TWI522974B - Arrival time prediction system and method - Google Patents

Arrival time prediction system and method Download PDF

Info

Publication number
TWI522974B
TWI522974B TW103134687A TW103134687A TWI522974B TW I522974 B TWI522974 B TW I522974B TW 103134687 A TW103134687 A TW 103134687A TW 103134687 A TW103134687 A TW 103134687A TW I522974 B TWI522974 B TW I522974B
Authority
TW
Taiwan
Prior art keywords
station
neural network
time
network model
arrival time
Prior art date
Application number
TW103134687A
Other languages
Chinese (zh)
Other versions
TW201614607A (en
Inventor
Chi Hua Chen
Ching Yun Pang
Chia Min Hsieh
Da-Sheng Guan
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW103134687A priority Critical patent/TWI522974B/en
Priority to CN201510094269.5A priority patent/CN104715630B/en
Priority to CN201610472352.6A priority patent/CN106022541B/en
Application granted granted Critical
Publication of TWI522974B publication Critical patent/TWI522974B/en
Publication of TW201614607A publication Critical patent/TW201614607A/en

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • G06Q50/40
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/123Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams
    • G08G1/127Traffic control systems for road vehicles indicating the position of vehicles, e.g. scheduled vehicles; Managing passenger vehicles circulating according to a fixed timetable, e.g. buses, trains, trams to a central station ; Indicators in a central station

Description

到站時間預測系統與方法 Arrival time prediction system and method

本發明係關於一種到站時間預測系統與方法,特別是關於一種基於隨機類神經網路群之到站時間預測的系統與方法。 The present invention relates to an arrival time prediction system and method, and more particularly to a system and method for predicting arrival time based on a stochastic neural network group.

目前,公共交通工具到站時間預測之習知技術主要採用歷史資料來進行統計和平均,取得各個站到站之間的平均車速和旅行時間,或是應用當下車輛即時的瞬時車速資訊,依此來估計到站時間。然而,這些方法卻無法反應站點間即時路況變化,因而造成較大的到站時間資訊誤差。 At present, the conventional techniques for predicting the arrival time of public transport mainly use historical data to perform statistics and averaging, obtain the average speed and travel time between stations, or apply the instantaneous instantaneous speed information of the current vehicle. To estimate the arrival time. However, these methods are unable to reflect changes in the instantaneous road conditions between stations, resulting in large arrival time information errors.

台灣專利公開號TW201137803主要提出收集過去公車所回報之到站資訊來估計站到站之間的平均車速和旅行時間,並可依不同的星期和時段來統計,當使用者查詢時可以給予歷史平均車速和旅行時間。雖然此方法可以快速地提供預估到站時間,然而主要是採用歷史資料平均值,而無法因即時路況來進行到站時間的預測,故有可能造成到站時間預測上較大的誤差。 Taiwan Patent Publication No. TW201137803 mainly proposes to collect the arrival information reported by the past bus to estimate the average speed and travel time between stations, and can be counted according to different weeks and time periods. When the user queries, the historical average can be given. Speed and travel time. Although this method can quickly provide the estimated arrival time, it is mainly based on the historical data average, and it is impossible to predict the arrival time due to the immediate road condition, so it may cause a large error in the arrival time prediction.

台灣專利公開號TW201344647先預測到站時間後,依據公 車即時的位置資訊,提供車速調整建議給駕駛人,依此來提高到站準點率。雖然此方法可以預估到站時間,以及提供到站準點控制,然而主要是採用歷史資料平均值,而無法因即時路況來進行到站時間的預測,故有可能造成到站時間預測上較大的誤差。 Taiwan Patent Publication No. TW201344647 first predicts the time after the station, according to the public The car's immediate location information, providing speed adjustment advice to the driver, in order to improve the on-site punctuality rate. Although this method can estimate the arrival time and provide on-site control, it is mainly based on the historical data average, and it is impossible to predict the arrival time due to the immediate road conditions, so it may cause a larger arrival time prediction. Error.

台灣專利公開號TW201405497主要提出由車載行動設備行經各個路段時,由車載行動設備即時回報各個路段的旅行時間至後端的監控中心,再由監控中心紀錄和發佈每個路段的最短旅行時間和最長旅行時間給所有車載行動設備。若車載行動設備的旅行時間介於最短旅行時間和最長旅行時間,則不再回報。此方法雖然可以有效掌握各個路段的旅行時間和減少傳輸數量,但並未提出公車到站時間的預測方法,故無法預測公車到站資訊。 Taiwan Patent Publication No. TW201405497 mainly proposes that when the vehicle-mounted mobile equipment travels through various sections, the vehicle-mounted mobile equipment immediately returns the travel time of each section to the monitoring center of the back-end, and then the monitoring center records and publishes the shortest travel time and the longest travel of each section. Time is given to all car mobile devices. If the travel time of the car mobile device is between the shortest travel time and the longest travel time, it will not be returned. Although this method can effectively grasp the travel time of each road section and reduce the number of transmissions, it does not propose the prediction method of the bus arrival time, so it is impossible to predict the bus arrival information.

台灣專利公開號TW201117146主要提供公車旅行時間查詢,可讓使用者查詢到其欲搭乘之公車的即時位置和旅行時間。雖然此方法可以讓使用者查詢到公車即時的位置和旅行時間,但並未提出公車到站時間的預測方法,故無法預測公車到站資訊。 Taiwan Patent Publication No. TW201117146 mainly provides bus travel time inquiry, which allows users to check the instant location and travel time of the bus they want to board. Although this method allows the user to check the immediate location and travel time of the bus, it does not propose a method for predicting the arrival time of the bus, so it is impossible to predict the bus arrival information.

台灣專利公開號TW200828190主要提出利用使用者的行動設備,並藉由行動設備來接收到站資訊,當抵達站點時,會發出通知來提醒使用者。雖然此方法可以在到達站點時提醒使用者,可以提供即時的到站資訊,然而卻無法提供預測資訊。 Taiwan Patent Publication No. TW200828190 mainly proposes to use the user's mobile device and receive the station information by the mobile device. When the site arrives, a notification is sent to remind the user. Although this method can alert the user when they arrive at the site, they can provide instant arrival information, but they cannot provide prediction information.

台灣專利公告號TWI252441主要提出由公車接收衛星定位訊號,並即時把位置資訊回傳至監控中心,再由監控中心提供預測模組依公車即時位置進行到站時間預測。雖然此方法可以提供到站時間預測,但 專利中主要僅提到參考經驗值,而未來明確的公車到站時間的預測方法。 Taiwan Patent Announcement No. TWI252441 mainly proposes to receive the satellite positioning signal from the bus, and immediately return the location information to the monitoring center, and then the monitoring center provides the prediction module to predict the arrival time of the bus according to the instantaneous position of the bus. Although this method can provide a station time prediction, The patent mainly refers to the reference experience value, and the future method of forecasting the bus arrival time.

台灣專利公告號TWI341998主要提出運用公車的即時車速和到各個站點距離,依此來預測旅行時間;以及分析使用者的步行速度和到各個站點的距離,依此來計算步行時間。最後再依旅行時間和步行時間來估計適合的站點。雖然此方法可以提供公車旅行時間預測,但其主要考量公車當下的即時車速和到站距離,然而在車輛和站點間的交通資訊並未被考量,故有可能造成到站時間預測上較大的誤差。 Taiwan Patent Publication No. TWI341998 mainly proposes to use the instantaneous speed of the bus and the distance to each station to predict the travel time; and to analyze the user's walking speed and the distance to each station, and calculate the walking time accordingly. Finally, estimate the suitable site based on travel time and walking time. Although this method can provide bus travel time prediction, it mainly considers the current speed and arrival distance of the bus. However, the traffic information between the vehicle and the station is not considered, so it may cause a larger arrival time prediction. Error.

台灣專利公開號TW201232489提出運用希爾伯特-黃轉換(HHT)的經驗模態分解法結合灰模式來預測行車速度,再依預估之車速換算為旅行時間和到站時間。雖然此方法可以有效運用數學和統計模型進行車速預測,然而因為其運用所有資料進行分析,故無法避開極端值的影響,將有可能造成到站時間預測上較大的誤差。 Taiwan Patent Publication No. TW201232489 proposes to use the empirical mode decomposition method of Hilbert-Huang transform (HHT) to combine the gray mode to predict the driving speed, and then convert the estimated speed into travel time and arrival time. Although this method can effectively use the mathematical and statistical models for vehicle speed prediction, because it uses all the data for analysis, it cannot avoid the influence of extreme values, and it may cause a large error in the station time prediction.

有鑑於上述習知技藝之問題,本發明之目的就是在提供一種到站時間預測系統與方法,透過收集各個路段和時段的站到站之間的旅行時間,並提出新穎之隨機類神經網路群來分析前述之旅行時間資料集合,建立複數個類神經網路模型來避免極端值的影響,以及綜合考量複數個類神經網路模型之預測結果來提升預測準確度,據此來預測使用者欲搭乘之公車的到站時間,提供予使用者參考。 In view of the above-mentioned problems of the prior art, the object of the present invention is to provide an arrival time prediction system and method for collecting travel time between stations and stations in various sections and time periods, and proposing a novel stochastic neural network. The group analyzes the aforementioned travel time data set, establishes a plurality of neural network models to avoid the influence of extreme values, and comprehensively considers the prediction results of a plurality of neural network models to improve the prediction accuracy, thereby predicting the user. The arrival time of the bus to be used is provided to the user for reference.

