TWI532326B - Charge pump circuit with low clock feed through - Google Patents

Charge pump circuit with low clock feed through Download PDF

Info

Publication number
TWI532326B
TWI532326B TW100138522A TW100138522A TWI532326B TW I532326 B TWI532326 B TW I532326B TW 100138522 A TW100138522 A TW 100138522A TW 100138522 A TW100138522 A TW 100138522A TW I532326 B TWI532326 B TW I532326B
Authority
TW
Taiwan
Prior art keywords
coupled
gate
output
pmos
source
Prior art date
Application number
TW100138522A
Other languages
Chinese (zh)
Other versions
TW201318350A (en
Inventor
陳建良
莫亞楠
陳元輝
張毓仁
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100138522A priority Critical patent/TWI532326B/en
Publication of TW201318350A publication Critical patent/TW201318350A/en
Application granted granted Critical
Publication of TWI532326B publication Critical patent/TWI532326B/en

Links

Description

低時脈饋入之電荷泵電路Low-clock feed-in charge pump circuit

本發明係關於一種電荷泵電路,尤指一種可降低時脈饋入效應…之電荷泵電路。The present invention relates to a charge pump circuit, and more particularly to a charge pump circuit that reduces the clock feed effect.

鎖相迴路(phase lock loop,PLL)目前已被廣泛地使用於各種電子裝置及系統。鎖相迴路通常應用於產生時脈信號、時脈取樣、信號同步及用於產生時脈及信號的頻率合成,而電荷泵電路常被用以改變鎖相迴路中的電位。Phase lock loops (PLLs) have been widely used in various electronic devices and systems. Phase-locked loops are commonly used to generate clock signals, clock samples, signal synchronization, and frequency synthesis for generating clocks and signals, and charge pump circuits are often used to change the potential in a phase-locked loop.

請參照第1圖,第1圖係為習知電荷泵電路100之示意圖。電荷泵電路100包含一充電電流鏡10、一放電電流鏡20、一P型通道金氧半導體(PMOS)開關K5及一N型通道金氧半導體(NMOS)開關K6。充電電流鏡10包含PMOS電晶體K1及K2,皆耦接於電壓源VDD以提供一充電電流Iup。放電電流鏡20包含NMOS電晶體K3及K4,,皆耦接至地以提供一放電電流IdnPlease refer to FIG. 1 , which is a schematic diagram of a conventional charge pump circuit 100 . The charge pump circuit 100 includes a charge current mirror 10, a discharge current mirror 20, a P-channel gold oxide semiconductor (PMOS) switch K5, and an N-channel gold oxide semiconductor (NMOS) switch K6. The charging current mirror 10 includes PMOS transistors K1 and K2, and is coupled to the voltage source VDD to provide a charging current I up . The discharge current mirror 20 includes NMOS transistors K3 and K4, all coupled to ground to provide a discharge current I dn .

PMOS開關K5及NMOS開關K6係耦接於一電荷泵輸出OUT,且為一相位頻率偵測器(phase frequency detector,PFD)30產生之控制信號UN及DP所控制。然而,當控制信號UN及DP自高位準轉變為低位準,或自低位準轉變為高位準時,PMOS開關K5及NMOS開關K6的寄生電容Cgsp、Cgdp、Cgsn及Cgdn會造成在電荷泵輸出OUT有非理想的電壓動盪(voltage swing)的現象,而此現象又稱為時脈饋入(clock feed-through)。The PMOS switch K5 and the NMOS switch K6 are coupled to a charge pump output OUT and controlled by control signals UN and DP generated by a phase frequency detector (PFD) 30. However, when the control signals UN and DP change from a high level to a low level, or from a low level to a high level, the parasitic capacitances C gsp , C gdp , C gsn , and C gdn of the PMOS switch K5 and the NMOS switch K6 cause a charge. Pump output OUT has a non-ideal voltage swing phenomenon, which is also known as clock feed-through.

此外,當PMOS開關K5及NMOS開關K6被關閉時,其通道的空乏區中的電荷會被注入至寄生電容Cgsp、Cgdp、Cgsn及Cgdn,亦造成電荷泵輸出OUT有非理想的電壓動盪的現象,而此現象又稱為電荷注入(charge injection)。In addition, when the PMOS switch K5 and the NMOS switch K6 are turned off, the charge in the depletion region of the channel is injected into the parasitic capacitances C gsp , C gdp , C gsn , and C gdn , which also causes the charge pump output OUT to be non-ideal. The phenomenon of voltage turbulence, which is also known as charge injection.

再者,電壓動盪現象會造成電荷泵電路100的上/下電流不匹配(up/down current mismatch),例如:當電荷泵輸出OUT的電位變高時,NMOS電晶體K4的汲極至源極電壓差將會變高,而使自電荷泵輸出OUT流過NMOS開關K6的電流變大;又,當電荷泵輸出OUT的電位變高時,PMOS電晶體K2的源極至汲極電壓差將會變小,而使自電壓源VDD流過PMOS電晶體K2的電流變小。Furthermore, the voltage turbulence phenomenon causes an up/down current mismatch of the charge pump circuit 100, for example, when the potential of the charge pump output OUT becomes high, the drain of the NMOS transistor K4 to the source The voltage difference will become higher, and the current flowing from the charge pump output OUT through the NMOS switch K6 becomes larger; in addition, when the potential of the charge pump output OUT becomes high, the source-to-drain voltage difference of the PMOS transistor K2 will It becomes smaller, and the current flowing from the voltage source V DD through the PMOS transistor K2 becomes smaller.

以上所述因電荷泵輸出OUT的電壓動盪現象而導致的時脈饋入、電荷注入及上/下電流不匹配效應,會對產生自電荷泵輸出OUT的輸出信號造成寄生雜訊而惡化輸出信號的品質。The above-mentioned clock feed, charge injection and up/down current mismatch effects due to the voltage turbulence phenomenon of the charge pump output OUT cause parasitic noise generated by the output signal generated from the charge pump output OUT to deteriorate the output signal. Quality.

本發明之一實施例係提供一種電荷泵電路,其包含一第一比較器、一PMOS調諧器、一第一電流鏡、一第一NMOS電晶體、一第一PMOS開關、一NMOS調諧器、一第二電流鏡及一第一NMOS開關。該第一比較器具有一第一輸入端、一第二輸入端及一輸出端,該輸出端係耦接於該第一比較器之第二輸入端。該PMOS調諧器具有一源極,耦接於一電壓源,及一汲極,用於接收一第一偏壓。該第一電流鏡包含一起始PMOS電晶體及一第一輸出PMOS電晶體。該起始PMOS電晶體具有一源極,耦接於該電壓源,及一閘極,耦接於該起始PMOS電晶體之汲極。該第一輸出PMOS電晶體具有一閘極,耦接於該起始PMOS電晶體之閘極,及一汲極,耦接於該第一比較器之第一輸入端。該第一NMOS電晶體具有一汲極,耦接於該第一輸出PMOS電晶體之閘極,一閘極,耦接於該第一比較器之輸出端,及一源極,耦接至地。該第一PMOS開關具有一汲極,耦接於該第一輸出PMOS電晶體之源極,一源極,耦接於該PMOS調諧器之汲極,及一閘極,用於接收一第一控制信號。該NMOS調諧器具有一源極,耦接至地,及一閘極,用於接收一第二偏壓。該第二電流鏡包含一起始NMOS電晶體及一第一輸出NMOS電晶體。該起始NMOS電晶體具有一源極,耦接至地,及一閘極,耦接於該起始NMOS電晶體之汲極。該第一輸出NMOS電晶體具有一閘極,耦接於該起始NMOS電晶體之閘極,及一汲極,耦接於該第一比較器之第一輸入端。該第一PMOS電晶體具有一汲極,耦接於該第一輸出NMOS電晶體之閘極,一閘極,耦接於該第一比較器之輸出端,及一源極,耦接於該電壓源。該第一NMOS開關具有一汲極,耦接於該第一輸出NMOS電晶體之源極,一源極,耦接於該NMOS調諧器之汲極,及一閘極,用於接收一第二控制信號。An embodiment of the present invention provides a charge pump circuit including a first comparator, a PMOS tuner, a first current mirror, a first NMOS transistor, a first PMOS switch, an NMOS tuner, a second current mirror and a first NMOS switch. The first comparator has a first input terminal, a second input terminal and an output terminal. The output terminal is coupled to the second input end of the first comparator. The PMOS tuner has a source coupled to a voltage source and a drain for receiving a first bias voltage. The first current mirror includes a starting PMOS transistor and a first output PMOS transistor. The starting PMOS transistor has a source coupled to the voltage source and a gate coupled to the drain of the starting PMOS transistor. The first output PMOS transistor has a gate coupled to the gate of the starting PMOS transistor and a drain coupled to the first input of the first comparator. The first NMOS transistor has a drain coupled to the gate of the first output PMOS transistor, a gate coupled to the output of the first comparator, and a source coupled to the ground . The first PMOS switch has a drain, a source coupled to the source of the first output PMOS transistor, a source coupled to the drain of the PMOS tuner, and a gate for receiving a first control signal. The NMOS tuner has a source coupled to ground and a gate for receiving a second bias. The second current mirror includes a starting NMOS transistor and a first output NMOS transistor. The starting NMOS transistor has a source coupled to the ground and a gate coupled to the drain of the starting NMOS transistor. The first output NMOS transistor has a gate coupled to the gate of the starting NMOS transistor and a drain coupled to the first input of the first comparator. The first PMOS transistor has a drain coupled to the gate of the first output NMOS transistor, a gate coupled to the output of the first comparator, and a source coupled to the gate power source. The first NMOS switch has a drain, a source coupled to the source of the first output NMOS transistor, a source coupled to the drain of the NMOS tuner, and a gate for receiving a second control signal.

請參照第2圖,第2圖係為本發明之鎖相迴路250之區塊圖。如第2圖所示,鎖相迴路250包含一相位頻率偵測器(PFD)212、一電荷泵電路200、一迴路濾波器(loop filter)216、一電壓控制震盪器218及一除法器220。鎖相迴路250係接收一輸入參考信號Fref及產生一輸出信號Fout。除法器220係對輸出信號Fout除頻以產生一回饋信號。相位頻率偵測器212係根據輸入參考信號Fref與回饋信號之間的相位或頻率差異以產生輸出信號Fout。在比較輸入參考信號Fref與回饋信號之間的相位或頻率差異後,相位頻率偵測器212產生控制信號且傳送控制信號至電荷泵電路200。電荷泵電路200係產生一充電電流以對迴路濾波器216中的負載電容進行充電,或產生一放電電流以對迴路濾波器216中的負載電容進行放電。Please refer to FIG. 2, which is a block diagram of the phase locked loop 250 of the present invention. As shown in FIG. 2, the phase locked loop 250 includes a phase frequency detector (PFD) 212, a charge pump circuit 200, a loop filter 216, a voltage controlled oscillator 218, and a divider 220. . The phase locked loop 250 receives an input reference signal F ref and generates an output signal F out . Divider 220 divides the output signal Fout to produce a feedback signal. The phase frequency detector 212 is based on a phase or frequency difference between the input reference signal F ref and the feedback signal to produce an output signal F out . After comparing the phase or frequency difference between the input reference signal F ref and the feedback signal, the phase frequency detector 212 generates a control signal and transmits a control signal to the charge pump circuit 200. The charge pump circuit 200 generates a charging current to charge the load capacitance in the loop filter 216 or to generate a discharge current to discharge the load capacitance in the loop filter 216.

上述對迴路濾波器216中的負載電容進行充電或放電的操作會影響自迴路濾波器216輸出至電壓控制震盪器218的輸出電壓。電壓控制震盪器218係根據輸出自迴路濾波器216的電壓以改變輸出信號Fout的相位或頻率。藉由以上的設置,鎖相迴路250可持續地根據輸入參考信號Fref以對輸出信號Fout作調整。The above described operation of charging or discharging the load capacitance in the loop filter 216 affects the output voltage from the loop filter 216 output to the voltage controlled oscillator 218. VCO 218 based on the output from the line voltage of the loop filter 216 to change the phase or frequency of the output signal F out. With the above arrangement, the phase locked loop 250 can continuously adjust the output signal F out according to the input reference signal F ref .

請參照第3圖,第3圖係為本發明第一實施例電荷泵電路300之示意圖。如第3圖所示,電荷泵電路300包含一第一比較器38、一PMOS調諧器M1、一第一電流鏡310、一第一NMOS電晶體M5、一第一PMOS開關312、一NMOS調諧器M7、一第二電流鏡320、一第一NMOS開關314及一第一PMOS電晶體M10。第一比較器38具有一第一輸入端301、一第二輸入端302及一輸出端303,輸出端303係耦接於第一比較器38之第二輸入端302。PMOS調諧器M1具有一源極,耦接於一電壓源VDD,及一閘極,用於接收一第一偏壓VB1。第一電流鏡310包含一起始PMOS電晶體M4及一第一輸出PMOS電晶體M2。起始PMOS電晶體M4具有一源極,耦接於電壓源VDD,及一閘極,耦接於起始PMOS電晶體M4之汲極。第一輸出PMOS電晶體M2具有一閘極,耦接於起始PMOS電晶體M4之閘極,及一汲極,耦接於第一比較器38之第一輸入端301。第一NMOS電晶體M5具有一汲極,耦接於第一輸出PMOS電晶體M2之閘極,一閘極,耦接於第一比較器38之輸出端303,及一源極,耦接至地。第一PMOS開關312具有一汲極,耦接於第一輸出PMOS電晶體M2之源極,一源極,耦接於PMOS調諧器M1之汲極,及一閘極,用於接收一第一控制信號UP1。Please refer to FIG. 3, which is a schematic diagram of a charge pump circuit 300 according to a first embodiment of the present invention. As shown in FIG. 3, the charge pump circuit 300 includes a first comparator 38, a PMOS tuner M1, a first current mirror 310, a first NMOS transistor M5, a first PMOS switch 312, and an NMOS tuning. The device M7, a second current mirror 320, a first NMOS switch 314 and a first PMOS transistor M10. The first comparator 38 has a first input terminal 301 , a second input terminal 302 , and an output terminal 303 . The output terminal 303 is coupled to the second input terminal 302 of the first comparator 38 . The PMOS tuner M1 has a source coupled to a voltage source V DD and a gate for receiving a first bias voltage V B1 . The first current mirror 310 includes a starting PMOS transistor M4 and a first output PMOS transistor M2. The starting PMOS transistor M4 has a source coupled to the voltage source V DD and a gate coupled to the drain of the starting PMOS transistor M4. The first output PMOS transistor M2 has a gate coupled to the gate of the starting PMOS transistor M4 and a drain coupled to the first input terminal 301 of the first comparator 38. The first NMOS transistor M5 has a drain, is coupled to the gate of the first output PMOS transistor M2, a gate is coupled to the output terminal 303 of the first comparator 38, and a source is coupled to Ground. The first PMOS switch 312 has a drain, a source coupled to the source of the first output PMOS transistor M2, a source coupled to the drain of the PMOS tuner M1, and a gate for receiving a first Control signal UP1.

NMOS調諧器M7具有一源極,耦接至地,及一閘極,用於接收一第二偏壓VB2。第二電流鏡320包含一起始NMOS電晶體M9及一第一輸出NMOS電晶體M6。起始NMOS電晶體M9具有一源極,耦接至地,及一閘極,耦接於起始NMOS電晶體M9之汲極。第一輸出NMOS電晶體M6具有一閘極,耦接於起始NMOS電晶體M9之閘極,及一汲極,耦接於第一比較器38之第一輸入端301。第一PMOS電晶體M10具有一汲極,耦接於第一輸出NMOS電晶體M6之閘極,一閘極,耦接於第一比較器38之輸出端303,及一源極,耦接於電壓源VDD。第一NMOS開關314具有一汲極,耦接於第一輸出NMOS電晶體M6之源極,一源極,耦接於NMOS調諧器M7之汲極,及一閘極,用於接收一第二控制信號DN2。The NMOS tuner M7 has a source coupled to the ground and a gate for receiving a second bias voltage V B2 . The second current mirror 320 includes a starting NMOS transistor M9 and a first output NMOS transistor M6. The starting NMOS transistor M9 has a source coupled to the ground and a gate coupled to the drain of the starting NMOS transistor M9. The first output NMOS transistor M6 has a gate coupled to the gate of the starting NMOS transistor M9 and a drain coupled to the first input terminal 301 of the first comparator 38. The first PMOS transistor M10 has a drain, is coupled to the gate of the first output NMOS transistor M6, a gate is coupled to the output terminal 303 of the first comparator 38, and a source is coupled to the first NMOS transistor M6. Voltage source V DD . The first NMOS switch 314 has a drain, a source coupled to the source of the first output NMOS transistor M6, a source coupled to the drain of the NMOS tuner M7, and a gate for receiving a second Control signal DN2.

一般而言,第一控制信號UP1與第二控制信號DN2的邏輯電位係為相反。然而,藉由改變第一PMOS開關312及第一NMOS開關314的元件種類,第一控制信號UP1與第二控制信號DN2亦可為具有相同之邏輯電位。In general, the logic potentials of the first control signal UP1 and the second control signal DN2 are opposite. However, by changing the component types of the first PMOS switch 312 and the first NMOS switch 314, the first control signal UP1 and the second control signal DN2 may also have the same logic potential.

在第一實施例中,當電荷泵輸出Vcont有電壓動盪的現象時,時脈饋入、電荷注入及上/下電流不匹配效應可被減輕,因此電荷泵輸出Vcont所產生的信號品質不會受到惡化。譬如當電荷泵輸出Vcont的輸出電位變高時,第一輸出NMOS電晶體M6之汲極至源極電壓差會隨之變高。由於通道長度調變效應之故,第一輸出NMOS電晶體M6之汲極至源極電壓差的升高會導致自電荷泵輸出Vcont流過第一輸出NMOS電晶體M6的電流增大。另一方面,當電荷泵輸出Vcont的電位升高時,由於第一比較器38的設置,第一PMOS電晶體M10的源極至閘極電壓差會隨之變低,而流過起始NMOS電晶體M9的電流亦會變低,因而降低了起始NMOS電晶體M9的閘極至源極電壓差,且第一輸出NMOS電晶體M6的閘極至源極電壓差亦由於第二電流鏡320的設置而變低。因此,基於第一輸出NMOS電晶體M6的閘極至源極電壓差變低之故,上述的通道長度調變效應會被減緩,且自電荷泵輸出Vcont流過第一輸出NMOS電晶體M6的電流大小將不會受到實質的影響。In the first embodiment, when the charge pump output V cont has a voltage turbulence phenomenon, the clock feed, charge injection, and up/down current mismatch effects can be alleviated, so the signal quality generated by the charge pump output V cont Will not be worsened. For example, when the output potential of the charge pump output V cont becomes high, the drain-to-source voltage difference of the first output NMOS transistor M6 becomes higher. Due to the channel length modulation effect, an increase in the drain-to-source voltage difference of the first output NMOS transistor M6 results in an increase in current flowing from the charge pump output V cont through the first output NMOS transistor M6. On the other hand, when the potential of the charge pump output V cont rises, the source-to-gate voltage difference of the first PMOS transistor M10 becomes lower due to the setting of the first comparator 38, and flows through the start. The current of the NMOS transistor M9 also becomes lower, thereby lowering the gate-to-source voltage difference of the starting NMOS transistor M9, and the gate-to-source voltage difference of the first output NMOS transistor M6 is also due to the second current. The setting of the mirror 320 becomes lower. Therefore, the channel length modulation effect is slowed down based on the gate-to-source voltage difference of the first output NMOS transistor M6, and the self-charge pump output V cont flows through the first output NMOS transistor M6. The current level will not be affected by the actual amount.

亦即雖然第一輸出NMOS電晶體M6的汲極至源極電壓差由於電荷泵輸出Vcont的電位上升而升高,然而NMOS電晶體M6的閘極至源極電壓差會隨之降低而緩和了通道長度調變效應。因此,自電荷泵輸出Vcont流過第一輸出NMOS電晶體M6的電流大小將不會隨著電荷泵輸出Vcont的電位上升而增大。相似地,自電壓源VDD流過第一輸出PMOS電晶體M2的電流將不會隨著電荷泵輸出Vcont的電位上升而減小。是以,電荷泵輸出Vcont的電壓動盪現象將不會實質影響自電壓源VDD流過第一輸出PMOS電晶體M2的電流以及自電荷泵輸出Vcont流過第一輸出NMOS電晶體M6的電流之大小。That is, although the drain-to-source voltage difference of the first output NMOS transistor M6 rises due to the potential rise of the charge pump output V cont , the gate-to-source voltage difference of the NMOS transistor M6 decreases and eases. The channel length modulation effect. Therefore, the magnitude of the current flowing from the charge pump output V cont through the first output NMOS transistor M6 will not increase as the potential of the charge pump output V cont rises. Similarly, the current flowing from the voltage source V DD through the first output PMOS transistor M2 will not decrease as the potential of the charge pump output V cont rises. Therefore, the voltage turbulence phenomenon of the charge pump output V cont will not substantially affect the current flowing from the voltage source V DD through the first output PMOS transistor M2 and from the charge pump output V cont through the first output NMOS transistor M6. The magnitude of the current.

因此,在第一實施例中,當電荷泵輸出Vcont發生電壓動盪時,上/下電流不匹配之效應可被減輕,因此可維持電荷泵輸出Vcont所產生的信號之品質。Therefore, in the first embodiment, when the charge pump output V cont is subjected to voltage turbulence, the effect of the up/down current mismatch can be alleviated, so that the quality of the signal generated by the charge pump output V cont can be maintained.

請參照第4圖,第4圖係為電荷泵電路300之說明圖。因第一PMOS開關312係耦接於PMOS調諧器M1與第一輸出PMOS電晶體M2之間,因此形成於第一PMOS開關312之閘極及汲極之間的寄生電容C1、形成於第一輸出PMOS電晶體M2之閘極及源極之間的寄生電容C2及形成於第一輸出PMOS電晶體M2之閘極及汲極之間的寄生電容C3係等同於串接,而降低PMOS調諧器M1與電荷泵輸出Vcont之間的電容值。因此,電荷泵電路300中的時脈饋入及電荷注入效應可被減輕。Please refer to FIG. 4, which is an explanatory diagram of the charge pump circuit 300. Since the first PMOS switch 312 is coupled between the PMOS tuner M1 and the first output PMOS transistor M2, the parasitic capacitance C1 formed between the gate and the drain of the first PMOS switch 312 is formed in the first The parasitic capacitance C2 between the gate and the source of the output PMOS transistor M2 and the parasitic capacitance C3 formed between the gate and the drain of the first output PMOS transistor M2 are equivalent to the series connection, and the PMOS tuner is lowered. The value of the capacitance between M1 and the charge pump output V cont . Therefore, the clock feed and charge injection effects in the charge pump circuit 300 can be alleviated.

請參照第5圖,第5圖係為本發明第二實施例電荷泵電路500之示意圖。電荷泵電路500與電荷泵電路300之差別在於,電荷泵電路500另包含一第二PMOS開關M3及一第二NMOS開關M8。第二PMOS開關M3具有一汲極,耦接於起始PMOS電晶體M4的源極,一源極,耦接於電壓源VDD,及一閘極,耦接於第一NMOS電晶體M5的閘極。第二NMOS開關M8具有一汲極,耦接於起始NMOS電晶體M9的源極,一源極,耦接於地,及一閘極,耦接於第一PMOS電晶體M10的閘極。Please refer to FIG. 5, which is a schematic diagram of a charge pump circuit 500 according to a second embodiment of the present invention. The difference between the charge pump circuit 500 and the charge pump circuit 300 is that the charge pump circuit 500 further includes a second PMOS switch M3 and a second NMOS switch M8. The second PMOS switch M3 has a drain coupled to the source of the starting PMOS transistor M4, a source coupled to the voltage source V DD , and a gate coupled to the first NMOS transistor M5 Gate. The second NMOS switch M8 has a drain coupled to the source of the first NMOS transistor M9, a source coupled to the ground, and a gate coupled to the gate of the first PMOS transistor M10.

在第二實施例中,第一比較器38之輸出端303的電位係被限制在能同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第二NMOS開關M8及第一PMOS電晶體M10的範圍。為同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第一PMOS電晶體M10及第二NMOS開關M8,若第一PMOS電晶體M10及第二PMOS開關M3的臨界電壓為Vtp,且第一NMOS電晶體M5及第二NMOS開關M8的臨界電壓為Vtn,則開啟第一PMOS電晶體M10及第二PMOS開關M3所需的閘極電壓必須低於(VDD-Vtp),且開啟第一NMOS電晶體M5及第二NMOS開關M8所需的閘極電壓必須高於Vtn。因此,能夠同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第一PMOS電晶體M10及第二NMOS開關M8的第一比較器38之輸出端303的電位會被限制在(VDD-Vtp)與Vtn之間。當第二PMOS開關M3、第一NMOS電晶體M5、第二NMOS開關M8及第一PMOS電晶體M10皆為導通時,會開啟PMOS調諧器M1、第一PMOS開關312、第一NMOS開關314及NMOS調諧器M7,因此,電荷泵電路500上會形成自VDD經由PMOS調諧器M1、第一PMOS開關312、第一輸出PMOS電晶體M2、第一輸出NMOS電晶體M6、第一NMOS開關314及NMOS調諧器M7至地的電流路徑,而節省電荷泵電路500的耗電。In the second embodiment, the potential of the output terminal 303 of the first comparator 38 is limited to enable the second PMOS switch M3, the first NMOS transistor M5, the second NMOS switch M8, and the first PMOS transistor M10 to be simultaneously turned on. The scope. To simultaneously turn on the second PMOS switch M3, the first NMOS transistor M5, the first PMOS transistor M10, and the second NMOS switch M8, if the threshold voltages of the first PMOS transistor M10 and the second PMOS switch M3 are Vtp , and The threshold voltage of the first NMOS transistor M5 and the second NMOS switch M8 is V tn , and the gate voltage required to turn on the first PMOS transistor M10 and the second PMOS switch M3 must be lower than (V DD -V tp ), The gate voltage required to turn on the first NMOS transistor M5 and the second NMOS switch M8 must be higher than V tn . Therefore, the potential of the output terminal 303 of the first comparator 38 capable of simultaneously turning on the second PMOS switch M3, the first NMOS transistor M5, the first PMOS transistor M10, and the second NMOS switch M8 is limited to (V DD - Between V tp ) and V tn . When the second PMOS switch M3, the first NMOS transistor M5, the second NMOS switch M8, and the first PMOS transistor M10 are turned on, the PMOS tuner M1, the first PMOS switch 312, and the first NMOS switch 314 are turned on. The NMOS tuner M7, therefore, the charge pump circuit 500 is formed from the V DD via the PMOS tuner M1, the first PMOS switch 312, the first output PMOS transistor M2, the first output NMOS transistor M6, and the first NMOS switch 314. And the current path of the NMOS tuner M7 to ground saves power consumption of the charge pump circuit 500.

請參照第6圖,第6圖係為本發明第三實施例電荷泵電路600之示意圖。電荷泵電路600與電荷泵電路300的差別在於,電荷泵電路600另包含一第二比較器68、一第三PMOS開關612、一第三NMOS開關614,且第一電流鏡610另包含一第二輸出PMOS電晶體M12,第二電流鏡620另包含一第二輸出NMOS電晶體M16。第二比較器68具有一第一輸入端601,耦接於第一比較器38之第一輸入端301,一第二輸入端602,及一輸出端603,耦接於第二比較器68之第二輸入端602。第三PMOS開關612具有一源極,耦接於PMOS調諧器M1之汲極,及一閘極,用於接收一第三控制信號UP3。第三NMOS開關614具有一源極,耦接於NMOS調諧器M7之汲極,及一閘極,用於接收一第四控制信號DN4。第二輸出PMOS電晶體M12具有一源極,耦接於第三PMOS開關612之汲極,一汲極,耦接於第二比較器68之輸出端603,及一閘極,耦接於第一輸出PMOS電晶體M2之閘極。第二輸出NMOS電晶體M16具有一源極,耦接於第三NMOS開關614之汲極,一汲極,耦接於第二輸出PMOS電晶體M12之汲極,及一閘極,耦接於第一輸出NMOS電晶體M6之閘極。第一控制信號UP1與第二控制信號DN2的邏輯電位相反,第一控制信號UP1與第三控制信號UP3的邏輯電位相反,且第二控制信號DN2與第四控制信號DN4的邏輯電位亦為相反。Please refer to FIG. 6. FIG. 6 is a schematic diagram of a charge pump circuit 600 according to a third embodiment of the present invention. The difference between the charge pump circuit 600 and the charge pump circuit 300 is that the charge pump circuit 600 further includes a second comparator 68, a third PMOS switch 612, and a third NMOS switch 614, and the first current mirror 610 further includes a first The second output PMOS transistor M12, the second current mirror 620 further includes a second output NMOS transistor M16. The second comparator 68 has a first input end 601 coupled to the first input end 301 of the first comparator 38, a second input end 602, and an output end 603 coupled to the second comparator 68. Second input 602. The third PMOS switch 612 has a source coupled to the drain of the PMOS tuner M1 and a gate for receiving a third control signal UP3. The third NMOS switch 614 has a source coupled to the drain of the NMOS tuner M7 and a gate for receiving a fourth control signal DN4. The second output PMOS transistor M12 has a source coupled to the drain of the third PMOS switch 612, a drain, coupled to the output 603 of the second comparator 68, and a gate coupled to the first A gate of the output PMOS transistor M2. The second output NMOS transistor M16 has a source coupled to the drain of the third NMOS switch 614, a drain coupled to the drain of the second output PMOS transistor M12, and a gate coupled to the gate. The gate of the first output NMOS transistor M6. The logic potentials of the first control signal UP1 and the second control signal DN2 are opposite, the logic potentials of the first control signal UP1 and the third control signal UP3 are opposite, and the logic potentials of the second control signal DN2 and the fourth control signal DN4 are also opposite. .

電荷泵電路600係提供另一充/放電路徑以防止PMOS調諧器M1之汲極有電荷分享效應,例如,當第一PMOS開關312係開啟時,第三PMOS開關612則為關閉,反之亦然。藉由透第一PMOS開關312及第三PMOS開關612交替進行充/放電,PMOS調諧器M1之汲極的電位可被限制在低於一預定值,而減輕前述的通道長度調變效應。The charge pump circuit 600 provides another charge/discharge path to prevent the drain of the PMOS tuner M1 from having a charge sharing effect, for example, when the first PMOS switch 312 is turned on, the third PMOS switch 612 is turned off, and vice versa. . By alternately charging/discharging the first PMOS switch 312 and the third PMOS switch 612, the potential of the drain of the PMOS tuner M1 can be limited to be lower than a predetermined value, thereby alleviating the aforementioned channel length modulation effect.

請參照第7圖,第7圖係為本發明第四實施例電荷泵電路700之示意圖。電荷泵電路700與電荷泵電路600的差別在於,電荷泵電路700另包含一第二PMOS開關M3及一第二NMOS開關M8。第二PMOS開關M3具有一汲極,耦接於起始PMOS電晶體M4的源極,一源極,耦接於電壓源VDD,及一閘極,耦接於第一NMOS電晶體M5的閘極。第二NMOS開關M8具有一汲極,耦接於起始NMOS電晶體M9的源極,一源極,耦接於地,及一閘極,耦接於第一PMOS電晶體M10的閘極。Please refer to FIG. 7. FIG. 7 is a schematic diagram of a charge pump circuit 700 according to a fourth embodiment of the present invention. The difference between the charge pump circuit 700 and the charge pump circuit 600 is that the charge pump circuit 700 further includes a second PMOS switch M3 and a second NMOS switch M8. The second PMOS switch M3 has a drain coupled to the source of the starting PMOS transistor M4, a source coupled to the voltage source V DD , and a gate coupled to the first NMOS transistor M5 Gate. The second NMOS switch M8 has a drain coupled to the source of the first NMOS transistor M9, a source coupled to the ground, and a gate coupled to the gate of the first PMOS transistor M10.

在第四實施例中,第一比較器38之輸出端303的電位係被限制在能同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第二NMOS開關M8及第一PMOS電晶體M10的範圍。為同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第一PMOS電晶體M10及第二NMOS開關M8,若第一PMOS電晶體M10及第二PMOS開關M3的臨界電壓為Vtp,且第一NMOS電晶體M5及第二NMOS開關M8的臨界電壓為Vtn,則開啟第一PMOS電晶體M10及第二PMOS開關M3所需的閘極電壓必須低於(VDD-Vtp),且開啟第一NMOS電晶體M5及第二NMOS開關M8所需的閘極電壓必須高於Vtn。因此,能夠同時開啟第二PMOS開關M3、第一NMOS電晶體M5、第一PMOS電晶體M10及第二NMOS開關M8的第一比較器38之輸出端303的電位會被限制在(VDD-Vtp)與Vtn之間。當第二PMOS開關M3、第一NMOS電晶體M5、第二NMOS開關M8及第一PMOS電晶體M10皆為導通時,會開啟PMOS調諧器M1、第一PMOS開關312、第一NMOS開關314及NMOS調諧器M7,因此,電荷泵電路700上會形成自VDD經由PMOS調諧器M1、第一PMOS開關312、第一輸出PMOS電晶體M2、第一輸出NMOS電晶體M6、第一NMOS開關314及NMOS調諧器M7至地的電流路徑,而節省電荷泵電路700的耗電。In the fourth embodiment, the potential of the output terminal 303 of the first comparator 38 is limited to enable the second PMOS switch M3, the first NMOS transistor M5, the second NMOS switch M8, and the first PMOS transistor M10 to be simultaneously turned on. The scope. To simultaneously turn on the second PMOS switch M3, the first NMOS transistor M5, the first PMOS transistor M10, and the second NMOS switch M8, if the threshold voltages of the first PMOS transistor M10 and the second PMOS switch M3 are Vtp , and The threshold voltage of the first NMOS transistor M5 and the second NMOS switch M8 is V tn , and the gate voltage required to turn on the first PMOS transistor M10 and the second PMOS switch M3 must be lower than (V DD -V tp ), The gate voltage required to turn on the first NMOS transistor M5 and the second NMOS switch M8 must be higher than V tn . Therefore, the potential of the output terminal 303 of the first comparator 38 capable of simultaneously turning on the second PMOS switch M3, the first NMOS transistor M5, the first PMOS transistor M10, and the second NMOS switch M8 is limited to (V DD - Between V tp ) and V tn . When the second PMOS switch M3, the first NMOS transistor M5, the second NMOS switch M8, and the first PMOS transistor M10 are turned on, the PMOS tuner M1, the first PMOS switch 312, and the first NMOS switch 314 are turned on. The NMOS tuner M7, therefore, the charge pump circuit 700 is formed from V DD via the PMOS tuner M1, the first PMOS switch 312, the first output PMOS transistor M2, the first output NMOS transistor M6, and the first NMOS switch 314. And the current path of the NMOS tuner M7 to ground saves the power consumption of the charge pump circuit 700.

在電荷泵電路300、500、600、700中,當電荷泵輸出Vcont有電壓動盪的現象時,時脈饋入、電荷注入及上/下電流不匹配效應可被減輕,因此不會惡化電荷泵輸出Vcont所產生的信號品質。在電荷泵電路500及700中,第一比較器38的輸出端303被限制在一範圍,使電荷泵電路500及700上形成自VDD經由PMOS調諧器M1、第一PMOS開關312、第一輸出PMOS電晶體M2、第一輸出NMOS電晶體M6、第一NMOS開關314及NMOS調諧器M7至地的電流路徑,而減少電荷泵電路500及700的耗電量。電荷泵電路600及700提供另一充/放電路徑以防止PMOS調諧器M1之汲極有電荷分享效應,而減輕通道長度調變效應。In the charge pump circuits 300, 500, 600, 700, when the charge pump output V cont has a voltage turbulence phenomenon, the clock feed, charge injection, and up/down current mismatch effects can be alleviated, so the charge is not deteriorated. The signal quality produced by the pump output V cont . In the charge pump circuits 500 and 700, the output terminal 303 of the first comparator 38 is limited to a range such that the charge pump circuits 500 and 700 are formed from V DD via the PMOS tuner M1, the first PMOS switch 312, and the first The current paths of the PMOS transistor M2, the first output NMOS transistor M6, the first NMOS switch 314, and the NMOS tuner M7 to ground are output, and the power consumption of the charge pump circuits 500 and 700 is reduced. The charge pump circuits 600 and 700 provide another charge/discharge path to prevent the drain of the PMOS tuner M1 from having a charge sharing effect, while mitigating the channel length modulation effect.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200、300、500、600、700...電荷泵電路100, 200, 300, 500, 600, 700. . . Charge pump circuit

10...充電電流鏡10. . . Charging current mirror

20...放電電流鏡20. . . Discharge current mirror

30、212...相位頻率偵測器30, 212. . . Phase frequency detector

216...迴路濾波器216. . . Loop filter

218...電壓控制震盪器218. . . Voltage controlled oscillator

220...除法器220. . . Divider

250...鎖相迴路250. . . Phase-locked loop

38...第一比較器38. . . First comparator

301...第一輸入端301. . . First input

302...第二輸入端302. . . Second input

303...輸出端303. . . Output

310、610...第一電流鏡310, 610. . . First current mirror

312...第一PMOS開關312. . . First PMOS switch

320、620...第二電流鏡320, 620. . . Second current mirror

314...第一NMOS開關314. . . First NMOS switch

68...第二比較器68. . . Second comparator

601...第一輸入端601. . . First input

602...第二輸入端602. . . Second input

603...輸出端603. . . Output

612...第三PMOS開關612. . . Third PMOS switch

614...第三NMOS開關614. . . Third NMOS switch

K1、K2...PMOS電晶體K1, K2. . . PMOS transistor

K3、K4...NMOS電晶體K3, K4. . . NMOS transistor

K5...PMOS開關K5. . . PMOS switch

K6...NMOS開關K6. . . NMOS switch

VDD...電壓源V DD . . . power source

Iup...充電電流I up . . . recharging current

Idn...放電電流I dn . . . Discharge current

UP、DN...控制信號UP, DN. . . control signal

Cgsp、Cgdp、Cgsn、Cgdn、C1、C2、C3...寄生電容C gsp , C gdp , C gsn , C gdn , C1 , C2 , C3. . . Parasitic capacitance

OUT、Vcont...電荷泵輸出OUT, V cont . . . Charge pump output

Fref...參考信號F ref . . . Reference signal

Fout...輸出信號F out . . . output signal

Vtp、Vtn...臨界電壓V tp , V tn . . . Threshold voltage

M1...PMOS調諧器M1. . . PMOS tuner

M2...第一輸出PMOS電晶體M2. . . First output PMOS transistor

M3...第二PMOS開關M3. . . Second PMOS switch

M4...第一輸出PMOS電晶體M4. . . First output PMOS transistor

M5...第一NMOS電晶體M5. . . First NMOS transistor

M6...第一輸出NMOS電晶體M6. . . First output NMOS transistor

M7...NMOS調諧器M7. . . NMOS tuner

M8...第二NMOS開關M8. . . Second NMOS switch

M9...起始NMOS電晶體M9. . . Starting NMOS transistor

M10...第一PMOS電晶體M10. . . First PMOS transistor

M12...第二輸出PMOS電晶體M12. . . Second output PMOS transistor

M16...第二輸出NMOS電晶體M16. . . Second output NMOS transistor

VB1...第一偏壓V B1 . . . First bias

VB2...第二偏壓V B2 . . . Second bias

UP1...第一控制信號UP1. . . First control signal

DN2...第二控制信號DN2. . . Second control signal

UP3...第三控制信號UP3. . . Third control signal

DN4...第四控制信號DN4. . . Fourth control signal

第1圖係為習知電荷泵電路之示意圖。Figure 1 is a schematic diagram of a conventional charge pump circuit.

第2圖係為本發明鎖相迴路之區塊圖。Figure 2 is a block diagram of the phase locked loop of the present invention.

第3圖係為本發明第一實施例電荷泵電路之示意圖。Fig. 3 is a schematic view showing a charge pump circuit of the first embodiment of the present invention.

第4圖係為第3圖的電荷泵電路之說明圖。Fig. 4 is an explanatory view of the charge pump circuit of Fig. 3.

第5圖係為本發明第二實施例電荷泵電路之示意圖。Fig. 5 is a schematic view showing a charge pump circuit of a second embodiment of the present invention.

第6圖係為本發明第三實施例電荷泵電路之示意圖。Figure 6 is a schematic view showing a charge pump circuit of a third embodiment of the present invention.

第7圖係為本發明第四實施例電荷泵電路之示意圖。Figure 7 is a schematic view showing a charge pump circuit of a fourth embodiment of the present invention.

300...電荷泵電路300. . . Charge pump circuit

38...第一比較器38. . . First comparator

301...第一輸入端301. . . First input

302...第二輸入端302. . . Second input

303...輸出端303. . . Output

310...第一電流鏡310. . . First current mirror

312...第一PMOS開關312. . . First PMOS switch

314...第一NMOS開關314. . . First NMOS switch

320...第二電流鏡320. . . Second current mirror

VDD...電壓源V DD . . . power source

Vcont...電荷泵輸出V cont . . . Charge pump output

M1...PMOS調諧器M1. . . PMOS tuner

M2...第一輸出PMOS電晶體M2. . . First output PMOS transistor

M4...第一輸出PMOS電晶體M4. . . First output PMOS transistor

M5...第一NMOS電晶體M5. . . First NMOS transistor

M6...第一輸出NMOS電晶體M6. . . First output NMOS transistor

M7...NMOS調諧器M7. . . NMOS tuner

M9...起始NMOS電晶體M9. . . Starting NMOS transistor

M10...第一PMOS電晶體M10. . . First PMOS transistor

VB1...第一偏壓V B1 . . . First bias

VB2...第二偏壓V B2 . . . Second bias

UP1...第一控制信號UP1. . . First control signal

DN2...第二控制信號DN2. . . Second control signal

Claims (6)

一種電荷泵電路,包含:一第一比較器,具有一第一輸入端,一第二輸入端及一輸出端,該輸出端耦接於該第一比較器之第二輸入端;一P型金氧半導體(PMOS)調諧器,具有一源極,耦接於一電壓源,及一閘極,用於接收一第一偏壓;一第一電流鏡,包含:一起始PMOS電晶體,具有一源極,耦接於該電壓源,及一閘極,耦接於該起始PMOS電晶體之汲極;及一第一輸出PMOS電晶體,具有一閘極,耦接於該起始PMOS電晶體之閘極,及一汲極,耦接於該第一比較器之第一輸入端;一第一N型金氧半導體(NMOS)電晶體,具有一汲極,耦接於該第一輸出PMOS電晶體之閘極,一閘極,耦接於該第一比較器之輸出端,及一源極,耦接至地;一第一PMOS開關,具有一汲極,耦接於該第一輸出PMOS電晶體之源極,一源極,耦接於該PMOS調諧器之汲極,及一閘極,用於接收一第一控制信號;一NMOS調諧器,具有一源極,耦接至地,及一閘極,用於接收一第二偏壓;一第二電流鏡,包含:一起始NMOS電晶體,具有一源極,耦接至地,及一閘極,耦接於該起始NMOS電晶體之汲極;及一第一輸出NMOS電晶體,具有一閘極,耦接於該起始NMOS電晶體之閘極,及一汲極,耦接於該第一比較器之第一輸入端;一第一PMOS電晶體,具有一汲極,耦接於該第一輸出NMOS電晶體之閘極,一閘極,耦接於該第一比較器之輸出端,及一源極,耦接於該電壓源,及一第一NMOS開關,具有一汲極,耦接於該第一輸出NMOS電晶體之源極,一源極,耦接於該NMOS調諧器之汲極,及一閘極,用於接收一第二控制信號。A charge pump circuit comprising: a first comparator having a first input terminal, a second input terminal and an output terminal coupled to the second input terminal of the first comparator; a MOS tuner having a source coupled to a voltage source and a gate for receiving a first bias voltage; a first current mirror comprising: a starting PMOS transistor having a source coupled to the voltage source and a gate coupled to the drain of the starting PMOS transistor; and a first output PMOS transistor having a gate coupled to the starting PMOS a gate of the transistor, and a drain coupled to the first input of the first comparator; a first N-type metal oxide semiconductor (NMOS) transistor having a drain coupled to the first a gate of the output PMOS transistor, a gate coupled to the output end of the first comparator, and a source coupled to the ground; a first PMOS switch having a drain coupled to the first a source of the output PMOS transistor, a source coupled to the drain of the PMOS tuner, and a gate for receiving a first control signal An NMOS tuner having a source coupled to ground and a gate for receiving a second bias voltage; a second current mirror comprising: a starting NMOS transistor having a source coupled Connected to the ground, and a gate coupled to the drain of the starting NMOS transistor; and a first output NMOS transistor having a gate coupled to the gate of the starting NMOS transistor, and a first PMOS transistor having a drain coupled to the gate of the first output NMOS transistor, a gate coupled to the first input terminal of the first comparator An output of the first comparator, and a source coupled to the voltage source, and a first NMOS switch having a drain coupled to the source of the first output NMOS transistor, a source The pole is coupled to the drain of the NMOS tuner and a gate for receiving a second control signal. 如請求項1所述之電荷泵電路,其中該第一控制信號與該第二控制信號的邏輯電位相反。The charge pump circuit of claim 1, wherein the first control signal is opposite to a logic potential of the second control signal. 如請求項1所述之電荷泵電路,另包含:一第二PMOS開關,具有一汲極,耦接於該起始PMOS電晶體之源極,一源極,耦接於該電壓源,及一閘極,耦接於該第一NMOS電晶體之閘極;及一第二NMOS開關,具有一汲極,耦接於該起始NMOS電晶體之源極,一源極,耦接至地,及一閘極,耦接於該第一PMOS電晶體之閘極。The charge pump circuit of claim 1, further comprising: a second PMOS switch having a drain coupled to the source of the starting PMOS transistor, a source coupled to the voltage source, and a gate coupled to the gate of the first NMOS transistor; and a second NMOS switch having a drain coupled to the source of the starting NMOS transistor, a source coupled to the ground And a gate coupled to the gate of the first PMOS transistor. 如請求項1所述之電荷泵電路,另包含:一第二比較器,具有一第一輸入端,耦接於該第一比較器之第一輸入端,一第二輸入端,及一輸出端,耦接於該第二比較器之第二輸入端;一第三PMOS開關,具有一源極,耦接於該PMOS調諧器之汲極,及一閘極,用於接收一第三控制信號;及一第三NMOS開關,具有一源極,耦接於該NMOS調諧器之汲極,及一閘極,用於接收一第四控制信號;其中該第一電流鏡另包含一第二輸出PMOS電晶體,具有一源極,耦接於該第三PMOS開關之汲極,一汲極,耦接於該第二比較器之輸出端,及一閘極,耦接於該第一輸出PMOS電晶體之閘極;及其中該第二電流鏡另包含一第二輸出NMOS電晶體,具有一源極,耦接於該第三NMOS開關之汲極,一汲極,耦接於該第二輸出PMOS電晶體之汲極,及一閘極,耦接於該第一輸出NMOS電晶體之閘極。The charge pump circuit of claim 1, further comprising: a second comparator having a first input coupled to the first input of the first comparator, a second input, and an output The second PMOS switch has a source coupled to the drain of the PMOS tuner and a gate for receiving a third control. And a third NMOS switch having a source coupled to the drain of the NMOS tuner and a gate for receiving a fourth control signal; wherein the first current mirror further includes a second An output PMOS transistor having a source coupled to the drain of the third PMOS switch, a drain coupled to the output of the second comparator, and a gate coupled to the first output a gate of the PMOS transistor; and the second current mirror further includes a second output NMOS transistor having a source coupled to the drain of the third NMOS switch, and a drain coupled to the first The drain of the second output PMOS transistor and a gate are coupled to the gate of the first output NMOS transistor. 如請求項4所述之電荷泵電路,另包含:一第二PMOS開關,具有一汲極,耦接於該起始PMOS電晶體之源極,一源極,耦接於該電壓源,及一閘極,耦接於該第一NMOS電晶體之閘極;及一第二NMOS開關,具有一汲極,耦接於該起始NMOS電晶體之源極,一源極,耦接至地,及一閘極,耦接於該第一PMOS電晶體之閘極。The charge pump circuit of claim 4, further comprising: a second PMOS switch having a drain coupled to the source of the starting PMOS transistor, a source coupled to the voltage source, and a gate coupled to the gate of the first NMOS transistor; and a second NMOS switch having a drain coupled to the source of the starting NMOS transistor, a source coupled to the ground And a gate coupled to the gate of the first PMOS transistor. 如請求項4所述之電荷泵電路,其中該第一控制信號與該第二控制信號的邏輯電位相反,該第一控制信號與該第三控制信號的邏輯電位相反,且該第二控制信號與該第四控制信號的邏輯電位相反。The charge pump circuit of claim 4, wherein the first control signal is opposite to a logic potential of the second control signal, the first control signal is opposite to a logic potential of the third control signal, and the second control signal is It is opposite to the logic potential of the fourth control signal.
TW100138522A 2011-10-24 2011-10-24 Charge pump circuit with low clock feed through TWI532326B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138522A TWI532326B (en) 2011-10-24 2011-10-24 Charge pump circuit with low clock feed through

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138522A TWI532326B (en) 2011-10-24 2011-10-24 Charge pump circuit with low clock feed through

Publications (2)

Publication Number Publication Date
TW201318350A TW201318350A (en) 2013-05-01
TWI532326B true TWI532326B (en) 2016-05-01

Family

ID=48872132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138522A TWI532326B (en) 2011-10-24 2011-10-24 Charge pump circuit with low clock feed through

Country Status (1)

Country Link
TW (1) TWI532326B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872153A (en) * 2016-11-29 2018-04-03 珠海市杰理科技股份有限公司 A kind of charge pump circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI531142B (en) * 2014-07-18 2016-04-21 微晶片科技公司 Charge pump circuit and phase lock loop having the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107872153A (en) * 2016-11-29 2018-04-03 珠海市杰理科技股份有限公司 A kind of charge pump circuit

Also Published As

Publication number Publication date
TW201318350A (en) 2013-05-01

Similar Documents

Publication Publication Date Title
US8421509B1 (en) Charge pump circuit with low clock feed-through
US7554413B2 (en) Voltage controlled oscillator with compensation for power supply variation in phase-locked loop
US8232822B2 (en) Charge pump and phase-detecting apparatus, phase-locked loop and delay-locked loop using the same
KR101256272B1 (en) Fast-switching low-noise charge pump
US20100271141A1 (en) Pll circuit
JP2000269808A (en) Pll circuit
US9502970B2 (en) Charge pump with suppressed feedthrough effect
US7154352B2 (en) Clock generator and related biasing circuit
US7920000B2 (en) PLL circuit and method of controlling the same
US7888980B2 (en) Charge pump with low charge injection and low clock feed-through
TWI532326B (en) Charge pump circuit with low clock feed through
US7636000B2 (en) Phase locked loop without a charge pump and integrated circuit having the same
US7027548B1 (en) Delay settings for a wide-range, high-precision delay-locked loop and a delay locked loop implementation using these settings
KR20100094859A (en) Asymmetric charge pump and phase locked loops having its
US7190231B2 (en) High-performance charge-pump circuit for phase-locked loops
US9407137B2 (en) Charge pump circuit and PLL circuit
US9425805B2 (en) Frequency dividing circuit and phase synchronization circuit
KR100842727B1 (en) Voltage controlled oscillator and PLL having the same
US9337818B1 (en) Buffer circuit for voltage controlled oscillator
US9973197B2 (en) Phase-locked loop circuit
US7969219B2 (en) Wide range delay cell
US8558591B1 (en) Phase locked loop with power supply control
JP4082507B2 (en) Phase synchronization circuit
KR100383116B1 (en) Charge pump circuit for compensating current mismatch and phase locked loop circuit using the same
KR101621855B1 (en) Charge pump and phase locked loop