TWI522766B - Maximum power point tracking method based on temperature variation detection for solar cell - Google Patents

Maximum power point tracking method based on temperature variation detection for solar cell Download PDF

Info

Publication number
TWI522766B
TWI522766B TW102145342A TW102145342A TWI522766B TW I522766 B TWI522766 B TW I522766B TW 102145342 A TW102145342 A TW 102145342A TW 102145342 A TW102145342 A TW 102145342A TW I522766 B TWI522766 B TW I522766B
Authority
TW
Taiwan
Prior art keywords
solar cell
temperature
point
power value
power
Prior art date
Application number
TW102145342A
Other languages
Chinese (zh)
Other versions
TW201523189A (en
Inventor
陳柏宏
Original Assignee
聖約翰科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聖約翰科技大學 filed Critical 聖約翰科技大學
Priority to TW102145342A priority Critical patent/TWI522766B/en
Publication of TW201523189A publication Critical patent/TW201523189A/en
Application granted granted Critical
Publication of TWI522766B publication Critical patent/TWI522766B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Control Of Electrical Variables (AREA)

Description

植基於溫度變化偵測之太陽光電最大功率點追蹤方法 Solar photovoltaic maximum power point tracking method based on temperature change detection

本發明係有關於一種植基於溫度變化偵測之太陽光電最大功率點追蹤方法,特別是有關於一種在陽光變化劇烈時仍可準確地追蹤太陽能電池的最大功率點的方法。陽光劇烈變化是導致傳統最大功率點追蹤方法錯誤判斷及誤動作的主因,本發明利用陽光劇烈變化時太陽能板溫度變化率高於大氣溫度變化率的特性,可準確地追蹤太陽能電池的最大功率點。 The invention relates to a planting sun based on temperature change detection photoelectric The method of maximum power point tracking, in particular, relates to a method for accurately tracking the maximum power point of a solar cell when the sunlight changes drastically. The dramatic change of sunlight is the main cause of the wrong judgment and malfunction of the traditional maximum power point tracking method. The present invention can accurately track the maximum power point of the solar cell by utilizing the characteristic that the temperature change rate of the solar panel is higher than the atmospheric temperature change rate when the sunlight changes drastically.

由於太陽能電池的輸出功率會受到太陽光強度、溫度、環境、附加元件老化衰退及製造材料等因素的影響,讓太陽能電池在不同的條件下會產生不同的功率曲線,也使得太陽能電池的輸出電壓、電流、功率並非呈線性關係變化,如第1a、1b圖所示,因此若要使太陽能電池操作在最佳的功率點,就必須使用最大功率點追蹤(Maximum Power Point Tracking,MPPT)技術,透過MPPT技術讓太陽能電池工作在最佳的工作點,使其有最大的功率輸出。目前常見的最大功率點追蹤技術有:電壓回授法(Voltage Feedback Method)、功率回授法(Power Feedback Method)、直線近似法、擾動觀察法(Perturb and Observe Method)、增量電導法(Incremental Conductance Method)、實際量測法及三點權位比較法(Three Points Weighting Method)等,但都是針對功率的變化做調整。 Since the output power of solar cells is affected by factors such as sunlight intensity, temperature, environment, aging degradation of additional components, and materials of manufacture, solar cells can produce different power curves under different conditions, and also make the output voltage of solar cells. The current and power do not change linearly, as shown in Figures 1a and 1b. Therefore, in order to operate the solar cell at the optimum power point, Maximum Power Point Tracking (MPPT) technology must be used. Through the MPPT technology, the solar cell works at the best working point, so that it has the maximum power output. The most common power point tracking techniques currently available are: Voltage Feedback Method, Power Feedback Method, Linear Approximation, Perturb and Observe Method, Incremental Conductance Method), actual measurement method and Three Points Weighting Method, etc., but all are adjusted for power changes.

