TWI533249B - 產生項目建議的方法和系統以及非臨時性介質 - Google Patents

產生項目建議的方法和系統以及非臨時性介質 Download PDF

Info

Publication number
TWI533249B
TWI533249B TW103120035A TW103120035A TWI533249B TW I533249 B TWI533249 B TW I533249B TW 103120035 A TW103120035 A TW 103120035A TW 103120035 A TW103120035 A TW 103120035A TW I533249 B TWI533249 B TW I533249B
Authority
TW
Taiwan
Prior art keywords
benefit
items
consumer
determining
value
Prior art date
Application number
TW103120035A
Other languages
English (en)
Other versions
TW201525911A (zh
Inventor
鄭光宏
林順傑
蔡煥文
林建國
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Publication of TW201525911A publication Critical patent/TW201525911A/zh
Application granted granted Critical
Publication of TWI533249B publication Critical patent/TWI533249B/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Description

產生項目建議的方法和系統以及非臨時性介質
本揭露係關於一種產生項目建議的方法和系統以及非臨時性介質。
隨著電子商務的發展,產品的購買和銷售可經由電子系統在網際網路和電腦網路上進行,包含線上零售商、產品供應商及消費者等多種角色。例如一線上零售商提供一個網站,來作為產品供應商(例如製造商)銷售產品給消費者的一平台。一般來說,產品供應商管理他們在網站上銷售的產品,消費者從該網站瀏覽與購買產品,以及線上零售商執行網站上產品銷售策略的維護。
當線上零售商於網站提供了大量的產品時,消費者可能難以在網站找到該消費者想要購買的商品。為了方便消費者從網站上購買產品,線上零售商通常會利用產品建議系統,提供一或多個產品建議以供消費者參考。
傳統的產品建議系統通常僅根據上述一個商業交易的角色的效益來產生產品建議。例如,傳統的產品建議系統可能僅根據改善消費者的購買體驗來產生產品建議,使得所產生的產品建議具有高命中率。又例如,傳統的產品建議系統可能僅根據供應商的利潤最大化來產生產品建議。
本揭露實施例可提供關於一種產生項目建議的方法和系統。
所揭露的一實施例是關於提供產生項目建議的系統的方法,包括:針對多個角色的每一角色(role),決定多個項目的每一項目的參考效益值(reference utility value);將該些角色的每一角色所決定的該些參考效益值進行一標準化(normalization);根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值(aggregate utility value);並且根據該些統合效益值來決定用以建議的項目的一或多種組合。
所揭露的另一實施例是關於一種產生項目建議的系統,包括:一處理器,以及用於儲存可由該處理器執行的指令的一記憶體,其中該處理器被配置為:針對多個角色的每一角色,決定多個項目的每一項目的參考效益值;將該些角 色的每一角色所決定的該些參考效益值進行一標準化;根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;並且根據該些統合效益值來決定用以建議的項目的一或多種組合。
所揭露的又一實施例是關於一種非臨時性介質(non-transitory medium)包括由一處理器執行的指令,用於執行一項目建議的方法,該方法包括:針對多個角色的每一角色,決定多個項目的每一項目的參考效益值;將該些角色的每一角色所決定的該些參考效益值進行一標準化;根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;並且根據該些統合效益值來決定用以建議的項目的一或多種組合。
