TWI533950B - Method for checking a terminal of a metal plate and a rolling method using the same - Google Patents

Method for checking a terminal of a metal plate and a rolling method using the same Download PDF

Info

Publication number
TWI533950B
TWI533950B TW103141627A TW103141627A TWI533950B TW I533950 B TWI533950 B TW I533950B TW 103141627 A TW103141627 A TW 103141627A TW 103141627 A TW103141627 A TW 103141627A TW I533950 B TWI533950 B TW I533950B
Authority
TW
Taiwan
Prior art keywords
sheet
head end
image
metal
rolling
Prior art date
Application number
TW103141627A
Other languages
Chinese (zh)
Other versions
TW201620632A (en
Inventor
何秋誼
羅偉
黃再生
柯朝發
Original Assignee
中國鋼鐵股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國鋼鐵股份有限公司 filed Critical 中國鋼鐵股份有限公司
Priority to TW103141627A priority Critical patent/TWI533950B/en
Application granted granted Critical
Publication of TWI533950B publication Critical patent/TWI533950B/en
Publication of TW201620632A publication Critical patent/TW201620632A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

金屬板材頭端檢測方法與金屬板材 軋延方法 Metal sheet head end detection method and metal sheet Rolling method

本發明是有關於一種金屬板材頭端檢測方法與金屬板材軋延方法,特別是有關於一種適用於軋機之金屬板材頭端檢測方法與金屬板材軋延方法。 The invention relates to a metal sheet head end detecting method and a metal sheet rolling method, in particular to a metal sheet head end detecting method and a metal sheet rolling method suitable for a rolling mill.

在目前的鋼板生產過程中,鋼胚會先經加熱爐加熱再經過軋機軋延,以獲得具有所需厚度之鋼板。在軋延的過程中,鋼板有時會產生頭端彎曲的現象。當鋼板頭端嚴重上翹時,鋼板便會撞擊上方軋機附屬設備。相反的,當鋼板頭端朝下方彎曲時,則將衝撞輸送台的軋輥。因此,對於軋延製程而延,如何減少鋼板在軋延時頭端的彎曲量,以避免因設備損壞造成軋延停頓的損失,是相當重要的。 In the current steel sheet production process, the steel blank is first heated by a heating furnace and then rolled by a rolling mill to obtain a steel sheet having a desired thickness. During the rolling process, the steel sheet sometimes causes a bending of the head end. When the head end of the steel plate is severely upturned, the steel plate will hit the auxiliary equipment of the upper rolling mill. Conversely, when the head end of the steel plate is bent downward, it will hit the roll of the conveying table. Therefore, for the rolling process, it is very important to reduce the amount of bending of the steel sheet at the end of the rolling delay to avoid the loss of rolling delay caused by equipment damage.

習知的鋼板翹頭感測系統係利用遮斷式光電訊號感測器或接觸式感應棒來進行翹頭偵測。但由於僅能判定鋼板在輸送過程中,是否超過某一高度,無法作為製程改善工作之量化依據。 The conventional steel plate squeezing sensing system utilizes an occlusion photoelectric signal sensor or a contact sensor bar for wig detection. However, it can not be determined as a quantitative basis for the process improvement work because it can only determine whether the steel plate exceeds a certain height during the transportation process.

因此,需要一種金屬板材頭端檢測方法與金屬板材軋延方法,其可提供鋼板翹頭的具體資訊,以幫助改善軋延製程。 Therefore, there is a need for a sheet metal end detection method and a sheet metal rolling method which can provide specific information on the steel plate screed to help improve the rolling process.

本發明之一方面是在提供金屬板材頭端檢測方法與金屬板材軋延方法,其可判斷出金屬板材的翹頭量與翹頭方向,而金屬板材軋延方法則可根據此翹頭量與翹頭方向的資訊來調整軋延製程,達到提升金屬板材頭端平直度之目標。 One aspect of the present invention provides a method for detecting a tip end of a metal sheet and a method for rolling a sheet metal, which can determine the amount of tilting of the sheet metal and the direction of the head, and the method of rolling the sheet can be based on the amount of the head. Information on the direction of the squat head to adjust the rolling process to achieve the goal of improving the flatness of the head end of the sheet metal.

根據本發明之一實施例,在此金屬板材頭端檢測方法中,首先利用影像擷取裝置來擷取複數張軋輥影像。接著,對這些軋輥影像進一二值化處理,以獲得複數張二值化影像。然後,根據灰階閥值來從二值化影像中決定出板材頭端影像。接著,從板材頭端影像中定義出板材頭端區域。然後,根據板材頭端區域來決定板材頭端翹頭量以及板材頭端翹頭方向。接著,根據板材頭端翹頭量以及板材頭端翹頭方向來判斷金屬板材的頭端是否異常彎曲。 According to an embodiment of the present invention, in the method for detecting the tip end of the metal sheet, the image capturing device is first used to capture a plurality of roll images. Then, these roll images are subjected to a binarization process to obtain a plurality of binarized images. Then, based on the grayscale threshold, the image of the head end of the panel is determined from the binarized image. Next, the head end region of the panel is defined from the image of the head end of the panel. Then, according to the head end region of the sheet, the amount of the head end of the sheet and the direction of the head end of the sheet are determined. Next, it is judged whether the head end of the metal sheet is abnormally bent according to the amount of the head end of the sheet and the direction of the head end of the sheet.