本發明之到站時間預測系統包括複數個車站站牌、複數個車載終端設備、複數個細胞網路基地台、一雲端運算伺服器、一雲端歷史 資料庫以及複數個到站時間預測系統客戶端設備。其中,各車站站牌具有一個經緯度座標資訊。各車載終端設備當接近該些車站站牌時,各車載終端設備感測到該些經緯度座標資訊,進而產生到站資訊。到站資訊係經由該些細胞網路基地台傳送,而雲端運算伺服器接收由細胞網路基地台傳送所傳送的到站資訊後,計算出旅行時間,再根據旅行時間以及查詢站點預測剩餘旅行時間,並轉換為到站時間,再將到站時間經由細胞網路基地台傳送。雲端歷史資料庫儲存有經緯度座標資訊以及車站站牌之間的旅行時間。到站時間預測系統客戶端設備發送查詢站點,並接收經由細胞網路基地台傳送之到站時間,再顯示到站時間。 The arrival time prediction system of the invention comprises a plurality of station stop signs, a plurality of vehicle terminal devices, a plurality of cell network base stations, a cloud computing server, and a cloud history. A database and a plurality of inbound time prediction system client devices. Among them, each station stop sign has a latitude and longitude coordinate information. When the vehicle-mounted terminal devices approach the station stop signs, each of the vehicle-mounted terminal devices senses the latitude and longitude coordinate information, thereby generating the arrival station information. The arrival information is transmitted via the cell network base stations, and the cloud computing server receives the arrival information transmitted by the cell network base station, calculates the travel time, and predicts the remaining time according to the travel time and the query site. Travel time, and converted to the arrival time, and then the arrival time is transmitted via the cell network base station. The cloud history database stores latitude and longitude coordinate information and travel time between station stop signs. The arrival time prediction system client device sends the query site and receives the arrival time transmitted via the cell network base station, and then displays the arrival time.

本發明之到站時間預測方法包含下列步驟:設定隨機類神經網路群演算法參數值;讀取歷史資料庫中的站到站之間的旅行時間;隨機產生m個類神經網路模型;過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型;取得即時的站到站之間的旅行時間或測試階段中的測試資料;將旅行時或測試資料輸入至過濾後的k個類神經網路模型,並預測站到站之旅行時間;以及取得預測的站到站之旅行時間後,換算為目標站點的到達時間。 The arrival time prediction method of the present invention comprises the steps of: setting a parameter value of a stochastic neural network group algorithm; reading a travel time between stations in a historical database; randomly generating m neural network models; Filter out the neural network model with the correct rate lower than the threshold, and leave the remaining k neural network models; obtain the instantaneous station-to-station travel time or test data in the test phase; travel time or test data Input to the filtered k-type neural network model, and predict the travel time of the station to the station; and obtain the predicted station-to-station travel time, converted to the arrival time of the target station.

承上所述,依本發明之到站時間預測系統及方法,其可具有一或多個下述優點: In view of the above, the arrival time prediction system and method of the present invention may have one or more of the following advantages:

1.本發明收集即時之各個路段和時段的站到站之間的旅行時間來估計目前車輛位置到達目標站點的旅行時間。 1. The present invention collects travel time between station-to-station for each road segment and time period in real time to estimate the travel time of the current vehicle location to the target site.

2.本發明提出新穎之隨機類神經網路群來分析前述之旅行時間資料集合,建立複數個類神經網路模型,再綜合考量複數個類神經網路模型之預測結 果來提升預測準確度,據此來預測使用者欲搭乘之公車的到站時間,提供予使用者參考。 2. The present invention proposes a novel stochastic neural network group to analyze the aforementioned travel time data set, establish a plurality of neural network models, and comprehensively consider the prediction knots of a plurality of neural network models. In order to improve the accuracy of the prediction, it is predicted to predict the arrival time of the bus that the user wants to take, and provide the user with reference.

3.本發明在隨機類神經網路群演算法的學習階段中,為每個類神經網路模型分別從資料集合中於隨機取出複數筆資料作為訓練資料,並以剩餘的資料作為在訓練階段中的測試資料,再輸入訓練資料至各個類神經網路模型中進行學習,可避免極端值的影響。 3. In the learning phase of the stochastic neural network group algorithm, the stochastic data is randomly selected from the data set for each type of neural network model as training data, and the remaining data is used as the training stage. In the test data, input training data to various types of neural network models for learning, to avoid the impact of extreme values.

4.本發明在隨機類神經網路群演算法的測試階段和實行階段中,運用各個類神經網路模型所預測之旅行時間與訓練階段所學習得到的權重進行加權平均,最後依此加權平均後的旅行時間作為此隨機類神經網路群演算法的旅行時間預測值,並將旅行時間換算為到站時間,以此進行到站時間預測。 4. In the test phase and the implementation phase of the stochastic neural network group algorithm, the present invention uses the weights averaged by the travel time predicted by each type of neural network model and the training phase, and finally the weighted average. The post travel time is used as the travel time prediction value of the stochastic neural network group algorithm, and the travel time is converted into the arrival time to perform the arrival time prediction.

100‧‧‧車站站牌 100‧‧‧ Station stop sign

101‧‧‧車載終端設備 101‧‧‧Vehicle terminal equipment

102‧‧‧細胞網路基地台 102‧‧‧ cell network base station

103‧‧‧雲端運算伺服器 103‧‧‧Cloud computing server

104‧‧‧雲端運算機房 104‧‧‧Cloud computing room

105‧‧‧雲端歷史資料庫 105‧‧‧Cloud History Database

106‧‧‧到站時間預測系統客戶端設備 106‧‧‧Site time prediction system client device

S201~207、S301~S306‧‧‧步驟 S201~207, S301~S306‧‧‧ steps

1~8‧‧‧類神經網路模型 1~8‧‧‧ class neural network model

第1圖係本發明之到站時間預測系統之示意圖。 Figure 1 is a schematic illustration of the arrival time prediction system of the present invention.

第2圖係本發明之到站時間預測方法之流程圖。 Figure 2 is a flow chart of the method for predicting the arrival time of the present invention.

第3圖係本發明之到站時間預測方法之另一流程圖。 Figure 3 is another flow chart of the method for predicting the arrival time of the present invention.

第4圖係本發明之類神經網路模型之示意圖。 Fig. 4 is a schematic diagram of a neural network model such as the present invention.

第5圖係本發明之預測旅行時間之示意圖。 Figure 5 is a schematic illustration of the predicted travel time of the present invention.

