TWI527098B - Termination structure for superjunction power device and manufacturing method thereof - Google Patents

Termination structure for superjunction power device and manufacturing method thereof Download PDF

Info

Publication number
TWI527098B
TWI527098B TW102127788A TW102127788A TWI527098B TW I527098 B TWI527098 B TW I527098B TW 102127788 A TW102127788 A TW 102127788A TW 102127788 A TW102127788 A TW 102127788A TW I527098 B TWI527098 B TW I527098B
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
conductivity type
power device
super junction
trenches
Prior art date
Application number
TW102127788A
Other languages
Chinese (zh)
Other versions
TW201507002A (en
Inventor
許健
胡爾 拉
米塔 伊
楊紹明
Original Assignee
亞洲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亞洲大學 filed Critical 亞洲大學
Priority to TW102127788A priority Critical patent/TWI527098B/en
Publication of TW201507002A publication Critical patent/TW201507002A/en
Application granted granted Critical
Publication of TWI527098B publication Critical patent/TWI527098B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

超級接面功率元件之耐壓終止結構及其製造方法Pressure end termination structure of super junction power component and manufacturing method thereof

本發明是有關於一種超級接面功率元件之耐壓終止結構及其製造方法,特別是有關於一種能夠提高超級接面功率元件之擊穿電壓(breakdown voltage)之耐壓能力之耐壓終止結構。
The invention relates to a pressure termination structure of a super junction power component and a manufacturing method thereof, in particular to a pressure termination structure capable of improving the withstand voltage of a breakdown voltage of a super junction power component. .

在習知之功率半導體元件的發展中,如何獲得較高的擊穿電壓及降低導通電阻(on-resistance)一直是功率半導體元件發展的關鍵。近年來,隨著超級接面概念的提出,具有高摻雜濃度的超級接面結構能夠有效改善擊穿電壓與導通電阻之間的關係,並且可以突破矽極限(silicon-limit),因此,許多結合超級接面的功率半導體元件結構便應運而生。
In the development of conventional power semiconductor components, how to obtain a high breakdown voltage and reduce on-resistance has been the key to the development of power semiconductor components. In recent years, with the concept of super junction, the super junction structure with high doping concentration can effectively improve the relationship between breakdown voltage and on-resistance, and can break through the silicon-limit. Therefore, many The structure of power semiconductor components combined with super junctions has emerged.

超級接面功率半導體元件常應用於開關元件,其種類包含絕緣閘雙極性電晶體(insulated gate bipolar transistor, IGBT)及功率金氧半導體場效電晶體(metal-oxide-semiconductor field effect transistor, MOSFET)。超級接面主要之設計係將P型磊晶層與N型磊晶層交替設置,以形成複數個垂直於基板的PN接面。
Super junction power semiconductor components are commonly used in switching components, and their types include insulated gate bipolar transistors (IGBTs) and metal-oxide-semiconductor field effect transistors (MOSFETs). . The main design of the super junction is to alternately design a P-type epitaxial layer and an N-type epitaxial layer to form a plurality of PN junctions perpendicular to the substrate.

在習知製造超級接面功率金氧半場效電晶體之方法中,主要的方法有兩種,第一種為多重磊晶成長法,第二種為溝槽填充法。然而,要在金氧半場效電晶體中製備超級接面結構以提高擊穿電壓及降低導通電阻的製造技術仍然面臨許多製造能力上的難題。
In the conventional method for manufacturing a super junction power galvanic half field effect transistor, there are two main methods, the first one is a multiple epitaxial growth method, and the second is a trench filling method. However, manufacturing techniques for fabricating a super junction structure in a gold oxide half field effect transistor to increase breakdown voltage and reduce on-resistance still face many manufacturing difficulties.

有鑑於上述習知技藝之問題,本發明之其中之一目的在於提供一種超級接面功率元件之耐壓終止結構,以提高超級接面功率元件之擊穿電壓之耐壓能力。
In view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a withstand voltage termination structure of a super junction power device to improve the withstand voltage capability of the breakdown voltage of the super junction power device.