根據本發明之另一實施例,在此金屬板材軋延方法中,首先利用影像擷取裝置來擷取複數張軋輥影像。接著,對這些軋輥影像進一二值化處理,以獲得複數張二值化影像。然後,根據灰階閥值來從二值化影像中決定出板材頭端影像。接著,從板材頭端影像中定義出板材頭端區域。然後,根據板材頭端區域來決定板材頭端翹頭量以 及板材頭端翹頭方向。接著,根據板材頭端翹頭量以及板材頭端翹頭方向來判斷金屬板材的頭端是否異常彎曲。然後,當金屬板材的頭端被判定為異常彎曲時,根據板材頭端翹頭量以及板材頭端翹頭方向來調整軋延製程。 According to another embodiment of the present invention, in the metal sheet rolling method, an image capturing device is first used to capture a plurality of roll images. Then, these roll images are subjected to a binarization process to obtain a plurality of binarized images. Then, based on the grayscale threshold, the image of the head end of the panel is determined from the binarized image. Next, the head end region of the panel is defined from the image of the head end of the panel. Then, according to the head end region of the sheet, the amount of head tilt of the sheet is determined. And the direction of the head end of the plate. Next, it is judged whether the head end of the metal sheet is abnormally bent according to the amount of the head end of the sheet and the direction of the head end of the sheet. Then, when the tip end of the metal sheet is judged to be abnormally bent, the rolling process is adjusted according to the amount of the head end of the sheet and the direction of the head end of the sheet.

100‧‧‧軋延系統 100‧‧‧Rolling system

110‧‧‧軋輥 110‧‧‧roll

120‧‧‧影像擷取裝置 120‧‧‧Image capture device

130‧‧‧雷射投影裝置 130‧‧‧Laser projection device

140‧‧‧電腦主機 140‧‧‧Computer host

200‧‧‧金屬板材頭端檢測方法 200‧‧‧Metal sheet end detection method

210-270‧‧‧步驟 210-270‧‧‧Steps

262-266‧‧‧步驟 262-266‧‧‧Steps

900‧‧‧離線校正步驟 900‧‧‧Offline calibration steps

910-930‧‧‧步驟 910-930‧‧‧Steps

1200‧‧‧金屬板材軋延方法 1200‧‧‧Metal sheet rolling method

1220‧‧‧步驟 1220‧‧‧Steps

CH‧‧‧凸包 CH‧‧‧ convex hull

CHO‧‧‧缺口 CHO‧‧ ‧ gap

CS‧‧‧校正尺 CS‧‧‧ calibration ruler

CO‧‧‧孔洞 CO‧‧‧ hole

L‧‧‧影像擷取裝置與板材中心之距離 L‧‧‧Image capture device and plate center distance

T‧‧‧板材厚度 T‧‧‧Sheet thickness

M‧‧‧金屬板材 M‧‧‧metal sheet

MH‧‧‧板材頭端區域 MH‧‧‧ plate head end area

MHL‧‧‧板材頭端細線 MHL‧‧‧ sheet end line

O1~O4‧‧‧影像物件 O1~O4‧‧‧Image Objects

PL‧‧‧投影光線 PL‧‧‧projection light

W‧‧‧板材寬度 W‧‧‧ plate width

x1、x2、x3‧‧‧標準位置 x 1 , x 2 , x 3 ‧‧‧ standard position

z 1z 2‧‧‧標準位置所對應的高度值 z 1 , z 2 ‧‧‧ Height values corresponding to the standard position

為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,上文特舉數個較佳實施例,並配合所附圖式,作詳細說明如下:The above and other objects, features, and advantages of the present invention will become more apparent and understood.

圖1係繪示根據本發明實施例之軋延系統的結構示意圖。 1 is a schematic structural view of a rolling system according to an embodiment of the present invention.

圖2係繪示根據本發明實施例之軋延系統所應用之金屬板材頭端檢測方法的流程示意圖。 2 is a flow chart showing a method for detecting a tip end of a metal sheet used in a rolling system according to an embodiment of the present invention.

圖3係繪示根據本發明實施例之直方統計圖。 3 is a diagram showing a histogram of a histogram according to an embodiment of the present invention.

圖4係繪示根據本發明實施例之板材頭端影像。 4 is a view showing a head end image of a sheet material according to an embodiment of the present invention.

圖5係繪示根據本發明實施例之翹頭方向判斷步驟的流程示意圖。 FIG. 5 is a flow chart showing the step of judging the direction of the tilting head according to an embodiment of the present invention.

圖6a-6d係繪示根據本發明實施例之板材頭端區域的蹺頭方向。 Figures 6a-6d illustrate the orientation of the head of the sheet end region in accordance with an embodiment of the present invention.

圖7a-7d係繪示根據本發明實施例之細線化後的板材頭端區域。 7a-7d illustrate the thinned front end regions of the panel in accordance with an embodiment of the present invention.

圖8a-8d係繪示根據本發明實施例之板材頭端區域的凸包(Convex Hull)。 8a-8d illustrate a convex envelope (Convex Hull) of a head end region of a panel according to an embodiment of the present invention.

圖9係繪示根據本發明實施例之離線校正步驟的流程示意圖。 FIG. 9 is a flow chart showing an offline calibration step according to an embodiment of the present invention.

圖10係繪示根據本發明實施例之軋輥的正面視圖。 Figure 10 is a front elevational view of a roll in accordance with an embodiment of the present invention.

圖11係繪示根據本發明實施例之校正尺取樣的示意圖。 Figure 11 is a schematic diagram showing the calibration of a calibration ruler in accordance with an embodiment of the present invention.

圖12係繪示根據本發明實施例之金屬板材軋延方法的流程示意圖。 FIG. 12 is a schematic flow chart showing a method for rolling a metal sheet according to an embodiment of the present invention.