請參考第1圖,本發明是關於一種基於隨機類神經網路群的到站時間預測的系統。此系統主要可以預測車輛到站時間,適用於客運業 者、物流業者、或其他有到站時間預測需求之相關業者,並將預測之到站時間提供給客戶端設備,讓客戶或使用者可以即時掌握車輛資訊和到站資訊,節省等候時間,其中主要包含下列六項模組:(1)複數個車站站牌100:此站牌設備主要包含有一組經緯度座標資訊,並且此資訊可預先儲存於車載終端設備和雲端運算伺服器中,當車載終端設備接近車站站牌時,車載終端設備可以感知到站資訊。此外,此站牌設備亦可嵌入無線射頻辨識(Radio Frequency IDentification,RFID)標籤,當車輛臨近時可以感知站牌,並可依此來判斷到站。(2)複數個車載終端設備101:此設備主要包含有全球定位系統(Global Positioning System,GPS)模組、細胞網路模組、以及資料庫模組(未繪示),可以收集車輛當下位置(包含經緯度座標),以及判斷目前位置是否臨近車站站牌100,若車站站牌100附近範圍內則判斷到站,並將到站資訊和時間點經由細胞網路基地台102回傳至雲端運算伺服器端103。此外,在到站判斷的部分,車載終端設備101亦可嵌入RFID讀取器,當車輛臨近時可以感知站牌,可以接收來自站牌設備之RFID標籤訊號,來判斷是否到站。(3)複數個細胞網路基地台102:每個細胞網路基地台102可提供資料傳送和接收的功能,負責傳輸車載終設備101、雲端運算伺服器103、以及到站時間預測系統客戶端設備106之間的資料傳輸。(4)雲端運算伺服器103:此伺服器主要可以收集和分析來自車載終端設備101的到站資訊、到站時間點,依每個到站時間點計算出每個站到站之間的旅行時間,再將使用者查詢的目標站點之行駛路線前複數個站到站之間的旅行時間之資料集合,輸入至本發明所提出之隨機類神經網路群到站時間預測方法所訓練完成之類神經網路群進行分析和運算以取得到達目標站點之 剩餘旅行時間預測,再換算為到達目標站點之到站時間。(5)雲端歷史資料庫105:此資料庫主要可以儲存歷史的每個站到站之間的旅行時間,可以用來作為隨機類神經網路群的訓練資料集合,用來訓練每個類神經網路模型。(6)複數個到站時間預測系統客戶端設備106:此設備可以為一個行動式設備,具有人機互動介面和網路傳輸模組,可讓使用者經由此設備查詢和展示其欲取得之目標站點的到站時間預測。並可由使用者預先設定好其欲搭乘的站點和時間,再由此設備主動更新和判斷,當車輛即將到達時主動發出提醒訊息和聲音予使用者。 Referring to FIG. 1, the present invention relates to a system for arriving time prediction based on a stochastic neural network group. This system can mainly predict the arrival time of vehicles and is suitable for passenger transportation. , logistics operators, or other relevant operators who have the time to forecast the arrival time, and provide the predicted arrival time to the client device, so that the customer or user can instantly grasp the vehicle information and the arrival information, saving waiting time. It mainly consists of the following six modules: (1) Multiple station stop signs 100: This stop sign device mainly contains a set of latitude and longitude coordinate information, and this information can be pre-stored in the vehicle terminal device and the cloud computing server, when the vehicle terminal When the device approaches the station stop sign, the in-vehicle terminal device can sense the station information. In addition, the station device can also be embedded in a Radio Frequency IDentification (RFID) tag, which can sense the station card when the vehicle is approaching, and can determine the station accordingly. (2) A plurality of vehicle terminal devices 101: The device mainly includes a Global Positioning System (GPS) module, a cell network module, and a database module (not shown), which can collect the current position of the vehicle. (including latitude and longitude coordinates), and determine whether the current position is near the station stop sign 100, if the station is near the station stop sign 100, the station is judged, and the arrival station information and time point are transmitted back to the cloud operation via the cell network base station 102. Server end 103. In addition, in the part of the station judgment, the in-vehicle terminal device 101 can also be embedded in the RFID reader, and can sense the station card when the vehicle is approaching, and can receive the RFID tag signal from the station card device to determine whether to arrive at the station. (3) a plurality of cell network base stations 102: each cell network base station 102 can provide data transmission and reception functions, and is responsible for transmitting the vehicle terminal device 101, the cloud computing server 103, and the arrival time prediction system client. Data transfer between devices 106. (4) Cloud computing server 103: This server can mainly collect and analyze the arrival information from the vehicle terminal device 101, the arrival time point, and calculate the travel between each station and the station according to each arrival time point. At the time, the data set of the travel time between the plurality of stations and the station before the travel route of the target site of the user query is input to the training method of the stochastic neural network group arrival time prediction method proposed by the present invention. Such a neural network group performs analysis and calculation to obtain the target site The remaining travel time forecast is then converted to the arrival time at the target site. (5) Cloud History Database 105: This database can store the travel time between each station and station in history. It can be used as a training data set of random neural network groups to train each type of nerve. Network model. (6) a plurality of arrival time prediction system client device 106: the device can be a mobile device with a human-machine interaction interface and a network transmission module, which allows the user to query and display the desired device through the device. The arrival time prediction of the target site. The user can pre-set the site and time to be boarded by the user, and then the device actively updates and judges, and promptly sends a reminder message and sound to the user when the vehicle is about to arrive.

請參考第2圖及第3圖,本發明更提供一種基於隨機類神經網路群的到站時間預測的方法。此方法主要將包含2個階段:(a)訓練階段和(b)實行和測試階段。其中,訓練階段主要包含4個步驟,分別為:步驟S201:設定隨機類神經網路群演算法參數值;步驟S202:讀取歷史資料庫中的每個站到站之間的旅行時間;步驟S203:隨機產生m個類神經網路模型;以及步驟S208:過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型。實行和測試階段主要包含3個步驟,分別為:步驟S301:取得即時的每個站到站之間的旅行時間或測試階段中的測試資料;步驟S302:將資料輸入至過濾後的k個類神經網路模型,並預測站到站之間的旅行時間;以及步驟S306:取得預測的站到站旅行時間後,換算為目標站點的到達時間。 Referring to FIG. 2 and FIG. 3, the present invention further provides a method for arriving time prediction based on a stochastic neural network group. This method will mainly consist of two phases: (a) training phase and (b) implementation and testing phase. The training phase mainly includes four steps: step S201: setting a random neural network group algorithm parameter value; step S202: reading a travel time between each station in the historical database; S203: randomly generate m neural network models; and step S208: filter out a neural network model whose correct rate is lower than a threshold, and leave k neural network models. The implementation and testing phase mainly includes three steps, namely: step S301: obtaining real-time travel time in each station-to-station or test data in the test phase; step S302: inputting data to the filtered k classes The neural network model predicts the travel time between the stations and the station; and step S306: after obtaining the predicted station-to-station travel time, the time of arrival is converted to the target station.

於步驟S201中,首先由到站時間預測系統開發人員設定隨機類神經網路群演算法之相關參數值,包含有類神經網路模型數量(後續說明將以m個為例)、類神經網路模型中隱藏層最大數量(後續說明將以hmax個為例)、類神經網路模型中每個隱藏層最大神經元數量(後續說明將以cmax個為例)、訓練類神經網路模型的訓練資料數佔總訓練階段資料數的比例(後續說明將以r%為例)、以及正確率門檻值(後續說明將以wthreshold個為例)。 In step S201, first, the developer of the arrival time prediction system sets the relevant parameter values of the stochastic neural network group algorithm, including the number of neural network models (the following description will take m as an example), the neural network The maximum number of hidden layers in the road model (the following description will take h max as an example), the maximum number of neurons in each hidden layer in the neural network model (the following description will take c max as an example), the training neural network The ratio of the training data of the model to the total number of training data (the following description will take r% as an example) and the correct rate threshold (the following description will take w threshold as an example).

於步驟S202中,向雲端歷史資料庫103取得車輛到達每一個站點的時間,並換算為站到站之間的旅行時間,例如:車站1的到站時間為時間點t1,並且車站2的到站時間為時間點t2,則車站1到車站2的旅行時間為|t2-t1|。再將此旅行時間集合作為類神經網路模型的輸入和輸出資料進行後續的學習。以圖一為例,欲在車輛行駛至車站n-2時預測到達車站n的時間(即目標輸出之旅行時間為|tn-tn-2|),輸入旅行時間資料集合可以包含有{|t2-t1|,|t3-t2|,...,|t n-2-tn-3|}。 In step S202, the time when the vehicle arrives at each station is obtained from the cloud history database 103, and converted into the travel time between the stations, for example, the arrival time of the station 1 is the time point t1, and the station 2 is When the arrival time is time point t2, the travel time of station 1 to station 2 is |t2-t1|. Then, the travel time set is used as the input and output data of the neural network model for subsequent learning. Taking Figure 1 as an example, if you want to predict the time of arrival at station n when the vehicle is traveling to station n-2 (ie, the travel time of the target output is |tn-tn-2|), the input travel time data set may contain {|t2 -t1|,|t3-t2|,...,|t n-2-tn-3|}.

於步驟S202中,依據到站時間預測系統開發人員設定之隨機類神經網路群演算法參數值,隨機產生m個類神經網路模型,並且每一個類神經網路模型都將各自隨機取得總訓練資料數的r%作為訓練和學習使用,以及將剩餘的資料(即100%-r%的資料量)作為每個類神經網路模型的驗證使用,每個類神經網路模型都將取得不同的資料進行訓練和驗證。此外,每一個類神經網路模型都將依參數設定值,產生0~hmax個隱藏層,以及為每一個隱藏層產生0~cmax個神經元,其中每個類神經網路模型的隱藏層和神經元之組合將都會不同。再將前述之r%的資料輸入至類神經網路 模型中進行訓練和學習,達到收斂後再把100%-r%的資料(即訓練階段中的測試資料)輸入至訓練後的類神經網路模型,並取得預測的旅行時間,並與正確的旅行時間進行比較,依此來取得每一個類神經網路模型的正確率,並將此正確率作為實行和測試階段時的權重值。 In step S202, m neural network models are randomly generated according to the parameter values of the stochastic neural network group algorithm set by the station time prediction system developer, and each of the neural network models is randomly obtained. The r% of the number of training materials is used for training and learning, and the remaining data (ie, 100%-r% of the data amount) is used as the verification of each type of neural network model, and each type of neural network model will be obtained. Different materials are trained and verified. In addition, each neural network model will generate 0~hmax hidden layers according to the parameter settings, and generate 0~cmax neurons for each hidden layer, and the hidden layer of each type of neural network model and The combination of neurons will be different. Then input the above r% data into the neural network Training and learning in the model, after reaching convergence, input 100%-r% of the data (ie the test data in the training phase) into the trained neural network model, and obtain the predicted travel time, and the correct The travel time is compared, and the correct rate of each type of neural network model is obtained, and the correct rate is used as the weight value in the implementation and test phases.

於步驟S208中,過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型:將隨機產生之m個類神經網路模型的正確率與正確率門檻值wthreshold進行比對,將低於此門檻值的類神經網路模型(即正確率太低的)排除,並剩下k個類神經網路模型;若無任何類神經網路模型之正確率高於門檻值時,將回到步驟S201,由到站時間預測系統開發人員重新設定門檻值,並重新訓練隨機類神經網路群。 In step S208, the neural network model with the correct rate lower than the threshold value is filtered out, and the remaining k neural network models are used: the correct rate and the correct rate threshold of the m neural network models generated randomly. The threshold is compared, and the neural network model below the threshold (that is, the correct rate is too low) is excluded, and k neural network models are left; if there is no neural network model, the correct rate is high. When the threshold is exceeded, the process returns to step S201, where the developer of the station time prediction system resets the threshold and retrains the random neural network group.

於步驟S301中,在實行和測試階段中,首先將先取得即時的車輛的站到站之間的旅行時間,例如:車輛移動到圖一中的車站n-2,而使用者想查詢車站n的到站時間預測(即目標輸出之旅行時間為|tn-tn-2|)。此時,可將計算車輛在這一趟路程中的旅行時間資料集合{|t2-t1|,|t3-t2|,...,|t n-2-tn-3|},並將此作為類神經網路模型的輸入資料。 In step S301, in the implementation and testing phase, the travel time between the station and the station of the instant vehicle is first obtained, for example, the vehicle is moved to the station n-2 in FIG. 1, and the user wants to query the station n. The arrival time prediction (ie, the travel time of the target output is |tn-tn-2|). At this point, the travel time data set {|t2-t1|,|t3-t2|,...,|t n-2-tn-3|} of the vehicle in this journey can be calculated and this will be Input data as a neural network model.

於步驟S302中,取得即時的旅行時間資料集合{|t2-t1|,|t3-t2|,...,|t n-2-tn-3|}後輸入至過濾後之k個類神經網路模型,每一個類神經網路模型都將預測出一個|tn-tn-2|的預測旅行時間,再將其分別乘上由訓練階段所取得之各個類神經網路模型的權重值(即訓練階段時各個類神經網路模型的正確率),並將加權後值加總除以權重值的總和(即進行加權平均)。 In step S302, the instant travel time data set {|t2-t1|, |t3-t2|,..., |t n-2-tn-3|} is obtained and input to the filtered k-like nerves. In the network model, each neural network model predicts a predicted travel time of |tn-tn-2|, which is then multiplied by the weight values of the various neural network models obtained by the training phase ( That is, the correct rate of each type of neural network model in the training phase), and the weighted value is summed by the sum of the weight values (ie, weighted average).

於步驟S301中,取得綜合考量k個類神經網路模型所得到之預測旅行時間|tn-tn-2|後,再依車輛即時之時間點tn-2加上預測旅行時間|tn- tn-2|得到達車站n的到站時間預測,並將此預測結果提供予使用者。 In step S301, after obtaining the predicted travel time |tn-tn-2| obtained by comprehensively considering the k neural network models, the predicted travel time is added according to the instantaneous time point tn-2 of the vehicle|tn- Tn-2| obtains the arrival time prediction of the station n and provides the prediction result to the user.

本發明係收集和分析來自車載終端設備101回傳的到(離)站資訊(包含站點資訊和時間點等),將此資料集合轉換為站到站之間的旅行時間儲存於雲端歷史資料庫105中,並於雲端運算伺服器103中設計與實作一基於隨機類神經網路群演算法的到站資訊預測方法模組,可存取雲端歷史資料庫105中的旅行時間集合,並依此輸入至基於隨機類神經網路群演算法的到站資訊預測方法模組,進行類神經網路模型訓練以預測旅行時間。當到站資訊預測系統客戶端進行站點到站時間預測時,可依當下車載終端設備101於該路線回報之前複數個站點資訊輸入至已訓練完成之類神經網路群中進行到達目標站點的旅行時間預測,再轉換和提供到達目標站點的到達時間予到站資訊預測系統客戶端設備106。本發明之技術特色主要在於提出和設計一隨機類神經網路群演算法,並應用於到站資訊預測,以下將以一實施例進行說明。 The invention collects and analyzes the information of the arrival (departure) from the in-vehicle terminal device 101 (including site information and time points, etc.), and converts the data collection into station-to-station travel time and stores it in the cloud history data. In the library 105, and in the cloud computing server 103, an on-site information prediction method module based on a stochastic neural network group algorithm is designed and implemented, and the travel time set in the cloud history database 105 can be accessed, and According to this, input to the station-based information prediction method module based on the stochastic neural network group algorithm, and perform neural network model training to predict travel time. When the station information prediction system client performs the site-to-station time prediction, the current vehicle terminal device 101 can input the plurality of site information into the trained neural network group before the return of the route to reach the target station. The travel time prediction of the point, re-converting and providing the arrival time to the target site to the station information prediction system client device 106. The technical feature of the present invention is mainly to propose and design a stochastic neural network group algorithm and apply it to the station information prediction. The following description will be made with an embodiment.

本發明提供一基於隨機類神經網路群的到站時間預測的系統,其系統架構如第1圖所示。此系統將包含複數個車站站牌100、複數個車載終端設備101、複數個細胞網路基地台102、一個雲端運算伺服器103、一個雲端歷史資料庫105、以及複數個到站時間預測系統客戶端設備106。在本實施例中以同一路線之車站站牌100為例,此路線中有n個車站,每個車站都有具有位置資訊(包含經度和緯度)。如表一所示,在路線1總共包含有12個車站(即圖一中的n為12),其對應之經緯度可儲存於車載終端設備中;當車輛編號1由車站1往車站2行駛,於2014/4/1 14:53時車載終端設備之GPS模組偵測到車輛所在經度為120.97839、緯度為24.808658,評估車輛 臨近車站2(例如:直線距離30公尺內),則判斷為到站,並將此到站資訊(包含車站編號和時間點)經由細胞網路基地台102回傳至雲端運算伺服器103。 The present invention provides a system for arriving time prediction based on a stochastic neural network group, the system architecture of which is shown in FIG. The system will include a plurality of station stop signs 100, a plurality of in-vehicle terminal devices 101, a plurality of cell network base stations 102, a cloud computing server 103, a cloud history database 105, and a plurality of inbound time prediction system clients. End device 106. In the present embodiment, the station stop sign 100 of the same route is taken as an example. There are n stations in the route, and each station has location information (including longitude and latitude). As shown in Table 1, there are 12 stations in total in route 1 (that is, n in Figure 1 is 12), and the corresponding latitude and longitude can be stored in the vehicle-mounted terminal equipment; when the vehicle number 1 is from the station 1 to the station 2, At 2014/4/1 14:53, the GPS module of the vehicle terminal device detected that the vehicle was 120.97839 and the latitude was 24.808658. When the station 2 is approached (for example, within a straight line distance of 30 meters), it is determined that the station is arriving, and the arrival information (including the station number and time point) is transmitted back to the cloud computing server 103 via the cell network base station 102.

此外,車站站牌100亦可具備RFID標籤,而車載終端設備101可具備RFID讀取器,當車載終端設備101臨近車站站牌100時可偵測到該車站站牌100的RFID標籤,並依此判斷為到站,再將此到站資訊(包含車站編號和時間點)經由細胞網路基地台102回傳至雲端運算伺服器103。車輛到站資訊回報資料集合如表二所示,主要將可以紀錄路線編號、車輛編號、車站編號、以及時間點等,而雲端運算伺服器103可將車輛到站資訊轉換為站到站旅行時間資訊(如表三所示),並將資訊儲存於雲端歷史資料庫105中。例如,車輛編號1由車站1發車時的時間為2014/4/1 14:46:28,並於2014/4/1 14:53:31抵達車站2,因此車站1到車站2的旅行時間為423秒;而車輛編號2由車站1發車時的時間為2014/4/1 19:32:22,並於2014/4/1 19:40:13抵達車站2,因此車站1到車站2的旅行時間為471秒。 In addition, the station stop sign 100 may also be provided with an RFID tag, and the in-vehicle terminal device 101 may be provided with an RFID reader, and when the in-vehicle terminal device 101 is adjacent to the station stop sign 100, the RFID tag of the station stop sign 100 may be detected, and This determination is to arrive at the station, and then the arrival information (including the station number and time point) is transmitted back to the cloud computing server 103 via the cell network base station 102. As shown in Table 2, the vehicle arrival information return data collection will mainly record the route number, vehicle number, station number, and time point, and the cloud computing server 103 can convert the vehicle arrival information into station arrival time. Information (as shown in Table 3), and the information is stored in the cloud history database 105. For example, the time when the vehicle number 1 departs from the station 1 is 2014/4/1 14:46:28, and arrives at the station 2 at 2014/4/1 14:53:31, so the travel time from station 1 to station 2 is 423 seconds; the time when the vehicle number 2 departs from the station 1 is 2014/4/1 19:32:22, and arrives at the station 2 at 2014/4/1 19:40:13, so the trip from station 1 to station 2 The time is 471 seconds.

當有一車輛編號10001行駛至車站6(即雲端伺服器103已知其車站1~車站6間的站到站之間的旅行時間),而有一到站時間預測系統客戶端設備向雲端運算伺服器103查詢路線編號1車站12的到站時間(即預測車站6到車站12的旅行時間,並轉換為車站12的到達時間)。此時,雲端運算伺服器103可運用雲端歷史資料庫105中的資料(即路程編號1和2的站到站旅行時間資訊,如表四所示)作為隨機類神經網路群演算法於訓練階段的資料,來建立隨機類神經網路群,並運用此演算法進行到站時間預測。 When there is a vehicle number 10001 driving to the station 6 (ie, the cloud server 103 knows the travel time between the station and the station between the station 1 and the station 6), and there is a station time prediction system client device to the cloud computing server 103 Query route number 1 The arrival time of station 12 (i.e., predict the travel time of station 6 to station 12 and convert to the arrival time of station 12). At this time, the cloud computing server 103 can use the data in the cloud history database 105 (ie, the station-to-station travel time information of the route numbers 1 and 2, as shown in Table 4) as a stochastic neural network group algorithm for training. Stage data to establish a stochastic neural network group and use this algorithm to predict the arrival time.

表一 車站位置資訊 Table 1 Station Location Information

本發明之基於隨機類神經網路群的到站時間預測的方法,其方法流程如第2圖及第3圖所示。此方法主要將包含2個階段:(a)訓練階段和(b)實行和測試階段。 The method for predicting the arrival time based on the stochastic neural network group of the present invention has a method flow as shown in FIGS. 2 and 3. This method will mainly consist of two phases: (a) training phase and (b) implementation and testing phase.

訓練階段主要包含4個步驟,分別為步驟S201:設定隨機類神經網路群演算法參數值;S202:讀取歷史資料庫中的每個站到站之間的旅行時間;S203:隨機產生m個類神經網路模型;以及S208:過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型。 The training phase mainly includes four steps, which are respectively step S201: setting a random neural network group algorithm parameter value; S202: reading a travel time between each station in the historical database; S203: randomly generating m a neural network model; and S208: filtering out a neural network model with a correct rate lower than the threshold, and leaving k neural network models.

實行和測試階段主要包含3個步驟,分別為S301:取得即時的每個站到站之間的旅行時間或測試階段中的測試資料;S302:將資料輸入至過濾後的k個類神經網路模型,並預測站到站之間的旅行時間;以及S306:取得預測的站到站旅行時間後,換算為目標站點的到達時間。 The implementation and testing phase mainly consists of three steps, namely S301: obtaining real-time test data between each station-to-station travel time or test phase; S302: inputting data to the filtered k-like neural networks The model, and predicts the travel time between the stations and the station; and S306: after obtaining the predicted station-to-station travel time, converted to the arrival time of the target station.

在訓練階段中,首先將由到站時間預測系統開發人員設定隨機類神經網路群演算法之相關參數值(步驟S201)。例如,設定共有10個類神經網路模型(即m為10)、類神經網路模型中隱藏層最大數量為5(即hmax為5)、類神經網路模型中每個隱藏層最大神經元數量為7(即cmax為7)、訓練類神經網路模型的訓練資料數佔總訓練階段資料數的比例為60%(即r%為60%)、以及正確率門檻值為0.945(即wthreshold為0.945=94.5%),後續將 依此參數值產生10個類神經網路模型來進行到站時間預測。 In the training phase, the relevant parameter values of the stochastic neural network group algorithm are first set by the arrival time prediction system developer (step S201). For example, set a total of 10 neural network models (ie, m is 10), the maximum number of hidden layers in the neural network model is 5 (ie, h max is 5), and the maximum neural layer of each hidden layer in the neural network model. The number of elements is 7 (ie, c max is 7), the training data of the training neural network model accounts for 60% of the total training stage data (ie, r% is 60%), and the correct rate threshold is 0.945 ( That is, the w threshold is 0.945=94.5%), and 10 neural network models will be generated according to this parameter value to perform the arrival time prediction.

在此S202步驟中,將向雲端歷史資料庫取得歷史之車輛到達每一個站點的時間,並換算為站到站之間的旅行時間,如表四所示。由於在本實施例中,待預測之車輛行駛至車站6,並欲預測車站12的到達時間,且已知車站1~車站6之間的到站時間資料集合{t1,t2,t3,t4,t5,t6}、換算成站到站之間的旅行時間資料集合{|t2-t1|,|t3-t2|,|t4-t3|,|t5-t4|,|t6-t5|},並用以預測車站6到車站12的旅行時間(即目標輸出之旅行時間為|t12-t6|)。在本實施例中將旅行時間資料集合{|t2-t1|,|t3-t2|,|t4-t3|,|t5-t4|,|t6-t5|}分別命名為參數名稱{x1,x2,x3,x4,x5},而目標輸出之旅行時間|t12-t6|命名為參數名稱y。 In this step S202, the time when the vehicle that has obtained the history from the cloud history database arrives at each station is converted into the travel time between the stations and the stations, as shown in Table 4. Since in the present embodiment, the vehicle to be predicted travels to the station 6, and the arrival time of the station 12 is to be predicted, and the arrival time data set between the stations 1 to 6 is known {t1, t2, t3, t4, T5, t6}, converted into a travel time data set between station and station {|t2-t1|, |t3-t2|, |t4-t3|, |t5-t4|,|t6-t5|}, and To predict the travel time of station 6 to station 12 (ie, the travel time of the target output is |t12-t6|). In the present embodiment, the travel time data set {|t2-t1|, |t3-t2|, |t4-t3|, |t5-t4|, |t6-t5|} are named as parameter names {x1, x2, respectively. , x3, x4, x5}, and the travel time of the target output |t12-t6| is named as the parameter name y.

步驟S203隨機產生m個類神經網路模型中,更包含步驟S204:產生訓練資料和驗證資料。詳言之,本發明依據到站時間預測系統開發人員設定之隨機類神經網路群演算法參數值,隨機產生10個類神經網路模型,且設定類神經網路模型中隱藏層最大數量為5、類神經網路模型中每個隱藏層最大神經元數量為7,意即每個類神經網路模型之隱藏層數量將介於0~5層,每個隱藏層的神經元數量將介於0~7個,產生結果之實施例如表五所示(步驟S205)。類神經網路模型1之隱藏層為1層,該層隱藏層之神經元數為2個(如第4圖所示);類神經網路模型2之隱藏層為2層,第1層隱藏層之神經元數為3個、第2層隱藏層之神經元數為4個;依此類推可得10個類神經網路模型。並且,由於訓練類神經網路模型的訓練資料數佔訓練階段資料總筆數的60%,以表四為例,訓練階段資料數之總筆數為10000筆,所以每個類神經網路模型將隨機取出6000筆作為訓練類神經網路模型學習 使用,且剩餘的4000筆訓練階段中的測試資料(Testing Data in TRaining Stage,TDTRS)將分別作為訓練階段時每個類神經網路模型驗證使用。於此步驟中,每個類神經網路模型所取得的6000筆資料之集合皆各自隨機產生,每一個類神經網路模型都將取得不同的資料集合進行訓練和學習。 Step S203 randomly generates m neural network models, and further includes step S204: generating training data and verification data. In detail, the present invention randomly generates 10 neural network models based on the parameters of the stochastic neural network group algorithm set by the station time prediction system developer, and sets the maximum number of hidden layers in the neural network model. 5. The number of neurons in each hidden layer in the neural network model is 7, which means that the number of hidden layers in each neural network model will be between 0 and 5, and the number of neurons in each hidden layer will be In the case of 0 to 7, the implementation of the result is shown in Table 5 (step S205). The hidden layer of the neural network model 1 is 1 layer, and the number of neurons in the hidden layer is 2 (as shown in Fig. 4); the hidden layer of the neural network model 2 is 2 layers, and the first layer is hidden. The number of neurons in the layer is 3, and the number of neurons in the hidden layer in the second layer is 4; and so on, 10 neural network models can be obtained. Moreover, since the training data of the training-like neural network model accounts for 60% of the total number of data in the training phase, taking Table 4 as an example, the total number of data in the training phase is 10,000, so each type of neural network model Randomly take 6,000 pens as training neural network model learning The test data in the remaining 4000 training stages (Testing Data in TRaining Stage, TTDRS) will be used as the verification of each type of neural network model in the training phase. In this step, each set of 6,000 data obtained by each type of neural network model is randomly generated, and each type of neural network model will acquire different sets of data for training and learning.

步驟S206:類神經網路模型訓練與學習。在本實施例中,10個類神經網路模型將分別輸入6000筆資料進行訓練和學習,以下利用類神經網路模型1(如第4圖所示)為例進行說明,其中在類神經網路模型1的6000筆資料為一包含路程編號1且不包含路程編號10000之資料組合,並以類神經網路模型1之訓練與學習說明如後。 Step S206: training and learning of a neural network model. In this embodiment, 10 neural network models will input 6,000 data for training and learning respectively. The following uses a neural network model 1 (as shown in Fig. 4) as an example, in which a neural network is used. The 6000 data of the road model 1 is a data combination including the route number 1 and the route number 10000, and the training and learning description of the neural network model 1 is as follows.

步驟i:隨機產生各個神經元的權重,以及隱藏層與輸出層神經元的常數項,如表六所示。 Step i: randomly generate the weights of the individual neurons, and the constant terms of the hidden layer and the output layer neurons, as shown in Table 6.