此超級接面功率元件之耐壓終止結構至少包含具有第一導電類型之基板;位於基板上之具有第一導電類型之磊晶層;位於磊晶層中之複數個溝槽,其中複數個溝槽之間距係朝著超級接面功率元件之外部呈增加趨勢;具有第一導電類型之複數個第一摻雜區,位於磊晶層中且分別鄰接於複數個溝槽之底部;具有第二導電類型之複數個第二摻雜區,位於該磊晶層中且分別鄰接於複數個溝槽之側壁;位於複數個溝槽中之複數個第一氧化層;位於磊晶層上之複數個閘極導電層;以及覆蓋複數個閘極導電層之第二氧化層。
The voltage termination structure of the super junction power device comprises at least a substrate having a first conductivity type; an epitaxial layer having a first conductivity type on the substrate; a plurality of trenches in the epitaxial layer, wherein the plurality of trenches The spacing between the slots is increasing toward the outside of the super junction power component; the plurality of first doped regions having the first conductivity type are located in the epitaxial layer and adjacent to the bottoms of the plurality of trenches respectively; a plurality of second doped regions of a conductivity type, located in the epitaxial layer and adjacent to sidewalls of the plurality of trenches; a plurality of first oxide layers in the plurality of trenches; and a plurality of layers on the epitaxial layer a gate conductive layer; and a second oxide layer covering the plurality of gate conductive layers.

根據本發明之另一目的,提出一種超級接面功率元件之耐壓終止結構之製造方法,包含提供具有第一導電類型之基板;形成具有第一導電類型之第一磊晶層於基板上;形成具有第一導電類型之複數個第一摻雜區於部分第一磊晶層中;形成具有第一導電類型之第二磊晶層於第一磊晶層上;形成複數個溝槽於第二磊晶層中,以使得複數個溝槽之底部分別鄰接複數個第一摻雜區,其中複數個溝槽之間距係朝著超級接面功率元件之外部呈增加趨勢;形成具有第二導電類型之複數個第二摻雜區於第二磊晶層中,且複數個第二摻雜區分別鄰接複數個溝槽之側壁;形成複數個第一氧化層於複數個溝槽中;形成複數個閘極導電層於第二磊晶層上;以及形成第二氧化層覆蓋複數個閘極導電層。
According to another object of the present invention, a method for fabricating a withstand voltage termination structure of a super junction power device includes providing a substrate having a first conductivity type, and forming a first epitaxial layer having a first conductivity type on the substrate; Forming a plurality of first doped regions having a first conductivity type in a portion of the first epitaxial layer; forming a second epitaxial layer having a first conductivity type on the first epitaxial layer; forming a plurality of trenches in the first In the two epitaxial layers, the bottoms of the plurality of trenches respectively adjoin the plurality of first doped regions, wherein a plurality of trenches are inclined toward the outside of the super junction power device; forming a second conductive a plurality of second doped regions of the type are in the second epitaxial layer, and the plurality of second doped regions respectively adjoin the sidewalls of the plurality of trenches; forming a plurality of first oxide layers in the plurality of trenches; forming a plurality A gate conductive layer is on the second epitaxial layer; and a second oxide layer is formed to cover the plurality of gate conductive layers.

其中,複數個第一摻雜區及複數個第二摻雜區係以離子佈植法形成。因此,藉由形成具有第一導電類型之複數個第一摻雜區可補償在對複數個溝槽進行離子佈植以形成具有第二導電類型之複數個第二摻雜區時,於複數個溝槽底部所累積的高濃度摻質,藉以提高此超級接面功率元件之擊穿電壓。
The plurality of first doped regions and the plurality of second doped regions are formed by ion implantation. Therefore, by forming a plurality of first doped regions having a first conductivity type, compensation can be made to multiple implantations of a plurality of trenches to form a plurality of second doped regions having a second conductivity type. The high concentration of dopants accumulated at the bottom of the trench increases the breakdown voltage of the super junction power device.

此外,此製造方法更包含在形成複數個第二摻雜區前形成屏蔽氧化(screen oxide)層於複數個溝槽之側壁,並且在形成複數個第二摻雜區後移除屏蔽氧化層。藉由屏蔽氧化層可避免離子佈植過程中除了摻質以外的雜質擴散至磊晶層中而影響載子傳輸效率。
In addition, the manufacturing method further includes forming a screen oxide layer on sidewalls of the plurality of trenches before forming the plurality of second doped regions, and removing the shield oxide layer after forming the plurality of second doped regions. By shielding the oxide layer, the diffusion efficiency of the carrier can be avoided by diffusing impurities other than the dopant into the epitaxial layer during ion implantation.

前述之第一導電類型為N型且第二導電類型為P型,或者第一導電類型為P型且第二導電類型為N型。前述之基板為超級接面功率元件之汲極導電層。
The first conductivity type is N-type and the second conductivity type is P-type, or the first conductivity type is P-type and the second conductivity type is N-type. The aforementioned substrate is a drain conductive layer of a super junction power device.

此外,複數個閘極導電層與磊晶層間更包含第三氧化層,藉以使得複數個閘極導電層形成複數個懸浮(floating)閘極導電層。
In addition, the plurality of gate conductive layers and the epitaxial layer further comprise a third oxide layer, so that the plurality of gate conductive layers form a plurality of floating gate conductive layers.

承上所述,依據本發明之超級接面功率元件之耐壓終止結構,其可具有一或多個下述優點:
As described above, the withstand voltage termination structure of the super junction power device according to the present invention may have one or more of the following advantages:

(1) 本發明之超級接面功率元件之耐壓終止結構藉由朝向超級接面功率元件外部逐漸增加之溝槽間距,以提高此耐壓終止結構之擊穿電壓之耐壓能力。
(1) The withstand voltage termination structure of the super junction power device of the present invention increases the breakdown voltage of the breakdown voltage of the withstand voltage termination structure by gradually increasing the groove pitch toward the outside of the super junction power device.

(2) 本發明之超級接面功率元件之耐壓終止結構藉由形成複數個第一摻雜區,可補償溝槽底部所累積的高濃度摻質,以提高超級接面功率元件之擊穿電壓。
(2) The voltage termination structure of the super junction power device of the present invention can compensate for the high concentration dopant accumulated at the bottom of the trench by forming a plurality of first doped regions to improve the breakdown of the super junction power device. Voltage.

(3) 本發明之超級接面功率元件之耐壓終止結構藉由屏蔽氧化層可避免離子佈植過程中除了摻質以外的雜質擴散至磊晶層中而影響載子傳輸效率。
(3) The voltage-resistant termination structure of the super junction power device of the present invention can prevent the carrier transmission efficiency from being affected by the diffusion of impurities other than the dopant into the epitaxial layer during the ion implantation process by shielding the oxide layer.

茲為使 貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows.

第1圖至第10圖為本發明之超級接面功率元件之耐壓終止結構之較佳實施例之製程剖面示意圖。
1 to 10 are schematic cross-sectional views showing a process of a preferred embodiment of the withstand voltage termination structure of the super junction power device of the present invention.

以下將參照相關圖式,說明依本發明之超級接面功率元件之耐壓終止結構之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。
Embodiments of the withstand voltage termination structure of the super junction power device according to the present invention will be described below with reference to the related drawings. For ease of understanding, the same components in the following embodiments are denoted by the same reference numerals.

請參閱第1圖至第10圖,其為本發明之超級接面功率元件之耐壓終止結構之較佳實施例之製程剖面示意圖。
Please refer to FIG. 1 to FIG. 10 , which are schematic cross-sectional views showing a process of a preferred embodiment of the withstand voltage termination structure of the super junction power device of the present invention.

首先,如第1圖所示,提供具有第一導電類型之基板10,在本發明之較佳實施例中,基板10為N+ 型摻雜矽基板,且可為此超級接面功率元件之汲極。此外,基板10上更定義有主動晶胞區(active cell region)(未繪示)及過渡區(transition region)(未繪示)於第1圖之耐壓終止區(termination region)的左側。接著,可例如以物理氣相沉積(physical vapor deposition, PVD)法或化學氣相沉積(chemical vapor deposition, CVD)法於基板10上形成磊晶層20,其中此磊晶層20較佳為N- 型磊晶層。
First, as shown in FIG. 1, a substrate 10 having a first conductivity type is provided. In a preferred embodiment of the present invention, the substrate 10 is an N + type doped germanium substrate, and may be a super junction power device. Bungee jumping. In addition, the active cell region (not shown) and the transition region (not shown) on the substrate 10 are further defined on the left side of the termination region of the withstand voltage region of FIG. 1. Then, the epitaxial layer 20 can be formed on the substrate 10 by, for example, a physical vapor deposition (PVD) method or a chemical vapor deposition (CVD) method, wherein the epitaxial layer 20 is preferably N. - Type epitaxial layer.