請參照圖1,圖1係繪示根據本發明實施例之軋延系統100的結構示意圖。軋延系統100包含軋輥110、影像擷取裝置120、雷射投影裝置130以及電腦主機140。軋輥110係用以軋延金屬板材M,以將金屬板材M軋延至預設之厚度。在本實施例中,金屬板材M為鋼板,但本發明之實施例並不受限於此。影像擷取裝置120和雷射投影裝置130係設置於金屬板材M之側面,且與金屬板材M位於同一水平基準上。影像擷取裝置120係從軋輥110之側面來擷取金屬板材M被軋延的影像,以監控金屬板材M的翹頭方向和翹頭量,其中翹頭方向為朝向上方軋輥或朝向下方軋輥。電腦主機140係電性連接至影像擷取裝置120,以根據影像擷取裝置120所取得之軋輥影像來判斷金屬板材M是否彎曲。在本發明之一實施例中,軋延系統100可更包含對位雷射裝置,以方便現場人員了解目前影像擷取裝置120是否位於軋輥110表面附近。影像擷取裝置 120與對位雷射裝置裝置在同一平面上,如此可藉由目視或影像擷取裝置120的影像來觀察基準是否跑掉。然而,本發明之實施例並不受限於此。在本發明之其他實施例中,軋延系統100亦可利用其他方式來幫助影像擷取裝置120對位。 Please refer to FIG. 1. FIG. 1 is a schematic structural view of a rolling system 100 according to an embodiment of the present invention. The rolling system 100 includes a roll 110, an image capturing device 120, a laser projection device 130, and a computer host 140. The roll 110 is used to roll the sheet metal M to roll the sheet M to a predetermined thickness. In the present embodiment, the metal sheet M is a steel sheet, but the embodiment of the invention is not limited thereto. The image capturing device 120 and the laser projection device 130 are disposed on the side of the metal sheet M and on the same level as the metal sheet M. The image capturing device 120 picks up the rolled image of the metal sheet M from the side of the roll 110 to monitor the tilting direction and the amount of curling of the sheet metal M, wherein the direction of the head is toward the upper roll or toward the lower roll. The computer host 140 is electrically connected to the image capturing device 120 to determine whether the metal sheet M is bent according to the roll image obtained by the image capturing device 120. In an embodiment of the present invention, the rolling system 100 may further include an alignment laser device to facilitate field personnel to know whether the current image capturing device 120 is located near the surface of the roller 110. Image capture device 120 is on the same plane as the alignment laser device, so that the reference or the image capturing device 120 can be used to observe whether the reference is run away. However, embodiments of the invention are not limited thereto. In other embodiments of the invention, the rolling system 100 can also utilize other means to assist in the alignment of the image capturing device 120.

請參照圖2,其係繪示根據本發明實施例之軋延系統100所應用之金屬板材頭端檢測方法200的流程示意圖。在金屬板材頭端檢測方法200中,首先進行步驟210,以利用影像擷取裝置120來擷取軋輥110之多張軋輥影像。在本實施例中,影像擷取裝置120為攝影機,其係持續地從軋輥110的側面來擷取軋輥110的影像。接著,進行步驟220,以對影像擷取裝置120所擷取之軋輥影像進行二值化處理,而獲得多張二值化影像。在本實施例中,二值化處理係以大津演算法(Ostu method)來進行,但本發明之實施例並不受限於此。 Please refer to FIG. 2 , which is a schematic flow chart of a method for detecting the tip end of a metal sheet used in the rolling system 100 according to an embodiment of the invention. In the sheet metal tip end detecting method 200, step 210 is first performed to capture a plurality of roll images of the roll 110 by the image capturing device 120. In the present embodiment, the image capturing device 120 is a camera that continuously captures an image of the roll 110 from the side of the roll 110. Then, step 220 is performed to binarize the roll image captured by the image capturing device 120 to obtain a plurality of binarized images. In the present embodiment, the binarization processing is performed by the Otsu method, but the embodiment of the present invention is not limited thereto.

如圖3所示,大津演算法係針對整張軋輥影像(或影像中自定義的感興趣區域(ROI))進行直方圖(image histogram)統計,並把對應前景與背景之灰階重心差值最大的閥值定為目標閥值。如此,經過步驟220的處理後,每張二值化影像都會對應有一個目標閥值。為了加快運算速度,以下的步驟皆以感興趣區域中的影像為目標來進行,但本發明之實施例並不受限於此。 As shown in Figure 3, the Otsu algorithm performs an image histogram on the entire roll image (or a custom region of interest (ROI) in the image) and the difference between the foreground and background gray scales. The maximum threshold is set to the target threshold. Thus, after the processing of step 220, each binarized image corresponds to a target threshold. In order to speed up the operation, the following steps are all performed on the image in the region of interest, but the embodiment of the present invention is not limited thereto.

在步驟220後,接著進行步驟230,以根據預設之灰階閥值來從上述之二值化影像中決定出板材頭端影 像。步驟230係不斷的比較兩張時間連續的二值化影像來判斷目標閥值是否有明顯增大(變小)的變化,以據此判斷金屬板材M的頭端是否進到感興趣區域中。例如,針對兩張時間連續的二值化影像,判斷目標閥值由小變大或由大變小。當目標閥值隨著時間由小變大,且變化幅度超過預設之灰階閥值時,則決定時間較後的二值化影像為板材頭端影像。相反地,目標閥值隨著時間由大變小,且變化幅度超過預設之灰階閥值時,則決定時間較前的二值化影像為板材頭端影像。在本實施例中,預設灰階閥值為100灰階,但本發明之實施例並不受限於此。 After step 220, step 230 is performed to determine the head end shadow from the binarized image according to the preset gray scale threshold. image. Step 230 is to continuously compare two consecutive time binarized images to determine whether the target threshold has a significantly increased (smaller) change, thereby determining whether the head end of the metal sheet M enters the region of interest. For example, for two consecutive time binarized images, it is judged that the target threshold is changed from small to large or from large to small. When the target threshold becomes smaller from time to time and the magnitude of the change exceeds the preset grayscale threshold, then the binarized image with the later time is determined as the image of the head end of the sheet. Conversely, when the target threshold changes from large to large and the magnitude of the change exceeds the preset grayscale threshold, the binarized image with the earlier time is determined as the head end image. In the present embodiment, the preset grayscale threshold is 100 gray scales, but the embodiment of the present invention is not limited thereto.

在找到板材頭端影像後,接著進行步驟240,以於板材頭端影像中找到金屬板材M的頭端區域。在本實施例中,步驟240係利用最大面積特性來找出金屬板材M的頭端區域。如圖4所示,在板材頭端影像中可定義出四個影像物件O1~O4,其中影像物件O1具有最大的面積,故步驟240將影像物件O1定義為板材頭端區域。 After finding the image of the head end of the sheet, step 240 is performed to find the head end region of the sheet metal M in the image of the head end of the sheet. In the present embodiment, step 240 utilizes the maximum area characteristic to find the head end region of the sheet metal M. As shown in FIG. 4, four image objects O1 to O4 can be defined in the image of the head end of the sheet, wherein the image object O1 has the largest area, so step 240 defines the image object O1 as the head end region of the sheet.

在找到板材頭端區域後,接著進行步驟250,以根據板材頭端區域來決定金屬板材M的頭端翹頭量。例如,步驟250係根據影像物件O1上方邊緣的像素位置及其對應的實際高度值來獲得金屬板材M的頭端高度,以得到金屬板材M的頭端翹頭量。在本實施例中,金屬板材頭端檢測方法200可更包含離線進行的校正步驟,以獲得影像像素位置與其對應的實際高度值。此校正步驟將於本文較後面的段落中詳細介紹。 After the head end region of the sheet is found, step 250 is then performed to determine the amount of head end tilt of the sheet metal M based on the sheet end region. For example, step 250 obtains the head end height of the metal sheet M according to the pixel position of the upper edge of the image object O1 and its corresponding actual height value, to obtain the head end tilt amount of the metal sheet M. In this embodiment, the sheet metal head end detecting method 200 may further include an offline performing calibration step to obtain an image pixel position and an actual height value corresponding thereto. This correction step will be described in detail later in this article.

在獲得翹頭量後,接著進行翹頭方向判斷步驟260,以決定金屬板材M的翹頭方向。請參照圖5,其係繪示根據本發明實施例之翹頭方向判斷步驟260的流程示意圖。在翹頭方向判斷步驟260中,首先進行步驟262,以將板材頭端影像中的板材頭端區域細線化(Thinning)。一般而言,板材頭端區域MH的蹺頭方向可分為單純朝上(或朝下)、往上翹、往下翹以及往下後上翹等幾種類型,如圖6a-6d所示。為方便後續步驟對板材頭端區域MH進行處理,本實施例利用步驟262來將板材頭端區域MH細線化,以獲得板材頭端細線MHL,如圖7a-7d所示。然而,本發明之實施例並不受限於此。在本發明之其他實施例中,亦可利用骨幹化(skeltonizationing)來替代細線化。 After the amount of curl is obtained, the slanting direction determining step 260 is next performed to determine the slanting direction of the sheet metal M. Please refer to FIG. 5 , which is a flow chart of the slanting direction determining step 260 according to an embodiment of the present invention. In the slanting direction determining step 260, step 262 is first performed to thin the tip end region of the sheet in the head end image. In general, the direction of the head of the sheet head end region MH can be divided into several types such as simple upward (or downward), upward tilting, downward tilting, and downward tilting, as shown in Figures 6a-6d. . In order to facilitate the subsequent steps of processing the sheet head end region MH, this embodiment utilizes step 262 to thin the sheet head end region MH to obtain the sheet head end fine line MHL, as shown in Figures 7a-7d. However, embodiments of the invention are not limited thereto. In other embodiments of the invention, skeltonization may also be utilized in place of thinning.

接著,進行步驟264,以對細線化後的板材頭端區域MH進行凸包(Convex Hull)計算。如圖8a-8d所示。在本實施例中,步驟264在板材頭端細線MHL上建立凸包CH,如此便能藉由凸包CH來定義出缺口CHO,其中缺口CHO為板材頭端細線MHL和凸包CH所包圍的區域。接著,進行步驟266,以根據缺口CHO的面積和位置來判斷金屬板材M的翹頭方向。 Next, step 264 is performed to perform a convex hull calculation on the thinned sheet end region MH. As shown in Figures 8a-8d. In this embodiment, step 264 establishes a convex hull CH on the thin end line MHL of the sheet, so that the notch CHO can be defined by the convex hull CH, wherein the notch CHO is surrounded by the thin end line MHL and the convex hull CH. region. Next, step 266 is performed to determine the tilting direction of the metal sheet M according to the area and position of the notch CHO.

例如當缺口CHO的面積未大於預設面積閥值(例如50個影像像素)時,代表金屬板材M為單純朝上(或朝下)。更具體而言,當板材頭端細線MHL尾端的垂直標值(v軸座標值)大於板材頭端細線MHL頭端的垂直標值時,則判斷金屬板材M為單純朝上。反之,當板材頭端細線MHL尾 端的垂直標值小於板材頭端細線MHL頭端的垂直標值時,則判斷金屬板材M為單純朝下。 For example, when the area of the notch CHO is not greater than the preset area threshold (for example, 50 image pixels), it means that the metal sheet M is simply upward (or downward). More specifically, when the vertical value (v-axis coordinate value) of the tail end of the thin wire MHL of the sheet end is larger than the vertical value of the head end of the fine line MHL of the sheet end, it is judged that the metal sheet M is simply upward. Conversely, when the sheet ends are thin line MHL tail When the vertical value of the end is smaller than the vertical value of the head end of the thin line MHL of the sheet end, it is judged that the metal sheet M is simply facing downward.

又例如,當缺口CHO的面積大於預設面積閥值,且缺口CHO的位置在板材頭端細線MHL上方時,代表金屬板材M往上翹。 For another example, when the area of the notch CHO is larger than the preset area threshold, and the position of the notch CHO is above the sheet end end fine line MHL, it means that the metal sheet M is upturned.

再例如,當缺口CHO的面積大於預設面積閥值,且缺口CHO的位置在板材頭端細線MHL下方時,代表金屬板材M往下翹。另外,若是存在有兩個以上的缺口CHO,則需要再利用缺口CHO的水平座標來決定金屬板材M是往下後再上翹又或是往上後再下翹。 For another example, when the area of the notch CHO is greater than the preset area threshold, and the position of the notch CHO is below the sheet end end fine line MHL, it represents that the metal sheet M is tilted downward. In addition, if there are two or more notches CHO, it is necessary to use the horizontal coordinates of the notch CHO to determine whether the metal sheet M is up and then upturned or up and then tilted up.

在步驟266中,缺口CHO與板材頭端細線MHL的相對位置關係可利用凸包CH的垂直座標來判斷。例如,當凸包CH的垂直座標皆大於板材頭端細線MHL的垂直座標時,即代表缺口CHO的位置在板材頭端細線MHL上方。反之,當凸包CH的垂直座標皆小於板材頭端細線MHL的垂直座標時,即代表缺口CHO的位置在板材頭端細線MHL下方。 In step 266, the relative positional relationship between the notch CHO and the sheet end end fine line MHL can be judged by the vertical coordinate of the convex hull CH. For example, when the vertical coordinates of the convex hull CH are both larger than the vertical coordinates of the thin line MHL of the sheet end, the position representing the notch CHO is above the sheet end end fine line MHL. On the other hand, when the vertical coordinates of the convex hull CH are smaller than the vertical coordinates of the thin line MHL of the sheet end, the position of the notch CHO is below the thin line MHL of the sheet end.

在判斷出金屬板材M之彎曲方向後,接著進行異常判斷步驟270,以根據金屬板材M之翹頭方向以及翹頭量來判斷金屬板材M是否異常彎曲。在本實施例中,金屬板材M有些往下翹是可以被容忍的。例如,當金屬板材M被判斷為單純下翹且翹頭量未超過一預設閥值時,判斷為正常。然而,當金屬板材M被判斷為單純下翹且翹頭量超過一預設閥值時,又或是金屬板材M被判斷為其他的翹頭方向,例如 單純上翹、往上翹、往下翹、往下後再上翹、往上後再下翹等方向,則一律判斷為異常。當金屬板材M被檢測出異常後,線上人員便可根據金屬板材M的翹頭量和翹頭方向來調整軋輥110之製程參數,以改善此異常狀況。 After judging the bending direction of the metal sheet M, an abnormality judging step 270 is next performed to determine whether or not the sheet metal M is abnormally bent based on the tilting direction of the sheet metal M and the amount of warping. In the present embodiment, the metal sheet M is somewhat warped and can be tolerated. For example, when the metal sheet M is judged to be simply tilted and the amount of tilt does not exceed a predetermined threshold, it is judged to be normal. However, when the metal sheet M is judged to be simply tilted and the amount of warping exceeds a predetermined threshold, or the sheet metal M is judged to be another headwise direction, for example, Simply upturning, upturning, going down, going up and then going up, going up and then going up and down, etc., are all judged to be abnormal. When the metal sheet M is detected to be abnormal, the line personnel can adjust the process parameters of the roll 110 according to the amount of the tilt of the metal sheet M and the direction of the slanting head to improve the abnormal condition.

請參照圖9,其係繪示根據本發明實施例之離線校正步驟900的流程示意圖,其中離線校正步驟900係用以取得影像像素位置與其對應的實際高度值。在離線校正步驟900中,首先進行步驟910,以獲得像素高度的代表方程式。在計算影像像素的高度時,本實施例之步驟910會透過程控電腦來取得影像擷取裝置120與產線中心的距離L、板材的寬度值W與厚度值T等參數,以利計算影像像素的高度。如圖10所示,當金屬板材M的邊緣位置(即一半的寬度值W)位於軋輥平面上的標準位置x1或x2時,影像像素高度的代表方程式可利用迴歸計算表示如下: Please refer to FIG. 9 , which is a schematic flowchart of an offline calibration step 900 according to an embodiment of the present invention. The offline calibration step 900 is used to obtain an image pixel position and an actual height value corresponding thereto. In the offline correction step 900, step 910 is first performed to obtain a representative equation for the pixel height. When calculating the height of the image pixel, the step 910 of the embodiment may obtain the distance L between the image capturing device 120 and the center of the production line, the width value W of the sheet, and the thickness value T through the process control computer to calculate the image pixel. the height of. As shown in Fig. 10, when the edge position of the metal sheet M (i.e., the half width value W) is at the standard position x 1 or x 2 on the roll plane, the representative equation of the image pixel height can be expressed by regression calculation as follows:

其中,z 1z 2分別為標準位置x1與x2所對應的高度值,ax1ij、ax2ij為方程式係數,(u,v)為影像擷取裝置120所擷取之影像的像素座標。另外,考慮金屬板材M之半寬度(W/2)在標準位置x1與x2之間時,利用內插法來獲得對應之高度方程式如下: 其中,為位置所對應的高度值,x 1 L- W x 2 Where z 1 and z 2 are the height values corresponding to the standard positions x 1 and x 2 respectively, a x1ij and a x2ij are equation coefficients, and (u, v) is the pixel coordinates of the image captured by the image capturing device 120. . In addition, considering the half width (W/2) of the metal sheet M between the standard positions x 1 and x 2 , the corresponding height equation is obtained by interpolation as follows: among them, For location The corresponding height value, x 1 L - W x 2 .

接著,進行步驟920,以利用校正尺CS和雷射投影裝置130來取得標準位置x1與x2所對應的高度值z1和z2,如圖11所示。在步驟920中,首先將校正尺CS設置於標準位置x1或x2上,並利用雷射投影裝置130將光線投影至校正尺CS上。由於校正尺CS具有複數個孔洞CO,當雷射投影裝置130投影光線至校正尺CS時,投影光線PL便會出現於孔洞CO之間。接著,進行步驟930,以計算出上述方程式(1)和(2)中的方程式係數。在步驟930中,由於校正尺CS之孔洞CO的尺寸為已知,故可先計算出所有投影光線PL之重心的實際高度值,再找出這些實際高度值所對應的影像像素(uk,vk)。如此,當移動校正尺CS至軋輥平面上的標準位置xn(在本實施例中n=1,2),可利用最小平方法來評估實際高度值與方程式(1)和(2)的誤差,以計算出上述方程式(1)和(2)中的方程式係數,其公式如下: 其中,zk為標準位置xn以及影像像素(uk,vk)所對應的實際高度值;E xn 為誤差;a xn,00,a xn,01,a xn,10,....,a xn,pq 為係數。 Next, step 920, to scale the correction and laser projection device 130 CS acquires the standard position x 1 and x 2 corresponding to the height value z 1 and z 2, as shown in FIG. In step 920, a correction is first disposed in the standard position CS feet x 1 or x 2, and by a laser projection device 130 to correct the light projected onto the foot CS. Since the calibration ruler CS has a plurality of holes CO, when the laser projection device 130 projects light to the correction ruler CS, the projection light PL appears between the holes CO. Next, step 930 is performed to calculate the equation coefficients in the above equations (1) and (2). In step 930, since the size of the hole CO of the calibration ruler CS is known, the actual height value of the center of gravity of all the projected light beams PL can be calculated first, and then the image pixels corresponding to the actual height values (u k , v k ). Thus, when the calibration ruler CS is moved to the standard position x n on the roll plane (n=1, 2 in the present embodiment), the least square method can be used to evaluate the actual height value and the errors of equations (1) and (2). To calculate the equation coefficients in equations (1) and (2) above, the formula is as follows: Where z k is the actual height value corresponding to the standard position x n and the image pixels (u k , v k ); E xn is the error; a xn , 00 , a xn , 01 , a xn , 10 ,.... , a xn , pq is the coefficient.

由上述說明可知,本實施例之離線校正步驟900係依序將校正尺CS移至各標準位置xn上,以藉此計算出上述方程式(1)和(2)中的方程式係數,進而獲得影像像素高度的代表方程式。 As can be seen from the above description, the offline correction step 900 of the present embodiment sequentially moves the calibration ruler CS to each standard position x n to thereby calculate the coefficient of the equations in the above equations (1) and (2), thereby obtaining The representative equation of the pixel height of the image.

值得一提的是,由於本發明之實施例離線校正步驟900係利用內插法來計算標準位置x1與x2之間的像素高度值,因此在本發明之其他實施例中,亦可設定多個標準位置(例如n=1~8),以利用多個標準位置來提高像素高度值計算的準確度。 It is worth mentioning that, in the embodiment of the present invention, the offline correction step 900 uses the interpolation method to calculate the pixel height value between the standard positions x 1 and x 2 , so in other embodiments of the present invention, it may also be set. Multiple standard positions (eg, n=1~8) to utilize multiple standard positions to improve the accuracy of pixel height value calculations.

請參照圖12,其係繪示根據本發明實施例之金屬板材軋延方法1200的流程示意圖。在金屬板材軋延方法1200中,首先進行前述之金屬板材頭端檢測方法200,以找出金屬板材M之翹頭量與翹頭方向,並判斷出是否異常彎曲。若金屬板材M異常彎曲,則接著進行步驟1220,以根據金屬板材M之翹頭量與翹頭方向來調整軋延製程,例如,灑水降溫、或是改變上下軋輥的軋延參數,以使金屬板材M的頭端回復正常。金屬板材軋延方法1200可透過程控系統來自動進行,例如執行上述步驟210-270,以自動地判斷金屬板材是否異常彎曲,再進行步驟1220,以調整軋延製程來將金屬板材的頭端回復正常。 Please refer to FIG. 12 , which is a schematic flow chart of a metal sheet rolling method 1200 according to an embodiment of the invention. In the sheet metal rolling method 1200, the above-described sheet metal tip end detecting method 200 is first performed to find the amount of the head of the sheet metal M and the direction of the head, and to determine whether or not the sheet is abnormally bent. If the metal sheet M is abnormally bent, then step 1220 is performed to adjust the rolling process according to the amount of the tilting of the metal sheet M and the direction of the tilting head, for example, watering down, or changing the rolling parameters of the upper and lower rolls, so that The head end of the metal sheet M returns to normal. The sheet metal rolling method 1200 can be automatically performed through the process control system, for example, performing the above steps 210-270 to automatically determine whether the sheet metal is abnormally bent, and then performing step 1220 to adjust the rolling process to restore the head end of the metal sheet. normal.

由以上說明可知,本發明實施例之金屬板材頭端檢測方法200可判斷出金屬板材M之翹頭方向和翹頭量,而金屬板材軋延方法1200可利用此翹頭方向和翹頭量來調整軋延製程,如此可達到提升金屬板材頭端平直度之目標。 It can be seen from the above description that the metal sheet tip end detecting method 200 of the embodiment of the present invention can determine the tilting direction and the amount of tilting of the metal sheet M, and the sheet metal rolling method 1200 can utilize the tilting direction and the amount of tilting. Adjusting the rolling process, so as to achieve the goal of improving the flatness of the head end of the sheet metal.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何在此技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因 此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above by way of example, it is not intended to be construed as a limitation of the scope of the invention. because The scope of the present invention is defined by the scope of the appended claims.

200‧‧‧金屬板材頭端檢測方法 200‧‧‧Metal sheet end detection method

210-270‧‧‧步驟 210-270‧‧‧Steps

Claims (10)

一種金屬板材頭端檢測方法,以檢測一軋機上之一金屬板材的頭端是否異常彎曲,該金屬板材頭端檢測方法包含:利用一影像擷取裝置來擷取複數張軋輥影像;對該些軋輥影像進行一二值化處理,以獲得複數張二值化影像;根據一灰階閥值來從該些二值化影像中決定出一板材頭端影像;從該板材頭端影像中定義出一板材頭端區域;根據該板材頭端區域來決定一板材頭端翹頭量;根據該板材頭端區域來決定一板材頭端翹頭方向,其中該板材頭端翹頭方向係朝向一上軋輥或朝向一下軋輥;以及根據該板材頭端翹頭量以及該板材頭端翹頭方向來判斷該金屬板材的頭端是否異常彎曲。 A metal sheet head end detecting method for detecting whether a head end of a metal sheet on a rolling mill is abnormally bent, and the sheet metal head end detecting method comprises: using an image capturing device to extract a plurality of roll images; The roll image is subjected to a binarization process to obtain a plurality of binarized images; a head end image is determined from the binarized images according to a gray scale threshold; and the head end image is defined from the image a head end region of the sheet; determining a head end amount of the sheet according to the head end region of the sheet; determining a head end slanting direction according to the head end region of the sheet, wherein the head end of the sheet head is oriented upwardly Rolling or facing the next roll; and judging whether the head end of the metal sheet is abnormally bent according to the amount of the head end of the sheet and the direction of the head end of the sheet. 如請求項第1項之金屬板材頭端檢測方法,其中該二值化處理係以大津演算法(Ostu method)來進行。 The metal sheet tip end detecting method of claim 1, wherein the binarization processing is performed by an Ostu method. 如請求項第1項之金屬板材頭端檢測方法,其中定義出該板材頭端區域之該步驟包含:於該板材頭端影像中,定義出複數個物件;以及將該些物件中具有最大面積者定義為該板材頭端區域。 The method for detecting a tip end of a metal sheet according to Item 1 of the claim, wherein the step of defining a head end region of the sheet comprises: defining a plurality of objects in the image of the head end of the sheet; and having a maximum area among the objects It is defined as the head end region of the sheet. 如請求項第1項之金屬板材頭端檢測方法,更包含進行一校正步驟,以決定出該板材頭端影像之複數個像素位置所對應之複數個實際高度值,而決定該板材頭端翹頭量之該步驟根據該板材頭端區域所包含之複數個板材頭端像素以及該些實際高度值來決定出該板材頭端翹頭量。 The method for detecting the tip end of the metal sheet according to Item 1 of the claim further comprises performing a correcting step to determine a plurality of actual height values corresponding to the plurality of pixel positions of the image of the head end of the sheet, and determining the tip end of the sheet. The step of the first amount determines the amount of tilting of the head end of the sheet according to the plurality of head end pixels included in the head end region of the sheet and the actual height values. 如請求項第4項之金屬板材頭端檢測方法,其中該校正步驟包含:將一校正尺設置於該軋機之一輸送平面上,其中該校正尺具有複數個孔洞;將光線投影至該校正尺上,以於該校正尺之該些孔洞之間產生複數條投影光線;以及根據該些投影光線之重心來決定出該些像素位置所對應之該些實際高度值。 The method for detecting a tip end of a metal sheet according to Item 4, wherein the correcting step comprises: setting a calibration ruler on a conveying plane of the rolling mill, wherein the calibration ruler has a plurality of holes; projecting the light to the calibration ruler And generating a plurality of projection rays between the holes of the calibration ruler; and determining the actual height values corresponding to the pixel positions according to the center of gravity of the projection rays. 一種金屬板材軋延方法,以利用一軋機來生產一金屬板材,其中該軋延方法包含:於該軋機進行軋延時進行一金屬板材頭端檢測方法,以檢測該金屬板材的頭端是否異常彎曲,其中該金屬板材頭端檢測方法包含:利用一影像擷取裝置來擷取複數張軋輥影像;對該些軋輥影像進行一二值化處理,以獲得複數張二值化影像;根據一灰階閥值來從該些二值化影像中決定出一板材頭端影像; 從該板材頭端影像中定義出一板材頭端區域;根據該板材頭端區域來決定一板材頭端翹頭量;根據該板材頭端區域來決定一板材頭端翹頭方向,其中該板材頭端翹頭方向係朝向一上軋輥或朝向一下軋輥;以及根據該板材頭端翹頭量以及該板材頭端翹頭方向來判斷該金屬板材的頭端是否異常彎曲;以及當該金屬板材的頭端被判定為異常彎曲時,根據該板材頭端翹頭量以及該板材頭端翹頭方向來調整軋延製程。 A sheet metal rolling method for producing a metal sheet by using a rolling mill, wherein the rolling method comprises: performing a rolling delay on the rolling mill to perform a metal sheet head end detecting method to detect whether the head end of the metal sheet is abnormally bent The method for detecting the head end of the metal sheet comprises: using an image capturing device to capture a plurality of image of the roll; performing a binarization process on the roll images to obtain a plurality of binarized images; a threshold to determine a head end image from the binarized images; Defining a head end region from the head end image of the sheet; determining a head end amount of the sheet according to the head end region of the sheet; determining a head end slanting direction according to the head end region of the sheet, wherein the sheet The head end slanting direction is toward an upper roll or toward a lower roll; and determining whether the head end of the metal plate is abnormally bent according to the amount of the head end of the plate and the direction of the head end of the plate; and when the metal plate is When the head end is judged to be abnormally bent, the rolling process is adjusted according to the amount of the head end of the sheet and the direction of the head end of the sheet. 如請求項第6項之金屬板材軋延方法,其中該二值化處理係以大津演算法(Ostu method)來進行。 The sheet metal rolling method of claim 6, wherein the binarization treatment is performed by an Ostu method. 如請求項第6項之金屬板材軋延方法,其中定義出該板材頭端區域之該步驟包含:於該板材頭端影像中,定義出複數個物件;以及將該些物件中具有最大面積者定義為該板材頭端區域。 The metal sheet rolling method of claim 6, wherein the step of defining the head end region of the sheet comprises: defining a plurality of objects in the image of the head end of the sheet; and having the largest area among the objects Defined as the head end region of the sheet. 如請求項第6項之金屬板材軋延方法,更包含進行一校正步驟,以決定出該板材頭端影像之複數個像素位置所對應之複數個實際高度值,而決定該板材頭端翹頭量之該步驟根據該板材頭端區域所包含之複數個板材頭端像素以及該些實際高度值來決定出該板材頭端翹頭量。 The metal sheet rolling method of claim 6 further includes performing a correcting step to determine a plurality of actual height values corresponding to a plurality of pixel positions of the head end image of the sheet, and determining the head end of the sheet The step of determining the amount of tilting of the head end of the sheet is determined according to a plurality of panel head end pixels included in the head end region of the sheet and the actual height values. 如請求項第9項之金屬板材軋延方法,其中該校正步驟包含:將一校正尺設置於該軋機之一輸送平面上,其中該校正尺具有複數個孔洞;將光線投影至該校正尺上,以於該校正尺之該些孔洞之間產生複數條投影光線;以及根據該些投影光線之重心來決定出該些像素位置所對應之該些實際高度值。 The sheet metal rolling method of claim 9, wherein the correcting step comprises: setting a calibration ruler on a conveying plane of the rolling mill, wherein the calibration ruler has a plurality of holes; projecting light onto the calibration ruler And generating a plurality of projection rays between the holes of the calibration ruler; and determining the actual height values corresponding to the pixel positions according to the center of gravity of the projection rays.
TW103141627A 2014-12-01 2014-12-01 Method for checking a terminal of a metal plate and a rolling method using the same TWI533950B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103141627A TWI533950B (en) 2014-12-01 2014-12-01 Method for checking a terminal of a metal plate and a rolling method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103141627A TWI533950B (en) 2014-12-01 2014-12-01 Method for checking a terminal of a metal plate and a rolling method using the same

Publications (2)

Publication Number Publication Date
TWI533950B true TWI533950B (en) 2016-05-21
TW201620632A TW201620632A (en) 2016-06-16

Family

ID=56509309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103141627A TWI533950B (en) 2014-12-01 2014-12-01 Method for checking a terminal of a metal plate and a rolling method using the same

Country Status (1)

Country Link
TW (1) TWI533950B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233196B1 (en) 2017-01-31 2021-03-26 제이에프이 스틸 가부시키가이샤 Steel shape measurement device and steel shape correction device
TWI767380B (en) * 2020-10-28 2022-06-11 中國鋼鐵股份有限公司 Rolling system

Also Published As

Publication number Publication date
TW201620632A (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP4821934B1 (en) Three-dimensional shape measuring apparatus and robot system
WO2017113559A1 (en) Method and device for controlling camera and financial equipment terminal
TWI494538B (en) System and method for measuring an object
RU2562413C2 (en) Method and system identifying and determining geometrical, spatial and position characteristics of products transported by continuously acting conveyor, in particular unmachined, coarse profiled, coarse machined or partially machined steel products
WO1994027756A1 (en) Angle of bend detector and straight line extractor used therefor, and angle of bend detecting position setting apparatus
CN113188484B (en) Method for detecting outline area of head of hot-rolled coil
JP5494566B2 (en) Defect detection method for steel
JP4896828B2 (en) Shape detection method and shape detection apparatus
CN113513991B (en) Battery pole piece burr height detection method and device
TWI533950B (en) Method for checking a terminal of a metal plate and a rolling method using the same
KR101726061B1 (en) Apparatus for measuring strip position, apparatus for controlling strip deviation and method for calculating strip deviation
CN115384052A (en) Intelligent laminating machine automatic control system
JP5849397B2 (en) Surface defect detection device and surface defect detection method
TWI566848B (en) Error detection method for detecting a steel strip tail
JPH11125514A (en) Bending angle detecting device
JP2002310618A (en) Size measurement device, size measurement method and inspection device for electronic component
JP5760462B2 (en) Tail-end crop detection device
KR101290424B1 (en) Apparatus for measuring warp and camber of rolled material using thermal image and controlling method therefor
JP6344290B2 (en) Planar shape measuring device
TWI362301B (en)
JP6837723B2 (en) Plane shape measuring device
KR101640563B1 (en) Method and system for dectecting run
TWI711801B (en) Method for detecting the position of holes in strip product
CN112837285A (en) Edge detection method and device for panel image
JP6580723B2 (en) Steel plate shape straightening device and shape straightening method