步驟ii:將6000筆資料逐一輸入至類神經網路模型1中,以 下以路程編號1為例。首先將資料正規化為介於0~1之間的數值,因此實施例中的數據皆小於5000,故同除以5000進行正規化,結果如表七所示。再根據輸入訊號,計算各隱藏層神經元的輸出訊號,其中本實施例採用Logistic 分配(即)的方式計算輸出訊號,計算方式如下所示。 Step ii: Input 6,000 pieces of data into the neural network model 1 one by one, and take the route number 1 as an example. First, the data is normalized to a value between 0 and 1, so the data in the embodiment are all less than 5000, so the normalization is divided by 5000, and the results are shown in Table 7. Then, according to the input signal, the output signal of each hidden layer neuron is calculated, wherein the embodiment uses Logistic allocation (ie, The way to calculate the output signal is as follows.

神經元6: 總輸入訊號: Neuron 6: Total input signal:

轉換輸出訊號: Convert output signal:

神經元7:總輸入訊號: Neuron 7: Total input signal:

轉換輸出訊號: Convert output signal:

步驟iii:根據隱藏層輸出訊號,計算輸出層神經元的輸出訊號。 Step iii: Calculate the output signal of the output layer neurons according to the hidden layer output signal.

神經元8: 總輸入訊號: Neuron 8: Total input signal:

轉換輸出訊號: Convert output signal:

步驟iv:比較輸出值(即0.759554)與真值(即0.7796)的誤差項。 Step iv: Compare the error terms of the output value (ie 0.759554) with the true value (ie 0.7796).

神經元8誤差項: Neuron 8 error term:

步驟v:將誤差項回饋至隱藏層,分別計算出隱藏層神經元的誤差項。 Step v: The error term is fed back to the hidden layer, and the error term of the hidden layer neuron is calculated separately.

神經元6誤差項: Neuron 6 error term:

神經元7誤差項: Neuron 7 error term:

步驟vi:根據神經元誤差項,更新各個神經元權重和常數項,在本實施例中設定學習速率σ為0.8。 Step vi: Update each neuron weight and constant term according to the neuron error term, and set the learning rate σ to 0.8 in this embodiment.

步驟vii:重覆步驟ii~步驟vi,將每一筆資料輸入至類神經網路模型中進行學習,直到此回合之輸出訊號與上一回合之輸出訊號的差異低於一門檻值othreshold(在本例中othreshold設為0.01),則達到收斂並完成學習,確定此類神經網路模型之各個神經元權重和常數項。 Repeat steps ii ~ learning step VI, each piece of data is input to the neural network model, this turn until the output signal of the difference output signal of a round lower than a threshold value o threshold (in: step vii In this example, the o threshold is set to 0.01), then convergence is achieved and learning is completed, and the individual weights and constant terms of the neural network model are determined.

前述為類神經網路模型1之訓練和學習過程,依此同時訓練其他的類神經網路模型(即類神經網路模型2~類神經網路模型10),可支援平行運算。完成訓練後,後續在預測車站6到車站12間之旅行時間時可重覆步驟ii~步驟iii,將測試資料或即時資料作為輸入訊號,而輸出訊號為旅行時預測值。其中,由類神經網路模型產出的旅行時間預測值,需再進行正規化之還原,方得旅行時間秒數,例如:輸出訊號為0.759554,需乘上5000,取得旅行時間為3797.769233秒。 The foregoing is a training and learning process of the neural network model 1, and at the same time, training other neural network models (ie, the neural network model 2~ neural network model 10) can support parallel operations. After the completion of the training, the follow-up steps ii to iii may be repeated in the prediction of the travel time between the station 6 and the station 12, and the test data or the real-time data is used as the input signal, and the output signal is the predicted value during the travel. Among them, the travel time predicted value produced by the neural network model needs to be restored again, and the travel time is obtained. For example, the output signal is 0.759554, and the travel time is 3797.769233 seconds.

步驟S207:類神經網路模型驗證與權重。當完成所有類神 經網路模型的訓練和學習後,可以運用剩餘的4000筆資料來進行每個類神經網路模型的驗證,並計算平均正確率作為每個類神經網路模型的權重。以類神經網路模型1為例,將訓練階段中的測試資料全部輸入至訓練後的類神經網路模型1中重覆步驟ii~步驟iii,可算出正確率。例如,路程編號10000為輸入訊號時,其正規化後數值如表八所示,得到預測值為0.75986369,再將預測值乘上5000為3799.318449,可得正確率為為1-(|真值-預測值|/真值)=1-(|3939-3799.318449|/3939)=96.45%;依此類推,可算出4000筆訓練階段中的測試資料(TDTRS)之平均正確率,在此例為93.23%。在本實施例中,10個類神經網路模型所對應之平均正確率分別為93.23%、94.90%、94.03%、93.57%、94.61%、93.52%、94.93%、95.21%、94.48%、94.45%,如表九所示。 Step S207: class-like neural network model verification and weighting. When all the gods are finished After training and learning through the network model, the remaining 4000 data can be used to verify each type of neural network model, and the average correct rate is calculated as the weight of each type of neural network model. Taking the neural network model 1 as an example, all the test data in the training phase are input into the trained neural network model 1 and steps ii to iii are repeated to calculate the correct rate. For example, when the route number 10000 is an input signal, the normalized value is as shown in Table 8. The predicted value is 0.75986369, and the predicted value is multiplied by 5000 to 3799.318449. The correct rate is 1-(|true value- Predicted value|/true value=1-(|3939-3799.318449|/3939)=96.45%; and so on, the average correct rate of test data (TDTRS) in 4000 training stages can be calculated, in this case 93.23 %. In this embodiment, the average correct rates corresponding to the 10 neural network models are 93.23%, 94.90%, 94.03%, 93.57%, 94.61%, 93.52%, 94.93%, 95.21%, 94.48%, and 94.45%, respectively. As shown in Table IX.

步驟S208:過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型。此步驟將分析每個類神經網路模型的平均正確率,並將低於正確率門檻值wthreshold(即本實施例所設定的94.5%)過濾掉,其中類神經網路模型1、類神經網路模型3、類神經網路模型4、類神經網路模型6、類神經網路模型9、類神經網路模型10等6個將被過濾掉,剩下4個 Step S208: Filter out the neural network model with the correct rate lower than the threshold, and leave the remaining k neural network models. This step will analyze the average correct rate of each type of neural network model, and filter out the threshold of the correct rate threshold (ie, 94.5% set in this embodiment), where the neural network model 1, the neuron Network model 3, neural network model 4, neural network model 6, neural network model 9, neural network model 10, etc. will be filtered out, leaving 4

類神經網路模型及其權重值供實行和測試階段使用。 The neural network model and its weight values are used for the implementation and testing phases.

於步驟S301中,在實行和測試階段時,取即時的車輛到站 資訊輸入至訓練完成之隨機類神經網路群,進行到站時間預測。例如,到站時間預測系統客戶端設備在2014/5/3 11:59:00時欲查詢抵達車站12的到達時間,將取車站1~車站6的到站時間和站到站之間的旅行時間(如表十一所示),作為隨機類神經網路群的輸入資料(如表十二所示),得到目標預測值車站6到車站12的旅行時間。 In step S301, when the implementation and testing phases are taken, the instant vehicle arrives at the station. The information is input to the trained stochastic neural network group to perform the arrival time prediction. For example, the arrival time prediction system client device will check the arrival time of the arrival station 12 at 2014/5/3 11:59:00, and will take the arrival time of the station 1~ station 6 and the travel between the station and the station. The time (as shown in Table 11), as the input data of the stochastic neural network group (as shown in Table 12), obtains the travel time of the target predicted value station 6 to station 12.

此外,到站時間預測系統開發人員於此階段亦可收集歷史資料作為測試階段中的測試資料(TDTES),取得每個路程編號之各個站到站之間的旅行時間作為隨機類神經網路群輸入值,以分析和最佳化隨機類神經網路群。 In addition, the arrival time prediction system developer can also collect historical data as test data (TDTES) in the test phase, and obtain the travel time between each station and station of each route number as a random neural network group. Enter values to analyze and optimize stochastic neural network populations.

步驟S302中,將資料輸入至過濾後的k個類神經網路模型,並預測站到站之間的旅行時間。在取得輸入資料後可將資料分別作為每個過濾後的類神經網路模型(即類神經網路模型2、類神經網路模型5、類神經網路模型7、類神經網路模型8,如表十所示)之輸入訊號,並分別由類神經網路模型2、類神經網路模型5、類神經網路模型7、類神經網路模型8預測旅行時間為3766.607秒、3857.98秒、3661.828秒、3724.095秒(步驟S303),如表十三所示。最後,再依每個類神經網路模型的權重進行加權平均(步驟S304~S305)得到旅行時間預測值3752.516552秒(即[94.90% * 3766.607+94.61% * 3857.98+94.93% * 3661.828+95.21% * 3724.095]/[94.90%+94.61%+94.93%+95.21%]=3752.516552)。 In step S302, the data is input to the filtered k-type neural network models, and the travel time between the stations is predicted. After obtaining the input data, the data can be used as each filtered neural network model (ie, neural network model 2, neural network model 5, neural network model 7, neural network model 8, As shown in Table 10, the input signals are predicted by the neural network model 2, the neural network model 5, the neural network model 7, and the neural network model 8 to predict the travel time of 3766.607 seconds and 3587.98 seconds. 3661.828 seconds, 3724.095 seconds (step S303), as shown in Table 13. Finally, the weighted average is calculated according to the weight of each type of neural network model (steps S304~S305) to obtain the travel time predicted value of 3752.516552 seconds (ie [94.90% * 3766.607 + 94.61% * 3857.98 + 94.93% * 3661.828 + 95.21% * 3724.095]/[94.90%+94.61%+94.93%+95.21%]=3752.516552).