所揭露的又一實施例是關於一種產生項目建議的系統,包括:一資料庫,被配置為儲存多個效益模型(utility model)和消費者資料;一效益模型管理模組(utility model management module),被配置為針對多個角色的每一角色,根據該些效益模型來決定多個項目的每一項目的參考效益值;一效益統合模組(utility aggregating module),被配置為將所決定的該些參考效益值進行一標準化;並且根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目 的每一項目的統合效益值;以及一高效益模式探勘模組(high utility pattern mining module),被配置為根據該些統合效益值來決定用以建議的項目的一或多種組合。
茲配合下列圖示、實施例之詳細說明及申請專利範圍,將上述及本揭露之其他優點詳述於後。
100‧‧‧提供項目建議系統的方法
102‧‧‧步驟
104‧‧‧步驟
106‧‧‧步驟
108‧‧‧步驟
302‧‧‧步驟
304‧‧‧步驟
306‧‧‧步驟
308‧‧‧步驟
402‧‧‧候選項目
404‧‧‧代表項目
406‧‧‧項目的一或多種組合
500‧‧‧系統
502‧‧‧資料庫
504‧‧‧效益模型管理模組
506‧‧‧效益統合模組
508‧‧‧高效益模式探勘模組
510‧‧‧匹配和篩選模組
512‧‧‧建議模組
600‧‧‧系統
602‧‧‧處理器
604‧‧‧隨機存取記憶體
606‧‧‧唯讀記憶體
608‧‧‧儲存器
610‧‧‧輸入/輸出裝置
612‧‧‧界面
第一圖是根據本揭露一實施範例之一種提供項目建議系統的方法流程圖。
第二圖是根據本揭露一實施範例之一個兩階段的高效益模式探勘演算法。
第三圖是根據本揭露一實施範例之一種提供項目建議的系統的方法流程圖。
第四圖是一示意圖,說明使用第三圖中方法提供項目建議的一實施例。
第五圖是根據本揭露一實施範例之一個提供項目建議的系統方塊圖。
第六圖是一方塊示意圖,說明提供項目建議系統的一實施例。
以下,參考伴隨的圖示,詳細說明依據本揭露的實施例,俾使本領域者易於瞭解。所述之發明創意可以採用多種變化的實施方式,當不能只限定於這些實施例。本揭露省略已熟知部分的描述,並且相同的參考號於本揭露中代表相同的元件。
本揭露實施範例中,提供了一種方法和系統,根據商業交易中的多個角色的每一角色的效益以產生項目建議。為了說明的方便,假設在本掲露的多個角色是供應商,消費者和提供供應商和消費者之間的商業交易平台的一媒介者,例如一個線上(online)零售商。
本揭露所使用的術語“項目”(item)可以是任何產品,商品,服務,存貨,以及泛指任何可以被交易的物件,包括例如電子產品、汽車、房地產、出租品、拍賣品,任何商品種類或類似的項目。服務的例子包括,但不限於會計、汽車修理、房屋清潔、法律、旅遊或程式設計等。
本揭露所使用的術語“供應商”(supplier)可以是提供項目的任何一方,例如一製造商、一零售商、一分銷商、一服務供應商、或一汽車租賃公司等。
本揭露所使用的術語“消費者”(consumer)可以是購買或租用一項目的任何一方,例如一個人、一間公司等。
第一圖是根據本揭露一實施範例之一種提供項目建議系統的方法100的流程圖。參考第一圖,此系統針對多個角色的每一角色,決定多個項目的每一項目的參考效益值(第一圖102)。
在實施範例中,此系統針對多個項目的每一項目,使用一或多個消費者效益模型來決定第一參考效益值。消費者效益模型通常是以一個方程式來實現的一種方法,以計算一項目對於一消費者的一效益值。在說明的實施範例中,此系統使用以下消費者效益模型來計算消費者的一第一參考效益值:Utilityconsumer(i)=q(i)*(a* eb*(-Price(i))) 方程式(1)。
在方程式(1)中,“i”表示多個項目中項目i的索引;“Utilityconsumer(i)”表示項目i的一計算後的參考效益值,“price(i)”表示項目i的一價格;“q(i)”代表在一預定的時間內(例如最近一個月)所出售項目的數量;“e”代表一個指數函數;以及“a”和“b”為預定值。例如“a”可以在一數值區間(如[0,1])被指定為一個預定值以表示消費者關心價格的程度,以及“b”可以在一數值區間(如[0,1])被指定為一個預定值以表示消費者對價格變化敏感的程度。
在一實施範例中,該系統根據一或多個消費者效益模型(例如根據一消費者需要一項目的概率(probability)所決定的一效益模型或基於一項目評價(item review)的一效益模型)來計算第一參考效益值。例如此系統將一預設時間內出售一項目的數量除以在此預設時 間內出售的所有項目的數量所計算出來的比例,作為消費者需要此項目的概率,並且使用此概率作為該項目的參考效益值。又例如系統根據項目的評價分數(review scores)來決定該項目的參考效益值。在一實施範例中,此系統針對每一項目,根據多個消費者效益模型的每一消費者效益模型,來計算此項目的多個消費者效益值。並且進一步根據所計算的每一項目的多個消費者效益值來計算每一項目的第一參考效益值,例如對所計算的消費者效益值進行一加權相加(weighted summation)。
在實施範例中,此系統根據儲存在系統的資料庫中的多個項目的一評價或購買歷史,來預先決定a和b的值。例如如果評價或購買歷史指出,一或多個項目收到的評價是在評論價格昂貴時,系統預先決定a為一比較高的值。還例如如果評價或購買歷史指出,一或多個項目在價格下降之後銷售額顯著增加,系統預先決定b為一相對高的值。當多個項目的評價或購買記錄被更新時,此系統可隨後調整a和b的值。
在實施範例中,此系統使用一個或多個供應商的效益模型來決定(例如計算)多個項目的每一項目的第二參考效益值。一個供應商效益模型通常是以一個方程式來實現的方法,以計算一項目對於供應商的一效益值。在說明的實施範例中,此系統使用以下供應商效益模型來計算供應商的第二參考效益值:Utilitysupplier(i)=q(i)* p(i) 方程式(2)。
在方程式(2)中,“i”表示多個項目中項目i的索引;“Utilitysupplier(i)”表示所計算的項目i的參考效益值;“q(i)”代表項目i最近已售出的數量;以及“p(i)”代表每個項目i售出的利潤。
在一實施範例中,此系統根據一或多個供應商的效益模型(例如基於項目賺取利潤所決定的一效益模型或基於項目的銷售狀況的一效益模型)來計算第二參考效益值。例如此系統經由計算一項目的銷售價格和項目的成本之間的差值來決定該項目的利潤,並使用所決定的利潤作為項目的參考效益值。又例如,如果項目是折價銷售或清倉拍賣時,系統設定此項目有很高的參考效益值。在一個實施範例中,系統針對每一項目,根據多個供應商效益模型的每一供應商效益模型,計算此項目的多個供應商效益值,並進一步根據所計算出的每一項目的多個供應商效益值(例如對所計算的多個供應商效益值進行一加權相加)來決定每一項目的第二參考效益值。
在實施範例中,系統使用媒介者效益模型來決定(例如計算)多個項目中每一項目的第三參考效益值。媒介者效益模型通常是以一個方程式來實現的方法,以計算一項目對於媒介者的一效益值。在說明的實施範例中,此系統使用以下媒介者效益模型來計算網路商店的第三參考效益值:Utilityintermediary(i)=q(i)* cp(i)* return(i) 方程式(3)。
在方程式(3)中,“i”代表多個項目中項目i的索引;“Utilityintermediary(i)”表示所計算的項目i的參考效益值;“q(i)” 代表項目i最近已售出的數量;“cp(i)”是一個預定值,表示消費者對項目i的整體喜好程度;以及“return(i)”表示媒介者收到銷售項目i的每一銷售佣金。
在一實施例中,系統根據一或多個媒介者效益模型(例如基於一佣金的效益模型或一基於廣告收入的效益模型)來計算第三參考效益值。例如系統以媒介者的項目銷售佣金作為此項目的參考效益值。還例如系統以該項目的廣告收入作為該項目的參考效益值。在一實施範例中,此系統針對每一項目,根據多個媒介者效益模型的每一媒介者效益模型,來計算此項目的多個媒介者效益值,並且進一步根據所計算的每一項目的多個媒介者效益值(例如對所計算的多個媒介者效益值進行一加權相加)來決定每一項目的第三參考效益值。
在實施範例中,該系統進一步將由消費者效益決定的第一參考效益值,由供應商效益決定的第二參考效益值,以及由媒介者效益決定的第三參考效益值執行標準化(第一圖104),使得標準化的第一參考效益值,標準化的第二參考效益值和標準化的第三參考效益值是在一個相同值的範圍,例如從0到1。在一實施範例中,系統可使用一標準化演算法執行如下標準化:
在方程式(4)中,“X”表示為由消費者效益模型所計算出的多個項目的第一參考效益值,或由供應商效益模型所計算出的多個項目的第二參考效益值,或由媒介者效益模型所計算出的多個項目的第三參考效益值;“x”表示在X中的各個參考效益值,即項目x的參考效益值,“avg(X)”表示X的平均值,“min(X)”代表X的最小值;以及“max(X)”表示X的最大值。例如,當“X”表示為由消費者效益模型所計算出的多個項目的第一參考效益值,則“avg(X)”表示該些項目第一參考效益值的平均值;“min(X)”代表該些項目第一參考效益值的最小值;以及“max(X)”是該些項目第一參考效益值的最大值。在實施範例的說明中,根據方程式(4),系統為消費者計算出第一標準化參考效益值,為供應商計算出第二標準化參考效益值,以及為媒介者計算出第三標準化參考效益值。
在實施範例中,系統還根據第一,第二和第三參考效益值,使用一加權的方法為多個項目的每一項目決定(例如計算出)一統合效益值(第一圖106)。例如系統計算統合效益值如下所示:Utilityaggregate(i)=α *Norm(Utilityconsumer(i))+β * Norm(Utilitysupplier(i))+γ *Norm(Utilityintermediary(i)) 方程式(5)。
在方程式(5)中,“i”表示多個項目中項目i的索引,“Utilityaggregate(i)”表示所計算的項目i的統合效益值;“Norm(Utilityconsumer(i))”表示根據方程式(4)所決定的項目i對於消費者的標準化參考效益值;“Norm(Utilitysupplier(i))”表示根據方程式(4)所決定的項目i對於供應商的標準化參考效益值;“Norm (Utilityintermediary(i))”表示根據方程式(4)所決定的項目i對於媒介者的標準化參考效益值;以及“α”,“β”和“γ”是預定的權重,例如,該系統可以分別為“α”,“β”和“γ”於數值區間[0,1]指定初始值,並且當系統的資料庫被更新時動態調整其值。
在實施範例中,系統進一步根據多個項目的每一項目的統合效益值,使用一資料探勘演算法來決定用以建議的項目的一或多種組合(第一圖108),例如第二圖中所示的高效益模式探勘演算法200。在第二圖中,“T”代表一交易,“u(i,T)”代表交易中的所有項目i的統合效益值,“tu(T)”表示交易中的所有項目的統合效益值的總合,“TWU(X)”代表了系統的資料庫中一預定交易次數(例如全部交易)裡所有包含項目X的交易的tu總合而成的估計效益值。
例如,假設預定交易次數是一第一交易T1,一第二交易T2和一第三交易T3,如下所示:T1:{3個項目A,3個項目B,1個項目C};T2:{1個項目D,2個項目E,2個項目C};以及T3:{2個項目A,3個項目D,2個項目C}。
也假設使用方程式(5),為項目A,項目B,項目C,項目D和項目E所計算的統合效益值如下:項目A:10;項目B:50; 項目C:20;項目D:20;以及項目E:30。
作為計算u(i,T)的一個例子,第一交易的項目A的統合效益值是u(項目A,T1)=10 * 3=30。
作為計算tu(T)的一個例子,第一交易T1的所有項目的統合效益值的總和是tu(T1)=10 * 3+50 * 3+20 * 1=200,以及第三交易T3的所有項目的統合效益值的總和是tu(T3)=10 * 2+20 * 3+20 * 2=120。
作為計算TWU(X)的一個例子,在預定的交易中項目A估計效益值是TWU(項目A)=tu(T1)+tu(T3)=200+120=320。
因此,根據高效益模式探勘演算法200,系統決定用以建議的項目的一或多種組合。
第三圖是根據本揭露的一實施範例的一流程圖,說明一種提供項目建議的系統的方法300。參考第三圖,對正在考慮從線上零售商(網站)採購的消費者,系統通過識別符合消費者需要的項目來決定作為建議的候選項目(candidate item)(302)。該系統並核對瀏覽或購買歷史,例如消費者的個人資料,決定由消費者正在或曾經瀏覽或購買的項目作為消費者的代表項目(304)。該系統還根據使用方法100(第一圖)計算出的候選項目的統合效益值,使用方法200(第 二圖)來決定項目的一或多種組合,並且從候選項目中選出與任一代表項目屬於同一組合的一或多個項目(306)。然後,系統會依據建議分數來排序選出的一或多個項目,並依據一或多個項目之排序產生項目建議(308)。例如系統分別使用所選出的項目的統合效益值作為他們的建議分數(recommendation score)。在一實施範例中,系統並不選出與任一代表項目屬於同一組合的一或多個項目,例如因為消費者是一個新的消費者。因此系統選出在一或多種組合中的所有項目,並根據他們的統合效益值來排序項目以產生項目建議。
第四圖是說明使用方法300(第三圖)的系統以提供一種項目建議之實施例的一示意圖。在說明的實施範例中,假設媒介者是一個線上零售商,以及一個消費者從線上零售商購買電子產品。
參考第三圖和第四圖,當消費者選擇例如線上零售商網站的“電子產品”選項,系統可以從線上零售商的電子產品決定候選項目402來建議給消費者(302)。系統還檢查一瀏覽或購買歷史,例如消費者的個人資料,並且決定消費者正在或曾經瀏覽或購買的項目作為代表項目404(304),例如一相機和一相機閃光燈。系統還根據候選項目402的統合效益值決定項目的一或多種組合406,如上述,並且從候選項目中選出與任一代表項目404屬於同一組合406的一或多個項目(306)。其結果是,在說明的實施範例中,系統選出相機鏡頭,相機濾鏡,和相機三腳架來建議給消費者。然後,系統會依據建議分數排序所選出的項目和產生項目建議(308)。例如,系統分別使用相機鏡頭,相機濾鏡和相機三腳架的統合效益值作為他們的建議分數。
第五圖是根據本揭露的一實施範例的一方塊示意圖,說明一個提供項目建議的系統。參考第五圖,系統500包括用於儲存一資料庫502的一記憶體,一效益模型管理模組(utility model manager module)504,一效益統合模組506,以及一高效益模式探勘模組508。系統500還包括一匹配和篩選模組(matching and filtering module)510,以及一建議模組512。
在實施範例中,資料庫502儲存資料,以供系統500使用,如消費者的個人資料、多個效益模型和項目資料,項目資料包括例如項目的一瀏覽或購買與評價紀錄、價格和關於項目的利潤資料等等。
在實施範例中,效益模型管理模組504分別決定多個角色的每一角色的多個項目的每一項目的參考效益值,如上述第一圖(102)所描述。效益統合模組506將消費者的第一參考效益值,供應商的第二參考效益值和媒介者的第三參考效益值進行標準化,並進一步使用一加權方法為多個項目的每一項目決定統合效益值,如上述第一圖(104和106)所描述。高效益模式探勘模組508還根據多個項目的每一項目的統合效益值,使用資料探勘演算法以決定用以建議的項目的一或多種組合,如上述第一圖(108)所描述。
在實施範例中,匹配和篩選模組510對正在考慮從線上零售商(網站)採購的消費者,通過識別符合消費者需要的項目來決定作為建議的候選項目,如上述第三圖(302)所描述。例如當消費者從客 戶端(client terminal),例如一電腦或一移動終端,於線上零售商的網站上選擇“電子產品”選項時,匹配和篩選模組510識別一個來自消費者之瀏覽電子產品的請求。匹配和篩選模組510還檢查瀏覽或購買與評價歷史,例如,儲存在資料庫502的消費者的個人資料,並且決定由消費者正在或曾經瀏覽或購買的項目作為消費者的代表項目,如上述第三圖(304)所描述。建議模組(recommendation module)512從該候選項目獲取項目的一或多種組合,這是由高效益模式探勘模組508決定的,並且選出與任一代表項目屬於同一組合的一或多個項目,如上述第三圖(306)所描述。然後建議模組512依據建議分數排序所選出的項目,並且產生項目建議,如上述第三圖(308)所描述。
在一實施範例中,在系統500接收到來自消費者的請求之前,效益模型管理模組504、效益統合模組506,以及高效益模式探勘模組508自動或人工操作執行以決定項目的一或多個組合,以及在資料庫502儲存所決定的一或多個組合。當系統500從消費者接收請求時,建議模組512檢查資料庫502中所決定的一或多個的組合。在一實施範例中,在系統500從消費者接收請求時,效益模型管理模組504、效益統合模組506,以及高效益模式探勘模組508方決定項目的一個或多種組合。
第六圖是根據本揭露的一實施範例,說明一個提供項目建議系統的方塊圖。例如系統600可以是一伺服器或一個人電腦。參考第六圖,系統600可以包括一或多個下述組件:被配置為執行上述建議方法的程序指令的一處理器602,配置為存取和儲存資料以及程 序指令的一隨機存取記憶體(RAM)604和唯讀記憶體(ROM)606,以及儲存資料(例如表格、列表或其它資料結構)的儲存器608、輸入/輸出裝置610、以及界面612等等。
在實施範例中還提供了一個非臨時性儲存介質,包含了系統600中處理器602可執行的指令,以用於執行上述的建議方法。
在一實施範例中,上述方法和系統用於提供一個工作建議。在實施範例中,求職者是消費者,雇主是供應商,提供求職者和雇主之間的通信平台的一個網站是媒介者,並且每一有效的工作職位是項目。在實施範例中,一項目的相對於消費者的參考效益值是根據於一個工作職位的工資或求職者的家庭和工作場所之間的距離來決定的,一項目的相對於供應商的參考效益值是根據找工作職位的求職者數量或工作職位的職級水準來決定的,以及一項目的相對於媒介者的參考效益值是根據於網站上提供一工作職位的佣金或廣告收入來決定的。
以上所述者皆僅為本揭露實施例,不能依此限定本揭露實施之範圍。大凡本發明申請專利範圍所作之均等變化與修飾,皆應屬於本發明專利涵蓋之範圍。
100‧‧‧提供項目建議系統的方法
102、104、106、108‧‧‧步驟

Claims (40)

  1. 一種產生一項目建議系統的方法,包括:針對多個角色的每一角色,決定多個項目的每一項目的參考效益值;將該些角色的每一角色所決定的該些參考效益值進行一標準化;根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;並且根據該些統合效益值來決定用以建議的項目的一或多種組合,其中該些角色包括一供應商、一消費者及一媒介者。
  2. 如申請專利範圍第1項所述之方法,其中該些角色的每一角色的該些參考效益值的該決定包括:針對該消費者,根據一或多個消費者效益模型來決定該些項目的每一項目的一第一參考效益值;針對該供應商,根據一或多個供應商效益模型來決定該些項目的每一項目的一第二參考效益值;以及針對該媒介者,根據一或多個媒介者效益模型來決定該些項目的每一項目的一第三參考效益值。
  3. 如申請專利範圍第2項所述之方法,其中該些第一參考效益值的該決定包括:根據該消費者需要一項目的概率所決定的一第一效益模型或基於一項目評價的第二效益模型的其中至少之一,來決定該些第一參考效益值。
  4. 如申請專利範圍第2項所述之方法,其中該些第二參考效益值的該決定包括:根據該供應商的利潤所決定的一第一效益模型或基於一項目的一銷售狀況的一第二效益模型的其中至少之一,來決定該些第二參考效益值。
  5. 如申請專利範圍第2項所述之方法,其中該些第三參考效益值的該決定包括:對一線上零售商,決定該些第三參考效益值。
  6. 如申請專利範圍第5項所述之方法,其中針對該線上零售商,該些第三參考效益值的該決定包括:根據基於一佣金的一第一效益模型或基於廣告收入的一第二效益模型的其中至少之一,來決定該些第三參考效益值。
  7. 如申請專利範圍第1項所述之方法,其中該些統合效益值的該決定包括:將針對該些角色的每一角色所決定的該些標準化參考效益值,應用一加權方法來計算該些統合效益值。
  8. 如申請專利範圍第1項所述之方法,其中該用以建議的項目的一或多種組合的該決定包括:使用一高效益模式探勘演算法來決定該用以建議的項目的一或多種組合。
  9. 如申請專利範圍第1項所述之方法,還包括:產生一項目建議,該項目建議包括該決定的一或多種組合中的一或多個項目。
  10. 如申請專利範圍第9項所述之方法,其中產生該項目建議包括:挑出該一或多個項目。
  11. 如申請專利範圍第9項所述之方法,其中該項目建議的該產生包括:根據來自該消費者的一請求來決定多個候選項目;根據關於該消費者資料來決定該消費者的多個代表項目;以及從該些候選項目中選出與任一代表項目屬於同一組合的一或多個項目,作為該項目建議所包括的該一或多個項目。
  12. 如申請專利範圍第11項所述之方法,其中該些代表項目的該決定包括:將該消費者曾經瀏覽或購買的多個項目決定成為該些代表項目。
  13. 一種產生一項目建議的系統,包括:一處理器,以及用於儲存可由該處理器執行的指令的一記憶體,其中該處理器被配置為:針對多個角色的每一角色,決定多個項目的每一項目的參考效益值;將該些角色的每一角色所決定的該些參考效益值進行一標準化;根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;並且 根據該些統合效益值來決定用以建議的項目的一或多種組合,其中該些角色包括一供應商、一消費者及一媒介者。
  14. 如申請專利範圍第13項所述之系統,其中該處理器還被配置為:針對該消費者,根據一或多個消費者效益模型來決定該些項目的每一項目的一第一參考效益值;針對該供應商,根據一或多個供應商效益模型來決定該些項目的每一項目的一第二參考效益值;以及針對該媒介者,根據一或多個媒介者效益模型來決定該些項目的每一項目的一第三參考效益值。
  15. 如申請專利範圍第14項所述之系統,其中該處理器還被配置為:根據該消費者需要一項目的概率所決定的一第一效益模型或基於一項目評價的第二效益模型的其中至少之一,來決定該些第一參考效益值。
  16. 如申請專利範圍第14項所述之系統,其中該處理器還被配置為:根據該供應商的利潤所決定的一第一效益模型或基於一項目的一銷售狀況的一第二效益模型的其中至少之一,來決定該些第二參考效益值。
  17. 如申請專利範圍第14項所述之系統,其中該處理器還被配置為:針對一線上零售商,決定該些第三參考效益值。
  18. 如申請專利範圍第17項所述之系統,其中該處理器還被配置為:根據基於一佣金的一第一效益模型或基於廣告收入的一第二效益模型的其中至少之一,來決定該些第三參考效益值。
  19. 如申請專利範圍第13項所述之系統,其中該處理器還被配置為:將針對該些角色的每一角色所決定的該些標準化參考效益值,應用一加權方法來計算該些統合效益值。
  20. 如申請專利範圍第13項所述之系統,其中該處理器還被配置為:使用一高效益模式探勘演算法來決定該用以建議的項目的一或多種組合。
  21. 如申請專利範圍第13項所述之系統,其中該處理器還被配置為:產生一項目建議,該項目建議包括該決定的一或多種組合中的一或多個項目。
  22. 如申請專利範圍第21項所述之系統,其中該處理器還被配置為:在產生該項目建議之前,挑出該一或多個項目。
  23. 如申請專利範圍第21項所述之系統,其中該處理器還被配置為:根據來自該消費者的一請求決定多個候選項目;根據關於該消費者資料決定該消費者的多個代表項目;以及 從該些候選項目中選出與任一代表項目屬於同一組合的一或多個項目,作為該產生的項目建議所包括的該一或多個項目。
  24. 如申請專利範圍第23項所述之系統,其中該處理器還被配置為:將該消費者曾經瀏覽或購買的多個項目決定成為該些代表項目。
  25. 一種非臨時性介質包括由一處理器執行的指令,用於執行一項目建議的方法,該方法包括:針對多個角色的每一角色,決定多個項目的每一項目的參考效益值;將該些角色的每一角色所決定的該些參考效益值進行一標準化;根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;並且根據該些統合效益值來決定用以建議的項目的一或多種組合,其中該些角色包括一供應商、一消費者及一媒介者。
  26. 如申請專利範圍第25項所述之非臨時性介質,其中該些角色的每一角色的該些參考效益值的該決定包括:針對該消費者,根據一或多個消費者效益模型來決定該些項目的每一項目的一第一參考效益值;針對該供應商,根據一或多個供應商效益模型來決定該些項目的每一項目的一第二參考效益值;以及 針對該媒介者,根據一或多個媒介者效益模型來決定該些項目的每一項目的一第三參考效益值。
  27. 如申請專利範圍第26項所述之非臨時性介質,其中該些第一參考效益值的該決定包括:根據該消費者需要一項目的概率所決定的一第一效益模型或基於一項目評價的第二效益模型的其中至少之一,來決定該些第一參考效益值。
  28. 如申請專利範圍第26項所述之非臨時性介質,其中該些第二參考效益值的該決定包括:根據該供應商的利潤所決定的一第一效益模型或基於項目的一銷售狀況的一第二效益模型的其中至少之一,來決定該些第二參考效益值。
  29. 如申請專利範圍第26項所述之非臨時性介質,其中該些第三參考效益值的該決定包括:對一線上零售商,決定該些第三參考效益值。
  30. 如申請專利範圍第29項所述之非臨時性介質,其中該些第三參考效益值的該決定包括:根據基於一佣金的一第一效益模型或基於廣告收入的一第二效益模型的其中至少之一,來決定該些第三參考效益值。
  31. 如申請專利範圍第25項所述之非臨時性介質,其中該些統合效益值的該決定包括:將針對該些角色的每一角色所決定的該些標準化參考效益值,應用一加權方法來計算該些統合效益值。
  32. 如申請專利範圍第31項所述之非臨時性的介質,其中該用以建議的項目的一或多種組合的該決定包括:使用一高效益模式探勘演算法來決定該用以建議的項目的一或多種組合。
  33. 如申請專利範圍第25項所述之非臨時性介質,還包括:產生一項目建議,該項目建議包括該決定的一或多種組合中的一或多個項目。
  34. 如申請專利範圍第33項所述之非臨時性介質,其中該項目建議的該產生包括:挑出該一或多個項目。
  35. 如申請專利範圍第33項所述之非臨時性介質,其中該項目建議的該產生包括:根據來自該消費者的一請求來決定多個候選項目;根據關於該消費者資料來決定該消費者的多個代表項目;以及從從該些候選項目中選出與任一代表項目屬於同一組合的一或多個項目,作為該項目建議所包括的該一或多個項目。
  36. 如申請專利範圍第35項所述之非臨時性介質,其中該些代表項目的該決定包括:將該消費者曾經瀏覽或購買的多個項目決定成為該些代表項目。
  37. 一種產生一項目建議的系統,包括:一資料庫,被配置為儲存多個效益模型和消費者資料; 一效益模型管理模組,被配置為針對多個角色的每一角色,根據該些效益模型來決定多個項目的每一項目的參考效益值;一效益統合模組,被配置為將所決定的該些參考效益值進行一標準化;並且根據該些角色的每一角色所決定的該些標準化參考效益值,決定該些項目的每一項目的統合效益值;以及一高效益模式探勘模組,被配置為根據該些統合效益值來決定用以建議的項目的一或多種組合,其中該些角色包括一供應商、一消費者及一媒介者。
  38. 如申請專利範圍第37項所述之系統,還包括:一匹配和篩選模組,被配置為根據來自該消費者的一請求決定多個候選項目,以及根據儲存於該資料庫的該消費者資料決定該消費者的多個代表項目。
  39. 如申請專利範圍第38項所述之系統,還包括:一個建議模組,被配置為從該些候選項目中選出與任一代表項目屬於同一組合的一或多個項目,作為該項目建議所包括的該一或多個項目。
  40. 如申請專利範圍第38項所述之系統,其中該匹配和篩選模組從一客戶終端接收該請求。
TW103120035A 2013-12-17 2014-06-10 產生項目建議的方法和系統以及非臨時性介質 TWI533249B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/109,383 US20150170038A1 (en) 2013-12-17 2013-12-17 Method And System For Generating Item Recommendation

Publications (2)

Publication Number Publication Date
TW201525911A TW201525911A (zh) 2015-07-01
TWI533249B true TWI533249B (zh) 2016-05-11

Family

ID=53368912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103120035A TWI533249B (zh) 2013-12-17 2014-06-10 產生項目建議的方法和系統以及非臨時性介質

Country Status (2)

Country Link
US (1) US20150170038A1 (zh)
TW (1) TWI533249B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150363543A1 (en) * 2014-06-13 2015-12-17 Rockwell Automation Technologies, Inc. Systems and methods for designing an industrial automation system
US10445742B2 (en) 2017-01-31 2019-10-15 Walmart Apollo, Llc Performing customer segmentation and item categorization
US10657575B2 (en) * 2017-01-31 2020-05-19 Walmart Apollo, Llc Providing recommendations based on user-generated post-purchase content and navigation patterns

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5749081A (en) * 1995-04-06 1998-05-05 Firefly Network, Inc. System and method for recommending items to a user
US7720723B2 (en) * 1998-09-18 2010-05-18 Amazon Technologies, Inc. User interface and methods for recommending items to users
US6345239B1 (en) * 1999-08-31 2002-02-05 Accenture Llp Remote demonstration of business capabilities in an e-commerce environment
US6687696B2 (en) * 2000-07-26 2004-02-03 Recommind Inc. System and method for personalized search, information filtering, and for generating recommendations utilizing statistical latent class models
US7117208B2 (en) * 2000-09-28 2006-10-03 Oracle Corporation Enterprise web mining system and method
JP2004533660A (ja) * 2000-10-18 2004-11-04 ジヨンソン・アンド・ジヨンソン・コンシユーマー・カンパニーズ・インコーポレーテツド 知能性能ベースの製品推奨システム
US7406436B1 (en) * 2001-03-22 2008-07-29 Richard Reisman Method and apparatus for collecting, aggregating and providing post-sale market data for an item
US6947935B1 (en) * 2001-04-04 2005-09-20 Microsoft Corporation Training, inference and user interface for guiding the caching of media content on local stores
US8732025B2 (en) * 2005-05-09 2014-05-20 Google Inc. System and method for enabling image recognition and searching of remote content on display
US7590562B2 (en) * 2005-06-29 2009-09-15 Google Inc. Product recommendations based on collaborative filtering of user data
US20070073625A1 (en) * 2005-09-27 2007-03-29 Shelton Robert H System and method of licensing intellectual property assets
US7657493B2 (en) * 2006-09-28 2010-02-02 Microsoft Corporation Recommendation system that identifies a valuable user action by mining data supplied by a plurality of users to find a correlation that suggests one or more actions for notification
US8099376B2 (en) * 2007-02-22 2012-01-17 Fair Isaac Corporation Rule-based management of adaptive models and agents
US8560398B1 (en) * 2007-03-29 2013-10-15 Amazon Technologies, Inc. Method and system for providing item recommendations
US7836001B2 (en) * 2007-09-14 2010-11-16 Palo Alto Research Center Incorporated Recommender system with AD-HOC, dynamic model composition
US7991841B2 (en) * 2007-10-24 2011-08-02 Microsoft Corporation Trust-based recommendation systems
US8376037B2 (en) * 2009-07-10 2013-02-19 Keihin Corporation Vehicular air conditioning apparatus and temperature control method performed thereby
US20110295722A1 (en) * 2010-06-09 2011-12-01 Reisman Richard R Methods, Apparatus, and Systems for Enabling Feedback-Dependent Transactions
US8180688B1 (en) * 2010-09-29 2012-05-15 Amazon Technologies, Inc. Computer-readable medium, system, and method for item recommendations based on media consumption
US20120201158A1 (en) * 2011-02-03 2012-08-09 Qualcomm Incorporated Peer-to-peer / wan association control and resource coordination for mobile entities using aggregate neighborhood utility metrics
US11023902B2 (en) * 2011-09-30 2021-06-01 Transform Sr Brands Llc System and method for providing localized product offerings publications
US9230212B2 (en) * 2012-02-02 2016-01-05 Peel Technologies, Inc. Content based recommendation system

Also Published As

Publication number Publication date
US20150170038A1 (en) 2015-06-18
TW201525911A (zh) 2015-07-01

Similar Documents

Publication Publication Date Title
US11195191B2 (en) Method of generating a prioritized listing of customers using a purchase behavior prediction score
US9886686B2 (en) Method for using supervised model to identify user
JP6134444B2 (ja) 情報を推薦するための方法およびシステム
US20180349988A1 (en) Systems and methods for displaying vehicles to an online shopper in shop-by-payment format based on actual monthly payment amount
US11210716B2 (en) Predicting a status of a transaction
US20160321635A1 (en) Systems and methods for selecting a sales channel in a brick and mortar store
WO2018175544A1 (en) Method and system for facilitating purchase of vehicles by buyers and/or sale of vehicles by sellers
US20150052019A1 (en) System and Method for Multiple Weighted Factor Routing Schemes in Heterogeneous Fulfillment Networks Serving Multiple Clients with Distinct Routing Policies
US20150363855A1 (en) Systems and Methods for Automatic Popular Configuration Generation
US12086859B2 (en) Systems and methods for recommending a product based on an image of a scene
US20150066679A1 (en) Methods and systems for generating merchandise leads
US8583513B1 (en) Systems and methods for offer selection
CN110347924A (zh) 果蔬商城管理系统及果蔬信息推送方法
US20120232952A1 (en) Inventory price optimization
US20140279248A1 (en) Systems and methods for providing search results incorporating supply chain information
US10152725B2 (en) Systems and methods for selecting a product sales channel
TWI533249B (zh) 產生項目建議的方法和系統以及非臨時性介質
CN109544299B (zh) 基于交易保障平台的买家身份评级方法、设备及存储介质
CA3169819C (en) Systems and methods for automated product classification
JP5358038B2 (ja) 商品管理サーバ及び商品管理方法
US20190050935A1 (en) Device And Method For Exchange Market
US20140074752A1 (en) Commerce System and Method of Providing Access to an Investment Signal Based on Product Information
CN114461918A (zh) 物品推荐方法、装置、电子设备和存储介质
US20230316387A1 (en) Systems and methods for providing product data on mobile user interfaces
US20230078260A1 (en) Systems and methods for providing recommendations of computer applications based on similarity