TWI530809B - 品質管理系統及其方法 - Google Patents

品質管理系統及其方法 Download PDF

Info

Publication number
TWI530809B
TWI530809B TW104104833A TW104104833A TWI530809B TW I530809 B TWI530809 B TW I530809B TW 104104833 A TW104104833 A TW 104104833A TW 104104833 A TW104104833 A TW 104104833A TW I530809 B TWI530809 B TW I530809B
Authority
TW
Taiwan
Prior art keywords
abnormal event
production batch
risk
abnormal
quality
Prior art date
Application number
TW104104833A
Other languages
English (en)
Other versions
TW201629800A (zh
Inventor
周明寬
曾筠捷
張惟富
呂建輝
諶嘉慧
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW104104833A priority Critical patent/TWI530809B/zh
Priority to CN201510143566.4A priority patent/CN106156910B/zh
Application granted granted Critical
Publication of TWI530809B publication Critical patent/TWI530809B/zh
Publication of TW201629800A publication Critical patent/TW201629800A/zh

Links

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

品質管理系統及其方法
本發明揭露一種品質管理系統及其方法,尤指一種應用於生產批的品質管理方法。
近年來,由於工業技術的發達,批量生產製造的手段已由傳統人力的製造方法逐漸被自動化的機器所取代。一般而言,生產批利用生產線的製造過程會經過取多站點,而每一個站點會執行對應的步驟和生產程序。然而,在實際的生產過程中,常常會有不良品的產生,隨著機器工作的時間增加,生產過程中可能發生機器偏離原始設定的現象。因此生產出的成品,其規格可能不符合要求。而不良品的產生時會造成總存貨成本的增加,並影響生產線的流暢性。因此,為了控管生產批的品質特性及良率,常常會將生產批取樣並做品質上的資料統計及分析。
一般而言,在批量生產製造時會發生許多影響品質的異常事件(Issue),而各種異常事件影響品質特性的程度皆不相同,異常事件例如系統錯誤、地震、溫度過高,甚至是機台當機等。而這些異常事件將會被對應的系統機台所記錄。然而,因為系統機台的不同,所記錄異常事件的標準亦不一致,這種不統一的資料將導致分析不易。再者,由於各個系統機台尚未整合,因此利用生產批取樣的資料以及異常事件一併計算時,分析出的結果將有不準確的問題。
因此,發展一種將各個系統機台整合的品質管理方法是非常重要的。
本發明一實施例描述了一種品質管理方法,包含由資料庫中取得 生產批的品質歷史資料,依據生產批的品質歷史資料,將生產批歸類為N個異常事件集合,依據生產批的品質歷史資料,將每一異常事件集合內複數個異常事件之每一異常事件對應至合適的異常事件等級,設定對應於每一異常事件等級之待估測的風險係數,根據生產批的品質歷史資料及這些異常事件等級,計算每一異常事件等級對應之待估測的風險係數,依據這些異常事件等級及計算後的些風險係數,產生線性回歸方程式,根據線性回歸方程式,預測生產批品質特性的高可靠度區間所對應的風險分數,其中N為大於1的正整數。
本發明另一實施例描述了一種品質管理系統,包含資料庫及處理器。資料庫是用以儲存生產批的品質歷史資料,處理器是耦接於該資料庫。其中處理器由資料庫中取得生產批的品質歷史資料,處理器依據生產批的品質歷史資料,將生產批歸類為N個異常事件集合,處理器依據生產批的品質歷史資料,將每一異常事件集合內複數個異常事件之每一異常事件對應至合適的異常事件等級,處理器設定對應於每一異常事件等級之待估測的風險係數,處理器根據生產批的品質歷史資料及這些異常事件等級,計算每一異常事件等級對應之待估測的風險係數,處理器依據這些異常事件等級及計算後的該些風險係數,產生線性回歸方程式,處理器根據線性回歸方程式,預測生產批品質特性的高可靠度區間所對應的風險分數,其中N為大於1的正整數。
100‧‧‧品質管理系統
10‧‧‧資料庫
11‧‧‧處理器
D‧‧‧生產批資料
O1至ON‧‧‧異常事件集合
I11至INMN‧‧‧異常事件等級
B11至BNMN‧‧‧風險係數
UB‧‧‧上限
BL‧‧‧基準線
LB‧‧‧下限
QL‧‧‧品質特性
RVL及RVR‧‧‧風險分數
第1圖係發明實施例之品質管理系統的元件方塊圖。
第2圖描述了第1圖實施例中,處理器整合各站台系統生產批資料的示意圖。
第3圖為第1圖實施例中,產生品質特性和風險分數的基準線、上限及下限的示意圖。
第1圖為本發明實施例之品質管理系統100的元件方塊圖。如第 1圖所示,品質管理系統100包含資料庫10及處理器11。資料庫10是用以儲存生產批的品質歷史資料。這邊所指的品質歷史資料為生產批經過許多站台系統後,各站台系統所記錄之各種不同異常事件(Issue)的資料。處理器11是耦接於資料庫10。這邊所指的處理器11可為個人電腦上的處理器,分析伺服器中的處理器或是工作機台上的處理器等。在本實施例中,處理器11將利用資料庫10內之生產批的品質歷史資料,利用演算法整合所有站台系統上的資料,並分析其統計特性及回歸曲線。而處理器11依據分析後的結果,將預測生產批品質特性的高可靠度區間所對應的風險係數。而生產線上的工作人員即可利用這個生產批品質特性的高可靠度區間所對應的風險係數,挑選合適的生產批取樣進行實驗。而品質管理系統100將如何預測生產批品質特性的高可靠度區間所對應的風險係數,其演算法將詳述於下。
第2圖描述了第1圖實施例中,處理器11整合各站台系統生產批資料的示意圖。在第2圖中,生產批資料D為生產批經過許多站台系統後,各站台系統所記錄之各種不同異常事件(Issue)的資料集合,此資料存於資料庫10中。而處理器11由資料庫10中提取生產批資料D後,依據其站台系統,將生產批資料D歸類為N個異常事件集合,如第2圖中的異常事件集合O1至異常事件集合ON。每一個異常事件集合對應不同的站台系統。在第2圖中,異常事件集合O1是為第1個站台系統的記錄資料,異常事件集合O2是為第2個站台系統的記錄資料,異常事件集合ON是為第N個站台系統的記錄資料。在本實施例中,每一個異常事件集合會有相同或不同數量的異常事件。例如 異常事件集合O1中有M1個異常事件,異常事件集合O2中有M2個異常事件,異常事件集合ON中有MN個異常事件。這裡所用的N為大於1的正整數,而M1至MN為正整數。接下來,處理器11會將每一個異常事件集合內的異常事件對應至合適的異常事件等級(Issue Grade)。例如將第2圖中的異常事件集合O1中的M1個異常事件由小到大排序,並分別將這些排序後的異常事件對應為異常事件等級I11至異常事件等級I1M1,而異常事件等級I11為較不嚴重的異常事件,異常事件等級I1M1為較嚴重的異常事件。處理器11會將異常事件集合O2中的M2個異常事件由小到大排序,並分別將這些排序後的異常事件對應為異常事件等級I21至異常事件等級I2M2,而異常事件等級I21為較不嚴重的異常事件,異常事件等級I2M2為較嚴重的異常事件。類似地,處理器11會將異常事件集合ON中的MN個異常事件由小到大排序,並分別將這些排序後的異常事件對應為異常事件等級IN1至異常事件等級INMN,而異常事件等級IN1為較不嚴重的異常事件,異常事件等級INMN為較嚴重的異常事件。因此,根據N個異常事件集合對應的異常事件等級,可以定義出一個異常事件指標(Issue Code),為下:
在(1)式中,當第i個異常事件集合Oi內的第j個異常事件等級Iij為0或1的時候,(1)式中的異常事件指標IC即表示生產批所關連到的異常事件的數目。舉例來說,生產批遭遇到了第1個異常事件集合O1的第2個異常事件I12,第2個異常事件集合O2的第3個異常事件I23以及第3個異常事件集合O3的第1個異常事件I31,則異常事件指標IC的數值即為I12+I23+I31
然而,觀察(1)式所定義的異常事件指標IC僅可以知悉異常事件的索引(Index)以及異常事件的數目,並無法以量化的方式獲得異常事件的風險嚴重性。因此,為了進一步分析異常事件對於生產風險的衝擊度,處理器11會將第i個異常事件集合Oi內的第j個異常事件等級Iij(意即每一個異常事 件)設定對應的風險係數Bij(Risk Coefficient)。如第2圖所示,第1個異常事件集合O1的異常事件等級I11至異常事件等級I1M1對應的風險係數為B11至B1M1,第2個異常事件集合O2的異常事件等級I21至異常事件等級I2M2對應的風險係數為B21至B2M2,第N個異常事件集合ON的異常事件等級IN1至異常事件等級INMN對應的風險係數為BN1至BNMN。在本實施例中,由於在同一個異常事件集合內的異常事件之嚴重度為由小到大排列,因此對應的風險係數為由大到小排列,意即風險係數越大表示對應的異常事件對品質的衝擊程度越輕微,風險係數越小表示對應的異常事件對品質的衝擊程度越嚴重。故在第2圖中,B11>B12…>B1M1,B21>B22…>B2M2,BN1>BN2…>BNMN。因此,根據N個異常事件集合對應的異常事件等級之風險係數,可以定義出一個風險分數指標(Risk Value),為下:
然而,本發明在同一個異常事件集合內之異常事件的嚴重性及其 對應異常事件的等級並不限於實施例所述之由小到大排序,而異常事件等級所對應的風險係數亦不限制為由大到小排列。舉例來說,在其它實施例中,異常事件等級所對應的係數可為由小到大排列。而本實施例接下來的說明中,會利用一個矩陣的關係式,推出所有異常事件集合對應的異常事件等級之風險係數,再將計算出來的風險係數帶回(2)式中,使得(2)式變為一個具有個變數的線性回歸方程式,其中表示所有考慮的異常事件總數,且線性回歸方程式為單調性遞增(Monotonically Increasing)或單調性遞減(Monotonically Decreasing),而處理器11將根據線性回歸方程式,取得關於品質特性對風險係數的基線(Base Line)、上限(Upper Bound)以及下限(Lower Bound)。處理器11會依據上述這些統計結果,預測生產批品質特性的高可靠度區間所對應的風險分數。
這裡用一個例子來說明處理器11整合各站台系統生產批資料以 及預測生產批品質特性的高可靠度區間所對應的風險係數的流程。在此,為了簡化描述,資料庫10只考慮2個站台系統記錄的資料,如下表所示:
在上表中,兩個站台系統分別記錄2種類別的異常事件集合,每 一個異常事件集合有3個異常事件,第一類別的第1個異常事件為無品質損失的事件,因此其嚴重性較低,第一類別的第2個異常事件為品質損失在10%以下的事件,其嚴重性中等,第一類別的第3個異常事件為品質損失在10%以上的事件,其嚴重性最高。第二類別的第1個異常事件為無品質損失的事件,因此其嚴重性較低,第二類別的第2個異常事件為品質損失在5%以下的事件,其嚴重性中等,第二類別的第3個異常事件為品質損失在5%以上的事件,其嚴重性最高。這邊的品質特性可為任何生產品質的標準,例如良率(Yield)等。
接下來,處理器11會將每一個異常事件集合內的每一個異常事件 設定對應的風險係數。因此,第一類別的第1個異常事件被設定對應風險係數為B11,第一類別的第2個異常事件被設定對應風險係數為B12,第一類別的第3個異常事件被設定對應風險係數為B13,第二類別的第1個異常事件被設定對應風險係數為B21,第二類別的第2個異常事件被設定對應風險係數為B22,第二類別的第3個異常事件被設定對應風險係數為B23。為了推出所有異常事件集合對應的異常事件等級之風險係數,首先會根據資料庫10中2個站台系統記錄的資料,建立一個異常事件等級矩陣。這個異常事件等級矩陣為一個稀疏矩陣(Sparse Matrix),且此異常事件等級矩陣之每一元素為0或1,而異常事件等級矩陣的定義在於生產批的每一個產品被歸類為第一類別的異 常事件集合與第二類別的異常事件集合之所有異常事件組合的呈現。舉例來說,若實施例中生產批的產品數量為NLOT。為了方便表示,實施例將生產批中的產品表示為編號1至NLOT索引值的產品,則異常事件等級矩陣可表示為下:
上表中為考慮第一類別的異常事件集合與第二類別的異常事件集 合中,生產批中數量為NLOT的產品所遭遇的異常事件種類的組合。以本實施例而言,因每一個類別的異常事件共有三種,因此生產批所遭遇到的異常事件種類即有3×3=9種可能。因此,若生產批中產品的數量NLOT>9,則表示在生產批中有某些不同索引值的產品會遭受到相同的異常事件(以一般良率較高的生產批而言,品質特性在兩種類別均無損失的比率較高)。例如在上表中,索引(1)、索引(2)及索引(6)的產品就遭受到相同的異常事件(品質特性無損失)。因此,建立完成的異常事件等級矩陣,其row的維度為NLOT。再者, 以本實施例而言,總共有6種異常事件被考慮,因此建立完成的異常事件等級矩陣,其column的維度為3+3=6(然而在通式中,若考慮N個異常事件集合,假設第n個異常事件集合內有Mn個數量的異常事件,則異常事件等級矩陣其column的維度為,其中Σ為連加符號)。而將上述的異常事件等級矩陣展開可表示為下:
其中I M 表示異常事件等級矩陣,其維度為NLOT×6。
將異常事件等級矩陣I M 建立完成後,依據(2)式中的關係,每一個風險係數會對應至每一種異常事件。因此,將第一類別的異常事件集合中之風險係數B11、風險係數B12、風險係數B13,以及將第二類別的異常事件集合中之風險係數B21、風險係數B22、風險係數B23展開,並產生一個風險係數向量。在本實施例中,風險係數向量內即有6個元素(然而在通式中,若考慮N個異常事件集合,假設第n個異常事件集合內有Mn個數量的異常事件,則風險係數向量內即有個元素,其中Σ為連加符號),此風險係數向量可表示為下:
。其中B為風險係數向量,其維度為6×1。因此,當將(3)式中的 異常事件等級矩陣I M 與(4)式中的風險係數向量B相乘時,輸出的向量Y即為生產批中在每一種異常事件組合所對應的風險係數指標向量。然而,本實施例生產批中的產品數量為NLOT,此輸出的向量Y中所表示的風險係數指標即為NLOT×1的維度,為下所示:
在(5)式中,B11至B23可以利用資料庫10內存的2個站台系統記 錄的資料以及(3)式中的異常事件等級矩陣I M 估測其數值。由於異常事件等級矩陣I M 並非為方陣,因此不能直接做矩陣反轉(Matrix Inverse)。在本實施例中,求出B11至B23的方式可利用異常事件等級矩陣I M 的虛擬反轉法(Pseudo Inverse)、或是使用線性回歸的方式,藉由最小平方逼近法(Least-Squared Approach)或是最小誤差逼近法(Minimum-Mean-Squared Error Approach)逼近 求出(此時於(5)式中需要一組微誤差量ε 1來輔助求解)。雖然本實施例式以(5)式的架構來求解B11至B23,但本發明卻不限於此,在其它實施例中,亦可以將異常事件等級矩陣I M 以一個常數行向量(Column Vector)擴充其維度,或將風險係數向量B以一個常數擴充其維度,如下所示:
在(6)式中,C為一常數,所對應的I M 最左側的行向量亦為常數向 量,在這種情況下B11至B23仍可使用最小平方逼近法(Least-Squared Approach)或是最小誤差逼近法(Minimum-Mean-Squared Error Approach)求解。而求出之解與由(5)式中的解僅差距一個常數偏移量(Constant Offset),因此不會影響之後分析的統計特性。
當上述(5)式建立完成且經由(5)式將風險係數B11至B23求出來之 後,風險係數B11至B23即帶回(2)式中的風險分數指標,就可以將(2)式變為一個具有6個變數的線性回歸方程式,其中變數的數量即表示所有考慮的異常事件總數(在通式中,若考慮N個異常事件集合,假設第n個異常事件集合內有Mn個數量的異常事件,則(2)式即變為一個具有個變數的線性回歸方程式)。在此,線性回歸方程式為單調性遞增(Monotonically Increasing)或單調性遞減(Monotonically Decreasing)。舉例來說,求出的線性回歸方程式LY可展開如下: LY=91.378+0.0×I11-3.52×I12-8.61×I13+0.0×I21-5.07×I22-32.32×I23(7)
在本實施例中,透過(5)式將風險係數逐一求解,而解集合為B11=0.0、B12=-3.52、B13=-8.61、B21=0.0、B22=-5.07、B23=-32.32。然而,本發明的風險係數解集合會隨著生產批品質特性不同而有所差異,上述所列之解集合僅為實施例中一種解集合的表示,並非用以限制本發明的求解過程和結果。本實施例所求出的風險係數解也應證了前述條件,因為本實施例在整合不同系統所記錄之異常事件集合時,處理器11會將每一個異常事件集合中的異常事件由小到大排序,因此對應的風險係數其大小排序也應滿足B11>B12>B13以及B21>B22>B23的條件。而在(7)式中,91.378為一個預定的常數,因此不影響之後分析的統計特性。
當(7)式中的線性回歸方程式LY求出之後,透過風險分數模型檢定,可產生基準線(Base Line)及對應該基準線之上限(Upper Bound)及下限(Lower Bound)結果,如第3圖所示。第3圖為本發明產生對應品質特性和風險分數的基準線、上限及下限的示意圖。舉例來說,當考慮新的生產批加入時,對應新的生產批之異常事件指標(Issue Code)及異常事件等級(Issue Grade)亦會被帶入(7)式中而產生不同線性回歸方程式LY的輸出。而本發明之品質管理系統即會依此產生如第3圖中之風險分數及對應基準線、上限及下限等之統計特性。在第3圖中,X軸為風險分數,Y軸為品質特性,上限UB為具有圓形標點的線段,基準線BL為具有三角形標點的線段,下限LB為具有矩形標點的線段。當工程批至少要求品質特性滿足QL的標準時,對應上限UB的風險分數為RVL,此風險分數RVL所代表的意義即為滿足品質特性QL的標準時,工程批所挑選風險分數的下限。因此,為了增加工程批取樣的可靠度,處理器11會以基準線BL的角度來計算滿足品質特性QL的標準時,對應的風險分數。在這個情況下,由於基準線BL對應於品質特性QL的風險分數為RVR,故處理器11將會建議生產線上的工程人員挑選符合基準線BL 的風險係數至少為RVR的工程批取樣。
然而,第3圖所述之品質特性和風險分數的基準線、上限及下限, 其斜率並不限制本發明的演算法。舉例來說,若實施例中的品質特性為考慮良率(Yield),則基準線、上限及下限的斜率將同於第3圖,其斜率為正。反之,在其它實施例中,若品質特性為考慮不良率(Defective Rate),則基準線、上限及下限的斜率將與第3圖相反,其斜率為負。
綜上所述,本發明描述了一種應用於生產批的品質管理系統及其 方法,其觀念為整合生產批不同平台系統的記錄資料,並將這些異常事件的資料對應至合適的異常事件等級及風險係數。藉由建立異常事件等級矩陣以及風險係數向量,可以透過回歸的方式將所有的風險係數求出,進而求得風險分數指標的線性回歸方程式,並進一步預測生產批品質特性的高可靠度區間所對應的風險分數。因此,生產線上的工程人員很容易的利用建議的風險分數,挑選出可靠度較高的生產批取樣。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
D‧‧‧生產批資料
O1至ON‧‧‧異常事件集合
I11至INMN‧‧‧異常事件等級
B11至BNMN‧‧‧風險係數

Claims (11)

  1. 一種品質管理方法,包含:由一資料庫中取得一生產批的品質歷史資料;依據該生產批的品質歷史資料,將該生產批歸類為N個異常事件集合;依據該生產批的品質歷史資料,將每一異常事件集合內複數個異常事件之每一異常事件對應至合適的異常事件等級;設定對應於該每一異常事件等級之一待估測的風險係數;根據該生產批的品質歷史資料及該些異常事件等級,計算該每一異常事件等級對應之該待估測的風險係數;依據該些異常事件等級及計算後的該些風險係數,產生一線性回歸方程式;根據該線性回歸方程式,產生一基準線(Base Line)及對應該基準線之一上限(Upper Bound)及一下限(Lower Bound)結果;及利用該基準線、該上限及該下限結果預測該生產批的一高可靠度區間所對應的風險分數;其中N係為大於1的正整數。
  2. 如請求項1所述之方法,另包含:將每一異常事件集合內之每一異常事件等級加總以產生一品質等級總和。
  3. 一種品質管理方法,包含:由一資料庫中取得一生產批的品質歷史資料;依據該生產批的品質歷史資料,將該生產批歸類為N個異常事件集合;依據該生產批的品質歷史資料,將第n個異常事件集合內,由數量為Mn個異常事件中之每一異常事件對應至合適的異常事件等級,n係為介於1及N之間的正整數,且Mn係為正整數; 設定對應於該每一異常事件等級之一待估測的風險係數;根據該生產批的品質歷史資料及該些異常事件等級,計算該每一異常事件等級對應之該待估測的風險係數;依據該些異常事件等級及計算後的該些風險係數,產生一線性回歸方程式;及根據該線性回歸方程式,預測該生產批品質特性的一高可靠度區間所對應的風險分數;其中N係為大於1的正整數。
  4. 一種品質管理方法,包含:由一資料庫中取得一生產批的品質歷史資料;依據該生產批的品質歷史資料,將該生產批歸類為N個異常事件集合;依據該生產批的品質歷史資料,將每一異常事件集合內複數個異常事件之每一異常事件對應至合適的異常事件等級;根據該些異常事件等級,產生一異常事件等級矩陣;設定對應於該每一異常事件等級之一待估測的風險係數;根據該些待估測的風險係數,產生一待估測的風險係數向量;根據該生產批的品質歷史資料及該些異常事件等級,計算該每一異常事件等級對應之該待估測的風險係數;依據該些異常事件等級及計算後的該些風險係數,產生一線性回歸方程式;及根據該線性回歸方程式,預測該生產批品質特性的一高可靠度區間所對應的風險分數;其中N係為大於1的正整數。
  5. 如請求項4所述之方法,其中根據該生產批的品質歷史資料及該些異常事 件等級,計算該每一異常事件等級之該待估測的風險係數,係為根據該生產批的品質歷史資料及該異常事件等級矩陣,計算該待估測的風險係數向量中之每一風險係數。
  6. 如請求項4所述之方法,其中根據該些異常事件等級,產生該異常事件等級矩陣,係為根據該些異常事件等級,產生一維度為NLOT×S的異常事件等級矩陣,其中NLOT係為該生產批中的產品數量,S係為,且Mn係為第n個異常事件集合內的異常事件數量。
  7. 如請求項4所述之方法,其中根據該些待估測的風險係數,產生該待估測的風險係數向量,係為根據個待估測的風險係數,產生一維度為之該待估測的風險係數向量,其中Mn係為第n個異常事件集合內的異常事件數量。
  8. 如請求項4所述之方法,其中依據該些異常事件等級及計算後的該些風險係數,產生該線性回歸方程式,係為利用該些異常事件等級及計算後的該些風險係數,產生具有個變數的線性回歸方程式,且該線性回歸方程式為單調性遞增(Monotonically Increasing)或單調性遞減(Monotonically Decreasing),其中Mn係為第n個異常事件集合內的異常事件數量。
  9. 如請求項4所述之方法,其中該異常事件等級矩陣係為一稀疏矩陣(Sparse Matrix),且該異常事件等級矩陣之每一元素為0或1。
  10. 如請求項4所述之方法,其中根據該生產批的品質歷史資料及該異常事件等級矩陣,計算該待估測的風險係數向量中之每一風險係數,係為根據該生產批的品質歷史資料及該異常事件等級矩陣,利用最小平方逼近法(Least- Squared Approach)計算該待估測的風險係數向量中之每一風險係數。
  11. 一種品質管理系統,包含:一資料庫,用以儲存一生產批的品質歷史資料;及一處理器,耦接於該資料庫;其中該處理器由該資料庫中取得該生產批的品質歷史資料,該處理器依據該生產批的品質歷史資料,將該生產批歸類為N個異常事件集合,該處理器依據該生產批的品質歷史資料,將每一異常事件集合內複數個異常事件之每一異常事件對應合適的異常事件等級,該處理器設定對應於該每一異常事件等級之一待估測的風險係數,該處理器根據該生產批的品質歷史資料及該些異常事件等級,計算該每一異常事件等級對應之該待估測的風險係數,該處理器依據該些異常事件等級及計算後的該些風險係數,產生一線性回歸方程式,該處理器根據該線性回歸方程式,產生一基準線(Base Line)及對應該基準線之一上限(Upper Bound)及一下限(Lower Bound)結果,及利用該基準線、該上限及該下限結果預測該生產批品質特性的一高可靠度區間所對應的風險分數,其中N係為大於1的正整數。
TW104104833A 2015-02-12 2015-02-12 品質管理系統及其方法 TWI530809B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104104833A TWI530809B (zh) 2015-02-12 2015-02-12 品質管理系統及其方法
CN201510143566.4A CN106156910B (zh) 2015-02-12 2015-03-30 品质管理系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104104833A TWI530809B (zh) 2015-02-12 2015-02-12 品質管理系統及其方法

Publications (2)

Publication Number Publication Date
TWI530809B true TWI530809B (zh) 2016-04-21
TW201629800A TW201629800A (zh) 2016-08-16

Family

ID=56361516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104104833A TWI530809B (zh) 2015-02-12 2015-02-12 品質管理系統及其方法

Country Status (2)

Country Link
CN (1) CN106156910B (zh)
TW (1) TWI530809B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427722B (zh) * 2010-08-02 2014-02-21 Univ Nat Cheng Kung 使用具有信心指標之虛擬量測的先進製程控制系統與方法及其電腦程式產品
TW201421386A (zh) * 2012-11-19 2014-06-01 Chun-Hsien Lee 持續性資料品質控制與稽核系統
CN103940608B (zh) * 2014-04-29 2016-10-19 中能电力科技开发有限公司 一种提高风电机组齿轮箱故障等级判断精度的方法
CN104050289A (zh) * 2014-06-30 2014-09-17 中国工商银行股份有限公司 一种异常事件检测方法及系统

Also Published As

Publication number Publication date
CN106156910A (zh) 2016-11-23
CN106156910B (zh) 2019-12-24
TW201629800A (zh) 2016-08-16

Similar Documents

Publication Publication Date Title
JP6817426B2 (ja) マシンラーニング基盤の半導体製造の収率予測システム及び方法
Wei et al. Variable importance analysis: A comprehensive review
US8423168B2 (en) Bottleneck device extracting method and bottleneck device extracting assistance device
US8312401B2 (en) Method for smart defect screen and sample
US20070233436A1 (en) Structural analysis apparatus, structural analysis method, and structural analysis program
CN105975589A (zh) 一种高维数据的特征选择方法及装置
CN104021248B (zh) 一种航空机载机械类产品fmeca分析方法
JP2006318263A (ja) 情報分析システム、情報分析方法及びプログラム
US11416007B2 (en) Computer-implemented method and system for evaluating uncertainty in trajectory prediction
CN114881343A (zh) 基于特征选择的电力系统短期负荷预测方法及装置
JP6012860B2 (ja) 作業時間推定装置
CA2962025C (en) Inspection tool for manufactured components
US9851713B2 (en) Operation-time calculation device and method for calculating operation time
CN114091347A (zh) 一种电子元器件寿命预测方法
RU2632124C1 (ru) Способ прогнозной оценки эффективности многоэтапных процессов
JP5775803B2 (ja) 製造ラインシミュレーションモデル構築方法、製造ラインシミュレーションモデル構築装置、及び製造ラインシミュレーションモデル構築プログラム
TWI530809B (zh) 品質管理系統及其方法
US20120316803A1 (en) Semiconductor test data analysis system
US8346685B1 (en) Computerized system for enhancing expert-based processes and methods useful in conjunction therewith
US20210157707A1 (en) Transferability determination apparatus, transferability determination method, and recording medium
JP6633403B2 (ja) 解析対象決定装置及び解析対象決定方法
US11592807B2 (en) Manufacturing defect factor searching method and manufacturing defect factor searching apparatus
CN114766023B (zh) 数据处理方法、装置及系统、电子设备
WO2021131108A1 (ja) 品質推定装置および方法
Igwe et al. STATISTICAL COMPARISON OF DIFFERENT METHODS OF ESTIMATION (THE GENERALIZED LEAST SQUARES, WEIGHTED RIDGE AND, WEIGHTED LEAST SQUARES) IN THE PRESENCE OF HETEROSCEDASTICITY AND NON-NORMAL ERRORS