mud is 1:5.6, which is 5.68 times of the cumulative output quality of carbon monoxide in pure sewage sludge waste, and the sewage sludge is discarded. The carbon monoxide cumulative output quality of the mixed waste with a mass ratio of 1:2 to the green mud is 19.95 times that of the cumulative output of carbon monoxide of the pure sewage sludge waste. It can be seen from the above that the carbon monoxide cumulative output quality of the mixed wastes of the sewage sludge waste mixed with the green mud of the three different mass mixing ratios is greater than the cumulative carbon monoxide output quality of the pure sewage sludge waste.

值得一提的是,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳最高瞬間濃度略小於純下水污泥廢棄物的一 氧化碳最高瞬間濃度,推測原因可能是延遲反應因素造成。但是在一氧化碳累積產出質量方面,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的一氧化碳累積產出質量比純下水污泥廢棄物的一氧化碳累積產出質量高出5.68倍,推測其主要原因在於,綠泥在熱氣化裂解處理的過程中具有持續性地釋放出氣態二氧化碳參與反應的特性。 It is worth mentioning that the highest instantaneous concentration of carbon monoxide in the mixed waste of sewage sludge and green mud is 1:1.5, which is slightly less than that of pure sewage sludge. The highest instantaneous concentration of carbon oxides may be caused by delayed reaction factors. However, in terms of the cumulative output quality of carbon monoxide, the mass of carbon monoxide accumulated in the mixed waste of sewage sludge and green mud is 1:1.5, and the cumulative output quality of carbon monoxide is higher than that of pure sewage sludge. 5.68 times, it is presumed that the main reason is that the green mud has the characteristic of continuously releasing gaseous carbon dioxide to participate in the reaction during the thermal gasification cracking treatment.

至於下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的一氧化碳濃度突然暴增的原因,推測可能是綠泥釋放出的氣態二氧化碳的量遠大於下水污泥廢棄物本身裂解所需要的氣體量,但又因為停留時間較長,可以有效地受電漿打擊而裂解形成氧原子及一氧化碳。除大量增加一氧化碳外,亦可增加環境中的氧原子的濃度,因為氧原子可作為含氧載體,故可進一步連鎖增進下水污泥廢棄物的熱氣化裂解反應。最後因下水污泥廢棄物本身已經反應完全,因此可能最終形成熔融固體物,而反應達到完全這點則可由第五圖佐證。 As for the sudden increase in the concentration of carbon monoxide in the mixed waste of the sewage sludge and the green mud of 1:2, it is speculated that the amount of gaseous carbon dioxide released by the green mud is much larger than that of the sewage sludge itself. The amount of gas required for cracking, but because of the long residence time, can be effectively cracked by plasma to form oxygen atoms and carbon monoxide. In addition to a large increase in carbon monoxide, it can also increase the concentration of oxygen atoms in the environment. Because oxygen atoms can be used as oxygen-containing carriers, the thermal gasification cracking reaction of the sewage sludge waste can be further enhanced. Finally, since the sewage sludge waste itself has been completely reacted, it is possible to finally form molten solids, and the reaction is fully achieved, as evidenced by the fifth figure.

請參閱第五圖,為本發明之混合廢棄物共處理方法所產生的CH4瞬間濃度圖,其中◆代表純下水污泥廢棄物,▲代表下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物,■代表下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物,●代表下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物。從第五圖可知,純下水污泥廢棄物的甲烷最高瞬間濃度為16,130百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的甲烷最高瞬間濃度為5,531百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的甲烷最高瞬間濃度為38,461百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量 混合比率為1:2的混合廢棄物的甲烷最高瞬間濃度為22,080百萬分濃度(ppmv)。換句話說,下水污泥廢棄物與綠泥的質量混合比率為1:1.5及1:2的混合廢棄物甲烷最高瞬間濃度大於純下水污泥廢棄物的甲烷最高瞬間濃度。其中又以下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的甲烷最高瞬間濃度為最高。值得一提的是,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的甲烷最高瞬間濃度小於純下水污泥廢棄物的甲烷最高瞬間濃度。 Please refer to the fifth figure, which is a transient concentration diagram of CH 4 produced by the mixed waste co-processing method of the present invention, wherein ◆ represents pure sewage sludge waste, and ▲ represents the mass mixing ratio of sewage sludge waste to green mud. 1:1 mixed waste, ■ represents the mixed mixture of the sewage sludge waste and the green mud in a mass ratio of 1:1.5, ● represents the mass mixing ratio of the sewage sludge waste and the green mud is 1:2. Mix waste. As can be seen from the fifth figure, the highest instantaneous concentration of methane in pure sewage sludge waste is 16,130 parts per million (ppmv), and the mixed mass of sewage sludge and green mud is 1:1. The instantaneous concentration is 5,531 parts per million (ppmv). The mass of the mixed waste of the sewage sludge and the green mud is 1:1.5. The maximum instantaneous concentration of methane is 38,461 parts per million (ppmv). The maximum instantaneous concentration of methane in the mixed waste with a mass ratio of waste to green mud of 1:2 is 22,080 parts per million (ppmv). In other words, the mass mixture ratio of the sewage sludge waste to the green mud is 1:1.5 and 1:2, and the maximum instantaneous concentration of methane is higher than the highest instantaneous concentration of methane in the pure sewage sludge. Among them, the highest instantaneous concentration of methane in the mixed waste with a mass mixing ratio of the following water sludge waste and green mud is 1:1.5. It is worth mentioning that the maximum instantaneous concentration of methane in the mixed waste of the sewage sludge waste and the green mud is 1:1, which is lower than the highest instantaneous concentration of methane in the pure sewage sludge waste.

以甲烷累積產出質量來看,如表一所示,純下水污泥廢棄物的甲烷累積產出質量為132mg,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的甲烷累積產出質量為202mg,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的甲烷累積產出質量為890mg,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的甲烷累積產出質量為856mg。換句話說,如表二所示,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的甲烷累積產出質量為純下水污泥廢棄物的甲烷累積產出質量的1.53倍,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的甲烷累積產出質量為純下水污泥廢棄物的甲烷累積產出質量的6.74倍,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的甲烷累積產出質量為純下水污泥廢棄物的甲烷累積產出質量的6.48倍。由上可知,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的甲烷累積產出質量皆大於純下水污泥廢棄物的甲烷累積產出質量。 In terms of the cumulative output quality of methane, as shown in Table 1, the cumulative mass of methane produced by pure sewage sludge waste is 132 mg, and the mixed ratio of sewage sludge waste to green mud is 1:1. The cumulative output quality of methane is 202mg, and the mass of methane accumulated by the mixed waste of sewage sludge and green mud is 1: 890. The cumulative mass of methane is 890mg. The mixing ratio of sewage sludge to green mud The methane cumulative output mass of the 1:2 mixed waste is 856 mg. In other words, as shown in Table 2, the methane cumulative output quality of the mixed waste of the sewage sludge waste and the green mud is 1:1, which is the cumulative output quality of the pure sewage sludge waste. 1.53 times, the mass of the methane accumulated output of the mixed waste of the sewage sludge and the green mud is 1:6.7, which is 6.74 times of the cumulative output quality of the pure sewage sludge waste, and the sewage sludge is discarded. The methane cumulative output quality of the mixed waste with a mass ratio of 1:2 to the green mud is 6.48 times that of the purely produced sludge waste. It can be seen from the above that the methane cumulative output quality of the mixed wastes of the sewage sludge waste mixed with the green mud of the three different mass mixing ratios is greater than the methane cumulative output quality of the pure sewage sludge waste.

請參閱第六圖,為本發明之混合廢棄物共處理方法所產生的CO2瞬間濃度圖,其中◆代表純下水污泥廢棄物,▲代表下水污泥廢棄物 與綠泥的質量混合比率為1:1的混合廢棄物,■代表下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物,●代表下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物。從第六圖可知,純下水污泥廢棄物的二氧化碳最高瞬間濃度為10,826百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的二氧化碳最高瞬間濃度為13,233百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的二氧化碳最高瞬間濃度為22,630百萬分濃度(ppmv),下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的二氧化碳最高瞬間濃度為45,933百萬分濃度(ppmv)。換句話說,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的二氧化碳最高瞬間濃度皆大於純下水污泥廢棄物的二氧化碳最高瞬間濃度。 Please refer to the sixth figure for the instantaneous concentration of CO 2 produced by the mixed waste co-processing method of the present invention, wherein ◆ represents pure sewage sludge waste, and ▲ represents the mass mixing ratio of sewage sludge waste to green mud. 1:1 mixed waste, ■ represents the mixed mixture of the sewage sludge waste and the green mud in a mass ratio of 1:1.5, ● represents the mass mixing ratio of the sewage sludge waste and the green mud is 1:2. Mix waste. As can be seen from the sixth figure, the highest instantaneous concentration of carbon dioxide in pure sewage sludge waste is 10,826 parts per million (ppmv), and the mixed ratio of sewage sludge to green mud is 1:1. The instantaneous concentration is 13,233 parts per million (ppmv), and the mixing ratio of the sewage sludge to the green mud is 1:1.5. The maximum instantaneous concentration of carbon dioxide in the mixed waste is 22,630 parts per million (ppmv). The maximum instantaneous concentration of carbon dioxide in the mixed waste with a mass ratio of waste to green mud of 1:2 is 45,933 ppm (ppmv). In other words, the highest instantaneous concentration of carbon dioxide in the mixed waste of the mixed sludge and the green mud of the three different mass mixing ratios is greater than the highest instantaneous concentration of the carbon dioxide of the pure sewage sludge.

以二氧化碳累積產出質量來看,如表一所示,純下水污泥廢棄物的二氧化碳累積產出質量為265mg,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的二氧化碳累積產出質量為1,890mg,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的二氧化碳累積產出質量為3,281mg,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的二氧化碳累積產出質量為10,876mg。換句話說,如表二所示,下水污泥廢棄物與綠泥的質量混合比率為1:1的混合廢棄物的二氧化碳累積產出質量為純下水污泥廢棄物的二氧化碳累積產出質量的7.13倍,下水污泥廢棄物與綠泥的質量混合比率為1:1.5的混合廢棄物的二氧化碳累積產出質量為純下水污泥廢棄物的二氧化碳累積產出質量的12.38倍,下水污泥廢棄物與綠泥的質量混合比率為1:2的混合廢棄物的二氧化碳累積產出質量為純下水污泥廢棄 物的二氧化碳累積產出質量的41.04倍。由上可知,三種不同質量混合比率的下水污泥廢棄物與綠泥混合成的混合廢棄物的二氧化碳累積產出質量皆大於純下水污泥廢棄物的二氧化碳產出質量。 In terms of the cumulative output quality of carbon dioxide, as shown in Table 1, the cumulative output of carbon dioxide in pure sewage sludge waste is 265 mg, and the mixing ratio of sewage sludge to green mud is 1:1. The cumulative output of carbon dioxide is 1,890mg, and the combined mass of carbon dioxide produced by the mixed waste of sewage sludge and green mud is 1:1, and the mass of carbon dioxide is 3,281mg. The quality of sewage sludge and green mud. The cumulative output of carbon dioxide in mixed waste with a mixing ratio of 1:2 is 10,876 mg. In other words, as shown in Table 2, the combined mass of carbon dioxide produced by the mixing ratio of the sewage sludge waste to the green mud is 1:1, and the mass of the carbon dioxide cumulative output of the pure sewage sludge waste is 7.13 times, the combined mass of carbon dioxide produced by the mixing ratio of the sewage sludge waste and the green mud is 1:1.5, which is 12.38 times of the cumulative output quality of the pure sewage sludge waste, and the sewage sludge is discarded. The mass-mixed mass of the mixed waste of the material and the green mud is 1:2, and the cumulative output of carbon dioxide is pure sewage sludge. The cumulative carbon dioxide production yield is 41.04 times. It can be seen from the above that the combined output quality of the mixed wastes of the sewage sludge waste mixed with the green mud of the three different mass mixing ratios is greater than the carbon dioxide output quality of the pure sewage sludge waste.

此外,如表一所示,一氧化碳和二氧化碳的產率隨著樣品投入量升高而升高,氫氣的產率最高點是發生在下水污泥廢棄物與綠泥質量混合比率為1:1的混合廢棄物,甲烷的產率最高點是發生在下水污泥廢棄物與綠泥質量混合比率為1:1.5的混合廢棄物。 In addition, as shown in Table 1, the yields of carbon monoxide and carbon dioxide increase with the increase of the input amount of the sample, and the highest yield of hydrogen occurs when the mixing ratio of the sewage sludge to the green mud mass is 1:1. For mixed waste, the highest yield of methane is mixed waste that occurs in a 1:1.5 mixing ratio of sewage sludge to chlorite.

總結上述,本發明因為在進行熱氣化裂解處理前,已經先將固態廢棄物和固態二氧化碳來源混合形成混合廢棄物,故混合廢棄物與水蒸氣添加入電漿熱處理設備後,混合廢棄物之中的固態二氧化碳來源會釋放出氣態二氧化碳,以取代先前技術從外部通入氣態二氧化碳,然後該混合廢棄物之中的固態二氧化碳來源所釋放的氣態二氧化碳進一步與水蒸氣一同提高混合廢棄物之中的固態廢棄物在電漿環境下的裂解效果,使最終產生的氫氣、一氧化碳、甲烷及二氧化碳等低碳數的可燃性氣體的累積產出質量明顯大於純固態廢棄物經過熱氣化裂解處理後所產出的上述各種可燃性氣體的累積產出質量。該等可燃性氣體可作為燃料外,亦可作為石化業的原料。此外,本發明亦可藉此大幅減少焚化所產生的底渣及廢氣中之溫室氣體(亦即,二氧化碳)的排放,除可降低固態廢棄物及溫室氣體對於環境的影響外,還可以進行能源回收,並可提供額外產出的能源來源,補充未來石化燃料用罄後之能源需求,對於未來能源的使用安全性相當有幫助。 Summarizing the above, the present invention has already mixed the solid waste and the solid carbon dioxide source to form a mixed waste before the hot gasification cracking treatment, so that the mixed waste and the steam are added to the plasma heat treatment equipment, and the mixed waste is The solid carbon dioxide source releases gaseous carbon dioxide to replace the previous technology to introduce gaseous carbon dioxide from the outside, and then the gaseous carbon dioxide released by the solid carbon dioxide source in the mixed waste further enhances the solid waste in the mixed waste together with the water vapor. The cracking effect of the material in the plasma environment makes the cumulative output quality of the low-carbon flammable gas such as hydrogen, carbon monoxide, methane and carbon dioxide produced by the final generation significantly higher than that produced by the pure solid waste after the thermal gasification cracking treatment. The cumulative output quality of the various flammable gases described above. These flammable gases can be used as fuels or as raw materials for the petrochemical industry. In addition, the present invention can also greatly reduce the emission of greenhouse gases (ie, carbon dioxide) in the bottom slag and waste gas generated by incineration, in addition to reducing the environmental impact of solid waste and greenhouse gases, and also enabling energy. Recycling, and providing additional sources of energy to supplement the future energy needs of fossil fuels, is quite helpful for future energy use safety.

尤其是,當本發明所提供的固態廢棄物與固態二氧化碳來 源的質量混合比率為1:1、1:1.5及1:2的混合廢棄物時,氫氣累積產出質量分別比純固態廢棄物的氫氣累積產出質量高出14.39倍、8.88倍及13.15倍,一氧化碳累積產出質量分別比純固態廢棄物的一氧化碳累積產出質量高出4.44倍、5.68倍及19.95倍,甲烷累積產出質量分別比純固態廢棄物的甲烷累積產出質量高出1.53倍、6.74倍及6.48倍,二氧化碳累積產出質量分別比純固態廢棄物的二氧化碳累積產出質量高出7.13倍、12.38倍及41.04倍。 In particular, when the solid waste provided by the present invention is combined with solid carbon dioxide When the mass mixing ratio of the source is 1:1, 1:1.5 and 1:2, the cumulative output of hydrogen is 14.39 times, 8.88 times and 13.15 times higher than that of pure solid waste. The cumulative output quality of carbon monoxide is 4.44 times, 5.68 times and 19.95 times higher than the cumulative output quality of pure solid waste, respectively. The cumulative output quality of methane is 1.53 times higher than that of pure solid waste. 6.74 times and 6.48 times, the cumulative output quality of carbon dioxide is 7.13 times, 12.38 times and 41.04 times higher than the cumulative output quality of pure solid waste.

再者,一氧化碳以及二氧化碳的產率隨著混合廢棄物中的固態廢棄物和固態二氧化碳來源的質量混合比率上升而顯著增加。 Furthermore, the yields of carbon monoxide and carbon dioxide increase significantly as the mass mixing ratio of solid waste and solid carbon dioxide sources in the mixed waste increases.

此外,氫氣的產率並非隨著混合廢棄物中的固態廢棄物和固態二氧化碳來源的質量混合比率上升而增加,藉此,該混合廢棄物中的固態二氧化碳來源對提升氫氣的產量有一最適化比例,該最適化比例為固態廢棄物和固態二氧化碳來源的質量混合比率為1:1。 In addition, the yield of hydrogen does not increase as the mass mixing ratio of the solid waste and the solid carbon dioxide source in the mixed waste increases, whereby the solid carbon dioxide source in the mixed waste has an optimum ratio for increasing the hydrogen production. The optimum ratio of the solid waste to the solid carbon dioxide source is 1:1.

又,甲烷的產率同樣也是並非隨著混合廢棄物中的固態廢棄物和固態二氧化碳來源的質量混合比率上升而增加,藉此,該混合廢棄物中的固態二氧化碳來源對提升甲烷的產量有一最適化比例,該最適化比例為固態廢棄物和固態二氧化碳來源的質量混合比率為1:1.5。 Moreover, the yield of methane is also not increased as the mass mixing ratio of solid waste and solid carbon dioxide source in the mixed waste increases, whereby the solid carbon dioxide source in the mixed waste has an optimum for increasing methane production. The ratio of the optimum ratio of the solid waste to the solid carbon dioxide source is 1:1.5.

值得一提的是,請參閱下列表三、表四及表五的「殘渣特性分析」: It is worth mentioning that please refer to the “residual characteristics analysis” in Table 3, Table 4 and Table 5 below:

其中,表三為電漿熱處理前的純綠泥以及純下水污泥廢棄物的元素分析,表四為電漿熱處理後純下水污泥廢棄物未通入氣態二氧化碳以及純下水污泥廢棄物通入氣態二氧化碳的元素分析,表五為純下水污泥廢棄物、純綠泥及混合廢棄物的電漿熱處理前的生原料及電漿熱處理後的殘渣在不同的氣化媒介及873K的條件下的近似分析及熱值。從表三至表五的「殘渣特性 分析」發現,與純下水污泥廢棄物在外部通入的氣態二氧化碳環境下的裂解反應相比,混合廢棄物中的固態二氧化碳來源能使混合廢棄物中的固態廢棄物的裂解反應更為完全,灰分達100%全為無機熔岩成分。須說明的是,表三及表四並未顯示混合廢棄物的元素分析的原因在於:該混合廢棄物幾乎不含有任何的可燃份。 Among them, Table 3 is the elemental analysis of pure green mud and pure sewage sludge waste before plasma heat treatment. Table 4 shows that pure sewage sludge waste does not pass into gaseous carbon dioxide and pure sewage sludge waste after plasma heat treatment. Elemental analysis of gaseous carbon dioxide, Table 5 is pure raw sewage sludge, pure green mud and mixed waste. The raw materials before heat treatment and the residue after heat treatment of plasma are in different gasification media and 873K conditions. Approximate analysis and calorific value. From the "residual characteristics analysis" in Tables 3 to 5, it is found that the solid carbon dioxide source in the mixed waste can be mixed waste in comparison with the cracking reaction in the gaseous carbon dioxide environment in which the pure sewage sludge waste is externally introduced. The solid waste has a more complete cracking reaction, and the ash content is 100% all inorganic lava. It should be noted that Tables 3 and 4 do not show the elemental analysis of mixed waste because the mixed waste contains almost no flammable fraction.

請參閱第七至十三圖,第七圖是尚未處理的純下水污泥廢棄物之一千倍放大之SEM圖像,第八圖是尚未處理的綠泥之一千倍放大之SEM圖像,第九圖是純下水污泥廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像,第十圖是純下水污泥廢棄物在電漿熱處理中以每分鐘三公升的流速通入氣態CO2處理之後的殘渣之一千倍放大之SEM圖像,第十一圖是下水污泥廢棄物和綠泥的質量混合比率為1:1的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像,第十二圖是下水污泥廢棄物和綠泥的質量混合比率為1:1.5的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像,第十三圖是下水污泥廢棄物和綠泥的質量混合比率為1:2的混合廢棄物經過電漿熱處理後的殘渣之一千倍放大之SEM圖像。從SEM(Structural Equation Models,中文稱為結構方程模式)圖像可知,下水污泥廢棄物與綠泥混合形成的混合廢棄物的殘渣形成團狀奈米顆粒群聚結構。藉此,將下水污泥廢棄物與綠泥來源混合形成混合廢棄物有助於混合廢棄物中的下水污泥廢棄物反應更完全且更全面,是一個電漿氣化熔融技術(Plasma Gasification Melting,簡稱PGM)技術發展潛力方向。 Please refer to the seventh to thirteenth, the seventh picture is the SEM image of one thousand times of the pure sewage sludge waste that has not been treated, and the eighth picture is the SEM image of one thousand times magnification of the untreated green mud. The ninth figure is an SEM image of one thousand times magnification of the residue of pure sewage sludge after heat treatment by plasma. The tenth figure shows the flow rate of pure sewage sludge waste in plasma heat treatment at three liters per minute. An SEM image of one thousand times magnification of the residue after the treatment with gaseous CO 2 , and the eleventh figure is a mixture of sewage sludge and green mud with a mass mixing ratio of 1:1. One thousand times magnification of the SEM image of the residue, the twelfth figure is a SEM of a thousand times magnification of the residue of the mixed waste of the sewage sludge and the green mud after the mass mixing ratio of 1:1.5 The image, the thirteenth image, is an SEM image of a thousand-fold magnification of the residue of the mixed waste of the sewage sludge and the green mud of 1:2 after the plasma heat treatment. It can be seen from the SEM (Structural Equation Models) image that the residue of the mixed waste formed by the mixing of the sewage sludge and the green mud forms a cluster structure of the clustered nano particles. In this way, mixing the sewage sludge waste with the green mud source to form a mixed waste helps the sewage sludge waste in the mixed waste to react more completely and comprehensively. It is a plasma gasification melting technology (Plasma Gasification Melting) , referred to as PGM) technology development potential direction.

以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據以對本發明做任何形式上之限制,是以,凡有在相同之創作精神下所作 有關本發明之任何修飾或變更,皆仍應包括在本發明意圖保護之範疇。 The above is only a preferred embodiment for explaining the present invention, and is not intended to impose any form limitation on the present invention, so that it is made under the same creative spirit. Any modifications or variations of the invention are intended to be included within the scope of the invention.

S1~S3‧‧‧步驟 S1~S3‧‧‧ steps

Claims (10)

一種混合廢棄物共處理方法,包括下列步驟:(A)將一固態廢棄物和一固態二氧化碳來源混合形成一混合廢棄物,其中該固態廢棄物與該固態二氧化碳來源的質量混合比率為1:1、1:1.5或1:2;(B)啟動一電漿熱處理設備,當該電漿熱處理設備的溫度條件在500至800℃之間時,將該混合廢棄物添加入該電漿熱處理設備中;以及(C)添加至少一種含氧載體進入該電漿熱處理設備,使該混合廢棄物之中的固態廢棄物在電漿環境下,與該含氧載體及該混合廢棄物之中的固態二氧化碳來源所釋放出的氣態二氧化碳進行熱氣化裂解反應,以產生一預定量之可燃性氣體。 A mixed waste co-processing method comprising the steps of: (A) mixing a solid waste and a solid carbon dioxide source to form a mixed waste, wherein the solid waste has a mass mixing ratio of 1:1 to the solid carbon dioxide source; , 1:1.5 or 1:2; (B) starting a plasma heat treatment device, when the temperature condition of the plasma heat treatment device is between 500 and 800 ° C, the mixed waste is added to the plasma heat treatment device And (C) adding at least one oxygen-containing carrier to the plasma heat treatment device to cause solid waste in the mixed waste to be in a plasma environment, and the oxygen-containing carrier and solid carbon dioxide in the mixed waste The gaseous carbon dioxide released from the source undergoes a thermal gasification cracking reaction to produce a predetermined amount of flammable gas. 如申請專利範圍第1項所述之混合廢棄物共處理方法,其中該含氧載體為水蒸氣,該水蒸氣與該混合廢棄物分開或同時加入該電漿熱處理設備。 The mixed waste co-processing method according to claim 1, wherein the oxygen-containing carrier is water vapor, and the water vapor is added to the plasma heat treatment device separately or simultaneously with the mixed waste. 如申請專利範圍第2項所述之混合廢棄物共處理方法,其中該水蒸氣之添加量介於1~100%相對濕度,該混合廢棄物之中的固態二氧化碳來源所釋放出的二氧化碳的體積濃度介於1~80%。 The mixed waste co-processing method according to claim 2, wherein the water vapor is added in an amount of 1 to 100% relative humidity, and the volume of carbon dioxide released by the solid carbon dioxide source in the mixed waste is The concentration is between 1% and 80%. 如申請專利範圍第1項所述之混合廢棄物共處理方法,其中該固態廢棄物與該固態二氧化碳來源經由一混合造粒步驟形成為顆粒狀的混合廢棄物。 The mixed waste co-processing method according to claim 1, wherein the solid waste and the solid carbon dioxide source are formed into a granular mixed waste through a mixed granulation step. 如申請專利範圍第1項所述之混合廢棄物共處理方法,其中該固態二氧化碳來源為含碳酸鹽類的物質。 The mixed waste co-processing method according to claim 1, wherein the solid carbon dioxide source is a carbonate-containing substance. 如申請專利範圍第5項所述之混合廢棄物共處理方法,其中該碳酸鹽類為碳酸鈣。 The mixed waste co-processing method according to claim 5, wherein the carbonate is calcium carbonate. 如申請專利範圍第6項所述之混合廢棄物共處理方法,其中該含碳酸鈣的物質為綠泥。 The mixed waste co-processing method according to claim 6, wherein the calcium carbonate-containing material is green mud. 如申請專利範圍第1項所述之混合廢棄物共處理方法,其中該固態廢棄物為污泥廢棄物。 The mixed waste co-processing method according to claim 1, wherein the solid waste is sludge waste. 如申請專利範圍第8項所述之混合廢棄物共處理方法,其中該混合廢棄物為含有二氧化碳之污泥廢棄物、焙燒後固態二氧化碳污泥及/或前處理後固態二氧化碳污泥。 The mixed waste co-processing method according to claim 8, wherein the mixed waste is sludge waste containing carbon dioxide, solid carbon dioxide sludge after calcination, and/or solid carbon dioxide sludge after pretreatment. 一種混合廢棄物共處理方法,包括下列步驟:(A)將一固態廢棄物和一固態二氧化碳來源混合形成一混合廢棄物,其中該固態二氧化碳來源為綠泥;(B)啟動一電漿熱處理設備,當該電漿熱處理設備的溫度條件在500至800℃之間時,將該混合廢棄物添加入該電漿熱處理設備中;以及(C)添加至少一種含氧載體進入該電漿熱處理設備,使該混合廢棄物之中的固態廢棄物在電漿環境下,與該含氧載體 及該混合廢棄物之中的固態二氧化碳來源所釋放出的氣態二氧化碳進行熱氣化裂解反應,以產生一預定量之可燃性氣體。 A mixed waste co-processing method comprising the following steps: (A) mixing a solid waste and a solid carbon dioxide source to form a mixed waste, wherein the solid carbon dioxide source is green mud; (B) starting a plasma heat treatment device Adding the mixed waste to the plasma heat treatment apparatus when the temperature condition of the plasma heat treatment apparatus is between 500 and 800 ° C; and (C) adding at least one oxygen-containing carrier to the plasma heat treatment apparatus, Solid waste in the mixed waste in a plasma environment, and the oxygen carrier The gaseous carbon dioxide released from the solid carbon dioxide source in the mixed waste is subjected to a thermal gasification cracking reaction to produce a predetermined amount of combustible gas.
TW104120047A 2015-06-22 2015-06-22 A co-treatment process of sludge TWI537222B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104120047A TWI537222B (en) 2015-06-22 2015-06-22 A co-treatment process of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104120047A TWI537222B (en) 2015-06-22 2015-06-22 A co-treatment process of sludge

Publications (2)

Publication Number Publication Date
TWI537222B true TWI537222B (en) 2016-06-11
TW201700412A TW201700412A (en) 2017-01-01

Family

ID=56755848

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104120047A TWI537222B (en) 2015-06-22 2015-06-22 A co-treatment process of sludge

Country Status (1)

Country Link
TW (1) TWI537222B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765079B (en) * 2018-07-31 2022-05-21 張偉民 Method for treating crude oil tank bottom sludge

Also Published As

Publication number Publication date
TW201700412A (en) 2017-01-01

Similar Documents

Publication Publication Date Title
Seggiani et al. Effect of sewage sludge content on gas quality and solid residues produced by cogasification in an updraft gasifier
CN100381352C (en) Method and device for plasma producing hydrogen by using garbage biomass and water as raw material
CN1769397A (en) Device and method for suppressing refuse end gas injurant using pyrolysis and aerification technology
WO2015196688A1 (en) Method for oriented pyrolysis of combustible waste
CN107760338B (en) Pyrolysis treatment process for organic solid waste
CN202558748U (en) Sludge pyrolysis processing device utilizing waste plastic as supplementary energy
CN106185938B (en) A kind of system and method for Waste ammunition processing
CN103693805B (en) Device and method for recycling coal pyrolysis waste
Wilk et al. Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation
Qi et al. A new strategy for nitrogen containing compounds recovery from gaseous products during sewage sludge pyrolysis under vacuum condition
Kumar et al. Waste management by waste to energy initiatives in India
Guo et al. Efficient dewatering of waste gasification fine slag based on mechanical pressure-vacuum fields: Dewatering characteristics, energy optimization and potential environmental benefits
TWI537222B (en) A co-treatment process of sludge
CN201842746U (en) Magnetic gas pyrolysis device for organic sludge treatment
Erping et al. Research and demonstration results for a new “Double-Solution” technology for municipal solid waste treatment
CN204097297U (en) Sludge reduction processing equipment for recycling
Traven Sustainable energy generation from municipal solid waste: A brief overview of existing technologies
CN206280976U (en) The system for the treatment of house refuse and percolate
JP2010084078A (en) Solid fuel and method for producing the same
Li et al. Effects of atmosphere and blending ratios on emission characteristics of pollutants from co‐combustion of municipal solid waste and aged refuse
CN211896797U (en) Domestic waste pyrolysis carbomorphism processing system
CN202968499U (en) Special equipment for preparing fuel gas by gasifying tanning waste
Moles et al. Pilot-scale study of sorption-enhanced gasification of sewage sludge
CN110160055A (en) A kind of plasma reactor processing garbage system
CN209322811U (en) A kind of gasifying incinerator for municipal house refuse