如第2圖所示,磊晶層20之厚度21可例如約為10μm。接著,可例如以離子佈植法將砷(As)植入部分磊晶層20中,並且進行熱趨入(drive-in),以使得砷摻質擴散至磊晶層20中而形成具有第一導電類型之複數個第一摻雜區30,其中第一摻雜區30可例如為N+ 型摻雜區,且離子佈植能量大約介於30KeV至50KeV,離子佈植劑量大約介於5×1014 atom/cm2 至9×1015 atom/cm2 ,並且進行大約1100℃、100分鐘於氮氣/氧氣(N2 /O2 )環境下的熱退火(anneal)。
As shown in Fig. 2, the thickness 21 of the epitaxial layer 20 can be, for example, about 10 μm. Next, arsenic (As) may be implanted into the partial epitaxial layer 20 by ion implantation, for example, and heat-driven to cause the arsenic dopant to diffuse into the epitaxial layer 20 to form a first a plurality of first doping regions 30 of a conductivity type, wherein the first doping region 30 can be, for example, an N + -type doping region, and the ion implantation energy is about 30 KeV to 50 KeV, and the ion implantation dose is about 5 ×10 14 atom/cm 2 to 9 × 10 15 atoms/cm 2 , and annealing at about 1100 ° C for 100 minutes in a nitrogen/oxygen (N 2 /O 2 ) environment was performed.

接著,如第3圖所示,於第2圖之結構上接續沉積厚度22大約為50μm之磊晶層20a,並且如第4圖利用微影及蝕刻法於磊晶層20a中形成複數個溝槽40。舉例來說,溝槽40之形成方式可於磊晶層20a之頂面沉積氧化層並且於氧化層上塗佈光阻層,並且以具有溝槽圖案之光罩對氧化層進行曝光,接著進行顯影及氧化層之蝕刻,之後再將光阻層去除,並且利用已圖案化之氧化層作為硬遮罩對磊晶層20a進行乾蝕刻,使得溝槽圖案轉移至磊晶層20a中。惟,本發明不限於此。其中此磊晶層20a較佳為N- 型磊晶層。
Next, as shown in FIG. 3, an epitaxial layer 20a having a thickness of about 50 μm is successively deposited on the structure of FIG. 2, and a plurality of trenches are formed in the epitaxial layer 20a by lithography and etching as shown in FIG. Slot 40. For example, the trench 40 may be formed by depositing an oxide layer on the top surface of the epitaxial layer 20a and coating the photoresist layer on the oxide layer, and exposing the oxide layer with a photomask having a trench pattern, followed by exposure. The development and etching of the oxide layer are followed by removal of the photoresist layer, and the epitaxial layer 20a is dry etched using the patterned oxide layer as a hard mask, such that the trench pattern is transferred into the epitaxial layer 20a. However, the invention is not limited thereto. The epitaxial layer 20a is preferably an N - type epitaxial layer.

其中,複數個溝槽40之間距41a、41b、41c、41d係朝著超級接面功率元件之外部(右側,即遠離主動晶胞區之方向)呈增加趨勢,即間距41d>41c>41b>41a。如此一來,藉由向外逐漸增加之溝槽間距41a、41b、41c、41d,不僅可緩和主動晶胞區之高強度電場向外擴散,更可提高此耐壓終止結構之擊穿電壓之耐壓能力。
Wherein, the distance 41a, 41b, 41c, 41d between the plurality of trenches 40 increases toward the outside of the super junction power component (the right side, that is, away from the active cell region), that is, the pitch 41d>41c>41b> 41a. In this way, by gradually increasing the groove pitches 41a, 41b, 41c, and 41d outward, not only the high-intensity electric field of the active cell region can be alleviated, but also the breakdown voltage of the withstand voltage termination structure can be improved. Pressure resistance.

此外,溝槽40之數量取決於主動晶胞區之高強度電場向外擴散的情況,只要溝槽40之數量能夠讓主動晶胞區之高強度電場於此耐壓終止結構之邊緣降到零,皆應屬本發明所請求保護之範圍。
In addition, the number of trenches 40 depends on the outward diffusion of the high-intensity electric field of the active cell region, as long as the number of trenches 40 enables the high-intensity electric field of the active cell region to fall to zero at the edge of the withstand voltage termination structure. It is intended to be within the scope of the claimed invention.

接著,如第5圖所示,沉積屏蔽氧化層50覆蓋複數個溝槽40之側壁,並且例如以離子佈植法將硼(B)植入覆蓋溝槽40側壁之磊晶層20a中,接著進行熱趨入使得硼摻質擴散至溝槽40側壁之磊晶層20a中而形成具有第二導電類型之第二摻雜區60。其中第二摻雜區60可例如為P型摻雜區,且離子佈植能量大約介於40KeV至100KeV,離子佈植劑量大約介於4.5×1013 atom/cm2 至1.5×1014 atom/cm2 ,並且進行兩階段之熱退火,其中第一階段為大約1100℃、100分鐘於氮氣/氧氣(N2 /O2 )環境下的熱退火,第二階段則為大約1100℃、200分鐘於氮氣(N2 )環境下的熱退火。
Next, as shown in FIG. 5, the deposition shielding oxide layer 50 covers the sidewalls of the plurality of trenches 40, and boron (B) is implanted into the epitaxial layer 20a covering the sidewalls of the trench 40, for example, by ion implantation, and then Thermal incorporation is performed such that the boron dopant diffuses into the epitaxial layer 20a of the sidewalls of the trench 40 to form a second doped region 60 having a second conductivity type. The second doping region 60 can be, for example, a P-type doping region, and the ion implantation energy is about 40 KeV to 100 KeV, and the ion implantation dose is about 4.5×10 13 atoms/cm 2 to 1.5×10 14 atom/ Cm 2 and a two-stage thermal annealing, wherein the first stage is about 1100 ° C, 100 minutes of thermal annealing in a nitrogen/oxygen (N 2 /O 2 ) environment, and the second stage is about 1100 ° C, 200 minutes. Thermal annealing in a nitrogen (N 2 ) environment.

如第6圖所示,將屏蔽氧化層50去除後便形成複數個PN接面,即超級接面。因此,藉由屏蔽氧化層50可避免離子佈植過程中除了摻質以外的雜質擴散至磊晶層20a中而影響載子傳輸效率。
As shown in Fig. 6, after the shield oxide layer 50 is removed, a plurality of PN junctions, that is, super junctions, are formed. Therefore, by shielding the oxide layer 50, it is possible to prevent the diffusion of impurities other than the dopant during the ion implantation into the epitaxial layer 20a, thereby affecting the carrier transport efficiency.

此外,由於拉塞福散射的影響,在離子佈植的過程中會使得硼摻質累積在溝槽40的底部,此高濃度的硼摻質會使得此超級接面功率元件之擊穿電壓降低。因此鄰接於複數個溝槽40底部之複數個第一摻雜區30便可用以中和高濃度之硼摻質,以避免複數個溝槽40底部之高濃度摻質造成超級接面功率元件的擊穿電壓降低的問題。
In addition, due to the influence of Laceford scattering, boron dopants accumulate at the bottom of the trench 40 during ion implantation, and this high concentration of boron dopant causes the breakdown voltage of the super junction power device to decrease. . Therefore, the plurality of first doped regions 30 adjacent to the bottom of the plurality of trenches 40 can be used to neutralize the high concentration of boron dopants to avoid the high concentration of dopants at the bottom of the plurality of trenches 40 to cause the super junction power components. The breakdown voltage is reduced.

接著,如第7圖所示,將第一氧化層70填入複數個溝槽40中,並且對第一氧化層70進行化學機械研磨(chemical mechanical polishing, CMP)及回蝕刻(etch back),直到露出磊晶層20a之頂面。
Next, as shown in FIG. 7, the first oxide layer 70 is filled in a plurality of trenches 40, and the first oxide layer 70 is subjected to chemical mechanical polishing (CMP) and etch back. Until the top surface of the epitaxial layer 20a is exposed.

如第8圖及第9圖所示,接著沉積閘極導電層80於磊晶層20a上,並且對閘極導電層80進行圖案化及平坦化而形成複數個閘極導電層80。其中閘極導電層80可例如包含摻雜多晶矽(doped poly silicon),且複數個閘極導電層80與磊晶層20a間更包含一第三氧化層81,藉以使得複數個閘極導電層80形成複數個懸浮(floating)閘極導電層80。
As shown in FIGS. 8 and 9, a gate conductive layer 80 is deposited on the epitaxial layer 20a, and the gate conductive layer 80 is patterned and planarized to form a plurality of gate conductive layers 80. The gate conductive layer 80 may include, for example, doped polysilicon, and the plurality of gate conductive layers 80 and the epitaxial layer 20a further include a third oxide layer 81, so that the plurality of gate conductive layers 80 are formed. A plurality of floating gate conductive layers 80 are formed.

