TWI527214B - Silicon-controlled rectifier for esd protection and method for manufacturing silicon-controlled rectifier for esd protection - Google Patents

Silicon-controlled rectifier for esd protection and method for manufacturing silicon-controlled rectifier for esd protection Download PDF

Info

Publication number
TWI527214B
TWI527214B TW103100775A TW103100775A TWI527214B TW I527214 B TWI527214 B TW I527214B TW 103100775 A TW103100775 A TW 103100775A TW 103100775 A TW103100775 A TW 103100775A TW I527214 B TWI527214 B TW I527214B
Authority
TW
Taiwan
Prior art keywords
type
current path
path portion
vertical current
well
Prior art date
Application number
TW103100775A
Other languages
Chinese (zh)
Other versions
TW201431065A (en
Inventor
林群祐
柯明道
蔡銘憲
竹立煒
宋明相
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/778,369 external-priority patent/US9130008B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW201431065A publication Critical patent/TW201431065A/en
Application granted granted Critical
Publication of TWI527214B publication Critical patent/TWI527214B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

具有ESD防護之矽控整流器,以及製造用以做為ESD防護電路之矽控整流器之方法 Remotely controlled rectifier with ESD protection, and method of manufacturing a controlled rectifier for use as an ESD protection circuit

本發明係關於靜電放電防護技術。 The present invention relates to electrostatic discharge protection technology.

靜電放電(ESD)脈衝,是一種意外、突然由外界(可使用人體模型或機器模型以近似之)移轉至電子裝置上,或由電子裝置(可使用充電裝置模型近似之)移轉到外界的能量。ESD事件會造成電子裝置損壞,舉例而言,高電壓會造成電晶體閘極氧化,而高電流會造成裝置主動區熔毀,此皆是導致接面失效的原因。當電子設備因為ESD事件而受損,可能會變得無法正常的運作,甚至完全癱瘓。 Electrostatic discharge (ESD) pulses are accidental, abruptly transferred to the electronic device by the outside world (approx. using a mannequin or machine model), or moved to the outside by an electronic device (approximated using a charging device model) energy of. ESD events can cause damage to the electronic device. For example, high voltage will cause the gate of the transistor to oxidize, and high current will cause the active region of the device to melt, which is the cause of the failure of the junction. When an electronic device is damaged due to an ESD event, it may become unworkable or even completely paralyzed.

本發明提供一種矽控整流器(silicon controlled rectifier,SCR),其包括將電流由一SCR陽極導向一SCR陰極的一電流路徑;其中該電流路徑包括:一第一垂直電流路徑部分,耦接至該SCR陽極;一第二垂直電流路徑部分,耦接至該SCR陰極;一水平電流路徑部分,位於該第一與第二垂直電流路徑部分之下,其中該水平電流路徑部分包括一第一阱區與一 第二阱區,該第一阱區與該第二阱區會合於一接面,而該接面疊置於一第一平面之上,其中該第一阱區與該第二阱區互相配合以橫跨該第一垂直電流路徑部分與該第二垂直電流路徑部分兩者之間所間隔的距離。 The present invention provides a silicon controlled rectifier (SCR) including a current path for directing current from an SCR anode to an SCR cathode; wherein the current path includes: a first vertical current path portion coupled to the An SCR anode; a second vertical current path portion coupled to the SCR cathode; a horizontal current path portion below the first and second vertical current path portions, wherein the horizontal current path portion includes a first well region With one a second well region, the first well region and the second well region are joined to a junction surface, and the junction surface is stacked on a first plane, wherein the first well region and the second well region cooperate with each other And a distance between the first vertical current path portion and the second vertical current path portion.

本發明另提供一種矽控整流器(SCR),其形成於一基質之上,包括一SCR陽極、一SCR陰極,以及將電流由該SCR陽極導向該SCR陰極的一電流路徑;其中該電流路徑包括:一第一垂直電流路徑部分,耦接至該SCR陽極,並且具有一第一導電率型;一第二垂直電流路徑部分,耦接至該SCR陰極,並且具有與該第一導電率型相反的一第二導電率型,其中該第二垂直電流路徑部分與該第一垂直電流路徑部分水平配置於相同的平面,且兩者水平間隔一距離;以及一水平電流路徑部分,配置於該第一垂直電流路徑部分與該第二垂直電流路徑部分之下,並橫跨該第一垂直電流路徑部分與該第二垂直電流路徑部分之間所間隔的距離,該水平電流路徑部分包括:一第一阱區,耦接至該第一垂直電流路徑部分並配置於該第一垂直電流路徑部分之下,其中該第一井具有該第二導電率型;以及一第二阱區,耦接至該第二垂直電流路徑部分並配置於該第二垂直電流路徑部分之下,其中該第一井與該第二井會合於一接面,而該接面對齊一第一平面,其中該第二井具有該第一導電率型。 The present invention further provides a susceptor-controlled rectifier (SCR) formed on a substrate, including an SCR anode, an SCR cathode, and a current path for directing current from the SCR anode to the SCR cathode; wherein the current path includes a first vertical current path portion coupled to the SCR anode and having a first conductivity type; a second vertical current path portion coupled to the SCR cathode and having a reverse polarity to the first conductivity type a second conductivity type, wherein the second vertical current path portion and the first vertical current path portion are horizontally disposed in the same plane, and the two are horizontally spaced apart by a distance; and a horizontal current path portion is disposed in the first a vertical current path portion and the second vertical current path portion, and spanning a distance between the first vertical current path portion and the second vertical current path portion, the horizontal current path portion comprising: a first a well region coupled to the first vertical current path portion and disposed under the first vertical current path portion, wherein the first well has the second conductivity And a second well region coupled to the second vertical current path portion and disposed under the second vertical current path portion, wherein the first well and the second well meet at a junction, and the connection The faces are aligned with a first plane, wherein the second well has the first conductivity type.

本發明另提供一種製造用以做為ESD防護電路之矽控整流器(silicon controlled rectifier,SCR)方法,包括:形成一n-井,其在一半導體基質中具有一第一n摻雜濃度;形成 一p井其在一半導體基質中具有一第一p摻雜濃度,其中該p井與該n-井會合於一接面;形成一陽極區於該n-井之上。 The present invention further provides a method of fabricating a silicon controlled rectifier (SCR) for use as an ESD protection circuit, comprising: forming an n-well having a first n-doping concentration in a semiconductor substrate; forming A p-well has a first p-doping concentration in a semiconductor substrate, wherein the p-well and the n-well meet at a junction; forming an anode region above the n-well.

100‧‧‧積體電路 100‧‧‧ integrated circuit

102‧‧‧ESD敏感電路 102‧‧‧ESD sensitive circuit

104‧‧‧IC引腳 104‧‧‧IC pin

106‧‧‧ESD防護電路 106‧‧‧ESD protection circuit

108‧‧‧ESD脈衝 108‧‧‧ESD pulse

110‧‧‧耦接點 110‧‧‧ coupling points

112‧‧‧第一電源軌 112‧‧‧First power rail

114‧‧‧第二電源軌 114‧‧‧Second power rail

116‧‧‧第一SCR 116‧‧‧First SCR

118‧‧‧第二SCR 118‧‧‧Second SCR

120‧‧‧箭號 120‧‧‧Arrow

122‧‧‧箭號 122‧‧‧Arrow

124‧‧‧PNPN結構 124‧‧‧PNPN structure

126‧‧‧雙載子接面電晶體 126‧‧‧Double carrier junction transistor

128‧‧‧雙載子接面電晶體 128‧‧‧Double carrier junction transistor

200‧‧‧SCR 200‧‧‧SCR

202‧‧‧半導體基質 202‧‧‧Semiconductor matrix

204‧‧‧SCR陽極 204‧‧‧SCR anode

206‧‧‧SCR陰極 206‧‧‧SCR cathode

208‧‧‧電流路徑 208‧‧‧ Current path

208a‧‧‧第一垂直電流路徑部分 208a‧‧‧First vertical current path section

208b‧‧‧第二垂直電流路徑部分 208b‧‧‧second vertical current path section

208c‧‧‧水平電流路徑部分 208c‧‧‧Horizontal current path section

210‧‧‧第一阱區 210‧‧‧First Well Area

212‧‧‧第二阱區 212‧‧‧Second well area

214‧‧‧接面 214‧‧‧Connected

218‧‧‧第一w型凸出物 218‧‧‧First w-shaped projections

220‧‧‧上層 220‧‧‧Upper

222‧‧‧下層 222‧‧‧Under

224‧‧‧第一垂直電流路徑凹入處 224‧‧‧First vertical current path recess

224a‧‧‧第一垂直電流路徑凹入處 224a‧‧‧First vertical current path recess

224b‧‧‧第一垂直電流路徑凹入處 224b‧‧‧First vertical current path recess

226a‧‧‧第一阱區接觸點 226a‧‧‧First well zone contact point

226b‧‧‧第一阱區接觸點 226b‧‧‧First well zone contact point

228‧‧‧第二w型凸出物 228‧‧‧Second w-shaped projections

230‧‧‧上層 230‧‧‧Upper

232‧‧‧下層 232‧‧‧Under

234‧‧‧第二垂直電流路徑凹入處 234‧‧‧second vertical current path recess

234b‧‧‧第二垂直電流路徑凹入處 234b‧‧‧second vertical current path recess

236a‧‧‧第二阱區接觸點 236a‧‧‧Second well zone contact point

236b‧‧‧第二阱區接觸點 236b‧‧‧Second well zone contact point

600‧‧‧SCR 600‧‧‧SCR

602‧‧‧u型凸出物 602‧‧U type projections

604‧‧‧u型凸出物 604‧‧‧u type projections

606‧‧‧內部u型表面 606‧‧‧Internal u-shaped surface

608‧‧‧外部u型表面 608‧‧‧External u-shaped surface

610‧‧‧井接觸點 610‧‧‧ Well contact points

612‧‧‧凹入處 612‧‧‧ recesses

614‧‧‧第一平面 614‧‧‧ first plane

616‧‧‧第二平面 616‧‧‧ second plane

618‧‧‧SCR 618‧‧‧SCR

620‧‧‧第一垂直電流路徑部分 620‧‧‧First vertical current path section

622‧‧‧第一u型凸出物 622‧‧‧First u-shaped projection

624‧‧‧第二u型凸出物 624‧‧‧Second u-shaped projections

626‧‧‧第三u型凸出物 626‧‧‧ Third u-shaped projection

628‧‧‧縱向構件 628‧‧‧Longitudinal components

630、632、634、636‧‧‧橫向構件 630, 632, 634, 636‧‧ ‧ cross members

700‧‧‧ESD保護裝置 700‧‧‧ESD protection device

702‧‧‧第一SCR裝置 702‧‧‧First SCR device

704‧‧‧第二SCR裝置 704‧‧‧Second SCR device

706‧‧‧第三SCR裝置 706‧‧‧ Third SCR device

708‧‧‧第四SCR裝置 708‧‧‧4th SCR device

710‧‧‧第一I/O引腳 710‧‧‧First I/O pin

712‧‧‧第二I/O引腳 712‧‧‧Second I/O pin

714‧‧‧電源軌ESD箝位電路 714‧‧‧Power rail ESD clamp circuit

716‧‧‧正值的對VSS型ESD脈衝 716‧‧‧ positive value for VSS type ESD pulse

718‧‧‧負值的對VSS型ESD脈衝 718‧‧‧ Negative value for VSS type ESD pulse

720‧‧‧正值的對VSS型ESD脈衝 720‧‧‧ positive value for VSS type ESD pulse

722‧‧‧負值的對VSS型ESD脈衝 722‧‧‧ Negative value for VSS type ESD pulse

724‧‧‧引腳至引腳型ESD脈衝 724‧‧‧Pin to Pin Type ESD Pulse

1002~1012‧‧‧步驟 1002~1012‧‧‧Steps

第1A圖為一實施例中具有ESD敏感電路及ESD防護電路之積體電路示意圖。 FIG. 1A is a schematic diagram of an integrated circuit having an ESD sensitive circuit and an ESD protection circuit in an embodiment.

第1B圖為某些實施例中第1A圖中ESD防護電路中所使用的SCR之另一角度視圖。 Figure 1B is another perspective view of the SCR used in the ESD protection circuit of Figure 1A in some embodiments.

第2A圖為某些實施例中具有w型防護之SCR示意圖。 Figure 2A is a schematic illustration of an SCR with w-type protection in certain embodiments.

第2B圖為第2A圖中之SCR上對稱的第一及第二平面。 Figure 2B is a first and second plane symmetric on the SCR in Figure 2A.

第3圖為第2A圖中具有絕緣區之上視圖。 Figure 3 is a top view of the insulating region in Figure 2A.

第4圖為一實施例中第3圖之SCR之剖面側視圖。 Figure 4 is a cross-sectional side view of the SCR of Figure 3 in an embodiment.

第5圖為一實施例中第3圖SCR之剖面側視圖。 Figure 5 is a cross-sectional side view of the SCR of Figure 3 in an embodiment.

第6A圖為其他實施例中具有u型防護之SCR之示意圖。 Fig. 6A is a schematic view of an SCR having u-type protection in other embodiments.

第6B圖為其他實施例中具有多重u型防護之SCR之示意圖。 Figure 6B is a schematic diagram of an SCR with multiple u-type guards in other embodiments.

第7A圖至第7B圖為包括四個SCR之電路,其可分流ESC脈衝。 Figures 7A through 7B are circuits including four SCRs that can shunt ESC pulses.

第8圖為第7A圖之對應SCR上視圖。 Figure 8 is a top view of the corresponding SCR of Figure 7A.

第9圖為某些實施例中電流如何通過SCR之示意圖。 Figure 9 is a schematic illustration of how current passes through the SCR in certain embodiments.

第10圖為製造用以做為ESD防護電路之SCR之方法流程圖。 Figure 10 is a flow diagram of a method of fabricating an SCR for use as an ESD protection circuit.

下文將配合附圖說明本發明的各個實施例,其中 相同的符號係用以表示相同的元件,並且圖示並非以實際尺寸呈現。 Various embodiments of the present invention will be described below with reference to the accompanying drawings, in which The same symbols are used to denote the same elements, and the illustrations are not presented in actual dimensions.

第1A圖為積體電路(IC)100之實施例,該積體電路包括一ESD-敏感電路102,在某些實施例中,該積體電路亦包括用以將ESD敏感電路102連接至外部電路組件(圖未示)之IC引腳104。在某些實施例中,IC引腳係墊片、焊料凸點,或是能夠電性連接ESD敏感電路102與其他電路的各種結構;其可為IC100與外部電路之界面,或是IC100內部電路元件間之界面。舉例而言,在某些實施例中IC引腳104係一電源引腳,用以供應ESD敏感電路102一DC供應電壓(例如,VDD或VSS);或係一輸入/輸出(I/O)引腳,用以提供輸入或輸出訊號。 1A is an embodiment of an integrated circuit (IC) 100 that includes an ESD-sensitive circuit 102. In some embodiments, the integrated circuit also includes an ESD-sensitive circuit 102 coupled to the external IC pin 104 of a circuit component (not shown). In some embodiments, the IC pins are pads, solder bumps, or various structures capable of electrically connecting the ESD sensitive circuit 102 and other circuits; the interface between the IC 100 and an external circuit, or the internal circuit of the IC 100 The interface between components. For example, in some embodiments IC pin 104 is a power supply pin for supplying a DC supply voltage (eg, VDD or VSS) to ESD sensitive circuit 102; or an input/output (I/O) A pin that provides an input or output signal.

為了讓ESD敏感電路102免於ESD脈衝108的損害,IC100之中包括了ESD防護電路106。特別的是,ESD防護電路106可調節耦接點110上之電壓,藉以使得該電壓不致於上升至毀損ESD敏感電路102中半導體裝置的程度。在某些實施例中,此ESD防護電路106可限制耦接觸點110上之電路置外於極端的操作組態。某些實施例中,耦接觸點110上之最高電壓被箝位在略高於第一電源軌112(例如,VDD)上之一般常態軌電壓,而其最低電壓則被箝位在略低於第二電源軌114(例如,VSS或接地電壓)之零伏線。 In order to protect the ESD sensitive circuit 102 from damage by the ESD pulse 108, an ESD protection circuit 106 is included in the IC 100. In particular, the ESD protection circuit 106 can adjust the voltage at the coupling point 110 such that the voltage does not rise to the point where the semiconductor device in the ESD sensitive circuit 102 is damaged. In some embodiments, the ESD protection circuit 106 can limit the circuit on the coupling contact 110 to an extreme operational configuration. In some embodiments, the highest voltage across the coupling contact 110 is clamped to a generally normal rail voltage slightly above the first supply rail 112 (eg, VDD), while the lowest voltage is clamped at a slightly lower voltage. A zero volt line of the second power rail 114 (eg, VSS or ground voltage).

在第1A圖的實施例中,ESD防護電路106使用第一SCR與第二SCR116、118。第一SCR116配置於節點110與第一電源軌112之間,而第二SCR118則配置於節點110與第二電源軌114之間。如第1B圖所示,第一與第二SCR116、118分別具 有一陽極與一陰極,而二極之間係一PNPN結構124,其在某些實施例中表示一對交叉耦合的雙載子接面電晶體(BJT)126或128。 In the embodiment of FIG. 1A, ESD protection circuit 106 uses a first SCR and a second SCR 116, 118. The first SCR 116 is disposed between the node 110 and the first power rail 112 , and the second SCR 118 is disposed between the node 110 and the second power rail 114 . As shown in FIG. 1B, the first and second SCRs 116 and 118 respectively have There is an anode and a cathode, and a PNPN structure 124 is formed between the two poles, which in some embodiments represents a pair of cross-coupled bi-carrier junction transistors (BJT) 126 or 128.

當第1A圖處於正常操作狀態時(即,沒有ESD脈衝存在時),第一與第二SCR116、118為反向偏壓。因此,在正常操作狀態下,第一與第二SCR116、118並未導通,且電源流並未由ESD敏感電路102改道至IC引腳104(反之亦然)。然而,當IC引腳104上出現大的正值ESD脈衝時,該脈衝會使節點110之輸入電壓提升至第一電源軌112之電壓之上;而第一SCR116變成順向變壓,並將ESD脈衝108之能量分流於其上(請見箭號120)。相似地,當IC引腳104上出現大的負值ESD脈衝時,該脈衝會使節點110之輸入電壓降低至接地電壓之下;而第二SCR118變成順向變壓,並將ESD脈衝108之能量分流於其上(請見箭號122)。因此,該第一與第二SCR116、118可選擇性地分流並消耗ESD脈衝之能量,但在沒有ESD脈衝時不會對電路的正常操作造成顯著的影響。不幸的是,傳統的ESD保護技術之箝位電壓或觸發電壓都高於理想的電壓值。有鑑於這些缺點,本發明提供降低該箝位電壓及觸發電壓之技術方案。 When the 1A map is in a normal operating state (i.e., no ESD pulses are present), the first and second SCRs 116, 118 are reverse biased. Thus, under normal operating conditions, the first and second SCRs 116, 118 are not conducting, and the power flow is not diverted by the ESD sensitive circuit 102 to the IC pin 104 (or vice versa). However, when a large positive ESD pulse occurs on the IC pin 104, the pulse causes the input voltage of the node 110 to rise above the voltage of the first power rail 112; and the first SCR 116 becomes a forward voltage transformer and will The energy of the ESD pulse 108 is split across it (see arrow 120). Similarly, when a large negative ESD pulse occurs on the IC pin 104, the pulse causes the input voltage of the node 110 to drop below the ground voltage; and the second SCR 118 becomes a forward voltage transformer and the ESD pulse 108 Energy is split on it (see arrow 122). Thus, the first and second SCRs 116, 118 can selectively shunt and consume the energy of the ESD pulse, but do not have a significant impact on the normal operation of the circuit without the ESD pulse. Unfortunately, the clamp voltage or trigger voltage of conventional ESD protection techniques is higher than the ideal voltage value. In view of these disadvantages, the present invention provides a technical solution for reducing the clamping voltage and the trigger voltage.

現在回到第2A-2B圖至第5圖,從圖中可發現範例的SCR 200提供較傳統SCR裝置更低的箝位電壓與觸發電壓。因此,當SCR 200與一ESD防護電路整合時(如第1A圖中IC 100中之電路所示),其所產生的電路具有更加強化的ESD防護性能。 Returning now to Figures 2A-2B through 5, it can be seen from the figure that the exemplary SCR 200 provides a lower clamping voltage and trigger voltage than conventional SCR devices. Thus, when the SCR 200 is integrated with an ESD protection circuit (as shown by the circuit in IC 100 in Figure 1A), the resulting circuit has more enhanced ESD protection.

參照第2A圖,SCR 200形成於一半導體基質202之 上,該半導體基質202可為矽基質,絕緣基質上之矽,或各種其他半導體基質。SCR200包括一SCR陽極204、一SCR陰極206以及可將電流由SCR陽極204導向SCR陰極206之電流路徑208。電流路徑208包括一第一垂直電流路徑部分208a;一第二垂直電流路徑部分208b,其與第一垂直電流路徑部分208a間隔一距離;以及一水平電流路徑部分208c,其延伸於該第一與第二垂直電流路徑部分之下方,可將該第一與第二垂直電流路徑部分互相耦接至彼此。為清楚說明,第2A圖至第2B圖中移除了介電區(比較第3圖至第5圖,該等附圖繪示了具有介電區250的SCR200)。 Referring to FIG. 2A, the SCR 200 is formed on a semiconductor substrate 202. The semiconductor substrate 202 can be a germanium matrix, a germanium on an insulating substrate, or various other semiconductor substrates. The SCR 200 includes an SCR anode 204, an SCR cathode 206, and a current path 208 that directs current from the SCR anode 204 to the SCR cathode 206. Current path 208 includes a first vertical current path portion 208a; a second vertical current path portion 208b spaced a distance from first vertical current path portion 208a; and a horizontal current path portion 208c extending from the first Below the second vertical current path portion, the first and second vertical current path portions may be coupled to each other. For clarity of illustration, the dielectric regions are removed from Figures 2A through 2B (compare Figures 3 through 5, which illustrate SCR 200 with dielectric region 250).

水平電流路徑部分208c包括一第一阱區210與一第二阱區212,兩者會合於接面214。第一阱區210具有一第一導電型(例如,n型),而第二阱區212具有相反的一第二導電型(例如,p型)。如第2B圖所示,接面214至少部分沿著第一平面216平置。 The horizontal current path portion 208c includes a first well region 210 and a second well region 212, which are joined to the junction 214. The first well region 210 has a first conductivity type (eg, n-type) and the second well region 212 has an opposite second conductivity type (eg, p-type). As shown in FIG. 2B, the junction 214 is at least partially flat along the first plane 216.

參照第2A圖,第一垂直電流路徑部分208a耦接至SCR陽極204,並且包括相有相對側壁的一第一細長的半導體本體。垂直電流路徑部分208a包括一第一w型凸出物218,其由該基質202垂直向上延伸。第一w型凸出物218包括具有第二導電型(例如,P+)的一上層220,並選擇性地包括一下層222,該下層在所述的實施例中與第一阱區210具有相同的摻雜質(例如,N)。在此實施例中,第一w型凸出物218包括一對第一垂直電流路徑凹入處(224a、224b),兩凹入處分別由第一w型凸出物218之一側壁向內延伸。第一阱區接觸點(226a、226b)分別配 置於第一垂直電流路徑凹入處(224a、224b)之中。該第一阱區接觸點226a、226b與第一阱區210具有相同的摻雜型態。然而,在某些實施例中,第一阱區接觸點226a、226b具有較高的摻雜濃度(例如,N+)。 Referring to FIG. 2A, a first vertical current path portion 208a is coupled to the SCR anode 204 and includes a first elongated semiconductor body having opposing sidewalls. Vertical current path portion 208a includes a first w-shaped protrusion 218 that extends vertically upward from the substrate 202. The first w-shaped protrusion 218 includes an upper layer 220 having a second conductivity type (e.g., P+) and optionally a lower layer 222, which in the illustrated embodiment is identical to the first well region 210 Doping (eg, N). In this embodiment, the first w-shaped projection 218 includes a pair of first vertical current path recesses (224a, 224b), the recesses being inwardly from one of the sidewalls of the first w-shaped projection 218, respectively. extend. The first well region contact points (226a, 226b) are respectively assigned Placed in the first vertical current path recess (224a, 224b). The first well region contact points 226a, 226b have the same doping profile as the first well region 210. However, in some embodiments, the first well region contact points 226a, 226b have a higher doping concentration (eg, N+).

第二垂直電流路徑部分208b耦接至陰極206,並具包括具有相對側壁的一第二細長的半導體本體。垂直電流路徑部分208b包括一第二w型凸出物228,其由基質202垂直向上延伸。第二w型凸出物228包括具有第一導電型(例如,N+)的一上層230,並且選擇性地包括一下層232,其具有與第二阱區212相同的摻雜質(例如,P)。在此實施例中,第二w型凸出物228包括一對第二垂直電流路徑凹入處234a、234b,分別由第二w型凸出物228之一側壁向內延伸。第二阱區接觸點(236a、236b)分別配置於第二垂直電流路徑凹入處(234a、234b)之中。在某些實施例中,第二阱區接觸點236a、236b與第二阱區212有著相同的摻雜型態。在某些實施例中,第二阱區接觸點236a、236b具有較第二阱區212高的摻雜濃度(例如,P+)。在某些實施例中,第二井接觸點236a、236b分別與第一阱區接觸點226a226b短路,如圖所示。 The second vertical current path portion 208b is coupled to the cathode 206 and includes a second elongated semiconductor body having opposing sidewalls. Vertical current path portion 208b includes a second w-shaped protrusion 228 that extends vertically upward from substrate 202. The second w-shaped protrusion 228 includes an upper layer 230 having a first conductivity type (eg, N+), and optionally a lower layer 232 having the same dopant as the second well region 212 (eg, P ). In this embodiment, the second w-shaped projection 228 includes a pair of second vertical current path recesses 234a, 234b that extend inwardly from one of the sidewalls of the second w-shaped projection 228, respectively. The second well region contact points (236a, 236b) are respectively disposed in the second vertical current path recesses (234a, 234b). In some embodiments, the second well region contact points 236a, 236b have the same doping profile as the second well region 212. In some embodiments, the second well region contact points 236a, 236b have a higher doping concentration (eg, P+) than the second well region 212. In some embodiments, the second well contact points 236a, 236b are shorted to the first well contact point 226a 226b, respectively, as shown.

如第2B圖所示,第一垂直電流路徑部分208a與第二垂直電流路徑部分208b以該第一平面216鏡像對稱於彼此。該第一與第二垂直電流路徑部分208a、208b亦以第二平面240呈鏡像對稱,並與第一平面216垂直。在某些實施例中,第二平面240配置於w型凸出物218、228之中央處,並等距間隔於第一與第二阱區接觸點226a、226b之間。 As shown in FIG. 2B, the first vertical current path portion 208a and the second vertical current path portion 208b are mirror-symmetrical to each other with the first plane 216. The first and second vertical current path portions 208a, 208b are also mirror symmetrical with respect to the second plane 240 and perpendicular to the first plane 216. In some embodiments, the second plane 240 is disposed at the center of the w-shaped projections 218, 228 and is equidistantly spaced between the first and second well region contact points 226a, 226b.

第3圖至第5圖為具有示範摻雜組態的SCR200之其他視圖。第3圖至第5圖中之SCR200具有相同的分區與相同的參照符號,如第2A圖至第2B圖所示,不過,為了方便說明,其將第2A圖至第2B圖中的絕緣層250移除。舉例而言,第3圖繪示陽極204;陰極206;n-井210與p井212會合於一接面214;以及第一與第二w型凸出物218、228。第4圖為第3圖之剖面圖,繪示基質202;陽極204;陰極206;電流路徑(208a、208b、208c);第一阱區210;與第二阱區212。第5圖為第3圖之剖面圖;繪示基質202;陽極204;陰極206;與電流路徑(208a、208b、208c);第一阱區210;與第二阱區212。雖然在這些實施例中以n型摻雜型態表示第一導電率型,並以p型雜型態表示第二導電型,但可了解的是,在其他實施例中,第一導電率型亦可為p型,而第二導電率型亦可為n型。換言之,在其他未述及的實施例中,第3圖至第5圖中之導電性標示可被交換。 Figures 3 through 5 are additional views of the SCR 200 with an exemplary doping configuration. The SCRs 200 in FIGS. 3 to 5 have the same partitions and the same reference numerals as shown in FIGS. 2A to 2B, but the insulating layers in FIGS. 2A to 2B are shown for convenience of explanation. 250 removed. For example, FIG. 3 illustrates the anode 204; the cathode 206; the n-well 210 and the p-well 212 meet a junction 214; and the first and second w-shaped projections 218, 228. 4 is a cross-sectional view of FIG. 3, showing a substrate 202; an anode 204; a cathode 206; a current path (208a, 208b, 208c); a first well region 210; and a second well region 212. 5 is a cross-sectional view of FIG. 3; the substrate 202; the anode 204; the cathode 206; and the current paths (208a, 208b, 208c); the first well region 210; and the second well region 212. Although the first conductivity type is represented by an n-type doping type and the second conductivity type is represented by a p-type impurity type in these embodiments, it is understood that in other embodiments, the first conductivity type It may also be p-type, and the second conductivity type may also be n-type. In other words, in other embodiments not described, the conductivity indications in Figures 3 through 5 can be exchanged.

雖然第2A圖至第2B圖與第3圖至第5圖將該第一與第二垂直電流路徑部分208a、208b繪成w型凸出物,但是在其他實施例中,該第一與第二垂直電流路徑部分可具有其他形狀,不必以前述實施例為限。舉例而言,在第6A圖中所述之SCR 600,第一與第二垂直電流路徑部分為u型凸出物(602、604),其由基質垂直向上延伸。各個u型凸出物(例如,602)包括一內部u型表面(例如,606)以及與其共心的一外部u型表面(例如,608)。井接觸點(例如,610)接著製作於內部u型表面所界定的凹入處(例如,612)之中。與第2A圖第第2B圖的w型凸出物相同,第6A圖中的u型凸出物以第一平面614互相鏡像對稱於彼 此,其亦以第二平面616彼此對稱。在其他實施例中亦可採用F型凸出物或π型凸出物。 Although the first and second vertical current path portions 208a, 208b are depicted as w-shaped projections in FIGS. 2A-2B and 3D through 5, in other embodiments, the first and the first The two vertical current path portions may have other shapes and are not necessarily limited to the foregoing embodiments. For example, in the SCR 600 described in FIG. 6A, the first and second vertical current path portions are u-shaped protrusions (602, 604) that extend vertically upward from the substrate. Each u-shaped protrusion (e.g., 602) includes an inner u-shaped surface (e.g., 606) and an outer u-shaped surface (e.g., 608) concentric therewith. The well contact (e.g., 610) is then fabricated into a recess (e.g., 612) defined by the inner u-shaped surface. Similar to the w-shaped projections of FIG. 2A and FIG. 2B, the u-shaped projections in FIG. 6A are mirror-symmetrical to each other in the first plane 614. Thus, it is also symmetrical to each other in the second plane 616. In other embodiments, F-shaped protrusions or π-type protrusions may also be employed.

此外,如第6B圖之實施例所示,多重u型凸出物(或/及多重w型凸出物)係彼此相鄰。舉例而言,第6B圖繪示一範例SCR 618,其中該第一與第二垂直電流路徑部分皆分別由三個u型凸出物所組成。舉例而言,第一垂直電流路徑部分620包括第一、第二與第三u型凸出物(622、624與626)。在第6B圖的實施例中,相鄰的u型、或w型凸出物之側壁互相緊造或合併。第6B圖之結構(以及本文所述的其他相似結構)亦可為相對第一平面614垂直延伸的一縱向構件(例如,628),其中,橫向構件(例如:630、632、634、636)以固定的間隔垂直橫跨縱向構件。雖然在第6B圖的實施側中,該等橫向構件(例如,u型或w型凸出物的側邊或腳部)係由縱向構件628向同一方向延伸,然而,在其他實施例中,橫向構件可由縱向構件向不同方向延伸,並且彼此可具有相同或不同的長度。此外,雖然在第6B圖中由縱向構件628延伸出去的橫向構件為四個,然而,可以了解的是,在其他實施例中,橫向構件的數目不必以此為限。 Further, as shown in the embodiment of Fig. 6B, the multiple u-shaped projections (or/and multiple w-shaped projections) are adjacent to each other. For example, FIG. 6B illustrates an example SCR 618 in which the first and second vertical current path portions are each composed of three u-shaped protrusions. For example, the first vertical current path portion 620 includes first, second, and third u-shaped protrusions (622, 624, and 626). In the embodiment of Figure 6B, the sidewalls of adjacent u-shaped, or w-shaped projections are compacted or merged with each other. The structure of Figure 6B (and other similar structures described herein) can also be a longitudinal member (e.g., 628) that extends perpendicularly relative to the first plane 614, wherein the cross members (e.g., 630, 632, 634, 636) Vertically span the longitudinal members at regular intervals. Although in the implementation side of FIG. 6B, the cross members (eg, the sides or feet of the u-shaped or w-shaped projections) extend in the same direction by the longitudinal members 628, in other embodiments, The cross members may extend in different directions from the longitudinal members and may have the same or different lengths from each other. Moreover, although the number of cross members extending from the longitudinal members 628 in FIG. 6B is four, it will be appreciated that in other embodiments, the number of cross members is not necessarily limited thereto.

雖然此實施例相對先前所述的實施例佔用較大的面積,但是,採用該等u型或w型凸出物的實施例皆是有好處的,這取決於裝置參數以及補償ESD脈衝的能量。此外,雖然所描述的w型與u型凸出物在垂直面交會處的邊角處呈現方型,然而在許多製程技術中,邊角可被製作得更圓滑,且其兩邊亦可稍微不垂直。舉例而言,側壁可相對基質表面傾斜,使得兩者以一不太垂直的交角相交。 While this embodiment occupies a relatively large area relative to the previously described embodiments, embodiments employing such u-shaped or w-shaped projections are advantageous depending on device parameters and the energy of the ESD pulse. . In addition, although the described w-type and u-shaped protrusions exhibit a square shape at the corners of the intersection of the vertical faces, in many process technologies, the corners can be made more rounded and the sides thereof can be slightly less vertical. For example, the sidewalls can be inclined relative to the surface of the substrate such that the two intersect at a less perpendicular intersection angle.

第7A圖為一ESD保護裝置700之實施例,該ESD保護裝置700包括四個SCR(702、704、706、708),其配置於第一與第二IC引腳(710、712)之間。這四個SCR裝置分別具有PNPN結構,共同分散ESD脈衝之能量。如第7B圖所示,各個引腳至引腳路徑包括由第一I/O引腳至第二I/O引腳的一二極體串。舉例而言,在某些ESD情況下,電流由第一I/O引腳710流向第二SCR裝置704,並穿過第三SCR裝置706,最後由第二I/O引腳712流出。在其他的ESD情況下,電流由第二I/O引腳712流向第四SCR裝置708,並通過第一SCR裝置702,最後由第一I/O引腳710流出。 7A is an embodiment of an ESD protection device 700 that includes four SCRs (702, 704, 706, 708) disposed between first and second IC pins (710, 712) . The four SCR devices each have a PNPN structure that collectively dissipates the energy of the ESD pulses. As shown in Figure 7B, each pin-to-pin path includes a diode string from the first I/O pin to the second I/O pin. For example, in some ESD situations, current flows from the first I/O pin 710 to the second SCR device 704, through the third SCR device 706, and finally from the second I/O pin 712. In other ESD situations, current flows from the second I/O pin 712 to the fourth SCR device 708, through the first SCR device 702, and finally from the first I/O pin 710.

第8圖中改進了第7圖中ESD保護裝置。ESD保護裝置800包括四個SCR(SCR1、SCR2、SCR3、SCR4),各包括一PNPN結構,其由一個或多個w型凸出物所構成,並由ESD裝置所在的半導體基質垂直延伸。該四個SCR與兩I/O引腳802、804之間具有特別的安排。第一SCR之陰極(陰極1)耦接至第一I/O引腳802,而該第一I/O引腳802為第二SCR之陽極(陽極2)。第三SCR之陰極(陰極3)耦接至第二I/O引腳804,而該第二I/O引腳為第四SCR之陽極(陽極4)。在第8圖的實施例中,SCR以該第一與第二平面806、808彼此對稱。 The ESD protection device of Figure 7 is modified in Figure 8. The ESD protection device 800 includes four SCRs (SCR1, SCR2, SCR3, SCR4) each including a PNPN structure that is comprised of one or more w-shaped protrusions and extends vertically from the semiconductor substrate in which the ESD device is located. There are special arrangements between the four SCRs and the two I/O pins 802, 804. The cathode of the first SCR (cathode 1) is coupled to the first I/O pin 802, and the first I/O pin 802 is the anode of the second SCR (anode 2). The cathode of the third SCR (cathode 3) is coupled to the second I/O pin 804, and the second I/O pin is the anode of the fourth SCR (anode 4). In the embodiment of Fig. 8, the SCR is symmetrical to each other with the first and second planes 806, 808.

各個SCR包括:一陰極(或陽極),其為單w型;各SCR亦包括一陽極(或陰極),其為雙w型,並且互相背對並鏡像對稱。舉例而言,該第一SCR(SCR1)包括一陽極,其具有第一單w型,其背部平行於第二平面806。該第一SCR亦包括一陰極,其具有一對w型凸出物。第一SCR之單w型係配置於第一n- 井(N井1)之上,而第一SCR之該對w型凸出物係配置於第一p井(P井1)之上。N+摻雜的n井接觸點係配置於w型陽極(陽極1)之內凹處;而P+摻雜的p井接觸點係配置於SCR1之陰極的該對w型凸出物的內凹處。其他的SCR亦採用相似的配置。 Each SCR includes: a cathode (or anode) that is a single w-type; each SCR also includes an anode (or cathode) that is double w-shaped and that is opposite to each other and mirror symmetrical. For example, the first SCR (SCR1) includes an anode having a first single w-shape with a back parallel to the second plane 806. The first SCR also includes a cathode having a pair of w-shaped projections. The single w type of the first SCR is configured in the first n- Above the well (N well 1), the pair of w-shaped projections of the first SCR are disposed above the first p-well (P-well 1). The N+ doped n well contact point is disposed in the recess of the w-type anode (anode 1); and the P+ doped p well contact point is disposed in the recess of the pair of w-shaped protrusions of the cathode of the SCR1 . Other SCRs also use a similar configuration.

第9圖表示在某些不同的ESD情況下第7A圖與第7B圖的ESD保護裝置所提供的保護機制。如圖所示,當正值的對VDD型ESD脈衝716發生時,ESD保護裝置700可將該脈衝通過第二SCR 704轉移至上部的VDD軌。當負值的對VSS型ESD脈衝718發生時,ESD保護裝置700可將該脈衝通過第一SCR702至第一I/O引腳710轉移至下部的VSS軌。當正值的對VSS型ESD脈衝720發生時,ESD保護裝置700可將該脈衝720通過該第二SCR 704轉移至上部(VDD軌,之後導向電源軌ESD箝位電路714。若負值的對VSS型ESD脈衝722發生時,ESD保護裝置700可將該脈衝722轉移至電源軌ESD箝位電路714之上,之後沿著較低的VSS軌導至第一SCR 702與第一I/O引腳710之上。最後,若引腳至引腳型ESD脈衝724發生時,ESD保護裝置700可將該脈衝724轉移至第二SCR704之一二極體、第三SCR 706之另一二極體,然後由第二IC引腳712將該脈衝724之能量導出。 Figure 9 shows the protection mechanisms provided by the ESD protection devices of Figures 7A and 7B in certain different ESD situations. As shown, when a positive pair of VDD type ESD pulses 716 occurs, ESD protection device 700 can transfer the pulses through second SCR 704 to the upper VDD rail. When a negative pair of VSS type ESD pulses 718 occurs, ESD protection device 700 can transfer the pulses through first SCR 702 to first I/O pin 710 to the lower VSS rail. When a positive VSS type ESD pulse 720 occurs, the ESD protection device 700 can transfer the pulse 720 through the second SCR 704 to the upper portion (the VDD rail, and then to the power rail ESD clamp circuit 714. If a negative pair When the VSS type ESD pulse 722 occurs, the ESD protection device 700 can transfer the pulse 722 over the power rail ESD clamp circuit 714 and then along the lower VSS rail to the first SCR 702 and the first I/O reference. Finally, if the pin-to-pin type ESD pulse 724 occurs, the ESD protection device 700 can transfer the pulse 724 to one of the second SCR 704 and the other of the third SCR 706. The energy of the pulse 724 is then derived by the second IC pin 712.

第10圖說明某些實施例中製造用以做為ESD防護電路之SCR之方法。雖然此方法係以一系列的步驟作說明,但是可以了解的是,其中某些步驟可以同時實施,並被拆成多個子步驟。此外,在其他的實施例中,此方法之步驟可以有不同的順序。 Figure 10 illustrates a method of fabricating an SCR for use as an ESD protection circuit in certain embodiments. Although this method is illustrated in a series of steps, it will be appreciated that some of the steps can be performed simultaneously and split into multiple sub-steps. Moreover, in other embodiments, the steps of the method can be in a different order.

第10圖之方法開始於步驟1002,其中,具有第一n 摻雜濃度(例如,N)一n井形成於一半導體基質之中。 The method of FIG. 10 begins in step 1002, in which there is a first n A doping concentration (eg, N)-n well is formed in a semiconductor matrix.

在步驟1004中,具有第一p摻雜濃度(例如,P)的p井形成於半導體基質之中。p井與n-井會合於接面,而該接面對齊第一平面。 In step 1004, a p-well having a first p-doping concentration (eg, P) is formed in the semiconductor matrix. The p-well and the n-well will merge with the junction, and the junction is aligned with the first plane.

在步驟1006中,一陽極區形成於該n井之上。陽極區具有第二p摻雜濃度(P+),其值大於第一p摻雜濃度。陽極區包括一個或多個u型、w型、F型或π型凸出物,其在某些實施例中係由半導體基質向上延伸。 In step 1006, an anode region is formed over the n-well. The anode region has a second p-doping concentration (P+) that is greater than the first p-doping concentration. The anode region includes one or more u-type, w-type, F-type, or π-type protrusions, which in some embodiments extend upward from the semiconductor substrate.

在步驟1008中,具有第二n摻雜濃度(例如,N+)的一個或多n井接觸點形成於陽極區之u型、w型、F型或π型凸出物之內凹處之中。 In step 1008, one or more n well contact points having a second n-doping concentration (eg, N+) are formed in the recesses of the u-type, w-type, F-type, or π-type protrusions in the anode region. .

在步驟1010中,具有第二n摻雜濃度(例如,N+)的一陰極區形成於該p井之上。陰極區包括一個或多個u型、w型、F型或π型凸出物,其由半導體基質.向上延伸。 In step 1010, a cathode region having a second n-doping concentration (eg, N+) is formed over the p-well. The cathode region comprises one or more u-type, w-type, F-type or π-type protrusions, which are composed of a semiconductor substrate. Extend upwards.

在步驟1012中,具有第二p摻雜濃度(例如,P+)的一個或多個p井接觸點形成於陰極區之u型、w型、F型或π型凸出物之內凹處之中。 In step 1012, one or more p-well contact points having a second p-doping concentration (eg, P+) are formed in the recesses of the u-type, w-type, F-type, or π-type protrusions of the cathode region. in.

本發明之某些實施例係關於一矽控整流器(silicon controlled rectifier,SCR),其可將電流由一SCR陽極導向一SCR陰極的一電流路徑。該電流路徑包括:一第一垂直電流路徑部分,耦接至該SCR陽極;以及一第二垂直電流路徑部分,耦接至該SCR陰極。一水平電流路徑部分包括一第一阱區與一第二阱區,該第一阱區與該第二阱區會合於一接面,而該接面疊置於一第一平面之上。該第一阱區與該第二阱區互相配合以橫跨 該第一垂直電流路徑部分與該第二垂直電流路徑部分兩者之間所間隔的距離。該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第一平面呈鏡像對稱。 Some embodiments of the invention relate to a silicon controlled rectifier (SCR) that directs current from an SCR anode to a current path of an SCR cathode. The current path includes a first vertical current path portion coupled to the SCR anode and a second vertical current path portion coupled to the SCR cathode. A horizontal current path portion includes a first well region and a second well region. The first well region and the second well region meet a junction surface, and the junction surface is stacked on a first plane. The first well region and the second well region cooperate to cross each other a distance between the first vertical current path portion and the second vertical current path portion. The first vertical current path portion and the second vertical current path portion are mirror symmetrical with the first plane.

本發明之某些實施例係關於形成於一基質之上之矽控整流器(SCR),其包括一SCR陽極、一SCR陰極,以及將電流由該SCR陽極導向該SCR陰極的一電流路徑。該電流路徑包括一第一垂直電流路徑部分,耦接至該SCR陽極,並且具有一第一導電率型。該電流路徑亦包括一第二垂直電流路徑部分,耦接至該SCR陰極,並且具有與該第一導電率型相反的一第二導電率型。該第二垂直電流路徑部分與該第一垂直電流路徑部分水平配置於相同的平面,且兩者水平間隔一距離。該電流路徑亦包括一水平電流路徑部分,配置於該第一垂直電流路徑部分與該第二垂直電流路徑部分之下,並橫跨該第一垂直電流路徑部分與該第二垂直電流路徑部分之間所間隔的距離。該水平電流路徑部分包括一第一阱區,其耦接至該第一垂直電流路徑部分並配置於該第一垂直電流路徑部分之下,其中該第一井具有該第二導電率型。該水平電流路徑部分亦包括及一第二阱區,其耦接至該第二垂直電流路徑部分並配置於該第二垂直電流路徑部分之下。該第一井與該第二井會合於一接面,而該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第一平面呈鏡像對稱。 Some embodiments of the invention relate to a controlled rectifier (SCR) formed on a substrate including an SCR anode, an SCR cathode, and a current path for directing current from the SCR anode to the SCR cathode. The current path includes a first vertical current path portion coupled to the SCR anode and having a first conductivity type. The current path also includes a second vertical current path portion coupled to the SCR cathode and having a second conductivity type opposite the first conductivity type. The second vertical current path portion and the first vertical current path portion are horizontally disposed on the same plane, and the two are horizontally spaced apart by a distance. The current path also includes a horizontal current path portion disposed under the first vertical current path portion and the second vertical current path portion and spanning the first vertical current path portion and the second vertical current path portion The distance between the spaces. The horizontal current path portion includes a first well region coupled to the first vertical current path portion and disposed under the first vertical current path portion, wherein the first well has the second conductivity type. The horizontal current path portion also includes a second well region coupled to the second vertical current path portion and disposed under the second vertical current path portion. The first well and the second well meet at a junction, and the first vertical current path portion and the second vertical current path portion are mirror symmetrical with the first plane.

值得注意的是,文中諸如“第一”與“第二”只是一般標識符號,並非用以表示各個元件的任何次序或位置關係。雖然前文以多個實施例說明本發明,但只要不脫離本發明說明書 以及所附申請專利範圍的精神,可對本發明進行各種修改或替換。此外,雖然前文可能僅以單一實施例說明某一特定特徵,然而,該特徵皆可與其他實施例中的多個特徵整合,藉以使本發明達到產生更優越的功效。 It is to be noted that the words "first" and "second" are used merely as a general designation and are not intended to indicate any order or positional relationship of the various elements. Although the invention has been described above in a number of embodiments, the invention is not intended to be Various modifications and alterations of the present invention are possible in the spirit of the appended claims. In addition, although a particular feature may be described in a single embodiment, the features may be integrated with a plurality of features in other embodiments to achieve a superior performance.

202‧‧‧半導體基質 202‧‧‧Semiconductor matrix

210‧‧‧第一阱區 210‧‧‧First Well Area

208‧‧‧電流路徑 208‧‧‧ Current path

208a‧‧‧第一垂直電流路徑部分 208a‧‧‧First vertical current path section

208b‧‧‧第二垂直電流路徑部分 208b‧‧‧second vertical current path section

208c‧‧‧水平電流路徑部分 208c‧‧‧Horizontal current path section

212‧‧‧第二阱區 212‧‧‧Second well area

218‧‧‧第一w型凸出物 218‧‧‧First w-shaped projections

220‧‧‧上層 220‧‧‧Upper

222‧‧‧下層 222‧‧‧Under

224a‧‧‧第一垂直電流路徑凹入處 224a‧‧‧First vertical current path recess

224b‧‧‧第一垂直電流路徑凹入處 224b‧‧‧First vertical current path recess

226a‧‧‧第一阱區接觸點 226a‧‧‧First well zone contact point

226b‧‧‧第一阱區接觸點 226b‧‧‧First well zone contact point

228‧‧‧第二w型凸出物 228‧‧‧Second w-shaped projections

230‧‧‧上層 230‧‧‧Upper

232‧‧‧下層 232‧‧‧Under

234a‧‧‧第二垂直電流路徑凹入處 234a‧‧‧second vertical current path recess

234b‧‧‧第二垂直電流路徑凹入處 234b‧‧‧second vertical current path recess

236a‧‧‧第二阱區接觸點 236a‧‧‧Second well zone contact point

236b‧‧‧第二阱區接觸點 236b‧‧‧Second well zone contact point

Claims (10)

一種矽控整流器(silicon controlled rectifier,SCR),包括將電流由一SCR陽極導向一SCR陰極的一電流路徑;其中該電流路徑包括:一第一垂直電流路徑部分,耦接至該SCR陽極;一第二垂直電流路徑部分,耦接至該SCR陰極;以及一水平電流路徑部分,位於該第一與第二垂直電流路徑部分之下,其中該水平電流路徑部分包括一第一阱區與一第二阱區,該第一阱區與該第二阱區會合於一接面,而該接面疊置於一第一平面之上,其中該第一阱區與該第二阱區互相配合以橫跨該第一垂直電流路徑部分與該第二垂直電流路徑部分兩者之間所間隔的距離。 A silicon controlled rectifier (SCR) includes a current path for directing current from an SCR anode to an SCR cathode; wherein the current path includes: a first vertical current path portion coupled to the SCR anode; a second vertical current path portion coupled to the SCR cathode; and a horizontal current path portion located below the first and second vertical current path portions, wherein the horizontal current path portion includes a first well region and a first a second well region, the first well region and the second well region are joined to a junction surface, and the junction surface is stacked on a first plane, wherein the first well region and the second well region cooperate with each other A distance between the first vertical current path portion and the second vertical current path portion. 如申請專利範圍第1項所述之矽控整流器,其中該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第一平面呈鏡像對稱;其中該矽控整流器更包括:至少一第一垂直電流路徑凹入處,其由該第一垂直電流路徑部分之一側壁向內延伸;以及至少一第二垂直電流路徑凹入處,其由該第二垂直電流路徑部分之一側壁向內延伸;其中該至少一第一垂直電流路徑凹入處與該至少一第二垂直電流路徑凹入處以該第一平面呈鏡像對稱;至少一第一阱區接觸點,配置於該至少一第一垂直電流路徑凹入處之中,該至少一第一阱區接觸點電性耦接至一第 一井;至少一第二阱區接觸點,配置於該至少一第二垂直電流路徑凹入處之中,該至少一第二阱區接觸點電性耦接至一第二井;其中該至少一第一阱區接觸點與該至少一第二阱區接觸點短路;其中一第二平面與該第一平面垂直相交,使得該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第二平面互相對稱。 The 矽-controlled rectifier of claim 1, wherein the first vertical current path portion and the second vertical current path portion are mirror-symmetrical with the first plane; wherein the step-controlled rectifier further comprises: at least one a vertical current path recess extending inwardly from a sidewall of the first vertical current path portion; and at least a second vertical current path recess extending inwardly from a sidewall of the second vertical current path portion Extending; wherein the at least one first vertical current path recess and the at least one second vertical current path recess are mirror symmetrical with the first plane; at least one first well contact point is disposed at the at least one first The vertical current path is recessed, and the at least one first well contact is electrically coupled to the first a well; at least one second well contact point disposed in the at least one second vertical current path recess, the at least one second well contact point being electrically coupled to a second well; wherein the at least a first well region contact point is shorted to the at least one second well region contact point; wherein a second plane intersects the first plane perpendicularly such that the first vertical current path portion and the second vertical current path portion The second plane is symmetrical to each other. 如申請專利範圍第1項所述之矽控整流器,其中該第一垂直電流路徑部分係一u型、f型、π型或w型凸出物,其由該SCR所在之基質垂直向上延伸;其中該第二垂直電流路徑部分係一u型、f型、π型或w型凸出物,其由該基質垂直向上延伸,並與該第一垂直電流路徑部分之該u型、f型、π型或w型凸出物以該第一平面呈鏡像對稱;其中該矽控整流器更包括配置於該第一垂直電流路徑部分與該第二垂直電流路徑部分之該u型、f型、π型或w型凸出物之凹入處的複數個接觸點。 The 矽-controlled rectifier of claim 1, wherein the first vertical current path portion is a u-type, f-type, π-type or w-type protrusion, which extends vertically upward from a substrate in which the SCR is located; Wherein the second vertical current path portion is a u-type, f-type, π-type or w-type protrusion, which extends vertically upward from the substrate, and the u-type, f-type, and the first vertical current path portion The π-type or w-shaped protrusion is mirror-symmetrical with the first plane; wherein the 矽-controlled rectifier further includes the u-type, the f-type, and the π disposed in the first vertical current path portion and the second vertical current path portion A plurality of contact points at the recess of the type or w-shaped projection. 如申請專利範圍第1項所述之矽控整流器,其中該第一垂直電流路徑部分具有一第一導電率型,而該第一井具有與該第一導電率型相反的一第二導電型;其中該第一阱區具有該第二導電率型,而該第二阱區具有該第一導電率型。 The 矽-controlled rectifier of claim 1, wherein the first vertical current path portion has a first conductivity type, and the first well has a second conductivity type opposite to the first conductivity type Wherein the first well region has the second conductivity type and the second well region has the first conductivity type. 如申請專利範圍第1項所述之矽控整流器,其中該SCR陽極包括複數個u型、f型、π型或w型凸出物,其中,當該等凸出物沿著平行該第二平面的方向延伸時,相鄰的u型、f型、π型或w型凸出物之側壁互相緊靠或合併。 The 矽-controlled rectifier of claim 1, wherein the SCR anode comprises a plurality of u-type, f-type, π-type or w-type protrusions, wherein the protrusions are parallel to the second When the direction of the plane extends, the side walls of adjacent u-shaped, f-shaped, π-shaped or w-shaped projections abut or merge with each other. 如申請專利範圍第1項所述之矽控整流器,其中該SCR陽極包括複數個u型、f型、π型或w型凸出物,其中相鄰的u型、f型、π型或w型凸出物之側壁互相緊靠或合併。 The 矽-controlled rectifier of claim 1, wherein the SCR anode comprises a plurality of u-type, f-type, π-type or w-type protrusions, wherein adjacent u-type, f-type, π-type or w The side walls of the projections abut or merge with each other. 一種矽控整流器(SCR),形成於一基質之上,包括一SCR陽極、一SCR陰極,以及將電流由該SCR陽極導向該SCR陰極的一電流路徑;其中該電流路徑包括:一第一垂直電流路徑部分,耦接至該SCR陽極,並且具有一第一導電率型;一第二垂直電流路徑部分,耦接至該SCR陰極,並且具有與該第一導電率型相反的一第二導電率型,其中該第二垂直電流路徑部分與該第一垂直電流路徑部分水平配置於相同的平面,且兩者水平間隔一距離;以及一水平電流路徑部分,配置於該第一垂直電流路徑部分與該第二垂直電流路徑部分之下,並橫跨該第一垂直電流路徑部分與該第二垂直電流路徑部分之間所間隔的距離,該水平電流路徑部分包括:一第一阱區,耦接至該第一垂直電流路徑部分並配置於該第一垂直電流路徑部分之下,其中該第一井具有該第二導電率型;以及一第二阱區,耦接至該第二垂直電流路徑部分並配置於該 第二垂直電流路徑部分之下,其中該第一井與該第二井會合於一接面,而該接面對齊一第一平面,其中該第二井具有該第一導電率型。 A voltage controlled rectifier (SCR) formed on a substrate includes an SCR anode, an SCR cathode, and a current path for directing current from the SCR anode to the SCR cathode; wherein the current path includes: a first vertical a current path portion coupled to the SCR anode and having a first conductivity type; a second vertical current path portion coupled to the SCR cathode and having a second conductivity opposite the first conductivity type a rate type, wherein the second vertical current path portion is horizontally disposed on the same plane as the first vertical current path portion, and the two are horizontally spaced apart by a distance; and a horizontal current path portion is disposed in the first vertical current path portion And a distance between the first vertical current path portion and the second vertical current path portion, the horizontal current path portion includes: a first well region, coupled Connecting to the first vertical current path portion and disposed under the first vertical current path portion, wherein the first well has the second conductivity type; and a second Region, coupled to the second current path portion and disposed perpendicular to the Below the second vertical current path portion, wherein the first well and the second well meet a junction, and the junction is aligned with a first plane, wherein the second well has the first conductivity type. 如申請專利範圍第7項所述之矽控整流器,其中該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第一平面呈鏡像對稱;其中該第一垂直電流路徑部分係一細長半導體本體,具有相對的側壁;其中該細長半導體本體包括具有該第一導電率型的一上層,以及具有該第二導電率型的一下層;該矽控整流器更包括:複數個介電區,相鄰於該半導體本體,並位於兩側壁之側;以及至少一第一阱區接觸點,耦接至該第一阱區,並與至少一第二阱區接觸點短路,其中該第二阱區接觸點耦接至該第二阱區;其中一第二平面與該第一平面垂直交錯,使得該第一垂直電流路徑部分與該第二垂直電流路徑部分以該第二平面互相對稱。 The 整流-controlled rectifier of claim 7, wherein the first vertical current path portion and the second vertical current path portion are mirror-symmetrical with the first plane; wherein the first vertical current path portion is elongated a semiconductor body having opposite sidewalls; wherein the elongated semiconductor body includes an upper layer having the first conductivity type and a lower layer having the second conductivity type; the controlled rectifier further includes: a plurality of dielectric regions, Adjacent to the semiconductor body and located on the side of the two sidewalls; and at least one first well region contact point coupled to the first well region and shorted to at least one second well region contact point, wherein the second well The area contact point is coupled to the second well region; wherein a second plane is vertically staggered with the first plane such that the first vertical current path portion and the second vertical current path portion are symmetrical with each other in the second plane. 如申請專利範圍第7項所述之矽控整流器,其中該第一垂直電流路徑部分係一u型、f型、π型或w型凸出物,由該SCR所在之一基質垂直向上延伸;其中該第二垂直電流路徑部分係一u型、f型、π型或w型凸出物,由該基質垂直向上延伸,並與該第一垂直電流路 徑部分之該u型、f型、π型或w型凸出物以該第一平面呈鏡像對稱;其中該矽控整流器更包括配置於該第一垂直電流路徑部分與該第二垂直電流路徑部分之該u型、f型、π型或w型凸出物的凹入處內的複數個接觸點。 The 矽-controlled rectifier of claim 7, wherein the first vertical current path portion is a u-type, f-type, π-type or w-type protrusion, and the substrate is vertically extended upward by a substrate in which the SCR is located; Wherein the second vertical current path portion is a u-type, f-type, π-type or w-type protrusion, extending vertically upward from the substrate, and the first vertical current path The u-shaped, f-type, π-type or w-shaped protrusion of the diameter portion is mirror-symmetrical with the first plane; wherein the controlled rectifier further comprises a first vertical current path portion and the second vertical current path Part of the plurality of contact points in the recess of the u-type, f-type, π-type or w-type protrusion. 一種製造用以做為ESD防護電路之矽控整流器(silicon controlled rectifier,SCR)之方法,包括:形成一n-井,其在一半導體基質中具有一第一n摻雜濃度;形成一p井其在一半導體基質中具有一第一p摻雜濃度,其中該p井與該n-井會合於一接面;以及形成一陽極區於該n-井之上;其中該陽極區具有一第二p摻雜濃度,其值大於該第一p摻雜濃度,該陽極區包括一u型、f型、π型或w型凸出物,其由該半導體基質向外延伸,更包括:形成n-井接觸點,其在該陽極區之該u型、f型、π型或w型凸出物之凹入處具有一第二n摻雜濃度;形成一陰極區,其在該p井上具有一第二n摻雜濃度,其中該陰極區包括一u型、f型、π型或w型凸出物,其由該半導體基質向外延伸;以及形成p井接觸點,其在該陰極區之該u型、f型、π型或w型凸出物之凹入處具有一第二p摻雜濃度;其中所形成的該陽極區與該陰極區包括多個u型、f型、π型或w型凸出物,其中該陽極區與陰極區以該接面所在之一平面互相對稱; 其中該半導體基質係一矽基質。 A method of fabricating a silicon controlled rectifier (SCR) for use as an ESD protection circuit, comprising: forming an n-well having a first n-doping concentration in a semiconductor substrate; forming a p-well Having a first p-doping concentration in a semiconductor substrate, wherein the p-well and the n-well meet at a junction; and forming an anode region over the n-well; wherein the anode region has a second p a doping concentration, the value of which is greater than the first p-doping concentration, the anode region comprising a u-type, f-type, π-type or w-type protrusion extending outward from the semiconductor substrate, further comprising: forming n- a well contact point having a second n-doping concentration at a recess of the u-type, f-type, π-type or w-type protrusion in the anode region; forming a cathode region having a p-well on the p-well a second n-doping concentration, wherein the cathode region comprises a u-type, f-type, π-type or w-type protrusion extending outward from the semiconductor substrate; and forming a p-well contact point in the cathode region a recess of the u-type, f-type, π-type or w-type protrusion has a second p-doping concentration; wherein the anode is formed And the cathode region comprising a plurality of u-type, f-type, [pi] w-type or projection type, wherein the anode region and the cathode region to the surface where one plane symmetrical to each other; Wherein the semiconductor substrate is a matrix.
TW103100775A 2013-01-31 2014-01-09 Silicon-controlled rectifier for esd protection and method for manufacturing silicon-controlled rectifier for esd protection TWI527214B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361758868P 2013-01-31 2013-01-31
US13/778,369 US9130008B2 (en) 2013-01-31 2013-02-27 Robust ESD protection with silicon-controlled rectifier

Publications (2)

Publication Number Publication Date
TW201431065A TW201431065A (en) 2014-08-01
TWI527214B true TWI527214B (en) 2016-03-21

Family

ID=51797028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103100775A TWI527214B (en) 2013-01-31 2014-01-09 Silicon-controlled rectifier for esd protection and method for manufacturing silicon-controlled rectifier for esd protection

Country Status (1)

Country Link
TW (1) TWI527214B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI722640B (en) * 2019-11-06 2021-03-21 瑞昱半導體股份有限公司 Integrated circuit and electrostatic discharge protection method
CN112802836A (en) * 2019-11-13 2021-05-14 瑞昱半导体股份有限公司 Integrated circuit and electrostatic discharge protection method

Also Published As

Publication number Publication date
TW201431065A (en) 2014-08-01

Similar Documents

Publication Publication Date Title
US9130008B2 (en) Robust ESD protection with silicon-controlled rectifier
US7868387B2 (en) Low leakage protection device
TWI284975B (en) Electro-static discharge protection circuit and method for fabricating the same
TWI469319B (en) Apparatus and method for transient electrical overstress protection
US9209265B2 (en) ESD devices comprising semiconductor fins
TWI580001B (en) Electrstatic discharge protection circuit, structure and method of making the same
US9548296B2 (en) Semiconductor electrostatic protection circuit device
TW201724457A (en) Electro-static discharge protection devices having a low trigger voltage
JP2004047959A (en) Electrostatic discharge protection element
CN102544001A (en) SCR (Silicon Controlled Rectifier) structure for providing ESD ( Electro-Static discharge) protection for I/O (Input/Output) port of integrated circuit under all modes
TW202010087A (en) Floating base silicon controlled rectifier
CN104716132A (en) Silicon control rectifier for low trigger voltage and high maintaining voltage and circuit of silicon control rectifier
TWI527214B (en) Silicon-controlled rectifier for esd protection and method for manufacturing silicon-controlled rectifier for esd protection
CN109314131A (en) Low capacitance ESD (ESD) with double suspension joint traps protects structure
US8829565B1 (en) High voltage electrostatic discharge protection device
KR101304051B1 (en) Electrostatic discharge protection circuit
KR101392569B1 (en) Bipolar junction transistor and method for manufacturing thereof
US11302689B1 (en) Transistor-injected silicon-controlled rectifier (SCR) with perpendicular trigger and discharge paths
US10665584B1 (en) Low capacitance and high-holding-voltage transient-voltage-suppressor (TVS) device for electro-static-discharge (ESD) protection
CN101510559A (en) Element and layout of power metal-oxide-semiconductor transistor
TWI575759B (en) Semiconductor device layout structure
CN113838847A (en) Bidirectional DCSCR device for low-voltage ESD protection
TWI836837B (en) Electrostatic discharge protection device
TWI678788B (en) Semiconductor structure and esd protection device
TWI576981B (en) Semiconductor structure suitable for electrostatic discharge protection application