上述的七種最大功率點追蹤法,就其基本理念而言,大體上是相同的,差別僅在於最大功率點的判斷以及實現方法上。其中擾動觀察法由於其結構簡單且需要量測的參數較少,所以它被普遍地應用在最大功率點追蹤上。但擾動觀察法有一個很大的缺點就是當太陽光強度有較大幅度變化時,擾動觀察法會有錯誤判斷及誤動作,其結果會使工作點反而離最大功率點越來越遠。茲以第2圖說明如下:假設目前的工作點為A點;工作電壓為V,此時控制電路產生一電壓擾動值,使工作點電壓由VV+△V,如果太陽光強度不變則工作點會由A點→B點,由擾動觀察法原理可知此擾動方向是錯誤的(因為輸出功率減少了),控制電路會自動往反方向擾動。但不幸的此時太陽光強度剛好變強,使功率-電壓特性曲線由P 1 變為P 2 ,因此實際的工作點是由A點→C點,輸出功率反而增加了,擾動觀察法此時會以為此擾動方向是正確的,因此就將工作電壓由V調整到V+△V,如果太陽光強度繼續增強,則此錯誤方向將持續進行,最後導致工作點離最大功率點越來越遠。 The above seven maximum power point tracking methods are basically the same in terms of their basic concepts, and the difference lies only in the judgment of the maximum power point and the implementation method. Among them, the disturbance observation method is widely applied to the maximum power point tracking because of its simple structure and less parameters to be measured. However, the disturbance observation method has a big disadvantage. When the intensity of the sunlight changes greatly, the disturbance observation method will have misjudgment and malfunction, and the result will make the working point become farther and farther away from the maximum power point. The following figure is illustrated as follows: Assume that the current operating point is point A; the operating voltage is V , and the control circuit generates a voltage disturbance value, so that the operating point voltage is from VV + Δ V if the sunlight intensity is unchanged. Then the working point will be from point A to point B. It is known from the principle of disturbance observation that the disturbance direction is wrong (because the output power is reduced), and the control circuit will automatically perturb in the opposite direction. But unfortunately, the intensity of the solar light just becomes stronger, so that the power-voltage characteristic curve changes from P 1 to P 2 , so the actual working point is from point A to point C, and the output power is increased instead. The disturbance observation method is now to this end it will be disturbed in the right direction, so it will be adjusted from the operating voltage V to V + △ V, if the sun became stronger, this will continue to be the wrong direction, leading to an operating point farther and farther away from the maximum power point .

有鑑於此,本發明的目的在於提供一種植基於溫度變化偵測之太陽光電的最大功率點追蹤方法。陽光瞬間變強時太陽能板溫度上升會比大氣溫度上升快速,陽光瞬間變弱時太陽能板溫度下降會比大氣溫度下降快速,偵測太陽能板溫度及大氣溫度的變化率可以判斷陽光的強度變化是否劇烈,而使工作點準確地往最大功率點移動。 In view of the above, an object of the present invention is to provide a maximum power point tracking method for planting solar photovoltaic based on temperature change detection. When the sunlight is suddenly strong, the temperature rise of the solar panel will rise faster than the atmospheric temperature. When the sunlight is weakened, the temperature of the solar panel will drop faster than the atmospheric temperature. The rate of change of the temperature of the solar panel and the temperature of the atmosphere can be used to determine the intensity of the sunlight. Whether the change is drastic, and the working point is accurately moved to the maximum power point.

本發明的最大功率點追蹤方法的一實施例包括下列步驟:(a)提供一太陽能電池,該太陽能電池包括一太陽能板,用以將太陽能轉變成電能;(b)量測該太陽能電池於一第一工作點TP1的功率值而得到第一功率值P1,同時量測該太陽能板溫度及大氣溫度而得到第一太陽能板溫度TC1以及第一大氣溫度TA1;(c)朝一第一擾動方向改變該太陽能電池的輸出電壓而得到一第二工作點TP2;(d)量測該太陽能電池於該第二工作點TP2的功率值而得到第二功率值P2,同時量測該太陽能板溫度及大氣溫度而得到第二太陽能板溫度TC2以及第二大氣溫度TA2;(e)當該第二功率值P2小於該第一功率值P1,則朝與該第一擾動方向相反的一第二擾動方向改變該太陽能電池的輸出電壓而得到另一第二工作點,然後量測該太陽能電池於該另一第二工作點的功率值,同時量測該太陽能板溫度及大氣溫度;(f)當該第二功率值P2 大於該第一功率值P1時,則使該太陽能電池的工作點 自該第一工作點TP1移動至該第二工作點TP2,其中k為常數;(g)當該第二功 率值P2大於該第一功率值P1時,則使該太陽能電池輸 出電壓保持在該第一電壓值V1An embodiment of the maximum power point tracking method of the present invention comprises the steps of: (a) providing a solar cell comprising a solar panel for converting solar energy into electrical energy; and (b) measuring the solar cell in a The first power value P 1 is obtained by the power value of the first operating point TP 1 , and the solar panel temperature and the atmospheric temperature are measured to obtain the first solar panel temperature TC 1 and the first atmospheric temperature TA 1 ; (c) toward the first a disturbance direction changes the output voltage of the solar cell to obtain a second operating point TP 2 ; (d) measuring the power value of the solar cell at the second operating point TP 2 to obtain a second power value P 2 , simultaneously Measuring the temperature of the solar panel and the temperature of the atmosphere to obtain a second solar panel temperature TC 2 and a second atmospheric temperature TA 2 ; (e) when the second power value P 2 is less than the first power value P 1 , A second disturbance direction opposite to the disturbance direction changes the output voltage of the solar cell to obtain another second operating point, and then measures the power value of the solar cell at the other second operating point, and measures the solar panel temperature Degree and atmospheric temperature; (f) when the second power value P 2 is greater than the first power value P 1 and And moving the operating point of the solar cell from the first operating point TP 1 to the second operating point TP 2 , where k is a constant; (g) when the second power value P 2 is greater than the first power value P 1 and At this time, the solar cell output voltage is maintained at the first voltage value V 1 .

其中該常數k的數值在1.5到2之間,k值太大或太小會使調整到最大功率點的時間較長,但不會產生任何誤動作。 The value of the constant k is between 1.5 and 2. If the value of k is too large or too small, the time to adjust to the maximum power point will be longer, but no malfunction will occur.

為了讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉出實施例並配合所附圖式作詳細說明。 The above and other objects, features, and advantages of the invention will be apparent from

11‧‧‧太陽能電池 11‧‧‧Solar battery

12‧‧‧電力轉換器 12‧‧‧Power Converter

13‧‧‧控制器 13‧‧‧ Controller

14‧‧‧表面溫度感測器 14‧‧‧Surface temperature sensor

15‧‧‧大氣溫度感測器 15‧‧‧Atmospheric temperature sensor

20‧‧‧負載 20‧‧‧ load

S1、S2、S3、S4、S5、S6、S7、S8、S9‧‧‧步驟 S1, S2, S3, S4, S5, S6, S7, S8, S9‧‧ steps

V‧‧‧電壓 V‧‧‧ voltage

第1a圖為一習知的太陽能電池的電壓與電流的關係圖。 Figure 1a is a graph of voltage versus current for a conventional solar cell.

第1b圖為一習知的太陽能電池的功率與電壓的關係圖。 Figure 1b is a plot of power versus voltage for a conventional solar cell.

第2圖為習知的擾動觀察法的示意圖。 Figure 2 is a schematic diagram of a conventional perturbation observation method.

第3a圖及第3b圖係依據本發明的最大功率點追蹤方法的流程圖。 Figures 3a and 3b are flow diagrams of a maximum power point tracking method in accordance with the present invention.

第4圖為本發明的最大功率點追蹤方法與習知的擾動觀察法的差異的示意圖。 Figure 4 is a schematic diagram showing the difference between the maximum power point tracking method of the present invention and the conventional disturbance observation method.

第5圖為本發明的使用最大功率點追蹤方法的太陽能電池的系統方塊圖。 Figure 5 is a block diagram of a system of a solar cell using the maximum power point tracking method of the present invention.

本發明的最大功率點追蹤方法主要是針對太陽光變化劇烈時,如何利用太陽能板溫度及大氣溫度變化率的不同,準確地判斷擾動方向,避免有錯誤的判斷與動作。 The maximum power point tracking method of the present invention mainly aims to accurately determine the disturbance direction by using the difference between the temperature of the solar panel and the rate of change of the atmospheric temperature when the solar light changes drastically, thereby avoiding erroneous judgments and actions.

為方便說明,對任一擾動前的測試點稱為TP1(第一工作點)、輸出功率稱為P1(第一功率)、太陽能板溫度TC1(第一太陽能板溫度)、大氣溫度TA1(第一大氣溫度);擾動後的測試點稱為TP2(第二工作點)、輸出功率稱為P2(第二功率)、太陽能板溫度TC2(第二太陽能板溫度)、大氣溫度TA2(第二大氣溫度)。 For convenience of explanation, the test point before any disturbance is called TP 1 (first working point), the output power is called P 1 (first power), the solar panel temperature TC 1 (first solar panel temperature), atmospheric temperature TA 1 (first atmospheric temperature); the test point after the disturbance is called TP 2 (second operating point), the output power is called P 2 (second power), the solar panel temperature TC 2 (second solar panel temperature), Atmospheric temperature TA 2 (second atmospheric temperature).

如第3a圖及第3b圖所示,本發明的最大功率點追蹤方法包括下列步驟: As shown in Figures 3a and 3b, the maximum power point tracking method of the present invention includes the following steps:

步驟S1:提供一太陽能電池,該太陽能電池包括太陽能板,用以將太陽能轉變成電能。 Step S1 : providing a solar cell including a solar panel for converting solar energy into electrical energy.

步驟S2:對於目前該太陽能電池的工作點,即第一工作點 TP1,量測其電壓值及功率值而得到第一電壓值V1以及第一功率值P1,同時量測太陽能板溫度及大氣溫度而得到第一太陽能板溫度TC1以及第一大氣溫度TA1 Step S2 : For the current working point of the solar cell, that is, the first operating point TP 1 , measure the voltage value and the power value to obtain the first voltage value V 1 and the first power value P 1 , and measure the temperature of the solar panel The first solar panel temperature TC 1 and the first atmospheric temperature TA 1 are obtained at atmospheric temperature.

步驟S3:朝一第一擾動方向改變該太陽能電池的輸出電壓而得到一第二工作點TP2 Step S3 : changing the output voltage of the solar cell toward a first disturbance direction to obtain a second operating point TP 2 .

步驟S4:量測該第二工作點TP2的電壓值以及功率值而得到第二電壓值V2以及第二功率值P2,同時量測太陽能板溫度及大氣溫度而得到第二太陽能板溫度TC2以及第二大氣溫度TA2 Step S4 : measuring the voltage value and the power value of the second operating point TP 2 to obtain the second voltage value V 2 and the second power value P 2 , and simultaneously measuring the temperature of the solar panel and the atmospheric temperature to obtain the temperature of the second solar panel. TC 2 and a second atmospheric temperature TA 2 .

步驟S5:若該第二功率值P2小於該第一功率值P1,代表擾動後功率變小,擾動方向錯誤,因此進行步驟S6,朝與該第一擾動方向相反的一第二擾動方向改變該太陽能電池的輸出電壓而得到另一第二工作點TP2,然後回到步驟S4。若該第二功率值P2大於該第一功率值P1,則進行步驟S7以作進一步判斷。 Step S5 : If the second power value P 2 is smaller than the first power value P 1 , the power is reduced after the disturbance, and the disturbance direction is wrong. Therefore, step S6 is performed to a second disturbance direction opposite to the first disturbance direction. The output voltage of the solar cell is changed to obtain another second operating point TP 2 , and then returns to step S4. If the second power value P 2 is greater than the first power value P 1 , step S7 is performed for further determination.

步驟S7:若,代表太陽能板的溫度變化 率與大氣溫度變化率相較之下並沒有過大的差異,研判 此時日照強度並未劇烈變化,前述擾動方向是正確的,因此進行步驟S8,朝該擾動方向改變該太陽能電池的輸出電壓,使該太陽能電池的工作點自該第一工作點TP1移動至該第二工作點TP2,然後令該第二工作點TP2成為新 的第一工作點TP1,並回到步驟S3;若不滿足,代表此 時有日照變化很大造成的干擾因素,因此進入步驟S9。 Step S7 : If , representing the temperature change rate of the solar panel Rate of change with atmospheric temperature In contrast, there is no excessive difference. It is judged that the sunshine intensity does not change drastically at this time, and the above-mentioned disturbance direction is correct. Therefore, step S8 is performed to change the output voltage of the solar cell toward the disturbance direction to make the solar cell work. Moving from the first working point TP 1 to the second working point TP 2 , then making the second working point TP 2 a new first working point TP 1 and returning to step S3; Indicates that there is a disturbance factor caused by a large change in sunshine at this time, and therefore proceeds to step S9.

步驟S9:因為日照強度劇烈變化造成可能之誤判,此時不宜作任何改變,因此使該太陽能電池保持在該第一電壓值V1,並回到步驟S2。 Step S9 : Since the solar radiation intensity is drastically changed, a possible misjudgment may be caused. At this time, it is not preferable to make any change, so that the solar cell is maintained at the first voltage value V 1 and the process returns to step S2.

上述k值為一比例常數,合理的k值(經驗值)約在1.5~2之間,k值太大或太小會使調整到最大功率點的時間較長,但不會產生任何誤動作。在太陽光強度激烈變化的時段由步驟S7即可判斷,不會產生錯誤判斷及誤動作,因此工作點電壓可維持不變,工作點會由A點移到D點,如第4圖所示,等待太陽光變化和緩後再進行工作點調整。 The above k value is a proportional constant, and a reasonable k value (empirical value) is between 1.5 and 2. If the k value is too large or too small, the time to adjust to the maximum power point will be longer, but no malfunction will occur. In the period when the intensity of the sunlight changes drastically, it can be judged by step S7, and no wrong judgment or malfunction occurs, so the operating point voltage can be maintained, and the working point will move from point A to point D, as shown in Fig. 4, Wait for the sun to change and then adjust the work point.

在本發明的最大功率點追蹤方法的控制演算法中,由步驟S7可判斷是否處於太陽光強度激烈變化的時段,不會產生錯誤判斷及誤動作。本發明的最大功率點追蹤方法與習知的擾動觀察法的差異如第4圖所示,在太陽光強度激烈變化時,本發明的最大功率點追蹤方法中,工作點電壓可維持不變(如保持在第一電壓值V1),而工作點會由第4圖的A點移到D點,等待太陽光變化和緩後再進行工作點調整。 In the control algorithm of the maximum power point tracking method of the present invention, it can be determined in step S7 whether or not it is in a period in which the intensity of the sunlight changes drastically, and no erroneous judgment or malfunction occurs. The difference between the maximum power point tracking method of the present invention and the conventional disturbance observation method is as shown in Fig. 4. In the maximum power point tracking method of the present invention, when the intensity of sunlight changes drastically, the operating point voltage can be maintained ( If it is kept at the first voltage value V 1 ), the working point will be moved from point A to point D in Fig. 4, waiting for the sun to change and then proceeding to adjust the operating point.

第5圖表示本發明的使用最大功率點追蹤方法的太陽能電池的系統方塊圖,其中太陽能電池包括太陽能板11,用以將太陽能轉變成電能。一表面溫度感測器14貼附於太陽能板11上,用於感測太陽能板11的溫度,另一大氣溫度感測器15則裸露於大氣中,用於感測大氣的溫度。如果日照強度劇烈變化,則太陽能板11的溫度變化率將明顯的高於大氣溫度的 變化率(亦即);反之如果日照強度並沒有劇烈變化,則 太陽能板11的溫度變化率不會明顯的高於大氣溫度的變化率(亦即 ),這些溫度變化控制器13都可經由表面溫度感測器 14、大氣溫度感測器15加以偵測。電力轉換器12將太陽能電池11的輸出電力做穩壓後,提供至負載20,控制器13耦接於電力轉換器12,偵測太陽能電池11輸出的電壓值V,並根據第3a圖及第3b圖所示的本發明的最大功率點追蹤方法進行運算及判斷,來控制電力轉換器12輸出電壓的改變,以得到最大功率輸出,因此可以提高發電效率增加發電量,減少太陽能電池的採購,並提高系統可靠度。 Figure 5 is a block diagram showing the system of a solar cell using the maximum power point tracking method of the present invention, wherein the solar cell includes a solar panel 11 for converting solar energy into electrical energy. A surface temperature sensor 14 is attached to the solar panel 11 for sensing the temperature of the solar panel 11, and another atmospheric temperature sensor 15 is exposed to the atmosphere for sensing the temperature of the atmosphere. If the intensity of the sunlight changes drastically, the temperature change rate of the solar panel 11 will be significantly higher than the rate of change of the atmospheric temperature (ie, On the other hand, if the sunshine intensity does not change drastically, the temperature change rate of the solar panel 11 is not significantly higher than the atmospheric temperature change rate (ie, These temperature change controllers 13 can be detected via the surface temperature sensor 14 and the atmospheric temperature sensor 15. The power converter 12 supplies the output power of the solar cell 11 to the load 20, and the controller 13 is coupled to the power converter 12 to detect the voltage value V output by the solar cell 11 and according to FIG. 3a and The maximum power point tracking method of the present invention shown in FIG. 3b performs calculation and judgment to control the change of the output voltage of the power converter 12 to obtain the maximum power output, thereby improving the power generation efficiency, increasing the power generation amount, and reducing the procurement of the solar battery. And improve system reliability.

本發明雖以實施例揭露如上,然其非用以限定本發明的範圍,任何熟習此項技藝者,在不脫離本發明的精神範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 The present invention has been disclosed in the above embodiments, but it is not intended to limit the scope of the present invention. Any one skilled in the art can make some modifications and retouchings without departing from the spirit of the invention. The scope of protection is subject to the definition of the scope of the patent application attached.

S1、S2、S3、S4、S5、S7、S9‧‧‧步驟 S1, S2, S3, S4, S5, S7, S9‧‧ steps

Claims (2)

一種太陽能電池最大功率點追蹤方法,包括:(a)提供一太陽能電池,該太陽能電池包括一太陽能板,用以將太陽能轉變成電能;(b)量測該太陽能電池於一第一工作點TP1的功率值而得到第一功率值P1以及一第一電壓值V1,同時量測該太陽能板溫度及大氣溫度而得到第一太陽能板溫度TC1以及第一大氣溫度TA1;(c)朝一第一擾動方向改變該太陽能電池的輸出電壓而得到一第二工作點TP2;(d)量測該太陽能電池於該第二工作點TP2的功率值而得到第二功率值P2,同時量測該太陽能板溫度及大氣溫度而得到第二太陽能板溫度TC2以及第二大氣溫度TA2;(e)當該第二功率值P2小於該第一功率值P1,則朝與該第一擾動方向相反的一第二擾動方向改變該太陽能電池的輸出電壓而得到另一第二工作點,然後回到步驟(d),量測該太陽能電池於該另一第二工作點的功率值,同時量測該太陽能板溫度及大氣溫度; (f)當該第二功率值P2大於該第一功率值P1時,則使該 太陽能電池的工作點自該第一工作點TP1移動至該第二工作點TP2,然後回到步驟(c),其中k為常數; (g)當該第二功率值P2大於該第一功率值P1時,則使該 太陽能電池輸出電壓保持在該第一電壓值V1,然後回到步驟(b)。 A method for tracking a maximum power point of a solar cell, comprising: (a) providing a solar cell comprising a solar panel for converting solar energy into electrical energy; and (b) measuring the solar cell at a first operating point TP a power value of 1 to obtain a first power value P 1 and a first voltage value V 1 , and simultaneously measuring the temperature of the solar panel and the atmospheric temperature to obtain a first solar panel temperature TC 1 and a first atmospheric temperature TA 1 ; Changing the output voltage of the solar cell toward a first disturbance direction to obtain a second operating point TP 2 ; (d) measuring the power value of the solar cell at the second operating point TP 2 to obtain a second power value P 2 Simultaneously measuring the temperature of the solar panel and the temperature of the atmosphere to obtain a second solar panel temperature TC 2 and a second atmospheric temperature TA 2 ; (e) when the second power value P 2 is less than the first power value P 1 , a second disturbance direction opposite to the first disturbance direction changes an output voltage of the solar cell to obtain another second operating point, and then returns to step (d) to measure the solar cell at the other second operating point Power value, Simultaneously measuring the temperature of the solar panel and the temperature of the atmosphere; (f) when the second power value P 2 is greater than the first power value P 1 and And moving the operating point of the solar cell from the first operating point TP 1 to the second operating point TP 2 , and then returning to step (c), where k is a constant; (g) when the second power value P 2 is greater than the first power value P 1 and At this time, the solar cell output voltage is maintained at the first voltage value V 1 and then returns to step (b). 如申請專利範圍第1項所述之太陽能電池最大功率點追蹤方法,其中該常數k的數值在1.5到2之間。 The solar cell maximum power point tracking method according to claim 1, wherein the constant k has a value between 1.5 and 2.
TW102145342A 2013-12-10 2013-12-10 Maximum power point tracking method based on temperature variation detection for solar cell TWI522766B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102145342A TWI522766B (en) 2013-12-10 2013-12-10 Maximum power point tracking method based on temperature variation detection for solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102145342A TWI522766B (en) 2013-12-10 2013-12-10 Maximum power point tracking method based on temperature variation detection for solar cell

Publications (2)

Publication Number Publication Date
TW201523189A TW201523189A (en) 2015-06-16
TWI522766B true TWI522766B (en) 2016-02-21

Family

ID=53935593

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102145342A TWI522766B (en) 2013-12-10 2013-12-10 Maximum power point tracking method based on temperature variation detection for solar cell

Country Status (1)

Country Link
TW (1) TWI522766B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829903B1 (en) 2016-08-15 2017-11-28 Industrial Technology Research Institute Power point tracking method and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9829903B1 (en) 2016-08-15 2017-11-28 Industrial Technology Research Institute Power point tracking method and apparatus thereof

Also Published As

Publication number Publication date
TW201523189A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
TWI499886B (en) A method of evaluating power of maximum power point of a circuit
KR101065862B1 (en) Solar cell generation system tracking maximum power point according to determining partial shade of solar cell array
KR101006100B1 (en) Control system of solar cell generation using pertubation and observation method tracking maximum power point and thereof method
TWI461882B (en) Multipoint direct-prediction method for maximum power point tracking of photovoltaic modules system and control device of photovoltaic modules array
Huang A rapid maximum power measurement system for high-concentration photovoltaic modules using the fractional open-circuit voltage technique and controllable electronic load
Alqarni et al. Maximum power point tracking for photovoltaic system: modified perturb and observe algorithm
CN108983864B (en) Tracking method and tracking device for photovoltaic maximum power point
CN102902298B (en) Photovoltaic array maximum power point tracking (MPPT) controller based on segmented model and controlling method
CN105425895B (en) A kind of new variable step photovoltaic maximal power tracing system and method
CN104571256B (en) A kind of photo-voltaic power supply extremum search method considering illumination variation
CN102566646A (en) Maximum power point tracking method under partial shade condition of photovoltaic system
CN107589776B (en) Maximum power point tracking method, MPPT controller and photovoltaic power generation system
Uchqun et al. The research of the VI characteristics of a solar panel using a computerized measuring bench “EPH 2 advanced photovoltaics trainer”
CN103838291A (en) Maximum power point tracking method of solar battery
CN105259971B (en) A kind of MPPT algorithm of optimization
KR101277762B1 (en) Method for Maximum Power Point Tracking in Mismatched Solar Cell
CN103197718A (en) Control method and control system for maximum power output of solar photovoltaic array
CN103995559B (en) A kind ofly determine voltage MPPT control method and system based on environment parameter model
TWI522766B (en) Maximum power point tracking method based on temperature variation detection for solar cell
CN104950983B (en) Solaode maximum power point tracking device and tracking
CN106301220A (en) Photovoltaic module temperature coefficient acquisition methods
TW201517191A (en) Maximum power point tracking method for solar cell
KR101534369B1 (en) Maximum power point tracking method in solar generating system
CN103645768A (en) Maximum power point tracing method for photovoltaic array
KR20070043746A (en) Maximum power point tracking method of solar generating system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees