TWI529936B - Semiconductor structure and fabrication method thereof - Google Patents

Semiconductor structure and fabrication method thereof Download PDF

Info

Publication number
TWI529936B
TWI529936B TW101108069A TW101108069A TWI529936B TW I529936 B TWI529936 B TW I529936B TW 101108069 A TW101108069 A TW 101108069A TW 101108069 A TW101108069 A TW 101108069A TW I529936 B TWI529936 B TW I529936B
Authority
TW
Taiwan
Prior art keywords
cap layer
gate structure
drain region
epitaxial material
layer
Prior art date
Application number
TW101108069A
Other languages
Chinese (zh)
Other versions
TW201338164A (en
Inventor
魏銘德
黃信川
洪裕祥
曹博昭
梁家瑞
陳銘聰
梁佳文
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW101108069A priority Critical patent/TWI529936B/en
Publication of TW201338164A publication Critical patent/TW201338164A/en
Application granted granted Critical
Publication of TWI529936B publication Critical patent/TWI529936B/en

Links

Description

半導體結構與其製法Semiconductor structure and its manufacturing method

本發明係關於一種半導體結構及其製法。特定言之,本發明係關於一種具有夾置於帽蓋層與摻雜磊晶材料間、完整淺摻雜汲極區的半導體結構,而具有增進之元件可靠度。The present invention relates to a semiconductor structure and a method of making same. In particular, the present invention relates to a semiconductor structure having a fully shallow doped drain region sandwiched between a cap layer and a doped epitaxial material, with improved component reliability.

為了能增加半導體結構的載子遷移率,對閘極通道施加應力是一種先進的作法。例如,可以依據需要對於閘極通道施加壓縮應力或是伸張應力。如果對於閘極通道需要施加的是壓縮應力的話,目前通行的方法是使用矽鍺磊晶材料。藉由矽鍺磊晶材料中鍺原子較矽原子大的原理,於是可以對於閘極通道產生適當的壓縮應力。In order to increase the carrier mobility of the semiconductor structure, it is an advanced practice to apply stress to the gate channel. For example, compressive stress or tensile stress can be applied to the gate channel as needed. If a compressive stress is required for the gate channel, the current method is to use a germanium epitaxial material. By virtue of the principle that the germanium atoms in the epitaxial material are larger than the germanium atoms, an appropriate compressive stress can be generated for the gate channel.

目前已知當施加的應力源越靠近閘極通道時,對於半導體結構越能有效地將應力施加在閘極通道中而能更有效地調整載子遷移率,現行廣為使用的作法是在閘極結構附近蝕刻出凹穴,較佳者凹穴還有深入閘極通道中的尖端,以便將應力有效地傳達至閘極通道中。但是,這樣的現行方案卻會影響元件的可靠度。It is currently known that the closer the applied stress source is to the gate channel, the more effective the semiconductor structure is to apply stress in the gate channel to more effectively adjust the carrier mobility. The current widely used practice is in the gate. A recess is etched near the pole structure, preferably the recess has a tip that penetrates into the gate passage to effectively communicate stress into the gate passage. However, such current solutions affect the reliability of components.

因此,還需要一種新穎的半導體結構,具有更佳之元件可靠度。Therefore, there is still a need for a novel semiconductor structure with better component reliability.

有鑑於此,本發明於是提出一種新穎的半導體結構與製作方法,其具有更佳之元件可靠度。舉例而言,本發明新穎的半導體結構,可以具有夾置於帽蓋層與摻雜磊晶材料間、完整淺摻雜汲極區的半導體結構,而具有改良之元件可靠度。或是,本發明新穎的半導體結構,亦可以具有隔離淺摻雜汲極區與金屬矽化物之帽蓋層,使得淺摻雜汲極區不接觸金屬矽化物而成為完整的淺摻雜汲極區。In view of this, the present invention thus proposes a novel semiconductor structure and fabrication method that has better component reliability. For example, the novel semiconductor structure of the present invention can have a semiconductor structure sandwiched between a cap layer and a doped epitaxial material, a fully shallow doped drain region, with improved component reliability. Alternatively, the novel semiconductor structure of the present invention may also have a cap layer for isolating the shallow doped drain region from the metal germanide such that the shallow doped drain region does not contact the metal germanide to become a complete shallow doped drain Area.

本發明首先提出一種半導體結構。本發明之半導體結構至少包含基材、閘極結構、至少一凹穴、摻雜磊晶材料、淺摻雜汲極區、帽蓋層與金屬矽化物。閘極結構位於基材上。至少一凹穴則位於基材中,並鄰近閘極結構。摻雜磊晶材料填滿至少一凹穴。淺摻雜汲極區位於摻雜磊晶材料之頂部。帽蓋層包含未摻雜磊晶材料,其位於摻雜磊晶材料上並覆蓋摻雜磊晶材料。The invention first proposes a semiconductor structure. The semiconductor structure of the present invention comprises at least a substrate, a gate structure, at least one recess, a doped epitaxial material, a shallow doped drain region, a cap layer and a metal halide. The gate structure is on the substrate. At least one of the pockets is located in the substrate adjacent to the gate structure. The doped epitaxial material fills at least one of the pockets. The shallow doped drain region is located on top of the doped epitaxial material. The cap layer comprises an undoped epitaxial material on the doped epitaxial material and overlying the doped epitaxial material.

在本發明一實施方式中,本發明半導體結構另包含層間介電層與接觸插塞。層間介電層覆蓋閘極結構與帽蓋層。接觸插塞位於層間介電層中並電連接帽蓋層。In an embodiment of the invention, the semiconductor structure of the present invention further comprises an interlayer dielectric layer and a contact plug. The interlayer dielectric layer covers the gate structure and the cap layer. The contact plug is located in the interlayer dielectric layer and electrically connects the cap layer.

在本發明另一實施方式中,本發明半導體結構另包含至少部份覆蓋帽蓋層之金屬矽化物,而又被接觸插塞完全覆蓋。帽蓋層隔離淺摻雜汲極區與金屬矽化物,使得淺摻雜汲極區不接觸金屬矽化物。In another embodiment of the invention, the semiconductor structure of the present invention further comprises a metal halide that at least partially covers the cap layer and is completely covered by the contact plug. The cap layer isolates the shallow doped drain region from the metal telluride such that the shallow doped drain region does not contact the metal telluride.

在本發明另一實施方式中,本發明半導體結構另包含位於帽蓋層上而完全覆蓋帽蓋層之金屬矽化物。In another embodiment of the invention, the semiconductor structure of the present invention further comprises a metal halide on the cap layer that completely covers the cap layer.

在本發明另一實施方式中,閘極結構包含同時與帽蓋層與淺摻雜汲極區接觸之一間隙壁。In another embodiment of the invention, the gate structure includes a spacer that simultaneously contacts the cap layer and the shallow doped drain region.

在本發明另一實施方式中,閘極結構另包含一外間隙壁。外間隙壁位於間隙壁外側,且與金屬矽化物一起覆蓋帽蓋層。In another embodiment of the invention, the gate structure further includes an outer spacer. The outer spacer is located outside the spacer and covers the cap layer together with the metal halide.

在本發明另一實施方式中,至少一凹穴又包含延伸至閘極結構下方之一尖端。In another embodiment of the invention, at least one of the pockets in turn includes a tip that extends to below one of the gate structures.

在本發明另一實施方式中,淺摻雜汲極區還會與至少一凹穴之尖端重疊。In another embodiment of the invention, the shallowly doped drain region also overlaps the tip of at least one of the pockets.

在本發明另一實施方式中,淺摻雜汲極區與摻雜磊晶材料之頂部完全重疊,並延伸至閘極結構下方。In another embodiment of the invention, the shallowly doped drain region completely overlaps the top of the doped epitaxial material and extends below the gate structure.

在本發明另一實施方式中,閘極結構可以為P型金氧半導體閘極或是N型金氧半導體閘極。In another embodiment of the invention, the gate structure may be a P-type MOS gate or an N-type MOS gate.

在本發明另一實施方式中,摻雜磊晶材料可以包含兩種不同之四價元素,例如矽與鍺,或是矽與碳。In another embodiment of the invention, the doped epitaxial material may comprise two different tetravalent elements, such as lanthanum and cerium, or lanthanum and carbon.

在本發明另一實施方式中,淺摻雜汲極區與摻雜磊晶材料之頂部完全重疊,並延伸至閘極結構下方。In another embodiment of the invention, the shallowly doped drain region completely overlaps the top of the doped epitaxial material and extends below the gate structure.

本發明又提出一種形成半導體結構之方法。首先,提供基材。基材具有位於基材上之閘極結構,以及位於基材中,又鄰近閘極結構之至少一凹穴。其次,形成填滿至少一凹穴之摻雜磊晶材料層。然後,進行一摻雜步驟,而在摻雜磊晶材料層之頂部形成完整之淺摻雜汲極區。接著,形成包含未摻雜磊晶材料之帽蓋層,其位於淺摻雜汲極區上方並覆蓋摻雜磊晶材料。The present invention further provides a method of forming a semiconductor structure. First, a substrate is provided. The substrate has a gate structure on the substrate and at least one recess in the substrate adjacent to the gate structure. Next, a layer of doped epitaxial material filled with at least one recess is formed. Then, a doping step is performed to form a complete shallow doped drain region on top of the doped epitaxial material layer. Next, a cap layer comprising an undoped epitaxial material is formed over the shallow doped drain region and overlying the doped epitaxial material.

在本發明一實施方式中,形成半導體結構之方法更包含形成一外間隙壁,其包圍閘極結構並部份覆蓋帽蓋層。In an embodiment of the invention, the method of forming a semiconductor structure further includes forming an outer spacer that surrounds the gate structure and partially covers the cap layer.

在本發明另一實施方式中,在形成外間隙壁之後,更包含以下之步驟。先進行一重摻雜步驟,而在帽蓋層與摻雜磊晶材料層中形成一源極/汲極區。再形成一層間介電層,以覆蓋該閘極結構與該帽蓋層。In another embodiment of the present invention, after forming the outer gap wall, the following steps are further included. A heavily doping step is first performed to form a source/drain region in the cap layer and the doped epitaxial material layer. An interlevel dielectric layer is formed to cover the gate structure and the cap layer.

在本發明另一實施方式中,形成半導體結構之方法更包含以下之步驟。在形成該層間介電層之前先形成完全覆蓋帽蓋層之金屬矽化物。再形成接觸插塞,使得接觸插塞穿過層間介電層、部份覆蓋位於帽蓋層上之金屬矽化物並電連接帽蓋層。In another embodiment of the invention, the method of forming a semiconductor structure further comprises the following steps. A metal halide that completely covers the cap layer is formed prior to forming the interlayer dielectric layer. The contact plug is further formed such that the contact plug passes through the interlayer dielectric layer, partially covers the metal telluride on the cap layer, and electrically connects the cap layer.

在本發明另一實施方式中,在形成層間介電層之後,更包含以下之步驟。先形成金屬矽化物再形成接觸插塞,使得接觸插塞穿過層間介電層、完全覆蓋位於帽蓋層上之金屬矽化物並電連接帽蓋層。In another embodiment of the present invention, after the formation of the interlayer dielectric layer, the following steps are further included. The metal halide is first formed to form a contact plug such that the contact plug passes through the interlayer dielectric layer, completely covers the metal halide on the cap layer and electrically connects the cap layer.

在本發明另一實施方式中,摻雜步驟為一斜角植入步驟,使得淺摻雜汲極區與摻雜磊晶材料之一頂部得以完全重疊,並延伸至閘極結構下方。In another embodiment of the invention, the doping step is an oblique implantation step such that the shallow doped drain region and the top of one of the doped epitaxial materials are completely overlapped and extend below the gate structure.

在本發明另一實施方式中,淺摻雜汲極區與至少一凹穴之尖端重疊,且此尖端延伸至閘極結構之下方。In another embodiment of the invention, the shallowly doped drain region overlaps the tip of at least one of the recesses and the tip extends below the gate structure.

在本發明另一實施方式中,閘極結構為P型金氧半導體閘極或是N型金氧半導體閘極。In another embodiment of the invention, the gate structure is a P-type MOS gate or an N-type MOS gate.

在本發明另一實施方式中,摻雜磊晶材料可以包含兩種不同之四價元素,例如矽與鍺,或是矽與碳。In another embodiment of the invention, the doped epitaxial material may comprise two different tetravalent elements, such as lanthanum and cerium, or lanthanum and carbon.

本發明提供一種新穎的半導體結構,其具有夾置於帽蓋層與摻雜磊晶材料間、完整淺摻雜汲極區的半導體結構,而具有改良之元件可靠度。或是,本發明新穎的半導體結構,亦可以具有隔離淺摻雜汲極區與金屬矽化物之帽蓋層,使得淺摻雜汲極區不接觸金屬矽化物,而成為完整的淺摻雜汲極區。完整的淺摻雜汲極區有助於提升半導體元件之飽和電流值(Isat)。SUMMARY OF THE INVENTION The present invention provides a novel semiconductor structure having a semiconductor structure sandwiched between a cap layer and a doped epitaxial material, a fully shallow doped drain region, with improved component reliability. Alternatively, the novel semiconductor structure of the present invention may also have a cap layer for isolating the shallow doped drain region from the metal telluride such that the shallow doped drain region does not contact the metal germanide and becomes a complete shallow doped germanium. Polar zone. The complete shallow doped drain region helps to increase the saturation current value (I sat ) of the semiconductor component.

本發明首先提供一種形成半導體結構之方法,而可以得到未經削減、完整的淺摻雜汲極區。請參照第1圖至第9圖,其繪示形成本發明半導體結構的一種可行之方法。首先,請參照第1圖,提供一基材101。基材101可以是一種經摻雜之半導體基材,例如經摻雜之矽。另外,在基材101之中,則預先形成有作為電性隔離用之數個淺溝渠隔離102與摻雜井(圖未示)。The present invention first provides a method of forming a semiconductor structure that provides an unreduced, intact shallow doped drain region. Referring to Figures 1 through 9, a possible method of forming a semiconductor structure of the present invention is illustrated. First, referring to Fig. 1, a substrate 101 is provided. Substrate 101 can be a doped semiconductor substrate, such as a doped germanium. Further, among the base material 101, a plurality of shallow trench isolations 102 and doping wells (not shown) for electrical isolation are formed in advance.

形成淺溝渠隔離102的步驟,可以參考如下之方法。首先,使用硬遮罩(圖未示)在基材101中蝕刻出複數個用來形成淺溝渠隔離的溝渠(圖未示)。其中,基材101的半導體元件區域103可以是用作PMOS之用或是用作NMOS之用,並於後續製程分別搭配例如嵌入矽鍺(SiGe)來製備PMOS,或搭配嵌入矽碳(SiC)來製備NMOS,以改善金氧半導體電流驅動以提升金氧半導體性能。隨後,將絕緣材料(圖未示)填入先前所形成之溝渠(圖未示)中,並於平坦化移除多餘之絕緣材料(圖未示)後再移除硬遮罩(圖未示),而得到淺溝渠隔離102。For the step of forming the shallow trench isolation 102, reference may be made to the following method. First, a plurality of trenches (not shown) for forming shallow trench isolation are etched into the substrate 101 using a hard mask (not shown). The semiconductor device region 103 of the substrate 101 can be used as a PMOS or as an NMOS, and can be fabricated in a subsequent process by, for example, embedding germanium (SiGe) to prepare a PMOS, or in combination with germanium carbon (SiC). The NMOS is prepared to improve the MOS current drive to improve the performance of the MOS. Subsequently, an insulating material (not shown) is filled into the previously formed trench (not shown), and the hard mask is removed after planarization removes excess insulating material (not shown) (not shown) ), and a shallow trench isolation 102 is obtained.

接著,於基材101的半導體元件區域103上方形成一閘極結構110。其中,閘極結構110可以是P型金氧半導體閘極或是N型金氧半導體閘極。閘極結構110包含內間隙壁111、閘極介電層112、視情況需要之高介電常數層(圖未示)、視情況需要之阻障層(圖未示)、閘極材料層113與視情況需要之頂蓋層(圖未示)。其中,閘極介電層112係直接接觸基材101,而作為閘極結構110與基材101之電絕緣之用。視情況需要,通常還可以先對NMOS進行淺摻雜汲極(LDD)(圖未示)的植入步驟。Next, a gate structure 110 is formed over the semiconductor device region 103 of the substrate 101. The gate structure 110 may be a P-type MOS gate or an N-type MOS gate. The gate structure 110 includes an inner spacer 111, a gate dielectric layer 112, a high dielectric constant layer (not shown) as needed, a barrier layer (not shown) as needed, and a gate material layer 113. A cap layer (not shown), as needed. The gate dielectric layer 112 is in direct contact with the substrate 101 and is electrically insulated from the substrate 101 as the gate structure 110. Depending on the situation, it is usually also possible to perform an implantation step of a shallow doped drain (LDD) (not shown) on the NMOS.

如果閘極結構110是矽閘極時,閘極介電層112可以包含矽的化合物,例如氧化矽、氮氧化矽、氮化矽或上述者的組合。而如果閘極結構110是金屬閘極時,閘極介電層112則可以包含氧化物,例如二氧化矽。視情況需要之高介電常數層可包含高介電常數之材料,例如可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。阻障層則作為隔離閘極材料層113與底層之用,其可以包含金屬化合物,例如氮化鈦或氮化鉭。If the gate structure 110 is a germanium gate, the gate dielectric layer 112 may comprise a germanium compound such as hafnium oxide, hafnium oxynitride, tantalum nitride or a combination thereof. If the gate structure 110 is a metal gate, the gate dielectric layer 112 may comprise an oxide such as hafnium oxide. The high dielectric constant layer as required may comprise a material having a high dielectric constant, for example, may be selected from hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), niobium niobate Oxygen compound (hafnium silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (yttrium) Oxide, Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium Oxide, HfZrO 4 ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium titanate A group consisting of barium strontium titanate, Ba x Sr 1-x TiO 3 , BST. The barrier layer serves as an isolation gate material layer 113 and a bottom layer, which may comprise a metal compound such as titanium nitride or tantalum nitride.

隨後,於鄰近閘極結構110之基材101中形成至少一凹穴,而其形成的方法可以參考如下之步驟。首先,請參考第2圖,將一材料層119均勻的覆蓋基材101、淺溝渠隔離102與閘極結構110。材料層119可以包含矽的化合物,例如氧化矽、氮氧化矽、氮化矽或上述者的組合。接著,請參考第3圖,經由一適當之黃光與蝕刻步驟,圖案化材料層119,以使其形成為覆蓋其他區域的保護層,並同時將半導體元件區域103中的此材料層119轉換成包圍閘極結構110內間隙壁111的間隙壁114,而成為閘極結構110的一部份。較佳者,還可以使用此蝕刻步驟來進一步移除部份基材101,而得到至少一凹穴120。或是,接續再進行一獨立之蝕刻步驟來移除部份基材101,也可以得到至少一凹穴120。Subsequently, at least one recess is formed in the substrate 101 adjacent to the gate structure 110, and the method of forming the same can be referred to the following steps. First, referring to FIG. 2, a material layer 119 is uniformly covered with the substrate 101, the shallow trench isolation 102, and the gate structure 110. The material layer 119 may comprise a bismuth compound such as cerium oxide, cerium oxynitride, cerium nitride or a combination of the above. Next, referring to FIG. 3, the material layer 119 is patterned by a suitable yellow light and etching step to form a protective layer covering other regions, and at the same time, the material layer 119 in the semiconductor device region 103 is converted. The spacer 114 surrounding the spacer 111 in the gate structure 110 becomes a part of the gate structure 110. Preferably, this etching step can also be used to further remove a portion of the substrate 101 to obtain at least one recess 120. Alternatively, at least one recess 120 may be obtained by successively performing a separate etching step to remove a portion of the substrate 101.

蝕刻方式可以是乾蝕刻配合濕蝕刻,且依據蝕刻條件的不同,此凹穴120可具有特殊之立體形狀。例如,先進行一乾蝕刻,再接續進行一濕蝕刻步驟,凹穴120會橫向延伸,而部分地佔據位於閘極結構110下方之閘極通道104。同時,凹穴120位於閘極結構110下方之部份還可以是楔形,使得凹穴120包含位於閘極結構110下方之尖端121。The etching method may be dry etching in combination with wet etching, and the recess 120 may have a special three-dimensional shape depending on etching conditions. For example, a dry etch is performed first, followed by a wet etch step, and the recess 120 extends laterally to partially occupy the gate via 104 under the gate structure 110. At the same time, the portion of the recess 120 below the gate structure 110 may also be wedge shaped such that the recess 120 includes a tip 121 below the gate structure 110.

接下來,請參考第4圖,在完成清洗製程之後,就可以使用磊晶的方式,將摻雜磊晶材料122填滿凹穴120中。視情況需要,摻雜磊晶材料122在成長前,通常可以加入一道氫氣預烘烤的步驟,或是氫氣預烘烤的步驟和摻雜磊晶材料122成長的步驟同位(in-situ)進行。摻雜磊晶材料122通常會包含至少兩種不同之四價元素與適當之摻質。四價元素,例如矽與鍺、或是碳與矽。摻質例如是硼或磷等另外,摻雜磊晶材料122可能會包含好幾個不同的部分。例如,位於凹穴120底部之緩衝層(圖未示),可以包含低濃度鍺,無硼或少量的硼,以減低與基材101不同晶格間的歧異;主體層(圖未示),可以包含高濃度的鍺以及多量的硼,主要作為閘極通道104中應力的來源。Next, please refer to FIG. 4, after the cleaning process is completed, the doped epitaxial material 122 can be filled into the cavity 120 by epitaxy. Optionally, the doped epitaxial material 122 may be subjected to a hydrogen prebaking step prior to growth, or the hydrogen prebaking step and the in-situ step of the doping epitaxial material 122 growth step. . The doped epitaxial material 122 will typically comprise at least two different tetravalent elements with suitable dopants. A tetravalent element such as lanthanum and cerium, or carbon and lanthanum. The dopants are, for example, boron or phosphorous. Additionally, the doped epitaxial material 122 may contain several different portions. For example, a buffer layer (not shown) located at the bottom of the cavity 120 may contain a low concentration of germanium, no boron or a small amount of boron to reduce the difference between the different crystal lattices of the substrate 101; the main layer (not shown), A high concentration of germanium and a large amount of boron may be included, primarily as a source of stress in the gate channel 104.

然後,請參考第5圖,就可以對包含有凹穴120的半導體元件區域103,例如PMOS區域,進行淺摻雜汲極(LDD)的植入步驟。例如,先使用黃光步驟界定出需要進行淺摻雜汲極(LDD)植入步驟的PMOS區域。淺摻雜汲極的植入步驟可為一種直角或斜角(tilt)之植入步驟,以於閘極結構110兩側之摻雜磊晶材料122內,形成一淺摻雜汲極區123。淺摻雜汲極區123通常位於摻雜磊晶材料122之頂部,而較佳與摻雜磊晶材料122之頂部完全重疊,並延伸至間隙壁114、甚或至內間隙壁111下方之基材101中。 Then, referring to FIG. 5, a shallow doped drain (LDD) implantation step can be performed on the semiconductor device region 103 including the recess 120, for example, a PMOS region. For example, a yellow light step is first used to define a PMOS region that requires a shallow doped drain (LDD) implant step. The implantation step of the shallow doped drain may be a right angle or tilt implant step to form a shallow doped drain region 123 in the doped epitaxial material 122 on both sides of the gate structure 110. . The shallowly doped drain region 123 is typically located on top of the doped epitaxial material 122, and preferably overlaps the top of the doped epitaxial material 122 and extends to the spacer 114 or even to the substrate below the inner spacer 111. 101.

在本發明一實施方式中,可以調整淺摻雜汲極的植入斜角,使得淺摻雜汲極區123與尖端121重疊。較佳者,淺摻雜汲極區123還可以延伸至間隙壁114下方之基材101中。視情況需要,還可以再進行環型佈植(pocket implant or halo doping)。 In an embodiment of the invention, the implant angle of the shallow doped drain can be adjusted such that the shallow doped drain region 123 overlaps the tip 121. Preferably, the shallowly doped drain region 123 can also extend into the substrate 101 below the spacers 114. Pocket implant or halo doping can also be performed as needed.

繼續,請參考第6圖,又在摻雜磊晶材料122上與間隙壁114旁邊形成帽蓋層124(cap layer),來完全覆蓋摻雜磊晶材料122與淺摻雜汲極區123,使得淺摻雜汲極區123位於帽蓋層124下方,而間隙壁114得以同時接觸帽蓋層124與淺摻雜汲極區123,並且淺摻雜汲極區123位在摻雜磊晶材料122之一底部130上方,也就是說淺摻雜汲極區123夾在摻雜磊晶材料122之底部130和帽蓋層124之間。帽蓋層124可以包含未摻雜之磊晶材料,例如矽與低濃度鍺,或是無鍺。但是帽蓋層124實質上不含摻質。 Continuing, please refer to FIG. 6, and a cap layer is formed on the doped epitaxial material 122 and along the spacer 114 to completely cover the doped epitaxial material 122 and the shallow doped drain region 123. The shallow doped drain region 123 is located below the cap layer 124, and the spacer 114 is simultaneously in contact with the cap layer 124 and the shallow doped drain region 123, and the shallow doped drain region 123 is in the doped epitaxial material. Above one of the bottoms 130 of the 122, that is, the shallowly doped drain region 123 is sandwiched between the bottom 130 of the doped epitaxial material 122 and the cap layer 124. The cap layer 124 can comprise an undoped epitaxial material, such as germanium with a low concentration of germanium, or no germanium. However, the cap layer 124 is substantially free of dopants.

再來,請參考第7圖,還可以在閘極結構110的間隙壁114外側再形成圍繞閘極結構110的一外間隙壁115,使得外間隙壁115會跨在帽蓋層124上,因此閘極結構110的外間隙壁115會部份覆蓋帽蓋層124。形成外間隙壁115的步驟可以如下所示。首先,將一材料層(圖未示)均勻的覆蓋淺溝渠隔離102、閘極結構110與帽蓋層124。材料層可以包含矽的化合物,例如氧化矽、氮氧化矽、氮化矽或上述者的組合。接著,經由一適當之蝕刻步驟,將材料層(圖未示) 轉換成圍繞閘極結構110的間隙壁114之外間隙壁115,而成為閘極結構110的一部分。 Referring again to FIG. 7, an outer spacer 115 surrounding the gate structure 110 may be further formed outside the spacer 114 of the gate structure 110 such that the outer spacer 115 may straddle the cap layer 124. The outer spacer 115 of the gate structure 110 partially covers the cap layer 124. The step of forming the outer spacers 115 can be as follows. First, a layer of material (not shown) is uniformly covered over the shallow trench isolation 102, the gate structure 110, and the cap layer 124. The material layer may comprise a compound of cerium, such as cerium oxide, cerium oxynitride, cerium nitride or a combination of the above. Then, through a suitable etching step, the material layer (not shown) It is converted into a spacer 115 surrounding the spacer 114 of the gate structure 110 to become a part of the gate structure 110.

然後,請參考第8圖,對於帽蓋層124進行一重摻雜步驟,而形成源極摻雜區125與汲極摻雜區126。較佳者,此等源極/汲極摻雜步驟會穿過帽蓋層124與淺摻雜汲極區123,而深入摻雜磊晶材料122之中。另外,由於外間隙壁115之遮蔽,源極摻雜區125與汲極摻雜區126不會完全與帽蓋層124以及淺摻雜汲極區123重疊,同時源極摻雜區125與汲極摻雜區126也可能不會接觸間隙壁114。視情況需要,在重摻雜步驟之後可以接續有退火步驟。此退火步驟可以是習知之源極/汲極退火步驟,例如快速退火步驟(RTA)或雷射退火等,其用以活化先前植入之摻質,而在基材101中形成源極125與汲極126。 Then, referring to FIG. 8, a doping step is performed on the cap layer 124 to form a source doping region 125 and a drain doping region 126. Preferably, the source/drain doping steps pass through the cap layer 124 and the shallow doped drain region 123 to be deeply doped into the epitaxial material 122. In addition, due to the shielding of the outer spacers 115, the source doping region 125 and the drain doping region 126 do not completely overlap the capping layer 124 and the shallow doped drain region 123, while the source doping regions 125 and 汲The highly doped region 126 may also not contact the spacers 114. An annealing step may be continued after the heavy doping step, as the case requires. The annealing step may be a conventional source/drain annealing step, such as a rapid annealing step (RTA) or laser annealing, etc., to activate the previously implanted dopant and form the source 125 in the substrate 101. Bungee 126.

接著,請參考第9圖,視情況需要,還可以形成覆蓋摻雜磊晶材料122之金屬矽化物層127,以降低半導體元件接觸插塞(圖未示)的片電阻。一般說來,金屬矽化物層127會位於暴露出來之帽蓋層124的表面,而與外間隙壁115一起覆蓋帽蓋層124。而形成金屬矽化物層127的方式可以參考以下所示之步驟。首先,使用一適當之金屬(圖未示),例如鈦、鎳或是鈷來完全覆蓋淺溝渠隔離102、閘極結構110與帽蓋層124的表面。隨後,進行一加熱步驟使得金屬與矽反應成金屬矽化物層127。最後去除未反應之金屬,並可再選擇性進行一加熱步驟。 Next, referring to FIG. 9, a metal halide layer 127 covering the doped epitaxial material 122 may be formed as needed to reduce the sheet resistance of the semiconductor device contact plug (not shown). In general, the metal telluride layer 127 will be on the surface of the exposed cap layer 124 and will cover the cap layer 124 with the outer spacers 115. The manner in which the metal telluride layer 127 is formed can be referred to the steps shown below. First, a suitable metal (not shown), such as titanium, nickel or cobalt, is used to completely cover the shallow trench isolation 102, the gate structure 110 and the surface of the cap layer 124. Subsequently, a heating step is performed to react the metal with ruthenium into a metal ruthenide layer 127. Finally, the unreacted metal is removed and a further heating step can be carried out.

由於只有帽蓋層124含矽,而淺溝渠隔離102與閘極結構110的表面均不含矽,所以金屬只會直接與帽蓋層反應,而得到金屬矽化物層127只會形成在暴露出來之帽蓋層124的表面。如果帽蓋層124的高度高於淺溝渠隔離102時,金屬矽化物層127也會形成在淺溝渠隔離102上方,即帽蓋層124的側面。另外,由於帽蓋層124會隔離淺摻雜汲極區123與金屬矽化物127,所以使得淺摻雜汲極區123不接觸金屬矽化物127。 Since only the cap layer 124 contains germanium, and the shallow trench isolation 102 and the surface of the gate structure 110 do not contain germanium, the metal will only directly react with the cap layer, and the metal germanide layer 127 will only be formed to be exposed. The surface of the cap layer 124. If the height of the cap layer 124 is higher than the shallow trench isolation 102, a metal telluride layer 127 is also formed over the shallow trench isolation 102, ie, the side of the cap layer 124. In addition, since the cap layer 124 isolates the shallow doped drain region 123 from the metal germanide 127, the shallow doped drain region 123 does not contact the metal germanide 127.

或是,請參考第10圖,視情況需要,還可以在形成層間介電層129後才形成金屬矽化物層127,使得位於層間介電層129中之接觸插塞128可以完全覆蓋金屬矽化物層127並電連接帽蓋層124,以降低半導體元件接觸插塞128的片電阻。例如,先形成層間介電層129完全覆蓋帽蓋層124與閘極結構110。然後,再蝕刻層間介電層129而形成曝露帽蓋層124之接觸洞(圖未示)。接觸洞(圖未示)中可以填入適當之金屬(圖未示),例如鈦、鎳或是鈷,並經過加熱步驟來形成金屬矽化物層127,並去除未反應之金屬,改填入適當之接觸插塞金屬,成為穿過層間介電層129之接觸插塞128。或是,形成金屬矽化物層127的金屬即留在接觸洞(圖未示)中作為接觸插塞128之用。 Alternatively, please refer to FIG. 10, and the metal germanide layer 127 may be formed after the interlayer dielectric layer 129 is formed, as needed, so that the contact plugs 128 in the interlayer dielectric layer 129 can completely cover the metal telluride. Layer 127 is electrically coupled to cap layer 124 to reduce the sheet resistance of semiconductor component contact plug 128. For example, the interlayer dielectric layer 129 is first formed to completely cover the cap layer 124 and the gate structure 110. Then, the interlayer dielectric layer 129 is etched to form a contact hole (not shown) of the exposed cap layer 124. The contact hole (not shown) may be filled with a suitable metal (not shown), such as titanium, nickel or cobalt, and subjected to a heating step to form a metal telluride layer 127, and the unreacted metal is removed and replaced. The plug metal is suitably contacted to form a contact plug 128 that passes through the interlayer dielectric layer 129. Alternatively, the metal forming the metal telluride layer 127 remains in the contact hole (not shown) for use as the contact plug 128.

隨後,即可以再進行其他後續必要之半導體步驟,例如將閘極材料層113以適當之金屬材料所取代而形成金屬閘極、接觸洞形成步驟、或是接觸插塞形成步驟...等等。而用 於源極125與汲極126的接觸插塞(圖未示),形狀可以不對稱。例如,其中一者可以為方形,而另一者可以為連續延伸的條狀。此等後續必要之流程為本技藝人士所習知,因故不在多加贅述。 Subsequently, other subsequent necessary semiconductor steps can be performed, such as replacing the gate material layer 113 with a suitable metal material to form a metal gate, a contact hole forming step, or a contact plug forming step, etc. . Use The contact plugs (not shown) of the source 125 and the drain 126 may be asymmetrical in shape. For example, one of them may be square and the other may be a continuously extending strip. These follow-up necessary processes are known to those skilled in the art and are therefore not described in any way.

附帶一提,本發明特徵之一在於:半導體元件區域103的淺摻雜汲極(LDD)植入步驟一定在凹穴120的蝕刻步驟之後進行,使得凹穴120的蝕刻步驟完全不會影響淺摻雜汲極(LDD)的植入步驟,此外,由於帽蓋層124會隔離淺摻雜汲極區123與金屬矽化物127,所以使得後續形成之金屬矽化物127不消耗也不會接觸淺摻雜汲極區123,因此可以得到具有完整淺摻雜汲極區的半導體結構100。假如先進行淺摻雜汲極(LDD)的植入步驟後才進行凹穴120的蝕刻步驟時,無論之前淺摻雜汲極(LDD)的分布是如何完美,在歷經凹穴120的蝕刻步驟後都一定會傷害到淺摻雜汲極(LDD)的分布輪廓,甚至於嚴重削除淺摻雜汲極(LDD)的區域,造成淺摻雜汲極(LDD)區明顯不足,後續會導致半導體元件之飽和電流值(Isat)太小,嚴重影響半導體元件的可靠度。本發明另一項特徵之一在於:無須削減閘極結構的任何間隙壁,即可使得完整的淺摻雜汲極區延伸至間隙壁下方之基材中而接觸閘極通道。 Incidentally, one of the features of the present invention is that the shallow doped drain (LDD) implantation step of the semiconductor device region 103 must be performed after the etching step of the recess 120, so that the etching step of the recess 120 does not affect the shallowness at all. The implantation step of the doped drain (LDD), in addition, since the cap layer 124 isolates the shallow doped drain region 123 from the metal germanide 127, the subsequently formed metal germanide 127 is not consumed or contacted shallow. The drain region 123 is doped so that a semiconductor structure 100 having a completely shallow doped drain region can be obtained. If the etching step of the recess 120 is performed after the implantation step of the shallow doped drain (LDD), no matter how well the distribution of the shallow doped drain (LDD) is before, the etching step through the recess 120 After that, it will definitely damage the distribution profile of the shallow doped drain (LDD), and even severely remove the shallow doped drain (LDD) region, resulting in a significant deficiency of the shallow doped drain (LDD) region, which will lead to semiconductors. The saturation current value (I sat ) of the component is too small, which seriously affects the reliability of the semiconductor component. Another feature of the present invention is that the complete shallow doped drain region extends into the substrate below the spacer to contact the gate channel without having to reduce any spacers in the gate structure.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100‧‧‧半導體結構 100‧‧‧Semiconductor structure

101‧‧‧基材 101‧‧‧Substrate

102‧‧‧淺溝渠隔離 102‧‧‧Shallow trench isolation

103‧‧‧元件區域 103‧‧‧Component area

104‧‧‧閘極通道 104‧‧‧ gate channel

110‧‧‧閘極結構 110‧‧‧ gate structure

111‧‧‧內間隙壁 111‧‧‧Intervaling wall

112‧‧‧閘極介電層 112‧‧‧ gate dielectric layer

113‧‧‧閘極材料層 113‧‧‧ gate material layer

114‧‧‧間隙壁 114‧‧‧ clearance

115‧‧‧外間隙壁 115‧‧‧ outer spacer

119‧‧‧材料層 119‧‧‧Material layer

120‧‧‧凹穴 120‧‧‧ recess

121‧‧‧尖端 121‧‧‧ tip

122‧‧‧摻雜磊晶材料 122‧‧‧Doped epitaxial material

123‧‧‧淺摻雜汲極區 123‧‧‧Shallowly doped bungee zone

124‧‧‧帽蓋層 124‧‧‧cap layer

125‧‧‧源極摻雜區 125‧‧‧ source doped area

126‧‧‧汲極摻雜區 126‧‧‧汲polar doped area

127‧‧‧金屬矽化物層 127‧‧‧metal telluride layer

128‧‧‧接觸插塞 128‧‧‧Contact plug

129‧‧‧層間介電層 129‧‧‧Interlayer dielectric layer

130‧‧‧底部 130‧‧‧ bottom

第1圖至第10圖繪示形成本發明半導體結構一種可行之方法。 Figures 1 through 10 illustrate a possible method of forming the semiconductor structure of the present invention.

101...基材101. . . Substrate

102...淺溝渠隔離102. . . Shallow trench isolation

103...元件區域103. . . Component area

104...閘極通道104. . . Gate channel

110...閘極結構110. . . Gate structure

111...內間隙壁111. . . Inner spacer

112...閘極介電層112. . . Gate dielectric layer

113...閘極材料層113. . . Gate material layer

114...間隙壁114. . . Clearance wall

115...外間隙壁115. . . Outer spacer

120...凹穴120. . . Pocket

121...尖端121. . . Cutting edge

122...摻雜磊晶材料122. . . Doped epitaxial material

123...淺摻雜汲極區123. . . Shallow doped bungee zone

124...帽蓋層124. . . Cap layer

125...源極摻雜區125. . . Source doping region

126...汲極摻雜區126. . . Bipolar doping zone

Claims (20)

一種半導體結構,包含:一基材;一閘極結構,位於該基材上;至少一凹穴,位於該基材中並鄰近該閘極結構;一摻雜磊晶材料,填滿該至少一凹穴;一淺摻雜汲極區,位於該摻雜磊晶材料中並且位於該摻雜磊晶材料之一頂部;以及一帽蓋層,包含一未摻雜磊晶材料、並位於該摻雜磊晶材料上、而覆蓋該摻雜磊晶材料,其中該淺摻雜汲極區夾在該摻雜磊晶材料之一底部和該帽蓋層之間。 A semiconductor structure comprising: a substrate; a gate structure on the substrate; at least one recess located in the substrate adjacent to the gate structure; a doped epitaxial material filling the at least one a shallow doped drain region located in the doped epitaxial material and on top of one of the doped epitaxial materials; and a cap layer comprising an undoped epitaxial material and located in the doped The doped epitaxial material is overlaid on the impurity epitaxial material, wherein the shallow doped drain region is sandwiched between one of the bottoms of the doped epitaxial material and the cap layer. 如請求項1之半導體結構,更包含:至少部份覆蓋該帽蓋層之一金屬矽化物,其中該帽蓋層隔離該淺摻雜汲極區與該金屬矽化物,使得該淺摻雜汲極區不接觸該金屬矽化物。 The semiconductor structure of claim 1, further comprising: at least partially covering a metal halide of the cap layer, wherein the cap layer isolates the shallow doped drain region from the metal germanide such that the shallow doped germanium The polar region does not contact the metal halide. 如請求項2之半導體結構,更包含:一層間介電層,覆蓋該閘極結構與該帽蓋層;以及一接觸插塞,位於該層間介電層中並電連接該帽蓋層,其中該金屬矽化物,位於該帽蓋層上,而完全覆蓋該帽蓋層。 The semiconductor structure of claim 2, further comprising: an interlayer dielectric layer covering the gate structure and the cap layer; and a contact plug located in the interlayer dielectric layer and electrically connecting the cap layer, wherein The metal halide is located on the cap layer and completely covers the cap layer. 如請求項2之半導體結構,更包含: 一層間介電層,覆蓋該閘極結構與該帽蓋層;一接觸插塞,位於該層間介電層中並電連接該帽蓋層;以及一外間隙壁,圍繞該閘極結構,其中該金屬矽化物,位於該帽蓋層上,使得該接觸插塞完全覆蓋該金屬矽化物,而且該外間隙壁層、該層間介電層與該金屬矽化物一起覆蓋該帽蓋層。 The semiconductor structure of claim 2 further includes: An interlayer dielectric layer covering the gate structure and the cap layer; a contact plug located in the interlayer dielectric layer and electrically connecting the cap layer; and an outer spacer surrounding the gate structure, wherein The metal halide is disposed on the cap layer such that the contact plug completely covers the metal halide, and the outer spacer layer, the interlayer dielectric layer and the metal halide cover the cap layer. 如請求項1之半導體結構,另包含一間隙壁,位於該閘極結構與該外間隙壁之間,且該帽蓋層與該間隙壁一起覆蓋該淺摻雜汲極區。 The semiconductor structure of claim 1, further comprising a spacer between the gate structure and the outer spacer, and the cap layer covers the shallow doped drain region together with the spacer. 如請求項1之半導體結構,其中該閘極結構另包含同時與該帽蓋層與該淺摻雜汲極區接觸之一間隙壁。 The semiconductor structure of claim 1, wherein the gate structure further comprises a spacer that simultaneously contacts the cap layer and the shallow doped drain region. 如請求項1之半導體結構,其中該至少一凹穴更包含位於該閘極結構下方之一尖端且該淺摻雜汲極區與該尖端重疊。 The semiconductor structure of claim 1, wherein the at least one recess further comprises a tip located below the gate structure and the shallow doped drain region overlaps the tip. 如請求項1之半導體結構,其中該淺摻雜汲極區延伸至該閘極結構下方。 The semiconductor structure of claim 1 wherein the shallowly doped drain region extends below the gate structure. 如請求項1之半導體結構,其中該閘極結構為一P型金氧半導體閘極與一N型金氧半導體閘極其中之一者。 The semiconductor structure of claim 1, wherein the gate structure is one of a P-type MOS gate and an N-type MOS gate. 如請求項1之半導體結構,其中該摻雜磊晶材料包含兩種不同之四價元素。 The semiconductor structure of claim 1 wherein the doped epitaxial material comprises two different tetravalent elements. 如請求項1之半導體結構,其中該淺摻雜汲極區與該摻雜磊晶材料之該頂部完全重疊,並延伸至該閘極結構下方。 The semiconductor structure of claim 1 wherein the shallowly doped drain region completely overlaps the top of the doped epitaxial material and extends below the gate structure. 一種形成半導體結構之方法,包含:提供一基材,其具有位於該基材上之一閘極結構,以及位於該基材中,並鄰近該閘極結構之至少一凹穴;形成一摻雜磊晶材料層,其填滿該至少一凹穴;進行一摻雜步驟,而在該摻雜磊晶材料層之一頂部形成一淺摻雜汲極區;以及形成一帽蓋層,其包含一未摻雜磊晶材料、位於該淺摻雜汲極區上方並覆蓋該摻雜磊晶材料,其中該淺摻雜汲極區位於該摻雜磊晶材料中,並且夾在該摻雜磊晶材料之一底部和該帽蓋層之間。 A method of forming a semiconductor structure, comprising: providing a substrate having a gate structure on the substrate, and at least one recess in the substrate adjacent to the gate structure; forming a doping a layer of epitaxial material filling the at least one recess; performing a doping step to form a shallow doped drain region on top of one of the doped epitaxial material layers; and forming a cap layer comprising An undoped epitaxial material is disposed over the shallow doped drain region and covering the doped epitaxial material, wherein the shallow doped drain region is located in the doped epitaxial material and is sandwiched between the doped epitaxy Between one of the bottoms of the crystalline material and the cap layer. 如請求項12形成半導體結構之方法,更包含:形成一外間隙壁,其包圍該閘極結構並部份覆蓋該帽蓋層。 The method of claim 12, wherein the method of forming a semiconductor structure further comprises: forming an outer spacer surrounding the gate structure and partially covering the cap layer. 如請求項13形成半導體結構之方法,其中在形成該外間隙壁之後,更包含:進行一重摻雜步驟,而在該帽蓋層與該摻雜磊晶材料層中形成一源極/汲極區;以及形成一層間介電層,以覆蓋該閘極結構與該帽蓋層。 The method of claim 13, wherein after forming the outer spacer, further comprising: performing a heavily doping step, and forming a source/drain in the cap layer and the doped epitaxial material layer And forming an interlayer dielectric layer to cover the gate structure and the cap layer. 如請求項14形成半導體結構之方法,更包含:在形成該層間介電層之前形成一金屬矽化物,而完全覆蓋該帽蓋層;以及形成一接觸插塞,使得該接觸插塞穿過該層間介電層、覆蓋部份位於該帽蓋層上之該金屬矽化物並電連接該帽蓋層。 The method of claim 14, wherein the method further comprises: forming a metal germanide prior to forming the interlayer dielectric layer to completely cover the cap layer; and forming a contact plug such that the contact plug passes through the contact plug An interlayer dielectric layer covering the metal halide on the cap layer and electrically connecting the cap layer. 如請求項14形成半導體結構之方法,其中在形成該層間介電層之後,更包含:形成一金屬矽化物以及一接觸插塞,使得該接觸插塞穿過該層間介電層、完全覆蓋位於該帽蓋層上之該金屬矽化物並電連接該帽蓋層。 The method of claim 14, wherein after forming the interlayer dielectric layer, further comprising: forming a metal germanide and a contact plug, such that the contact plug passes through the interlayer dielectric layer and is completely covered. The metal halide on the cap layer and electrically connects the cap layer. 如請求項12形成半導體結構之方法,其中該摻雜步驟為一斜角植入步驟,使得該淺摻雜汲極區與該摻雜磊晶材料之該頂部完全重疊並延伸至該閘極結構下方。 The method of claim 12, wherein the doping step is an oblique implantation step such that the shallow doped drain region completely overlaps the top of the doped epitaxial material and extends to the gate structure Below. 如請求項12形成半導體結構之方法,其中該淺摻雜汲極區與該至少一凹穴之一尖端重疊,且該尖端延伸至該閘極結構之下方。 The method of claim 12, wherein the shallow doped drain region overlaps a tip end of the at least one recess and the tip extends below the gate structure. 如請求項12形成半導體結構之方法,其中該閘極結構為一P型金氧半導體閘極與一N型金氧半導體閘極其中之一者。 A method of forming a semiconductor structure as claimed in claim 12, wherein the gate structure is one of a P-type MOS gate and an N-type MOS gate. 如請求項12形成半導體結構之方法,其中該閘極結構包含一內 間隙壁,而該淺摻雜汲極區延伸至該內間隙壁下方。 A method of forming a semiconductor structure as claimed in claim 12, wherein the gate structure comprises an inner a spacer, and the shallow doped drain region extends below the inner spacer.
TW101108069A 2012-03-09 2012-03-09 Semiconductor structure and fabrication method thereof TWI529936B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101108069A TWI529936B (en) 2012-03-09 2012-03-09 Semiconductor structure and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101108069A TWI529936B (en) 2012-03-09 2012-03-09 Semiconductor structure and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW201338164A TW201338164A (en) 2013-09-16
TWI529936B true TWI529936B (en) 2016-04-11

Family

ID=49628025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108069A TWI529936B (en) 2012-03-09 2012-03-09 Semiconductor structure and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI529936B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102385567B1 (en) 2017-08-29 2022-04-12 삼성전자주식회사 Semiconductor devices and method of manufacturing semiconductor devices

Also Published As

Publication number Publication date
TW201338164A (en) 2013-09-16

Similar Documents

Publication Publication Date Title
US9312359B2 (en) Semiconductor structure and fabrication method thereof
US8779526B2 (en) Semiconductor device
US8981527B2 (en) Resistor and manufacturing method thereof
US9147678B2 (en) Resistor and fabrication method thereof
US10546922B2 (en) Method for fabricating cap layer on an epitaxial layer
US8643069B2 (en) Semiconductor device having metal gate and manufacturing method thereof
CN106920839B (en) Semiconductor element and manufacturing method thereof
US20120256275A1 (en) Metal gate structure and manufacturing method thereof
US11545560B2 (en) Semiconductor device and method for fabricating the same
US10068919B2 (en) Semiconductor device and method of forming the same
US8710593B2 (en) Resistor and manufacturing method thereof
US8921206B2 (en) Semiconductor process
TW201707206A (en) Semiconductor device and a fabrication method thereof
TWI571936B (en) Structure of field effect transistor with fin structure and fabricating method thereof
TWI529936B (en) Semiconductor structure and fabrication method thereof
US20130302952A1 (en) Method for manufacturing a semiconductor device
TWI566299B (en) Method for forming semiconductor device
TWI523147B (en) Resistor integrated with a transistor having metal gate and manufacturing method thereof
TWI536568B (en) Semiconductor process
TW201310577A (en) Resistor and manufacturing method thereof
TWI609430B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI543370B (en) Mos transistor process
TWI508293B (en) Semiconductor device having metal gate and manufacturing method thereof
CN102891085B (en) Semiconductor element with metal gates and preparation method thereof
TWI520307B (en) Resistor and manufacturing method thereof