最後,如第10圖所示,接續沉積第二氧化層90於第9圖之結構上以覆蓋閘極導電層80、複數個溝槽40及磊晶層20a。藉以形成本發明之超級接面功率元件之耐壓終止結構。
Finally, as shown in FIG. 10, the second oxide layer 90 is successively deposited on the structure of FIG. 9 to cover the gate conductive layer 80, the plurality of trenches 40, and the epitaxial layer 20a. The pressure termination structure of the super junction power device of the present invention is formed.

綜上所述,本發明之超級接面功率元件之耐壓終止結構藉由朝向超級接面功率元件外逐漸增加之溝槽間距41a、41b、41c、41d,不僅可緩和主動晶胞區之高強度電場向外擴散,更可提高此耐壓終止結構之擊穿電壓之耐壓能力。
In summary, the voltage termination structure of the super junction power device of the present invention not only mitigates the height of the active cell region by gradually increasing the groove pitch 41a, 41b, 41c, 41d toward the super junction power device. The intensity field is outwardly diffused, which further improves the withstand voltage of the breakdown voltage of the withstand voltage termination structure.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

10‧‧‧基板
20、20a‧‧‧磊晶層
21、22‧‧‧磊晶層之厚度
30‧‧‧第一摻雜區
40‧‧‧溝槽
41a、41b、41c、41d‧‧‧溝槽之間距
50‧‧‧屏蔽氧化層
60‧‧‧第二摻雜區
70‧‧‧第一氧化層
80‧‧‧閘極導電層
81‧‧‧第三氧化層
90‧‧‧第二氧化層
10‧‧‧Substrate
20, 20a‧‧‧ epitaxial layer
21, 22‧‧‧ thickness of the epitaxial layer
30‧‧‧First doped area
40‧‧‧ trench
41a, 41b, 41c, 41d‧‧‧ spacing between trenches
50‧‧‧Shielding oxide layer
60‧‧‧Second doped area
70‧‧‧First oxide layer
80‧‧‧ gate conductive layer
81‧‧‧ third oxide layer
90‧‧‧Second oxide layer

no

10‧‧‧基板 10‧‧‧Substrate

20、20a‧‧‧磊晶層 20, 20a‧‧‧ epitaxial layer

30‧‧‧第一摻雜區 30‧‧‧First doped area

41a、41b、41c、41d‧‧‧溝槽之間距 41a, 41b, 41c, 41d‧‧‧ spacing between trenches

60‧‧‧第二摻雜區 60‧‧‧Second doped area

70‧‧‧第一氧化層 70‧‧‧First oxide layer

80‧‧‧閘極導電層 80‧‧‧ gate conductive layer

81‧‧‧第三氧化層 81‧‧‧ third oxide layer

90‧‧‧第二氧化層 90‧‧‧Second oxide layer

Claims (10)

一種超級接面(superjunction)功率元件之耐壓終止(termination)結構,包含:具有一第一導電類型之一基板;具有該第一導電類型之一磊晶層,位於該基板上;複數個溝槽,位於該磊晶層中,其中該些溝槽之間距係朝著該超級接面功率元件之外部呈增加趨勢;具有該第一導電類型之複數個第一摻雜區,位於該磊晶層中且分別鄰接於該些溝槽之底部;具有一第二導電類型之複數個第二摻雜區,位於該磊晶層中且分別鄰接於該些溝槽之側壁;複數個第一氧化層,位於該些溝槽中;複數個閘極導電層,位於該磊晶層上;以及一第二氧化層,覆蓋該些閘極導電層、該些溝槽及該磊晶層。A termination structure of a superjunction power device, comprising: a substrate having a first conductivity type; an epitaxial layer having the first conductivity type, located on the substrate; and a plurality of trenches a trench, located in the epitaxial layer, wherein the distance between the trenches increases toward the outside of the super junction power device; a plurality of first doped regions having the first conductivity type are located in the epitaxial layer And a plurality of second doped regions having a second conductivity type, respectively located in the epitaxial layer and adjacent to sidewalls of the trenches; a plurality of first oxides a layer, located in the trenches; a plurality of gate conductive layers on the epitaxial layer; and a second oxide layer covering the gate conductive layers, the trenches, and the epitaxial layer. 如申請專利範圍第1項所述之超級接面功率元件之耐壓終止結構,其中該第一導電類型為N型且該第二導電類型為P型,或者該第一導電類型為P型且該第二導電類型為N型。The voltage termination structure of the super junction power device according to claim 1, wherein the first conductivity type is N-type and the second conductivity type is P-type, or the first conductivity type is P-type and The second conductivity type is N-type. 如申請專利範圍第1項所述之超級接面功率元件之耐壓終止結構,其中該基板為該超級接面功率元件之一汲極導電層。The voltage termination structure of the super junction power device according to claim 1, wherein the substrate is a drain conductive layer of the super junction power device. 如申請專利範圍第1項所述之超級接面功率元件之耐壓終止結構,其中該些閘極導電層與該磊晶層間更包含一第三氧化層,藉以使得該些閘極導電層形成複數個懸浮(floating)閘極導電層。The pressure termination structure of the super junction power device of claim 1, wherein the gate conductive layer and the epitaxial layer further comprise a third oxide layer, so that the gate conductive layers are formed. A plurality of floating gate conductive layers. 一種超級接面功率元件之耐壓終止結構之製造方法,包含:提供具有一第一導電類型之一基板;形成具有該第一導電類型之一第一磊晶層於該基板上;形成具有該第一導電類型之複數個第一摻雜區於部分該第一磊晶層中;形成具有該第一導電類型之一第二磊晶層於該第一磊晶層上;形成複數個溝槽於該第二磊晶層中,以使得該些溝槽之底部分別鄰接該些第一摻雜區,其中該些溝槽之間距係朝著該超級接面功率元件之外部呈增加趨勢;形成具有一第二導電類型之複數個第二摻雜區於該第二磊晶層中,且該些第二摻雜區分別鄰接該些溝槽之側壁;形成複數個第一氧化層於該些溝槽中;形成複數個閘極導電層於該第二磊晶層上;以及形成一第二氧化層覆蓋該些閘極導電層、該些溝槽及該磊晶層。A method for manufacturing a withstand voltage termination structure of a super junction power device, comprising: providing a substrate having a first conductivity type; forming a first epitaxial layer having the first conductivity type on the substrate; forming the a plurality of first doped regions of the first conductivity type are in the portion of the first epitaxial layer; forming a second epitaxial layer having the first conductivity type on the first epitaxial layer; forming a plurality of trenches In the second epitaxial layer, the bottoms of the trenches are respectively adjacent to the first doped regions, wherein the distance between the trenches increases toward the outside of the super junction power device; a plurality of second doped regions having a second conductivity type in the second epitaxial layer, and the second doped regions respectively adjoining sidewalls of the trenches; forming a plurality of first oxide layers on the Forming a plurality of gate conductive layers on the second epitaxial layer; and forming a second oxide layer covering the gate conductive layers, the trenches, and the epitaxial layer. 如申請專利範圍第5項所述之超級接面功率元件之耐壓終止結構之製造方法,更包含在形成該些第二摻雜區前形成複數個屏蔽氧化(screen oxide)層於該些溝槽之側壁,並且在形成該些第二摻雜區後移除該些屏蔽氧化層。The method for manufacturing a withstand voltage termination structure of a super junction power device according to claim 5, further comprising forming a plurality of screen oxide layers in the trenches before forming the second doped regions. The sidewalls of the trenches are removed and the shield oxide layers are removed after forming the second doped regions. 如申請專利範圍第5項所述之超級接面功率元件之耐壓終止結構之製造方法,其中該第一導電類型為N型且該第二導電類型為P型,或者該第一導電類型為P型且該第二導電類型為N型。The method for manufacturing a withstand voltage termination structure of a super junction power device according to claim 5, wherein the first conductivity type is N-type and the second conductivity type is P-type, or the first conductivity type is P type and the second conductivity type is N type. 如申請專利範圍第5項所述之超級接面功率元件之耐壓終止結構之製造方法,其中該基板為該超級接面功率元件之一汲極導電層。The method for manufacturing a withstand voltage termination structure of a super junction power device according to claim 5, wherein the substrate is a drain conductive layer of the super junction power device. 如申請專利範圍第5項所述之超級接面功率元件之耐壓終止結構之製造方法,其中該些第一摻雜區及該些第二摻雜區係以離子佈植(ion implantation)法形成。The method for manufacturing a withstand voltage termination structure of a super junction power device according to claim 5, wherein the first doped regions and the second doped regions are ion implanted form. 如申請專利範圍第5項所述之超級接面功率元件之耐壓終止結構之製造方法,其中該些閘極導電層與該磊晶層間更包含一第三氧化層,藉以使得該些閘極導電層形成複數個懸浮(floating)閘極導電層。The method for manufacturing a withstand voltage termination structure of a super junction power device according to claim 5, wherein the gate conductive layer and the epitaxial layer further comprise a third oxide layer, thereby causing the gates The conductive layer forms a plurality of floating gate conductive layers.
TW102127788A 2013-08-02 2013-08-02 Termination structure for superjunction power device and manufacturing method thereof TWI527098B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102127788A TWI527098B (en) 2013-08-02 2013-08-02 Termination structure for superjunction power device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102127788A TWI527098B (en) 2013-08-02 2013-08-02 Termination structure for superjunction power device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201507002A TW201507002A (en) 2015-02-16
TWI527098B true TWI527098B (en) 2016-03-21

Family

ID=53019481

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102127788A TWI527098B (en) 2013-08-02 2013-08-02 Termination structure for superjunction power device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI527098B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10510834B2 (en) 2016-12-30 2019-12-17 Nuvoton Technology Corporation High-voltage semiconductor device having a doped isolation region between a level shift region and a high voltage region
US10529849B2 (en) 2016-12-30 2020-01-07 Nuvoton Technology Corporation High-voltage semiconductor device including a super-junction doped structure
US10784340B2 (en) 2017-12-29 2020-09-22 Nuvoton Technology Corporation Semiconductor device having a super-junction in the drift region with decreasing doped sub-regions widths

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10510834B2 (en) 2016-12-30 2019-12-17 Nuvoton Technology Corporation High-voltage semiconductor device having a doped isolation region between a level shift region and a high voltage region
US10529849B2 (en) 2016-12-30 2020-01-07 Nuvoton Technology Corporation High-voltage semiconductor device including a super-junction doped structure
US10784340B2 (en) 2017-12-29 2020-09-22 Nuvoton Technology Corporation Semiconductor device having a super-junction in the drift region with decreasing doped sub-regions widths

Also Published As

Publication number Publication date
TW201507002A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
KR101792918B1 (en) Finfet structure and method for manufacturing thereof
KR101381038B1 (en) Power mosfets and methods for forming the same
TWI396240B (en) Method of fabricating power semiconductor device
US10505033B2 (en) Electronic device of vertical MOS type with termination trenches having variable depth
JP2010021176A (en) Semiconductor device and method of manufacturing the same
TW201515070A (en) A semiconductor device and method of fabricating same
JP2013058575A (en) Semiconductor device and manufacturing method of the same
CN111029408A (en) ESD integrated VDMOS device and preparation method thereof
TWI426597B (en) Power device with low parastitic transistor and method of making the same
TWI527098B (en) Termination structure for superjunction power device and manufacturing method thereof
US20130307064A1 (en) Power transistor device and fabricating method thereof
JP5875334B2 (en) Silicon carbide semiconductor device
TWI529927B (en) Active cell structure for superjunction power device and manufacturing method thereof
CN115458604B (en) MOSFET device and manufacturing method thereof
TWI567977B (en) Metal oxide semiconductor field effect transistor and method of fabricating the same
CN111509044A (en) Semiconductor structure and forming method thereof
KR20130067666A (en) Method of manufacturing semiconductor device
WO2022037180A1 (en) Semiconductor device and preparation method therefor
JP2011176157A (en) Method of manufacturing semiconductor device
KR100910815B1 (en) Semiconductor device and method for fabricating the same
CN211017088U (en) ESD integrated VDMOS device
CN112530867B (en) Trench type field effect transistor structure and preparation method thereof
TWI614898B (en) Termination structure and fabrication method thereof
CN108574014B (en) LDMOS device and manufacturing method thereof
TWI557904B (en) Semiconductor device and method for fabricating the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees