TWI536383B - Operation method of resistive random access memory cell - Google Patents

Operation method of resistive random access memory cell Download PDF

Info

Publication number
TWI536383B
TWI536383B TW103121397A TW103121397A TWI536383B TW I536383 B TWI536383 B TW I536383B TW 103121397 A TW103121397 A TW 103121397A TW 103121397 A TW103121397 A TW 103121397A TW I536383 B TWI536383 B TW I536383B
Authority
TW
Taiwan
Prior art keywords
period
write
random access
access memory
memory cell
Prior art date
Application number
TW103121397A
Other languages
Chinese (zh)
Other versions
TW201601152A (en
Inventor
何家驊
廖紹憬
王炳琨
林孟弘
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW103121397A priority Critical patent/TWI536383B/en
Publication of TW201601152A publication Critical patent/TW201601152A/en
Application granted granted Critical
Publication of TWI536383B publication Critical patent/TWI536383B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Description

電阻式隨機存取記憶胞的運作方法 Resistive random access memory cell operation method

本發明是有關於一種運作方法,且特別是有關於一種電阻式隨機存取記憶胞的運作方法。 The present invention relates to an operational method, and more particularly to a method of operating a resistive random access memory cell.

非揮發性記憶體具有存入的資料在斷電後也不會消失之優點,因此是許多電子產品維持正常操作所必備的記憶元件。目前,電阻式隨機存取記憶體(resistive random access memory,RRAM)是業界積極發展的一種非揮發性記憶體,其具有寫入操作電壓低、寫入抹除時間短、記憶時間長、非破壞性讀取、多狀態記憶、結構簡單以及所需面積小等優點,在未來個人電腦和電子設備上極具應用潛力。 Non-volatile memory has the advantage that the stored data will not disappear after power-off, so it is a necessary memory element for many electronic products to maintain normal operation. At present, resistive random access memory (RRAM) is a kind of non-volatile memory actively developed in the industry. It has low write operation voltage, short write erase time, long memory time, and non-destructive memory. Sexual reading, multi-state memory, simple structure and small required area have great potential for application in personal computers and electronic devices in the future.

然而,電阻式隨機存取記憶體仍有許多挑戰亟待克服,例如可變阻抗元件中的絲狀導電路徑(filament path)可能受高溫的影響而窄化或消失,進而影響位元的寫入。因此,如何降低高溫對可變阻抗元件中的絲狀導電路徑的影響則是設計電阻式隨機 存取記憶體的一個重要課題。 However, there are still many challenges to be overcome in resistive random access memory. For example, a filament-like conductive path in a variable impedance element may be narrowed or disappeared due to high temperature, thereby affecting bit writing. Therefore, how to reduce the influence of high temperature on the filament-shaped conductive path in the variable impedance element is to design a resistive random An important issue in accessing memory.

本發明提供一種電阻式隨機存取記憶胞的運作方法,可使可變阻抗元件中移動的離子具有更長的移動時間,以降低移動的離子停留在主動層的比例,進而降低流失的離子因高溫活化而跳回到絲狀導電路徑的可能。藉此,可降低高溫對可變阻抗元件中的絲狀導電路徑的影響。 The invention provides a method for operating a resistive random access memory cell, which can make the ions moving in the variable impedance element have a longer moving time, so as to reduce the proportion of the moving ions staying in the active layer, thereby reducing the lost ion cause. The possibility of high temperature activation and jumping back to the filamentary conductive path. Thereby, the influence of high temperature on the filament-shaped conductive path in the variable impedance element can be reduced.

本發明的電阻式隨機存取記憶胞的運作方法,其中電阻式隨機存取記憶胞包括串接的一可變阻抗元件及一開關元件。運作方法包括下列步驟。當開關元件導通時,提供一寫入信號至可變阻抗元件以設定可變阻抗元件的阻抗值。在一第一期間,設定寫入信號為一第一寫入電壓準位以傳送一第一電能至可變阻抗元件。在一第二期間,透過寫入信號傳送一第二電能至可變阻抗元件,其中第二期間的位於第一期間之後,第一電能及第二電能大於零,且第二電能小於第一電能。 The method for operating a resistive random access memory cell of the present invention, wherein the resistive random access memory cell comprises a variable impedance component and a switching component connected in series. The method of operation includes the following steps. When the switching element is turned on, a write signal is supplied to the variable impedance element to set the impedance value of the variable impedance element. During a first period, the write signal is set to a first write voltage level to deliver a first electrical energy to the variable impedance element. During a second period, a second electrical energy is transmitted to the variable impedance element through the write signal, wherein after the first period of the second period, the first electrical energy and the second electrical energy are greater than zero, and the second electrical energy is less than the first electrical energy .

基於上述,本發明實施例的電阻式隨機存取記憶胞的運作方法,在寫入電壓的期間後,寫入信號仍傳送能量至可變阻抗元件,以維持可變阻抗元件的熱化學效應,進而延長可變阻抗元件中的氧離子的移動時間。藉此,移動的氧離子會遠離可變阻抗元件中的絲狀導電路徑,因此可降低高溫對可變阻抗元件中的絲狀導電路徑的影響。 Based on the above, in the method of operating the resistive random access memory cell of the embodiment of the present invention, after the period of writing the voltage, the write signal still transmits energy to the variable impedance element to maintain the thermochemical effect of the variable impedance element. Further, the moving time of oxygen ions in the variable impedance element is extended. Thereby, the moving oxygen ions are away from the filament-shaped conductive path in the variable impedance element, thereby reducing the influence of high temperature on the filament-shaped conductive path in the variable impedance element.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100‧‧‧電阻式隨機存取記憶胞 100‧‧‧Resistive random access memory cells

411~412、421~426‧‧‧座標點 411~412, 421~426‧‧‧ punctuation

E1‧‧‧第一電極 E1‧‧‧first electrode

E2‧‧‧第二電極 E2‧‧‧second electrode

FP1‧‧‧絲狀導電路徑 FP1‧‧‧filament conductive path

GND‧‧‧接地電壓 GND‧‧‧ Grounding voltage

Id‧‧‧汲極電流 Id‧‧‧汲polar current

INO‧‧‧氧離子 INO‧‧‧Oxygen ion

LM1~LM3、LM51~LM54‧‧‧維持電壓準位 LM1~LM3, LM51~LM54‧‧‧ Maintain voltage level

LW1~LW4、LW51~LW54‧‧‧寫入電壓準位 LW1~LW4, LW51~LW54‧‧‧ write voltage level

M1‧‧‧電晶體 M1‧‧‧O crystal

P21~P22、P31~P32、P51~P58、P61~P63、P71~P73‧‧‧期間 During the period of P21~P22, P31~P32, P51~P58, P61~P63, P71~P73‧‧

SET1~SET4‧‧‧寫入組合 SET1~SET4‧‧‧Write combination

SM1‧‧‧切換媒介 SM1‧‧‧Switching medium

VD‧‧‧汲極電壓 VD‧‧‧汲polar voltage

VG‧‧‧閘極控制電壓 VG‧‧‧ gate control voltage

VRE‧‧‧可變阻抗元件 VRE‧‧‧Variable impedance components

WRa~WRe‧‧‧寫入信號 WRa~WRe‧‧‧ write signal

圖1為依據本發明一實施例的電阻式隨機存取記憶胞的電路示意圖。 1 is a circuit diagram of a resistive random access memory cell in accordance with an embodiment of the present invention.

圖2為依據本發明的第一實施例的寫入信號的驅動波形示意圖。 2 is a schematic diagram showing driving waveforms of a write signal according to a first embodiment of the present invention.

圖3為依據本發明的第二實施例的寫入信號的驅動波形示意圖。 Fig. 3 is a view showing a driving waveform of a write signal in accordance with a second embodiment of the present invention.

圖4A及圖4B分別為依據本發明的一實施例的寫入信號的寫入效果示意圖。 4A and 4B are schematic diagrams showing the effect of writing a write signal according to an embodiment of the invention.

圖5為依據本發明的第三實施例的寫入信號的驅動波形示意圖。 Fig. 5 is a view showing a driving waveform of a write signal in accordance with a third embodiment of the present invention.

圖6為依據本發明的第四實施例的寫入信號的驅動波形示意圖。 Fig. 6 is a view showing a driving waveform of a write signal in accordance with a fourth embodiment of the present invention.

圖7為依據本發明的第五實施例的寫入信號的驅動波形示意圖。 Fig. 7 is a view showing a driving waveform of a write signal in accordance with a fifth embodiment of the present invention.

圖1為依據本發明一實施例的電阻式隨機存取記憶胞的 電路示意圖。請參照圖1,在本實施例中,電阻式隨機存取記憶胞100例如包括可變阻抗元件VRE及電晶體M1(亦即開關元件),其中可變阻抗元件VRE可以是電壓控制切換元件或電流控制切換元件。其中可變阻抗元件VRE耦接於汲極電壓VD及電晶體M1的汲極之間,亦即可變阻抗元件VRE串接電晶體M1,電晶體的閘極接收一閘極控制電壓VG,電晶體的源極接收一接地電壓GND。並且,可變阻抗元件VRE具有第一電極E1、切換媒介(switching medium)SM1及第二電極E2,其中第一電極E1的材質例如是鈦(Ti),切換媒介SM1的材質例如是氧化鉿(HfO2),第一電極E1的材質例如是氮化鈦(TiN)。 1 is a diagram of a resistive random access memory cell according to an embodiment of the invention Circuit diagram. Referring to FIG. 1 , in the embodiment, the resistive random access memory cell 100 includes, for example, a variable impedance element VRE and a transistor M1 (ie, a switching element), wherein the variable impedance element VRE may be a voltage controlled switching element or Current control switching element. The variable impedance component VRE is coupled between the drain voltage VD and the drain of the transistor M1, that is, the variable impedance component VRE is connected in series with the transistor M1, and the gate of the transistor receives a gate control voltage VG, and the electrical The source of the crystal receives a ground voltage GND. Further, the variable impedance element VRE has a first electrode E1, a switching medium SM1, and a second electrode E2, wherein the material of the first electrode E1 is, for example, titanium (Ti), and the material of the switching medium SM1 is, for example, yttrium oxide ( HfO2), the material of the first electrode E1 is, for example, titanium nitride (TiN).

當設定可變阻抗元件VRE時,閘極控制電壓VG會提供至電晶體M1的閘極以導通電晶體M1,而正極性的汲極電壓VD(亦即寫入信號WR)會提供至可變阻抗元件VRE,以使切換媒介SM1中的氧離子INO會受汲極電壓VD的影響移動至第一電極E1。此時,切換媒介SM1中會形成氧空缺(oxygen vacancies)以形成絲狀導電路徑FP1,進而產生汲極電流Id,且汲極電流Id會流經切換媒介SM1所構成的絲狀導電路徑FP1。由於絲狀導電路徑FP1的產生,切換媒介SM1的阻抗值會大幅降低,亦即切換媒介SM1會為低阻抗狀態,代表邏輯準位“1”。 When the variable impedance element VRE is set, the gate control voltage VG is supplied to the gate of the transistor M1 to conduct the crystal M1, and the positive drain voltage VD (ie, the write signal WR) is supplied to the variable. The impedance element VRE is such that the oxygen ions INO in the switching medium SM1 are moved to the first electrode E1 by the influence of the gate voltage VD. At this time, oxygen vacancies are formed in the switching medium SM1 to form the filament-shaped conductive path FP1, thereby generating the drain current Id, and the drain current Id flows through the filament-shaped conductive path FP1 formed by the switching medium SM1. Due to the generation of the filament-shaped conductive path FP1, the impedance value of the switching medium SM1 is greatly reduced, that is, the switching medium SM1 is in a low-impedance state, representing a logic level "1".

另一方面,當重置可變阻抗元件VRE時,閘極控制電壓VG同樣會提供至電晶體M1的閘極以導通電晶體M1,但是會提供負極性的汲極電壓VD至可變阻抗元件VRE,以使第一電極E1 中的氧離子INO會受汲極電壓VD及汲極電流Id的影響移回至切換媒介SM1。此時,切換媒介SM1中的氧空缺會消失,因此絲狀導電路徑FP1會消失。由於絲狀導電路徑FP1的消失,切換媒介SM1的阻抗值會大幅提高,亦即切換媒介SM1會為高阻抗狀態,代表邏輯準位“0”。 On the other hand, when the variable impedance element VRE is reset, the gate control voltage VG is also supplied to the gate of the transistor M1 to conduct the transistor M1, but provides a negative polarity of the gate voltage VD to the variable impedance element. VRE to make the first electrode E1 The oxygen ion INO is moved back to the switching medium SM1 by the influence of the drain voltage VD and the drain current Id. At this time, the oxygen vacancy in the switching medium SM1 disappears, and thus the filament-shaped conductive path FP1 disappears. Due to the disappearance of the filament-shaped conductive path FP1, the impedance value of the switching medium SM1 is greatly increased, that is, the switching medium SM1 is in a high-impedance state, representing a logic level “0”.

此外,當可變阻抗元件VRE為電壓控制切換元件,則閘極控制電壓VG可高於汲極電壓VD。當可變阻抗元件VRE為電流控制切換元件時,則閘極控制電壓VG可低於汲極電壓VD。 Further, when the variable impedance element VRE is a voltage control switching element, the gate control voltage VG may be higher than the gate voltage VD. When the variable impedance element VRE is a current control switching element, the gate control voltage VG may be lower than the gate voltage VD.

圖2為依據本發明的第一實施例的寫入信號的驅動波形示意圖。請參照圖1及圖2,其中相同或相似元件使用相同或相似標號。在本實施例中,寫入信號WRa用以設定可變阻抗元件VRE。亦即當電晶體M1導通時,提供寫入信號WRa至可變阻抗元件VRE以設定可變阻抗元件VRE的阻抗值。 2 is a schematic diagram showing driving waveforms of a write signal according to a first embodiment of the present invention. Please refer to FIG. 1 and FIG. 2, wherein the same or similar elements are given the same or similar reference numerals. In the present embodiment, the write signal WRa is used to set the variable impedance element VRE. That is, when the transistor M1 is turned on, the write signal WRa is supplied to the variable impedance element VRE to set the impedance value of the variable impedance element VRE.

在期間P21(對應第一期間)中,設定寫入信號WRa為寫入電壓準位LW1(對應第一寫入電壓準位),以引發切換媒介SM1中的氧離子INO開始移動,進而於可變阻抗元件VRE中形成絲狀導電路徑FP1。接著,在期間P22(對應第二期間)中,設定寫入信號WRa由寫入電壓準位LW1遞減至接地電壓(即電壓準位0),以延長切換媒介SM1中的氧離子INO的移動時間,增加絲狀導電路徑的形成,其中寫入信號WRa由寫入電壓準位LW1遞減至接地電壓的遞減期間假設為等於期間P22。 In the period P21 (corresponding to the first period), the write signal WRa is set to the write voltage level LW1 (corresponding to the first write voltage level) to initiate the movement of the oxygen ions INO in the switching medium SM1, and then A filament-shaped conductive path FP1 is formed in the variable impedance element VRE. Next, in the period P22 (corresponding to the second period), the set write signal WRa is decremented from the write voltage level LW1 to the ground voltage (ie, the voltage level 0) to extend the moving time of the oxygen ions INO in the switching medium SM1. The formation of the filament-shaped conductive path is increased, wherein the decrement period in which the write signal WRa is decremented from the write voltage level LW1 to the ground voltage is assumed to be equal to the period P22.

換言之,在期間P21中,會設定寫入信號WRa為寫入電 壓準位LW1以傳送較大的第一電能(對應於寫入電壓準位LW1與期間P21的時間長度的乘積)至可變阻抗元件VRE,以觸發切換媒介SM1形成絲狀導電路徑FP1。並且,在接續於期間P21之後的期間P22中,會透過寫入信號WRa傳送小於第一電能的第二電能(對應於寫入電壓準位LW1與期間P22的時間長度的乘積的一半)至可變阻抗元件VRE。 In other words, in the period P21, the write signal WRa is set to be written. The pressing level LW1 transmits a larger first electric energy (corresponding to the product of the writing voltage level LW1 and the length of the period P21) to the variable impedance element VRE to trigger the switching medium SM1 to form the filament-shaped conductive path FP1. And, in the period P22 subsequent to the period P21, the second power smaller than the first power (half the product of the time length of the write voltage level LW1 and the period P22) is transmitted through the write signal WRa to Variable impedance element VRE.

在本實施例中,期間P22的時間長度等於期間P21的時間長度的一半,但在其他實施例中,期間P22的時間長度可等於期間P21的時間長度的0.5~3倍,但本發明實施例不以此為限。 In the present embodiment, the length of the period P22 is equal to half of the length of the period P21, but in other embodiments, the length of the period P22 may be equal to 0.5 to 3 times the length of the period P21, but the embodiment of the present invention Not limited to this.

圖3為依據本發明的第二實施例的寫入信號的驅動波形示意圖。請參照圖1及圖3,其中相同或相似元件使用相同或相似標號。在本實施例中,寫入信號WRb同樣用以設定可變阻抗元件VRE。亦即當電晶體M1導通時,提供寫入信號WRb至可變阻抗元件VRE以設定可變阻抗元件VRE的阻抗值。 Fig. 3 is a view showing a driving waveform of a write signal in accordance with a second embodiment of the present invention. 1 and 3, wherein the same or similar elements are given the same or similar reference numerals. In the present embodiment, the write signal WRb is also used to set the variable impedance element VRE. That is, when the transistor M1 is turned on, the write signal WRb is supplied to the variable impedance element VRE to set the impedance value of the variable impedance element VRE.

在期間P31(對應第一期間)中,設定寫入信號WRb為寫入電壓準位LW2(對應第一寫入電壓準位),亦即形成電壓準位為寫入電壓準位LW2的脈波,以引發切換媒介SM1中的氧離子INO開始移動,進而於可變阻抗元件VRE中形成絲狀導電路徑。接著,在整個期間P32(對應第二期間)中,設定寫入信號WRb為維持電壓準位LM1(對應第一維持準位),亦即形成電壓準位為維持電壓準位LM1的脈波,以延長切換媒介SM1中的氧離子INO的移動時間,增加絲狀導電路徑FP1的形成。 In the period P31 (corresponding to the first period), the write signal WRb is set to the write voltage level LW2 (corresponding to the first write voltage level), that is, the pulse wave having the voltage level of the write voltage level LW2 is formed. In order to initiate the movement of the oxygen ions INO in the switching medium SM1, a filament-shaped conductive path is formed in the variable impedance element VRE. Then, in the entire period P32 (corresponding to the second period), the write signal WRb is set to the sustain voltage level LM1 (corresponding to the first sustain level), that is, the pulse wave whose voltage level is the sustain voltage level LM1 is formed. In order to extend the moving time of the oxygen ions INO in the switching medium SM1, the formation of the filament-shaped conductive path FP1 is increased.

換言之,在期間P31中,會設定寫入信號WRB為寫入電壓準位LW2以傳送較大的第一電能(對應於寫入電壓準位LW2與期間P31的時間長度的乘積)至可變阻抗元件VRE,以觸發切換媒介SM1形成絲狀導電路徑FP1。並且,在期間P31之後的期間P32中,會透過寫入信號WRb傳送小於第一電能的第二電能(對應於維持電壓準位LM1與期間P32的時間長度的乘積)至可變阻抗元件VRE。 In other words, in the period P31, the write signal WRB is set to the write voltage level LW2 to transfer a larger first electric energy (corresponding to the product of the writing voltage level LW2 and the length of the period P31) to the variable impedance. The element VRE is used to trigger the switching medium SM1 to form a filament-shaped conductive path FP1. Further, in the period P32 after the period P31, the second electric energy (corresponding to the product of the length of the sustain voltage level LM1 and the period P32) smaller than the first electric energy is transmitted to the variable impedance element VRE through the write signal WRb.

在本實施例中,維持電壓準位LM1等於寫入電壓準位LW2的一半(即1/2倍),並且期間P31不相鄰於期間P32,以及期間P32的時間長度等於期間P31的時間長度,但在其他實施例中,維持電壓準位LM1可等於寫入電壓準位LW2的1/3~2/3倍,並且期間P31可相鄰於期間P32,以及期間P32的時間長度可等於期間P31的時間長度的0.5~3倍,但本發明實施例不以此為限。此外,期間P31與P32的間隔可設定為小於期間P31的時間長度,但此為依據測試環境而定,本發明實施例不以此為限。 In the present embodiment, the sustain voltage level LM1 is equal to half (i.e., 1/2 times) of the write voltage level LW2, and the period P31 is not adjacent to the period P32, and the length of time of the period P32 is equal to the length of the period P31. However, in other embodiments, the sustain voltage level LM1 may be equal to 1/3~2/3 times of the write voltage level LW2, and the period P31 may be adjacent to the period P32, and the length of the period P32 may be equal to the period The time length of the P31 is 0.5 to 3 times, but the embodiment of the present invention is not limited thereto. In addition, the interval between the periods P31 and P32 may be set to be less than the length of the period P31, but the embodiment is not limited thereto.

在本發明的第一及第二實施例中,由於在第一期間(對應期間P21、期間P31)設定寫入信號WR為寫入電壓準位(如LW1、LW2)時可能會產生熱化學效應,導致已形成的絲狀導電路徑FP1受高溫影響而窄化或消失。因此,本發明透過在第二期間(對應期間P22、期間P32)將寫入信號WR設定為自寫入電壓準位(如LW1、LW2)遞減至接地電壓或小於寫入電壓準位(如LW1、LW2)的維持電壓準位(如LM1),可延長切換媒介SM1中的氧 離子INO的移動時間,增加絲狀導電路徑FP1的形成,並減緩熱化學效應產生的高溫對絲狀導電路徑FP1的影響。 In the first and second embodiments of the present invention, since the write signal WR is set to the write voltage level (e.g., LW1, LW2) during the first period (corresponding period P21, period P31), a thermochemical effect may occur. The resulting filament-like conductive path FP1 is narrowed or disappeared by the influence of high temperature. Therefore, the present invention reduces the write signal WR to the ground voltage or the write voltage level (eg, LW1) by setting the write signal WR to the self-write voltage level (eg, LW1, LW2) during the second period (corresponding period P22, period P32). , LW2) maintain voltage level (such as LM1), can extend the oxygen in the switching medium SM1 The movement time of the ion INO increases the formation of the filament-like conductive path FP1 and slows down the influence of the high temperature generated by the thermochemical effect on the filament-shaped conductive path FP1.

圖4A及圖4B分別為依據本發明的一實施例的寫入信號的寫入效果示意圖,其中圖4A是以電壓控制切換的可變阻抗元件VRE為例,圖4B是以電流控制切換的可變阻抗元件VRE為例。請參照圖1至圖3及圖4A,其中座標點411用以表示寫入信號WR僅包含第一期間(如P21、P31)的寫入效果經熱測試前與熱測試後的位元正確率的對應關係,座標點412用以表示寫入信號WR包含第一期間(如P21、P31)及第二期間的(如P22、P32)的寫入效果經熱測試前與經熱測試後的位元正確率的對應關係。並且,上述熱測試可以是以攝氏175度經24小時的烘烤。 4A and FIG. 4B are schematic diagrams showing the effect of writing a write signal according to an embodiment of the present invention, wherein FIG. 4A is an example of a voltage-controlled switching variable impedance element VRE, and FIG. 4B is a current control switching. The variable impedance element VRE is taken as an example. Please refer to FIG. 1 to FIG. 3 and FIG. 4A , wherein the coordinate point 411 is used to indicate that the write signal WR only includes the first period (eg, P21, P31), and the bit error rate after the thermal test and the thermal test. Correspondence relationship, the coordinate point 412 is used to indicate that the write signal WR includes the first period (such as P21, P31) and the second period (such as P22, P32), the writing effect is before the thermal test and after the thermal test. The correspondence between the correct rates of the elements. Also, the above thermal test may be performed at 175 degrees Celsius for 24 hours.

請參照圖1至圖3及圖4B,其中座標點421用以表示僅包含第一期間(如P21、P31)的寫入信號WR用以進行設定及重置的寫入效果,座標點422~426用以表示包含第一期間(如P21、P31)及第二期間的(如P22、P32)的寫入信號WR用以進行設定及重置的寫入效果,其中上述設定例如是以大於10μ安培的電流來進行,並且上述重置例如是以大於5μ安培的電流來進行,並且上述寫入效果為經過熱測試的效果,例如以攝氏175度經24小時的烘烤。 Referring to FIG. 1 to FIG. 3 and FIG. 4B, the coordinate point 421 is used to indicate the writing effect of the write signal WR including only the first period (such as P21 and P31) for setting and resetting, and the coordinate point 422~ 426 is used to indicate the write effect of the write signal WR including the first period (such as P21, P31) and the second period (such as P22, P32) for setting and resetting, wherein the above setting is, for example, greater than 10μ. Ampere's current is applied, and the above reset is performed, for example, at a current of more than 5 μ Amperes, and the above-described writing effect is a thermally tested effect, for example, baking at 175 ° C for 24 hours.

並且,座標點422~426分別表示不同第一期間(如P21、P31)的時間長度、不同第二期間(如P22、P32)的時間長度、不同寫入電壓準位(如LW1、LW2)及不同維持電壓準位(如LM1) 的組合的寫入效果。 Moreover, the coordinate points 422-426 indicate the length of time of different first periods (such as P21, P31), the length of time of different second periods (such as P22, P32), different write voltage levels (such as LW1, LW2), and Different sustain voltage levels (eg LM1) The combined write effect.

依據圖4A及圖4B所示,本發明的實施例具有較高的位元正確率,亦即高溫對經由本發明的實施例於切換媒介SM1中形成的絲狀導電路徑FP1的影響較低。 4A and 4B, the embodiment of the present invention has a higher bit correctness, that is, the high temperature has a lower influence on the filament-shaped conductive path FP1 formed in the switching medium SM1 via the embodiment of the present invention.

圖5為依據本發明的第三實施例的寫入信號的驅動波形示意圖。請參照圖1、圖3及圖5,其中相同或相似元件使用相同或相似標號。在本實施例中,寫入信號WRc分為期間P51(對應第一期間)、期間P52(對應第二期間)、期間P53、P55及P57(對應多個第三期間)、期間P54、P56及P58(對應多個第四期間),並具有4個讀取時間點510、520、530及540。其中,兩相鄰期間可視為一寫入組合(如SET1~SET4),並且每一寫入組合的動作可參照圖3實施例所示,在此則不再贅述。 Fig. 5 is a view showing a driving waveform of a write signal in accordance with a third embodiment of the present invention. Please refer to FIG. 1, FIG. 3 and FIG. 5, wherein the same or similar elements are given the same or similar reference numerals. In the present embodiment, the write signal WRc is divided into a period P51 (corresponding to the first period), a period P52 (corresponding to the second period), periods P53, P55, and P57 (corresponding to a plurality of third periods), periods P54, P56, and P58 (corresponding to a plurality of fourth periods) and having 4 reading time points 510, 520, 530 and 540. The two adjacent periods can be regarded as a write combination (such as SET1~SET4), and the action of each write combination can be referred to the embodiment of FIG. 3, and details are not described herein again.

在期間P51、P53、P55及P57中(對應第一期間及多個第三期間),會依序設定寫入信號WRc為寫入電壓準位LW51及LW52~LW54(對應第一寫入電壓準位及多個第二寫入電壓準位)以依序傳送多個電能(對應第一電能及多個第三電能)至可變阻抗元件VRE。在期間P52、P54、P56及P58中(對應第二期間及多個第四期間),透過依序設定寫入信號WRc為維持電壓準位LM51及LM52~LM54(對應第一維持電壓準位及多個第二維持電壓準位)以依序傳送多個電能(對應第二電能及多個第四電能)至可變阻抗元件VRE,其中期間P52、P54、P56及P58分別位於期間P51、P53、P55及P57之後。並且,寫入信號WRc於期間 P52所傳送的電能小於及寫入信號WRc於期間P51所傳送的電能,寫入信號WRc於期間P54、P56及P58所傳送的電能小於及寫入信號WRc於期間P53、P55及P57所傳送的電能。 During the periods P51, P53, P55, and P57 (corresponding to the first period and the plurality of third periods), the write signal WRc is sequentially set to the write voltage levels LW51 and LW52 to LW54 (corresponding to the first write voltage level) The bit and the plurality of second write voltage levels) sequentially transmit a plurality of electrical energy (corresponding to the first electrical energy and the plurality of third electrical energy) to the variable impedance element VRE. In the periods P52, P54, P56, and P58 (corresponding to the second period and the plurality of fourth periods), the write signal WRc is sequentially set to the sustain voltage levels LM51 and LM52 to LM54 (corresponding to the first sustain voltage level and a plurality of second sustain voltage levels) sequentially transmitting a plurality of electrical energy (corresponding to the second electrical energy and the plurality of fourth electrical energy) to the variable impedance element VRE, wherein the periods P52, P54, P56, and P58 are respectively located during the periods P51, P53 After P55 and P57. And, the write signal WRc is during The power transmitted by P52 is less than the power transmitted by the write signal WRc during the period P51, and the power transmitted by the write signal WRc during the periods P54, P56, and P58 is less than and the write signal WRc is transmitted during the periods P53, P55, and P57. Electrical energy.

進一步來說,當經過寫入組合SET1進行寫入後,會在讀取時間點510進行寫入驗証。當驗証為正確時,則判定電阻式隨機存取記憶胞100為可使用,並且不再進行寫入;當驗証為錯誤時,則會經由寫入組合SET2進行寫入,並且在讀取時間點520進行寫入驗証。當驗証為正確時,則判定電阻式隨機存取記憶胞100為可使用,並且不再進行寫入;當驗証為錯誤時,則會經由寫入組合SET3進行寫入,並且在讀取時間點530進行寫入驗証。當驗証為正確時,則判定電阻式隨機存取記憶胞100為可使用,並且不再進行寫入;當驗証為錯誤時,則會經由寫入組合SET4進行寫入,並且在讀取時間點540進行寫入驗証。當驗証為正確時,則判定電阻式隨機存取記憶胞100為可使用,並且不再進行寫入;當驗証為錯誤時,則判定電阻式隨機存取記憶胞100為可使用。 Further, after writing by the write combination SET1, write verification is performed at the reading time point 510. When the verification is correct, it is determined that the resistive random access memory cell 100 is usable and no longer writes; when the verification is an error, the write is performed via the write combination SET2, and at the time of reading 520 performs write verification. When the verification is correct, it is determined that the resistive random access memory cell 100 is usable and no longer writes; when the verification is an error, the write is performed via the write combination SET3, and at the time of reading 530 performs write verification. When the verification is correct, it is determined that the resistive random access memory cell 100 is usable and no longer writes; when the verification is an error, the write is performed via the write combination SET4, and at the time of reading 540 performs write verification. When the verification is correct, it is determined that the resistive random access memory cell 100 is usable and no longer writes; when the verification is an error, it is determined that the resistive random access memory cell 100 is usable.

在本發明的一實施例中,寫入電壓準位LW51~LW54可設定為完全相同,但在其他實施例,寫入電壓準位LW51~LW54可設定為完全不同,例如寫入電壓準位LW51~LW54可設定為依序提高。 In an embodiment of the invention, the write voltage levels LW51~LW54 can be set to be identical, but in other embodiments, the write voltage levels LW51~LW54 can be set to be completely different, such as the write voltage level LW51. ~LW54 can be set to increase in order.

在本發明的一實施例中,維持電壓準位LM51~LM54可設定為完全相同,亦即寫入信號WRc於期間P52、P54、P56及P58所傳送的電能完全相同,但在其他實施例,維持電壓準位 LM51~LM54可設定為完全不同,亦即寫入信號WRc於期間P52、P54、P56及P58所傳送的電能完全不同,例如電壓準位LM51~LM54可設定為依序提高,寫入信號WRc於期間P52、P54、P56及P58所傳送的電能為依序提高。 In an embodiment of the present invention, the sustain voltage levels LM51 LM LM54 may be set to be identical, that is, the write signal WRc is identical in electrical energy transmitted during the periods P52, P54, P56, and P58, but in other embodiments, Maintain voltage level LM51~LM54 can be set to be completely different, that is, the write signal WRc is completely different in the energy transmitted during the periods P52, P54, P56 and P58. For example, the voltage levels LM51~LM54 can be set to be sequentially increased, and the write signal WRc is During the period, the power transmitted by P52, P54, P56 and P58 is sequentially increased.

在本發明的一實施例中,期間P51、P53、P55及P57的時間長度可設定為完全相同,但在其他實施例,期間P51、P53、P55及P57的時間長度可設定為完全不同,例如期間P51、P53、P55及P57的時間長度依序增加。 In an embodiment of the present invention, the lengths of the periods P51, P53, P55, and P57 may be set to be identical, but in other embodiments, the lengths of the periods P51, P53, P55, and P57 may be set to be completely different, for example, During the period, the lengths of P51, P53, P55 and P57 are sequentially increased.

在本發明的一實施例中,期間P52、P54、P56及P58的時間長度可設定為完全相同,但在其他實施例,期間P52、P54、P56及P58的時間長度可設定為完全不同,例如期間P52、P54、P56及P58的時間長度依序增加。 In an embodiment of the present invention, the lengths of the periods P52, P54, P56, and P58 may be set to be identical, but in other embodiments, the lengths of the periods P52, P54, P56, and P58 may be set to be completely different, for example, The length of time of P52, P54, P56 and P58 increases sequentially.

在本實施例中,各個寫入組合SET1~SET4的波形類似圖3實施例所示驅動波形(即寫入信號WRb所示波形),但在其他實施例中,各個寫入組合SET1~SET4的波形可使用圖2實施例所示的驅動波形(即寫入信號WRa所示波形),但本發明實施例不以此為限。 In this embodiment, the waveforms of the respective write combinations SET1 SET SET4 are similar to the drive waveforms shown in the embodiment of FIG. 3 (ie, the waveforms indicated by the write signal WRb), but in other embodiments, the write combinations SET1 SET SET4 The waveform of the waveform shown in the embodiment of FIG. 2 (ie, the waveform shown by the write signal WRa) can be used, but the embodiment of the present invention is not limited thereto.

圖6為依據本發明的第四實施例的寫入信號的驅動波形示意圖。請參照圖1、圖2及圖6,其中相同或相似元件使用相同或相似標號。在本實施中,期間P62及P63中寫入信號WRd的波形分別類似期間P21及P22中寫入信號WRa的波形,其中寫入電壓準位LW3可相同或不同於寫入電壓準位LW1,但本發明實施例 不以此為限。並且,寫入信號WRd於期間P61~P63的波形可視為一寫入組合(如SET1~SET4)。 Fig. 6 is a view showing a driving waveform of a write signal in accordance with a fourth embodiment of the present invention. Please refer to FIG. 1, FIG. 2 and FIG. 6, wherein the same or similar elements are given the same or similar reference numerals. In the present embodiment, the waveforms of the write signal WRd in the periods P62 and P63 are similar to the waveforms of the write signal WRa in the periods P21 and P22, respectively, wherein the write voltage level LW3 may be the same or different from the write voltage level LW1, but Embodiment of the present invention Not limited to this. Further, the waveform of the write signal WRd during the period P61 to P63 can be regarded as a write combination (for example, SET1 to SET4).

在本實施例中,寫入信號WRd更包括期間P61(對應第五期間),並且在期間P61中,會透過設定寫入信號WRd由接地電壓(亦即電壓準位0)上升至寫入電壓準位LW3以傳送電能(對應第五電能)至可變阻抗元件VRE。其中,寫入信號WRd於期間P61所傳送的電能(對應於寫入電壓準位LW3與期間P61的時間長度的乘積的一半)小於寫入信號WRd於期間P62所傳送的電能(對應於寫入電壓準位LW3與期間P62的時間長度的乘積)。 In the present embodiment, the write signal WRd further includes a period P61 (corresponding to the fifth period), and in the period P61, the write voltage WRd is raised from the ground voltage (that is, the voltage level 0) to the write voltage. The level LW3 is transmitted to transfer electrical energy (corresponding to the fifth electrical energy) to the variable impedance element VRE. The power transmitted by the write signal WRd during the period P61 (half the product of the time length of the write voltage level LW3 and the period P61) is smaller than the power transmitted by the write signal WRd during the period P62 (corresponding to the write The product of the voltage level LW3 and the length of time of the period P62).

圖7為依據本發明的第五實施例的寫入信號的驅動波形示意圖。請參照圖1、圖3及圖7,其中相同或相似元件使用相同或相似標號。在本實施中,期間P72及P73中寫入信號WRe的波形分別類似期間P31及P32中寫入信號WRb的波形,其中寫入電壓準位LW4可相同或不同於寫入電壓準位LW2,維持電壓準位LW3可相同或不同於維持電壓準位LM1,但本發明實施例不以此為限。並且,寫入信號WRe於期間P71~P73的波形可視為一寫入組合(如SET1~SET4)。 Fig. 7 is a view showing a driving waveform of a write signal in accordance with a fifth embodiment of the present invention. Please refer to FIG. 1, FIG. 3 and FIG. 7, wherein the same or similar elements are given the same or similar reference numerals. In the present embodiment, the waveforms of the write signals WRe in the periods P72 and P73 are similar to the waveforms of the write signals WRb in the periods P31 and P32, respectively, wherein the write voltage level LW4 may be the same or different from the write voltage level LW2, maintaining The voltage level LW3 may be the same or different from the sustain voltage level LM1, but the embodiment of the present invention is not limited thereto. Further, the waveform of the write signal WRe during the periods P71 to P73 can be regarded as a write combination (for example, SET1 to SET4).

在本實施例中,寫入信號WRe更包括期間P71(對應第五期間),並且在期間P71中,會透過設定寫入信號WRe為維持電壓準位LM2以傳送電能(對應第五電能)至可變阻抗元件VRE。其中,寫入信號WRe於期間P71所傳送的電能(對應於為維持電壓準位LM2與期間P71的時間長度的乘積)小於寫入信號WRe 於期間P72所傳送的電能(對應於寫入電壓準位LW4與期間P72的時間長度的乘積)。 In the present embodiment, the write signal WRe further includes a period P71 (corresponding to the fifth period), and in the period P71, the set write signal WRe is set to the sustain voltage level LM2 to transmit the power (corresponding to the fifth power) to Variable impedance element VRE. The power transmitted by the write signal WRe during the period P71 (corresponding to the product of the length of the sustain voltage level LM2 and the period P71) is smaller than the write signal WRe. The electric energy transmitted during the period P72 (corresponding to the product of the writing voltage level LW4 and the length of the period P72).

在本實施例中,維持電壓準位LM2等於寫入電壓準位LW4的一半(即1/2倍),並且期間P71不相鄰於期間P72,以及期間P71的時間長度等於期間P72的時間長度,但在其他實施例中,維持電壓準位LM2可等於寫入電壓準位LW4的1/3~2/3倍,並且期間P71可相鄰於期間P72,以及期間P71的時間長度可等於期間P72的時間長度的0.5~3倍,但本發明實施例不以此為限。此外,期間P71與P72的間隔可設定為小於期間P72的時間長度,但此為依據測試環境而定,本發明實施例不以此為限。 In the present embodiment, the sustain voltage level LM2 is equal to half (i.e., 1/2 times) the write voltage level LW4, and the period P71 is not adjacent to the period P72, and the length of time of the period P71 is equal to the length of the period P72. However, in other embodiments, the sustain voltage level LM2 may be equal to 1/3~2/3 times of the write voltage level LW4, and the period P71 may be adjacent to the period P72, and the length of the period P71 may be equal to the period The time length of the P72 is 0.5 to 3 times, but the embodiment of the present invention is not limited thereto. In addition, the interval between the period P71 and the P72 may be set to be less than the length of the period P72. However, the embodiment of the present invention is not limited thereto.

綜上所述,本發明實施例的電阻式隨機存取記憶胞的運作方法,在寫入電壓的期間後,寫入信號仍傳送能量至可變阻抗元件,以延長可變阻抗元件中的氧離子的移動時間,增加絲狀導電路徑的形成並減緩熱化學效應產生的高溫對絲狀導電路徑的影響。 In summary, in the method for operating a resistive random access memory cell according to an embodiment of the present invention, after a period of writing a voltage, the write signal still transmits energy to the variable impedance element to extend oxygen in the variable impedance element. The movement time of the ions increases the formation of the filamentary conductive path and slows down the effect of the high temperature generated by the thermochemical effect on the filamentous conductive path.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

LW1‧‧‧寫入電壓準位 LW1‧‧‧ write voltage level

P21~P22‧‧‧期間 During the period of P21~P22‧‧

WRa‧‧‧寫入信號 WRa‧‧‧ write signal

Claims (14)

一種電阻式隨機存取記憶胞的運作方法,其中該電阻式隨機存取記憶胞包括串接的一可變阻抗元件及一開關元件,包括:當該開關元件導通時,提供一寫入信號至該可變阻抗元件以設定該可變阻抗元件的阻抗值;在一第一期間,設定該寫入信號為一第一寫入電壓準位以傳送一第一電能至該可變阻抗元件;以及在一第二期間,透過該寫入信號傳送一第二電能至該可變阻抗元件,其中該第二期間位於該第一期間之後,該第一電能及該第二電能大於零,該第二電能小於該第一電能,且該第二期間的時間長度等於該第一期間的時間長度的0.5~3倍。 A method for operating a resistive random access memory cell, wherein the resistive random access memory cell includes a variable impedance component and a switching component connected in series, including: when the switching component is turned on, providing a write signal to The variable impedance element is configured to set an impedance value of the variable impedance element; in a first period, setting the write signal to a first write voltage level to transmit a first electrical energy to the variable impedance element; Transmitting, by the write signal, a second electrical energy to the variable impedance component, wherein the second period is after the first period, the first electrical energy and the second electrical energy are greater than zero, the second The electrical energy is less than the first electrical energy, and the length of time of the second period is equal to 0.5 to 3 times the length of the first period. 如申請專利範圍第1項所述的電阻式隨機存取記憶胞的運作方法,更包括:在該第二期間,設定該寫入信號由該第一寫入電壓準位遞減至一接地電壓。 The method for operating a resistive random access memory cell according to claim 1, further comprising: setting the write signal from the first write voltage level to a ground voltage during the second period. 如申請專利範圍第1項所述的電阻式隨機存取記憶胞的運作方法,更包括:在該第二期間,設定該寫入信號為一第一維持電壓準位。 The method for operating a resistive random access memory cell according to claim 1, further comprising: setting the write signal to a first sustain voltage level during the second period. 如申請專利範圍第3項所述的電阻式隨機存取記憶胞的運作方法,其中該第一維持電壓準位等於該第一寫入電壓準位的1/3~2/3倍。 The method for operating a resistive random access memory cell according to claim 3, wherein the first sustain voltage level is equal to 1/3 to 2/3 times of the first write voltage level. 如申請專利範圍第1項所述的電阻式隨機存取記憶胞的運 作方法,更包括:在多個第三期間,依序設定該寫入信號為多個第二寫入電壓準位以依序傳送多個第三電能至該可變阻抗元件,該些第三期間位於該第二期間之後;以及在多個第四期間,透過該寫入信號依序傳送多個第四電能至該可變阻抗元件,其中該些第四期間分別位於該些第三期間其一之後,該些第三電能及該些第四電能大於零,且各該些第四電能小於對應的第三期間中該寫入信號所傳送的該第三電能。 The operation of the resistive random access memory cell as described in claim 1 The method further includes: sequentially setting the write signal to a plurality of second write voltage levels to sequentially transmit a plurality of third powers to the variable impedance component, and the third The period is after the second period; and in the plurality of fourth periods, the plurality of fourth powers are sequentially transmitted to the variable impedance element through the write signal, wherein the fourth periods are respectively located in the third period Afterwards, the third electrical energy and the fourth electrical energy are greater than zero, and each of the fourth electrical energy is less than the third electrical energy transmitted by the write signal in the corresponding third period. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第一寫入電壓準位及該些第二寫入電壓準位彼此相同。 The method for operating a resistive random access memory cell according to claim 5, wherein the first write voltage level and the second write voltage levels are identical to each other. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第一寫入電壓準位及該些第二寫入電壓準位彼此不同。 The method for operating a resistive random access memory cell according to claim 5, wherein the first write voltage level and the second write voltage levels are different from each other. 如申請專利範圍第7項所述的電阻式隨機存取記憶胞的運作方法,其中該第一寫入電壓準位及該些第二寫入電壓準位依序提高。 The method for operating a resistive random access memory cell according to claim 7, wherein the first write voltage level and the second write voltage levels are sequentially increased. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第二電能及該些第四電能彼此相同。 The method of operating a resistive random access memory cell according to claim 5, wherein the second electrical energy and the fourth electrical energy are identical to each other. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第二電能及該些第四電能彼此不同。 The method for operating a resistive random access memory cell according to claim 5, wherein the second electrical energy and the fourth electrical energy are different from each other. 如申請專利範圍第10項所述的電阻式隨機存取記憶胞的 運作方法,其中該第二電能及該些第四電能依序提高。 Resistive random access memory cell as described in claim 10 The operating method, wherein the second electrical energy and the fourth electrical energy are sequentially increased. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第一期間及該些第三期間的時間長度彼此相同。 The method for operating a resistive random access memory cell according to claim 5, wherein the first period and the third periods have the same length of time. 如申請專利範圍第5項所述的電阻式隨機存取記憶胞的運作方法,其中該第一期間及該些第三期間的時間長度彼此不同。 The method for operating a resistive random access memory cell according to claim 5, wherein the time lengths of the first period and the third periods are different from each other. 如申請專利範圍第13項所述的電阻式隨機存取記憶胞的運作方法,其中該第一期間及該些第三期間的時間長度依序增加。 The method for operating a resistive random access memory cell according to claim 13, wherein the length of time of the first period and the third periods is sequentially increased.
TW103121397A 2014-06-20 2014-06-20 Operation method of resistive random access memory cell TWI536383B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103121397A TWI536383B (en) 2014-06-20 2014-06-20 Operation method of resistive random access memory cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103121397A TWI536383B (en) 2014-06-20 2014-06-20 Operation method of resistive random access memory cell

Publications (2)

Publication Number Publication Date
TW201601152A TW201601152A (en) 2016-01-01
TWI536383B true TWI536383B (en) 2016-06-01

Family

ID=55641297

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103121397A TWI536383B (en) 2014-06-20 2014-06-20 Operation method of resistive random access memory cell

Country Status (1)

Country Link
TW (1) TWI536383B (en)

Also Published As

Publication number Publication date
TW201601152A (en) 2016-01-01

Similar Documents

Publication Publication Date Title
Chen et al. Efficient in-memory computing architecture based on crossbar arrays
Jiang et al. A compact model for metal–oxide resistive random access memory with experiment verification
US11024378B2 (en) Memory systems and memory programming methods
Jiang et al. Verilog-A compact model for oxide-based resistive random access memory (RRAM)
US9224470B1 (en) Memory circuit and method of programming memory circuit
Rajendran et al. Application of resistive random access memory in hardware security: A review
JP2012238374A5 (en) Semiconductor device
US9336875B2 (en) Memory systems and memory programming methods
JP2016532236A (en) Refreshing data stored in cross-point non-volatile memory
Feng et al. Improvement of state stability in multi-level resistive random-access memory (RRAM) array for neuromorphic computing
Bengel et al. Reliability aspects of binary vector-matrix-multiplications using ReRAM devices
Sahay et al. OxRAM RNG circuits exploiting multiple undesirable nanoscale phenomena
TW201619963A (en) Resistive random access memory and manufacturing method thereof
Xing et al. Stochastic current response in diffusive memristor for security applications
TWI536383B (en) Operation method of resistive random access memory cell
Sk et al. 1f-1t array: Current limiting transistor cascoded fefet memory array for variation tolerant vector-matrix multiplication operation
TW201543485A (en) Forming and testing method of resistive memory
TW201616501A (en) Resistive memory system, driver circuit thereof and method for setting impedance thereof
TWI579850B (en) Writing method for resistive memory cell and resistive memory
US20160055906A1 (en) Operation method of resistive random access memory cell
Chiang et al. A predictive compact model of bipolar RRAM cells for circuit simulations
US9472279B2 (en) Memory cell dynamic grouping using write detection
TWI538407B (en) Pulse-width modulation device
Larcher et al. Multiscale modeling of electron-ion interactions for engineering novel electronic devices and materials
Aljafar et al. Survey on the benefits of using memristors for PUFs