步驟S306中,取得預測的站到站旅行時間後,換算為目標站點之到達時間。在取得站到站旅行時間預測值後,可依據目前的到站資訊,並結合站到站旅行時間預測值轉換為到達目標站點之到達時間。本實施例之路程編號10001到達車站6的時間點為2014/5/3 11:58:46,而車站6到車站12的旅行時間預測值為3752.516552秒,故車站12預測到站時間為2014/5/3 13:01:19,再將此資訊回傳予到站時間預測系統客戶端設備。 In step S306, after the predicted station-to-station travel time is obtained, it is converted into the arrival time of the target station. After obtaining the station-to-station travel time prediction value, the current arrival information can be converted into the arrival time of the arrival target station based on the station-to-station travel time prediction value. The time point at which the route number 10001 of the present embodiment arrives at the station 6 is 2014/5/3 11:58:46, and the predicted travel time of the station 6 to the station 12 is 3752.516552 seconds, so the station 12 predicts that the station time is 2014/ 5/3 13:01:19, then pass this information back to the arrival time prediction system client device.

實際運用於客運業者的例子來看,以客運業者A的資料進行實證,總共收集2014年3月整個月份的資料,其中共包含2956趟,實驗環境中共涵蓋40條道路路段,並且分別採用不同的資料探勘演算法來測試其正 確率,包含有羅吉斯迴歸(Logistic Regression,LR)、傳統的倒傳遞類神經網路(Back-Propagation Neural Network,BPNN)、以及本發明所提出之隨機類神經網路群(Random Neural Networks,RNN),證實此方法確實較為優越,實驗結果表十四所示。 The actual application to the passenger transport industry is based on the data of passenger transporter A. The total data of the entire month of March 2014 is collected, including 2,956 baht. The experimental environment covers 40 road sections and uses different Data exploration algorithm to test its positive The accuracy rate includes Logistic Regression (LR), the traditional Back-Propagation Neural Network (BPNN), and the random neural network group proposed by the present invention (Random Neural Networks, RNN), confirming that this method is indeed superior, the experimental results are shown in Table 14.

綜上所述,本發明之基於隨機類神經網路群的到站時間預測系統與方法,透過收集各個路段和時段的站到站之間的旅行時間,並提出新穎之隨機類神經網路群來分析前述之旅行時間資料集合,建立複數個類神經網路模型來避免極端值的影響,以及綜合考量複數個類神經網路模型之預測結果來提升預測準確度,據此來預測使用者欲搭乘之公車的到站時間,提供予使用者參考。 In summary, the stochastic neural network group-based arrival time prediction system and method of the present invention collects travel time between stations and stations in each road segment and time period, and proposes a novel stochastic neural network group. To analyze the aforementioned travel time data set, establish a plurality of neural network models to avoid the influence of extreme values, and comprehensively consider the prediction results of a plurality of neural network models to improve the prediction accuracy, thereby predicting the user's desire The arrival time of the bus will be provided to the user for reference.

以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。 The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.

100‧‧‧車站站牌 100‧‧‧ Station stop sign

101‧‧‧車載終端設備 101‧‧‧Vehicle terminal equipment

102‧‧‧細胞網路基地台 102‧‧‧ cell network base station

103‧‧‧雲端運算伺服器 103‧‧‧Cloud computing server

104‧‧‧雲端運算機房 104‧‧‧Cloud computing room

105‧‧‧雲端歷史資料庫 105‧‧‧Cloud History Database

106‧‧‧到站時間預測系統客戶端設備 106‧‧‧Site time prediction system client device

Claims (5)

一種到站時間預測系統,包括:複數個車站站牌,各該車站站牌具有一個經緯度座標資訊;複數個車載終端設備,當接近該些車站站牌時,該些車載終端設備感測到該些經緯度座標資訊,進而產生複數個到站資訊;複數個細胞網路基地台,該些到站資訊係經由該些細胞網路基地台傳送;一雲端運算伺服器,係接收由該些細胞網路基地台傳送所傳送的該些到站資訊,計算出複數個旅行時間,再根據該些旅行時間以及一查詢站點預測一剩餘旅行時間並轉換為一到站時間,並將該到站時間經由該些細胞網路基地台傳送;一雲端歷史資料庫,儲存有該些經緯度座標資訊以及該些車站站牌之間的該些旅行時間;複數個到站時間預測系統客戶端設備,發送該查詢站點,並接收經由該些細胞網路基地台傳送之該到站時間,再顯示該到站時間;其中該雲端運算伺服器係利用一類神經網路群預測該些剩餘旅行時間;以及其中該雲端歷史資料庫儲存該些旅行 時間,以作為訓練該隨機類神經網路群的一訓練資料集合,並訓練複數個類神經網路模型。 An arrival time prediction system includes: a plurality of station stop signs, each station stop sign has a latitude and longitude coordinate information; and a plurality of in-vehicle terminal devices, when approaching the station stop signs, the in-vehicle terminal devices sense the The latitude and longitude coordinates information, thereby generating a plurality of arrival information; a plurality of cellular network base stations, the arrival information is transmitted through the cellular network base stations; and a cloud computing server receives the cellular networks The base station transmits the received arrival information, calculates a plurality of travel times, and then predicts a remaining travel time based on the travel time and a query site and converts to a stop time, and the arrival time is Transmitting through the cell network base station; a cloud history database storing the latitude and longitude coordinate information and the travel time between the station stop signs; a plurality of arrival time prediction system client devices, transmitting the Querying the station, and receiving the arrival time transmitted through the cell network base stations, and then displaying the arrival time; wherein the cloud computing servo Department use a neural network to predict the population of some remaining travel time; and wherein the cloud database to store the history of these travel Time, as a training data set for training the stochastic neural network group, and training a plurality of neural network models. 根據申請專利範圍第1項之到站時間預測系統,其中各該車載終端設備更包含:一全球定位系統(GPS)模組,係收集各該車載終端設備之一位置資訊,並根據該些經緯度座標資訊及該些位置資訊判斷是否到站,進而產生複數個到站時間及該些到站資訊;一細胞網路模組,將該些到站時間及該些站資訊傳送給該些細胞網路基地台的至少其中之一;一資料庫模組,係儲存該些經緯度座標資訊,以及其中各該車站站牌係嵌入一RFID標籤,且各該車載終端設備嵌入一RFID讀取器,當各該車載終端設備臨近各該車站站牌時,各該RFID讀取器即感知各該RFID標籤,依此判斷是否到站。 According to the arrival time prediction system of claim 1, wherein each of the vehicle terminal devices further comprises: a global positioning system (GPS) module, which collects location information of each of the vehicle terminal devices, and according to the latitude and longitude Coordinate information and the location information determine whether to arrive at the station, thereby generating a plurality of arrival time and the arrival information; a cell network module, transmitting the arrival time and the information of the stations to the cell networks At least one of the base stations; a database module for storing the latitude and longitude coordinate information, wherein each of the station stop cards is embedded with an RFID tag, and each of the vehicle terminal devices is embedded in an RFID reader When each of the in-vehicle terminal devices is adjacent to each of the station stop signs, each of the RFID readers senses each of the RFID tags, and accordingly determines whether or not to arrive at the station. 一種到站時間預測方法,包括:設定複數個隨機類神經網路群演算法參數值;讀取一歷史資料庫中的站到站之間的複數個旅行時間;隨機產生m個類神經網路模型;過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型;其更包含: 取得即時的站到站之間的該些旅行時間或測試階段中的複數個測試資料;將該些旅行時或測試資料輸入至過濾後的k個類神經網路模型,並預測站到站之複數個旅行時間;以及取得預測的站到站之該些旅行時間後,換算為一目標站點的一到達時間;以及其中該些隨機類神經網路群演算法參數值包含一類神經網路模型數量、一類神經網路模型中隱藏層最大數量、一類神經網路模型中每個隱藏層最大神經元數量、一訓練類神經網路模型的訓練資料數佔總訓練階段資料數的比例,以及一正確率門檻值。 An arrival time prediction method includes: setting a plurality of stochastic neural network group algorithm parameter values; reading a plurality of travel times between stations in a historical database; randomly generating m neural networks Model; filtering out the neural network model with the correct rate lower than the threshold, and leaving the remaining k neural network models; Obtaining a plurality of test data during the travel time or test phase between the station and the station; inputting the travel time or test data into the filtered k-type neural network model, and predicting the station-to-station a plurality of travel times; and an arrival time of the target station after the predicted travel time of the station is obtained; and wherein the stochastic neural network group algorithm parameter values include a neural network model The number, the maximum number of hidden layers in a type of neural network model, the maximum number of neurons in each hidden layer in a type of neural network model, the number of training data in a training-type neural network model, the proportion of data in the total training phase, and one The correct rate threshold. 根據申請專利範圍第3項之到站時間預測方法,其中於過濾掉正確率低於門檻值的類神經網路模型,並剩餘k個類神經網路模型的步驟包含:將隨機產生之m個類神經網路模型的正確率與該正確率門檻值進行比對,排除低於該正確率門檻值的類神經網路模型。 According to the method for predicting the arrival time of item 3 of the patent application scope, wherein the filtering of the neural network model with the correct rate lower than the threshold value, and the remaining k neural network models include: randomly generating m The correct rate of the neural network model is compared with the correct rate threshold, and the neural network model below the correct rate threshold is excluded. 根據申請專利範圍第3項之到站時間預測方法,其中於將該些旅行時或測試資料輸入至過濾後的k個類神經網路模型,並預測站到站之複數個旅行時間的步驟中更包含:取得即時的一旅行時間資料集合;輸入該旅行時間資料集合至過濾後之k個類神經網路模型; 預測複數個預測旅行時間,再將其分別乘上由各該類神經網路模型的一權重值;以及將加權後值加總除以權重值的總和。 According to the method for predicting the arrival time of item 3 of the patent application scope, wherein the travel time or test data is input to the filtered k-type neural network model, and the step of predicting the plurality of travel times of the station-to-station is performed. The method further comprises: obtaining an instant travel time data set; inputting the travel time data set to the filtered k-type neural network model; A plurality of predicted travel times are predicted, which are then multiplied by a weight value of each of the neural network models; and the weighted values are summed by the sum of the weight values.
TW103134687A 2014-10-06 2014-10-06 Arrival time prediction system and method TWI522974B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW103134687A TWI522974B (en) 2014-10-06 2014-10-06 Arrival time prediction system and method
CN201510094269.5A CN104715630B (en) 2014-10-06 2015-03-03 Arrival time prediction system and method
CN201610472352.6A CN106022541B (en) 2014-10-06 2015-03-03 Arrival time prediction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103134687A TWI522974B (en) 2014-10-06 2014-10-06 Arrival time prediction system and method

Publications (2)

Publication Number Publication Date
TWI522974B true TWI522974B (en) 2016-02-21
TW201614607A TW201614607A (en) 2016-04-16

Family

ID=53414915

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103134687A TWI522974B (en) 2014-10-06 2014-10-06 Arrival time prediction system and method

Country Status (2)

Country Link
CN (2) CN104715630B (en)
TW (1) TWI522974B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536582B2 (en) 2017-08-10 2022-12-27 Beijing Didi Infinity Technology And Development Co., Ltd. System and method for estimating travel time and distance

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI591991B (en) * 2016-01-29 2017-07-11 Chunghwa Telecom Co Ltd System and method for pre-signing vouchers for forecasting requests for traffic
CN105679021B (en) * 2016-02-02 2018-11-06 招商局重庆交通科研设计院有限公司 Journey time fusion forecasting and querying method based on traffic big data
CN105513362B (en) * 2016-02-03 2017-11-03 东南大学 A kind of bus platform adjacent area bus running state evaluation verification method
CN105489051A (en) * 2016-02-15 2016-04-13 青岛海信电器股份有限公司 Bus station arrival prompting method, mobile terminal and cloud server
JP6876071B2 (en) 2017-04-27 2021-05-26 ベイジン ディディ インフィニティ テクノロジー アンド ディベロップメント カンパニー リミティッド Systems and methods for determining estimated arrival times
WO2018227368A1 (en) * 2017-06-13 2018-12-20 Beijing Didi Infinity Technology And Development Co., Ltd. Systems and methods for recommending an estimated time of arrival
CN109791731B (en) 2017-06-22 2021-12-07 北京嘀嘀无限科技发展有限公司 Method and system for estimating arrival time
CN113850371A (en) * 2017-11-23 2021-12-28 北京嘀嘀无限科技发展有限公司 System and method for estimating time of arrival
CN110361019B (en) * 2018-04-11 2022-01-11 北京搜狗科技发展有限公司 Method, device, electronic equipment and readable medium for predicting navigation time
CN109002722B (en) * 2018-07-19 2021-06-29 郑州云海信息技术有限公司 Method and system for estimating vulnerability scanning remaining time
CN109410580A (en) * 2018-11-15 2019-03-01 山东管理学院 A kind of real-time arrival time prediction technique of public transport and system
CN109920248B (en) * 2019-03-05 2021-09-17 南通大学 Bus arrival time prediction method based on GRU neural network
CN110459056A (en) * 2019-08-26 2019-11-15 南通大学 A kind of public transport arrival time prediction technique based on LSTM neural network
CN111667689B (en) * 2020-05-06 2022-06-03 浙江师范大学 Method, device and computer device for predicting vehicle travel time
US20220051115A1 (en) * 2020-08-12 2022-02-17 Allstate Insurance Company Control Platform Using Machine Learning for Remote Mobile Device Wake Up
CN113706874B (en) * 2021-10-28 2022-01-28 华清科盛(北京)信息技术有限公司 Method and device for predicting arrival time of logistics vehicles in factory in real time and electronic equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090062537A (en) * 2007-12-13 2009-06-17 (주)아이이지컨설팅 A vehicles allocation control system
CN101630376B (en) * 2009-08-12 2012-06-20 江苏大学 Soft-sensing modeling method and soft meter of multi-model neural network in biological fermentation process
CN102081859B (en) * 2009-11-26 2014-10-01 上海遥薇(集团)有限公司 Control method of bus arrival time prediction model
CN102110365B (en) * 2009-12-28 2013-11-06 日电(中国)有限公司 Road condition prediction method and road condition prediction system based on space-time relationship
CN101794520B (en) * 2010-03-15 2012-07-04 任兆玉 Intelligent transportation system based on telecommunication technology and communication method thereof
CN102708701B (en) * 2012-05-18 2015-01-28 中国科学院信息工程研究所 System and method for predicting arrival time of buses in real time
CN103578267B (en) * 2012-07-18 2015-12-16 北京掌行通信息技术有限公司 Public transport based on public transport gps data is arrived at a station Forecasting Methodology and system
CN102854296B (en) * 2012-08-30 2015-03-11 北京工业大学 Sewage-disposal soft measurement method on basis of integrated neural network
CN102968670B (en) * 2012-10-23 2016-08-17 北京京东世纪贸易有限公司 The method and apparatus of prediction data
CN103885996A (en) * 2012-12-24 2014-06-25 北京掌城科技有限公司 Method of querying real-time bus arrival information
CN103236184B (en) * 2013-04-03 2015-02-04 广州亿连达电子科技有限公司 Method and device for automatic bus station report
TWM477647U (en) * 2013-06-20 2014-05-01 Trans Tech Integrate Company Ltd RFID technique applied to bus stop for display of bus time estimation
CN103605725A (en) * 2013-11-15 2014-02-26 中国联合网络通信集团有限公司 Bus arrival time inquiring method, NFC terminal and server

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536582B2 (en) 2017-08-10 2022-12-27 Beijing Didi Infinity Technology And Development Co., Ltd. System and method for estimating travel time and distance

Also Published As

Publication number Publication date
TW201614607A (en) 2016-04-16
CN106022541B (en) 2020-12-01
CN104715630B (en) 2017-05-10
CN104715630A (en) 2015-06-17
CN106022541A (en) 2016-10-12

Similar Documents

Publication Publication Date Title
TWI522974B (en) Arrival time prediction system and method
US11727345B1 (en) Integrated multi-location scheduling, routing, and task management
Chen et al. A short-term traffic prediction model in the vehicular cyber–physical systems
CN105493109B (en) Inferred using the air quality of multiple data sources
Singla et al. GPS based bus tracking system
DE112018007119T5 (en) OPTIMIZE AND PREDICT THE AVAILABILITY OF RESOURCES IN A BICYCLE SHARED ENVIRONMENT
JP2020502601A (en) System and method for estimating time of arrival
CN111932925B (en) Method, device and system for determining travel passenger flow of public transportation station
JP6675860B2 (en) Data processing method and data processing system
CN106503868A (en) A kind of fleet's layout of roads method and relevant device
CN105550789A (en) Method for predicting bus taking passenger flow
CN110874668B (en) Rail transit OD passenger flow prediction method, system and electronic equipment
JP7428124B2 (en) Information processing device, information processing method, and program
Wei et al. Look-ahead insertion policy for a shared-taxi system based on reinforcement learning
CN112005562B (en) Method, computing system and computer readable medium for determining vehicle congestion using real-time location data
CN110118567A (en) Trip mode recommended method and device
US20140229224A1 (en) Scheduling based on customer tracking
Choudhary et al. Real time prediction of bus arrival time: A review
Jabamony et al. IoT Based Bus Arrival Time Prediction Using Artificial Neural Network (ANN) for Smart Public Transport System (SPTS).
Habtie et al. Artificial neural network based real-time urban road traffic state estimation framework
CN110570656B (en) Method and device for customizing public transport line
CN114693495A (en) Smart city public traffic management method, Internet of things system, device and medium
Gracious et al. Performance Evaluation of Passenger Information Systems
Jee et al. Demonstrating the feasibility of using Wi-Fi sensors for dynamic bus-stop queue length estimation
Desai et al. Smart bus fleet management system using IoT

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees