TWI522684B - Panel structure and fabricating method thereof - Google Patents
Panel structure and fabricating method thereof Download PDFInfo
- Publication number
- TWI522684B TWI522684B TW103110511A TW103110511A TWI522684B TW I522684 B TWI522684 B TW I522684B TW 103110511 A TW103110511 A TW 103110511A TW 103110511 A TW103110511 A TW 103110511A TW I522684 B TWI522684 B TW I522684B
- Authority
- TW
- Taiwan
- Prior art keywords
- particles
- panel structure
- carbon film
- release layer
- particle composite
- Prior art date
Links
Landscapes
- Laminated Bodies (AREA)
Description
本發明是有關於一種面板結構及其製造方法,且特別是有關於一種具有顆粒複合碳膜離型層的面板結構及其製造方法。 The present invention relates to a panel structure and a method of fabricating the same, and more particularly to a panel structure having a particle composite carbon film release layer and a method of fabricating the same.
隨著顯示技術的突飛猛進,顯示器已從早期的陰極射線管(cathode ray tube,CRT)顯示器逐漸地發展到目前的平面顯示器(flat panel display,FPD)。相較於硬質基板(諸如玻璃基板)所構成的平面顯示器,由於軟性基板(諸如塑膠基板)具有可撓曲及耐衝擊等特性,因此近年來已著手研究將主動元件製作於軟性基板上的可撓式顯示器。 With the rapid advancement of display technology, displays have evolved from early cathode ray tube (CRT) displays to current flat panel displays (FPDs). Compared with a flat-panel display composed of a rigid substrate (such as a glass substrate), since a flexible substrate (such as a plastic substrate) has characteristics such as flexibility and impact resistance, in recent years, research into the fabrication of an active device on a flexible substrate has been conducted. Flexible display.
一般來說,可撓式顯示器的製作方式是先將軟性基板固定在玻璃載具上。之後再於軟性基板上進行顯示元件的製造程序。待顯示元件製造完成以形成顯示器之後,再藉由使軟性基板自玻璃載具上離型,以將此可撓式顯示器從玻璃載具上取下。目前已提出的離型方法包括在玻璃載具與軟性基板之間形成離型層,其中離型層的形成方法例如是表面改質。然而,部分顯示元 件的製程需要更高溫度的製程條件以具有更佳的電性,但是傳統的離型層(多為有機材料,例如碳氟化合物或碳氫化合物)的高溫耐受度不佳而導致不適用於高溫製程、增加製造所需的時間或成本等問題。舉例來說,含氟矽烷(fluoroaklylene silane,FAS)材質的離型層的成本較高,且玻璃表面改質的覆蓋性及反應時間無法確定。聚對二甲苯(parylene)材質的離型層在沉積後仍需高溫回火以確認表面結晶特性,且製程複雜及製程時間較長,另外在後續的高溫製程(例如大於400℃)時離型層表面的有機材料易斷鍵而造成釋放氣體(outgasing)的問題。此外,傳統的軟性基板及玻璃載具皆為電的不良導體,因此軟性基板在離型時容易因靜電累積在分離表面而造成軟性基板上的顯示元件損壞,進而導致製程良率降低。因此,如何開發出具有良好高溫耐受度的離型層的面板結構並改善面板結構的製程良率實為研發者所欲達成的目標之一。 In general, flexible displays are made by first attaching a flexible substrate to a glass carrier. Thereafter, the manufacturing process of the display element is performed on the flexible substrate. After the component to be displayed is fabricated to form the display, the flexible display is removed from the glass carrier by disengaging the flexible substrate from the glass carrier. A release method that has been proposed so far includes forming a release layer between a glass carrier and a flexible substrate, wherein the formation of the release layer is, for example, surface modification. However, some display elements The process of the part requires higher temperature process conditions to have better electrical properties, but the conventional release layer (mostly organic materials such as fluorocarbons or hydrocarbons) has poor high temperature tolerance and is not suitable. In high temperature processes, increasing the time or cost required for manufacturing. For example, the release layer of a fluoroaklylene silane (FAS) material has a high cost, and the coverage of the glass surface modification and the reaction time cannot be determined. The release layer of parylene is still subjected to high temperature tempering after deposition to confirm the surface crystallization characteristics, and the process is complicated and the process time is long, and the release is carried out in a subsequent high temperature process (for example, greater than 400 ° C). The organic material on the surface of the layer is prone to breakage and causes problems of outgasing. In addition, the conventional flexible substrate and the glass carrier are both poor electrical conductors. Therefore, when the flexible substrate is released from the separation, the display element on the flexible substrate is easily damaged by static electricity accumulation, and the process yield is lowered. Therefore, how to develop the panel structure of the release layer with good high temperature tolerance and improve the process yield of the panel structure is one of the goals that the developer wants to achieve.
本發明提供一種面板結構及其製造方法,其可適用於高溫製程並可提高此面板結構的製程良率。 The invention provides a panel structure and a manufacturing method thereof, which are applicable to a high temperature process and can improve the process yield of the panel structure.
本發明提出一種面板結構,包括軟性基板、顆粒複合碳膜離型層以及元件層。顆粒複合碳膜離型層位於軟性基板之第一表面上,其中顆粒複合碳膜離型層包括複數個顆粒,且每一顆粒之表面具有碳膜。元件層位於軟性基板之第二表面上,其中第二表面係相對於第一表面。 The invention provides a panel structure comprising a flexible substrate, a particle composite carbon film release layer and an element layer. The particle composite carbon film release layer is on the first surface of the flexible substrate, wherein the particle composite carbon film release layer comprises a plurality of particles, and the surface of each particle has a carbon film. The component layer is on the second surface of the flexible substrate, wherein the second surface is opposite to the first surface.
本發明另提出一種面板結構的製造方法,其包括以下步驟。在支撐基板上塗佈材料層,材料層中包括複數個顆粒以及碳氫氧化合物。進行燒結程序,以使些顆粒表面之碳氫氧化合物產生碳化,以形成顆粒複合碳膜離型層。在顆粒複合碳膜離型層上形成軟性基板。在軟性基板上形成元件層。進行離型程序,以使得軟性基板與支撐基板分離。 The present invention further provides a method of fabricating a panel structure comprising the following steps. A material layer is coated on the support substrate, and the material layer includes a plurality of particles and a carbon oxyhydroxide. A sintering process is performed to carbonize the carbon oxyhydroxide on the surface of the particles to form a particle composite carbon film release layer. A soft substrate is formed on the release layer of the particulate composite carbon film. An element layer is formed on a flexible substrate. A release process is performed to separate the flexible substrate from the support substrate.
基於上述,由於本發明的顆粒複合碳膜離型層包括複數個顆粒,因此不僅可藉由濕式塗佈方式形成,而且還更容易控制膜厚及其均勻性,故具有製程簡單以及製程時間較短等優點。再者,由於本發明的顆粒複合碳膜離型層的每一顆粒之表面具有碳膜,因此不僅可耐高溫製程,而且還不需進行表面改質的步驟以降低成本。因此,具有緻密結構的顆粒複合碳膜離型層可避免軟性基板穿透至支撐基板,進而可降低離型力(或附著力)。此外,當使用導電性顆粒來形成顆粒複合碳膜離型層時,可避免軟性基板在離型時因靜電累積而損傷到其上的元件層,進而可提高面板結構的製程良率。 Based on the above, since the particle composite carbon film release layer of the present invention includes a plurality of particles, it can be formed not only by wet coating, but also easier to control film thickness and uniformity, so that the process is simple and the process time is simple. Shorter advantages. Furthermore, since the surface of each particle of the particle composite carbon film release layer of the present invention has a carbon film, it is not only resistant to a high temperature process, but also does not require a surface modification step to reduce the cost. Therefore, the granular composite carbon film release layer having a dense structure can prevent the soft substrate from penetrating to the support substrate, thereby reducing the release force (or adhesion). Further, when the conductive particles are used to form the release layer of the particle composite carbon film, the element layer which is damaged by the static buildup of the flexible substrate during the release can be avoided, and the process yield of the panel structure can be improved.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
100、100’‧‧‧面板結構 100, 100’‧‧‧ panel structure
110‧‧‧支撐基板 110‧‧‧Support substrate
110E‧‧‧邊緣區域 110E‧‧‧Edge area
120‧‧‧材料層 120‧‧‧Material layer
122‧‧‧顆粒 122‧‧‧ granules
122a‧‧‧表面 122a‧‧‧ surface
124‧‧‧碳氫氧化合物 124‧‧‧Carbon Hydroxide
126‧‧‧溶劑 126‧‧‧Solvent
130‧‧‧顆粒複合碳膜離型層 130‧‧‧Particle composite carbon film release layer
130’‧‧‧部分 130’‧‧‧ Section
130a‧‧‧上表面 130a‧‧‧ upper surface
130b‧‧‧側表面 130b‧‧‧ side surface
134‧‧‧碳膜 134‧‧‧ carbon film
140‧‧‧軟性基板 140‧‧‧Soft substrate
140a‧‧‧第一表面 140a‧‧‧ first surface
140b‧‧‧第二表面 140b‧‧‧second surface
150‧‧‧元件層 150‧‧‧Component layer
160‧‧‧切割線 160‧‧‧ cutting line
D‧‧‧直徑 D‧‧‧diameter
R‧‧‧區域 R‧‧‧ area
S102、S104、S106、S108、S110‧‧‧步驟 S102, S104, S106, S108, S110‧‧ steps
T、T’‧‧‧厚度 T, T’‧‧‧ thickness
圖1為依照本發明的一實施例之面板結構的製造方法流程 圖。 1 is a flow chart of a method of manufacturing a panel structure according to an embodiment of the invention Figure.
圖2A至圖2F為圖1之面板結構的製造方法的剖面示意圖。 2A to 2F are schematic cross-sectional views showing a method of manufacturing the panel structure of Fig. 1.
圖3A至圖3B分別為圖2A至圖2B的區域R的放大示意圖。 3A to 3B are enlarged schematic views of a region R of Figs. 2A to 2B, respectively.
圖4A至圖4B為依照本發明的其他實施例之面板結構的製造方法的剖面示意圖。 4A-4B are schematic cross-sectional views showing a method of fabricating a panel structure in accordance with other embodiments of the present invention.
圖1為依照本發明的一實施例之面板結構的製造方法流程圖,圖2A至圖2F為圖1之面板結構的製造方法的剖面示意圖,而圖3A至圖3B分別為圖2A至圖2B的區域R的放大示意圖。 1 is a flow chart showing a method of fabricating a panel structure according to an embodiment of the present invention, and FIGS. 2A to 2F are cross-sectional views showing a method of fabricating the panel structure of FIG. 1, and FIGS. 3A to 3B are respectively FIG. 2A to FIG. 2B. An enlarged schematic view of the area R.
請同時參照圖1的步驟S102、圖2A以及圖3A,首先,在支撐基板110上塗佈材料層120。更詳細來說,可藉由濕式塗佈的方式將材料層120形成於支撐基板110上,其中材料層120又可稱為塗佈液。支撐基板110可以是具有高剛硬性、低膨脹係數以及高楊氏係數性質的基板。在本實施例中,支撐基板110例如是無機基板,包括玻璃基板、石英基板或矽基板。再者,材料層120中包括溶劑126、複數個顆粒122以及碳氫氧化合物124。 Referring to steps S102, 2A, and 3A of FIG. 1 simultaneously, first, the material layer 120 is coated on the support substrate 110. In more detail, the material layer 120 may be formed on the support substrate 110 by wet coating, wherein the material layer 120 may be referred to as a coating liquid. The support substrate 110 may be a substrate having high rigidity, a low expansion coefficient, and a high Young's modulus property. In the present embodiment, the support substrate 110 is, for example, an inorganic substrate, and includes a glass substrate, a quartz substrate, or a germanium substrate. Further, the material layer 120 includes a solvent 126, a plurality of particles 122, and a carbon oxyhydroxide 124.
溶劑126例如是包括水、丙酮、乙醇、異丙醇(isopropyl alcohol,IPA)、丙二醇單甲醚(propylene glycol monomethyl ether,PGME)、醇類、醚類、酯類、或其他合適的溶劑、或上述溶劑至少兩種之混合液。 The solvent 126 includes, for example, water, acetone, ethanol, isopropyl alcohol (IPA), propylene glycol monomethyl ether (PGME), alcohols, ethers, esters, or other suitable solvent, or A mixture of at least two of the above solvents.
顆粒122分散於溶劑126內,且顆粒122佔材料層120 之重量百分比可為0.1%~10%。顆粒122的尺寸(諸如直徑D)例如是小於1微米(μm),較佳是大於0奈米(nm)且小於100奈米(nm)。 在本實施例中,顆粒122之材質例如是無機材料。舉例來說,顆粒122包括氧化鈦顆粒、氧化矽顆粒或氧化鋁顆粒。然而,本發明不限於此,在其他實施例中,顆粒122之材質例如是導電材料,包括金屬、合金、半導體、金屬氧化物、金屬氮化物、金屬氮氧化物、合金氧化物、合金氮化物、合金氮氧化物、半導體氧化物、半導體氮化物、半導體氮氧化物、或其他合適的材質、或上述材質至少兩種之組合。舉例來說,顆粒122包括氧化鋅顆粒、氧化銦錫顆粒、金顆粒、銀顆粒、鉑顆粒或導電性顆粒。此外,顆粒122具有表面122a。 The particles 122 are dispersed within the solvent 126 and the particles 122 occupy the material layer 120 The weight percentage can be from 0.1% to 10%. The size of the particles 122, such as the diameter D, is, for example, less than 1 micrometer (μm), preferably greater than 0 nanometers (nm) and less than 100 nanometers (nm). In the present embodiment, the material of the particles 122 is, for example, an inorganic material. For example, the particles 122 include titanium oxide particles, cerium oxide particles, or aluminum oxide particles. However, the present invention is not limited thereto. In other embodiments, the material of the particles 122 is, for example, a conductive material, including metals, alloys, semiconductors, metal oxides, metal nitrides, metal oxynitrides, alloy oxides, alloy nitrides. An alloy oxynitride, a semiconductor oxide, a semiconductor nitride, a semiconductor oxynitride, or other suitable material, or a combination of at least two of the foregoing. For example, the particles 122 include zinc oxide particles, indium tin oxide particles, gold particles, silver particles, platinum particles, or conductive particles. Additionally, the particles 122 have a surface 122a.
碳氫氧化合物124溶於溶劑126中,且碳氫氧化合物124佔材料層120之重量百分比可為0.1%~15%。碳氫氧化合物124例如是包含聚乙烯醇(polyvinyl alcohol,PVA,(C2H4O)x)、聚乙二醇(polyethylene glycol,PEG,C2nH4n+2On+1)、聚氧乙烯(polyethylene oxide,PEO,C2nH4n+2On+1)、聚丙烯乙二醇(polypropylene glycol,PPG,C3nH6n+2On+1)、或其他合適的化合物、或其組合、或上述化合物至少兩種之共聚物。其中,聚乙二醇(PEG)的分子量例如是2000~20000,而聚氧乙烯(PEO)的分子量例如是20000~200000。 共聚物例如是PEG-PPG-PEG的共聚物,其分子量例如是約140000。 The carbon oxyhydroxide 124 is dissolved in the solvent 126, and the carbon oxyhydroxide 124 may be 0.1% to 15% by weight of the material layer 120. The carbon oxyhydroxide 124 includes, for example, polyvinyl alcohol (PVA, (C 2 H 4 O) x ), polyethylene glycol (PEG, C 2n H 4n+2 O n+1 ), poly Polyethylene oxide (PEO, C 2n H 4n+2 O n+1 ), polypropylene glycol (PPG, C 3n H 6n+2 O n+1 ), or other suitable compound, or A combination thereof or a copolymer of at least two of the above compounds. Among them, the molecular weight of polyethylene glycol (PEG) is, for example, 2,000 to 20,000, and the molecular weight of polyoxyethylene (PEO) is, for example, 20,000 to 200,000. The copolymer is, for example, a copolymer of PEG-PPG-PEG having a molecular weight of, for example, about 140,000.
此外,材料層120(即塗佈液)可更包括其他添加劑。舉例 來說,材料層120可更包括分散劑,以獲得較穩定的塗佈液。分散劑包括高分子、有機矽烷類或界面活性劑。界面活性劑的類型包括陰離子型、陽離子型、非離子型或雙離子型。 Further, the material layer 120 (ie, the coating liquid) may further include other additives. Example In other words, the material layer 120 may further include a dispersing agent to obtain a more stable coating liquid. The dispersing agent includes a polymer, an organic decane or a surfactant. Types of surfactants include anionic, cationic, nonionic or diionic.
請同時參照圖1的步驟S104、圖2B以及圖3B,接著,進行燒結程序,以使顆粒122的表面122a之碳氫氧化合物124產生碳化,而形成顆粒複合碳膜離型層130。 Referring to steps S104, 2B, and 3B of FIG. 1 simultaneously, a sintering process is performed to carbonize the carbon oxyhydroxide 124 of the surface 122a of the particles 122 to form the particle composite carbon film release layer 130.
更詳細來說,在惰性氣體的環境下,進行高溫燒結程序,以移除溶劑126並使碳氫氧化合物124因高溫裂解而產生碳化。燒結程序的溫度例如是300℃~500℃。如此一來,可在顆粒122的表面122a上形成碳膜134(亦即,碳化的碳氫氧化合物124),因此經高溫燒結後所形成的顆粒複合碳膜離型層130包括顆粒122以及碳膜134。在本實施例中,碳膜134例如是完全覆蓋顆粒122的表面122a且顆粒122的層數例如是5層~500層,但本發明不限於此。在其他實施例中,碳膜134亦可以是部分覆蓋顆粒122的表面122a,且本發明不特別限定顆粒122的層數(一層或多層),只要所形成的顆粒複合碳膜離型層130足夠緻密以避免後續形成的膜層穿透即可。 In more detail, a high-temperature sintering process is performed in an inert gas atmosphere to remove the solvent 126 and carbonize the carbon oxyhydroxide 124 by pyrolysis. The temperature of the sintering process is, for example, 300 ° C to 500 ° C. As a result, the carbon film 134 (that is, the carbonized carbon oxyhydroxide 124) can be formed on the surface 122a of the particle 122, so that the particle composite carbon film release layer 130 formed after high temperature sintering includes the particles 122 and carbon. Membrane 134. In the present embodiment, the carbon film 134 is, for example, completely covering the surface 122a of the particles 122 and the number of layers of the particles 122 is, for example, 5 to 500 layers, but the present invention is not limited thereto. In other embodiments, the carbon film 134 may also be a surface 122a partially covering the particles 122, and the present invention does not particularly limit the number of layers (one or more layers) of the particles 122 as long as the formed particle composite carbon film release layer 130 is sufficient. Dense to avoid penetration of the subsequently formed film layer.
顆粒複合碳膜離型層130的厚度T可為50nm~500nm,且顆粒複合碳膜離型層130之碳原子(主要來自於碳氫氧化合物124)的重量百分比可為1%~99%。舉例來說,當顆粒122為直徑D為10nm的氧化鈦顆粒時,則顆粒複合碳膜離型層130之碳原子的重量百分比較佳為5%~30%。再者,顆粒複合碳膜離型層130覆 蓋部分支撐基板110,以暴露出支撐基板110之部分邊緣區域110E。此外,顆粒複合碳膜離型層130具有上表面130a以及側表面130b。 The thickness T of the particle composite carbon film release layer 130 may be 50 nm to 500 nm, and the weight percentage of the carbon atoms (mainly from the carbon oxyhydroxide 124) of the particle composite carbon film release layer 130 may be 1% to 99%. For example, when the particles 122 are titanium oxide particles having a diameter D of 10 nm, the weight percentage of carbon atoms of the particle composite carbon film release layer 130 is preferably 5% to 30%. Furthermore, the granular composite carbon film release layer 130 is covered The cover portion supports the substrate 110 to expose a portion of the edge region 110E of the support substrate 110. Further, the particle composite carbon film release layer 130 has an upper surface 130a and a side surface 130b.
請同時參照圖1的步驟S106以及圖2C,然後,在顆粒複合碳膜離型層130上形成軟性基板140,其中軟性基板140包括相對設置的第一表面140a及第二表面140b。更詳細來說,軟性基板140覆蓋顆粒複合碳膜離型層130之上表面130a以及側表面130b,且在支撐基板110之邊緣區域110E與支撐基板110接觸。 換句話說,顆粒複合碳膜離型層130位於支撐基板110與軟性基板140之間,且顆粒複合碳膜離型層130位於軟性基板140之第一表面140a上。在本實施例中,軟性基板140例如是有機基板,包括聚亞醯胺(polyimide)基板或塑膠基板。軟性基板140的形成方法例如是塗佈製程。在本實施例中,在形成軟性基板140之後,可更包括進行烘烤製程以去除水氣、溶劑,其中烘烤製程的溫度例如是300℃~500℃。另外,在本實施例中,具有多層結構的顆粒複合碳膜離型層130可以是具有親水表面(例如表面130a),其中親水表面可與軟性基板140接觸以利於軟性基板140的塗佈,碳膜134可與支撐基板110接觸以降低離型力(或附著力)。 Referring to step S106 and FIG. 2C of FIG. 1 simultaneously, a flexible substrate 140 is formed on the particle composite carbon film release layer 130, wherein the flexible substrate 140 includes a first surface 140a and a second surface 140b disposed opposite to each other. In more detail, the flexible substrate 140 covers the upper surface 130a of the particle composite carbon film release layer 130 and the side surface 130b, and is in contact with the support substrate 110 at the edge region 110E of the support substrate 110. In other words, the particle composite carbon film release layer 130 is located between the support substrate 110 and the flexible substrate 140, and the particle composite carbon film release layer 130 is located on the first surface 140a of the flexible substrate 140. In the present embodiment, the flexible substrate 140 is, for example, an organic substrate, and includes a polyimide substrate or a plastic substrate. The method of forming the flexible substrate 140 is, for example, a coating process. In this embodiment, after the flexible substrate 140 is formed, the baking process may be further included to remove moisture and a solvent, wherein the temperature of the baking process is, for example, 300 ° C to 500 ° C. In addition, in the present embodiment, the particle composite carbon film release layer 130 having a multilayer structure may have a hydrophilic surface (for example, the surface 130a), wherein the hydrophilic surface may be in contact with the flexible substrate 140 to facilitate coating of the flexible substrate 140, carbon The film 134 may be in contact with the support substrate 110 to reduce the release force (or adhesion).
值得一提的是,顆粒複合碳膜離型層130(包括表面122a具有碳膜134的無機顆粒或導電性顆粒)表面的碳原子不會與軟性基板140或支撐基板110表面的官能基形成較強鍵結之氫鍵(或離子鍵),而只是因分子間吸引力形成較弱之凡得瓦力。再者,軟性 基板140(例如聚亞醯胺基板(有機材料))與支撐基板110(例如玻璃基板(無機材料))之間會形成較強鍵結之氫鍵。在本實施例中,軟性基板140與支撐基板110之間的離型力大於顆粒複合碳膜離型層130與支撐基板110之間的離型力,且顆粒複合碳膜離型層130與軟性基板140之間的離型力大於顆粒複合碳膜離型層130與支撐基板110之間的離型力。顆粒複合碳膜離型層130與支撐基板110之間的離型力例如是100gf以下,較佳是50gf以下。在本實施例中,可藉由使軟性基板140覆蓋顆粒複合碳膜離型層130且與支撐基板110接觸,以將軟性基板140暫時固定於支撐基板110上。然而,本發明不限於此,在其他實施例中,亦可以是顆粒複合碳膜離型層130與支撐基板110之間的離型力大於顆粒複合碳膜離型層130與軟性基板140之間的離型力。 It is worth mentioning that the carbon atoms on the surface of the granular composite carbon film release layer 130 (including the inorganic particles or the conductive particles having the surface 122a having the carbon film 134) are not formed with the functional groups on the surface of the flexible substrate 140 or the support substrate 110. Strong bond hydrogen bonds (or ionic bonds), but only weaker van der Waals due to intermolecular attraction. Furthermore, soft A strongly bonded hydrogen bond is formed between the substrate 140 (for example, a polyimide substrate (organic material)) and the support substrate 110 (for example, a glass substrate (inorganic material)). In this embodiment, the release force between the flexible substrate 140 and the support substrate 110 is greater than the release force between the particle composite carbon film release layer 130 and the support substrate 110, and the particle composite carbon film release layer 130 and the softness The release force between the substrates 140 is greater than the release force between the particle composite carbon film release layer 130 and the support substrate 110. The release force between the particle composite carbon film release layer 130 and the support substrate 110 is, for example, 100 gf or less, preferably 50 gf or less. In the present embodiment, the flexible substrate 140 can be temporarily fixed to the support substrate 110 by covering the granular composite carbon film release layer 130 and contacting the support substrate 110. However, the present invention is not limited thereto. In other embodiments, the release force between the particle composite carbon film release layer 130 and the support substrate 110 may be greater than between the particle composite carbon film release layer 130 and the flexible substrate 140. Release force.
請同時參照圖1的步驟S108以及圖2D,之後,在軟性 基板140上形成元件層150,且元件層150位於軟性基板140之第二表面140b上。舉例來說,元件層150可以是包含非晶矽薄膜電晶體、微晶矽薄膜電晶體、氧化物電晶體或低溫多晶矽電晶體等主動式驅動元件。在本實施例中,元件層150的周邊區域(亦即,與支撐基板110的邊緣區域110E重疊的區域)例如是無效區。以製作具有氧化物電晶體的元件層150為例,此步驟S108例如是包括於軟性基板140上依序形成緩衝層(未繪示)、閘極層(未繪示)、閘絕緣層(未繪示)、通道層(未繪示)、蝕刻終止層(未繪示)、源極與汲極層(未繪示)、保護層(未繪示)、畫素電極層(未繪示)以及保 護層(未繪示)等步驟。然而,本發明不限於此,在其他實施例中,元件層150亦可以是包括薄膜電晶體、彩色濾光片、黑色矩陣、有機發光元件、光電轉換元件、或其他合適的元件、或前述元件之組合。在本實施例中,在形成元件層150過程中,可更包括進行烘烤製程以獲得更佳的電性,其中烘烤製程的溫度例如是300℃~500℃。 Please refer to step S108 and FIG. 2D of FIG. 1 simultaneously, after that, in soft The element layer 150 is formed on the substrate 140, and the element layer 150 is located on the second surface 140b of the flexible substrate 140. For example, the element layer 150 may be an active driving element including an amorphous germanium thin film transistor, a microcrystalline germanium thin film transistor, an oxide transistor, or a low temperature polycrystalline germanium transistor. In the present embodiment, the peripheral region of the element layer 150 (that is, the region overlapping the edge region 110E of the support substrate 110) is, for example, an ineffective region. For example, the step S108 is performed to form a buffer layer (not shown), a gate layer (not shown), and a gate insulating layer (not shown) on the flexible substrate 140. Illustrated), channel layer (not shown), etch stop layer (not shown), source and drain layers (not shown), protective layer (not shown), pixel electrode layer (not shown) And insurance Steps such as a protective layer (not shown). However, the present invention is not limited thereto. In other embodiments, the element layer 150 may also include a thin film transistor, a color filter, a black matrix, an organic light emitting element, a photoelectric conversion element, or other suitable element, or the foregoing element. The combination. In the present embodiment, in the process of forming the component layer 150, the baking process may be further included to obtain better electrical properties, wherein the temperature of the baking process is, for example, 300 ° C to 500 ° C.
請同時參照圖1的步驟S110以及圖2D至圖2F,接著,進行離型程序,以使得軟性基板140與支撐基板110分離。更詳細來說,離型程序包括沿圖2D中的切割線160進行切割程序,以同時移除位於邊緣區域110E之軟性基板140以及元件層150的周邊區域(未標示),進而使得軟性基板140與支撐基板110分離。在本實施例中,切割線160例如是對應於顆粒複合碳膜離型層130的內部區域(未標示),但本發明不限於此。在另一實施例中,切割線160亦可以是對應於顆粒複合碳膜離型層130的側表面130b。 一般來說,雖然此切割程序會同時切割到元件層150的周邊區域,但由於這些周邊區域為無效區,因此並不會影響到元件層150所提供的功能。切割程序例如是雷射切割或其他合適的切割方式。 再者,如圖2E所示,可透過顆粒複合碳膜離型層130與支撐基板110之間的界面,以鏟刀、風刀、線或其他合適的方式使顆粒複合碳膜離型層130與支撐基板110分離。 Referring to step S110 and FIG. 2D to FIG. 2F of FIG. 1 simultaneously, a release process is performed to separate the flexible substrate 140 from the support substrate 110. In more detail, the release process includes a dicing process along the dicing line 160 in FIG. 2D to simultaneously remove the flexible substrate 140 at the edge region 110E and the peripheral region (not labeled) of the component layer 150, thereby enabling the flexible substrate 140. Separated from the support substrate 110. In the present embodiment, the dicing line 160 is, for example, an inner region (not labeled) corresponding to the particle composite carbon film release layer 130, but the invention is not limited thereto. In another embodiment, the cutting line 160 may also be a side surface 130b corresponding to the particle composite carbon film release layer 130. In general, although this cutting process is simultaneously cut to the peripheral area of the element layer 150, since these peripheral areas are ineffective areas, the functions provided by the element layer 150 are not affected. The cutting procedure is for example laser cutting or other suitable cutting method. Furthermore, as shown in FIG. 2E, the particle-composite carbon film release layer 130 is permeable to the interface between the particle composite carbon film release layer 130 and the support substrate 110 by a blade, air knife, wire or other suitable means. Separated from the support substrate 110.
如此一來,在軟性基板140及顆粒複合碳膜離型層130與支撐基板110分離之後,即完成面板結構100的製作。如圖2F 所示,面板結構100包括軟性基板140、顆粒複合碳膜離型層130以及元件層150。顆粒複合碳膜離型層130位於軟性基板140之第一表面140a上,其中顆粒複合碳膜離型層130(如圖3B所示)包括複數個顆粒122,且每一顆粒122之表面122a具有碳膜134。元件層150位於軟性基板140之第二表面140b上,其中第二表面140b係相對於第一表面140a。 In this way, after the flexible substrate 140 and the particle composite carbon film release layer 130 are separated from the support substrate 110, the fabrication of the panel structure 100 is completed. As shown in Figure 2F As shown, the panel structure 100 includes a flexible substrate 140, a particulate composite carbon film release layer 130, and an element layer 150. The particle composite carbon film release layer 130 is disposed on the first surface 140a of the flexible substrate 140, wherein the particle composite carbon film release layer 130 (shown in FIG. 3B) includes a plurality of particles 122, and the surface 122a of each of the particles 122 has Carbon film 134. The component layer 150 is on the second surface 140b of the flexible substrate 140, wherein the second surface 140b is opposite to the first surface 140a.
值得一提的是,當以導電材料的顆粒122(例如導電性顆 粒)來形成顆粒複合碳膜離型層130時,不僅可提高顆粒複合碳膜離型層130的導電性(尤其當碳膜134僅部分覆蓋顆粒122時),而且在離型時顆粒複合碳膜離型層130會附著在軟性基板140上作為導電層,以避免軟性基板140在離型時因靜電累積而損傷到其上的元件層150,進而可提高面板結構100的製程良率。 It is worth mentioning that when the particles 122 of conductive material (such as conductive particles) When the particle composite carbon film release layer 130 is formed, not only the conductivity of the particle composite carbon film release layer 130 can be improved (especially when the carbon film 134 only partially covers the particles 122), but also the particle composite carbon during release. The film release layer 130 adheres to the flexible substrate 140 as a conductive layer to prevent the flexible substrate 140 from being damaged by the electrostatic accumulation of the device layer 150 when it is released, thereby improving the process yield of the panel structure 100.
上述圖2E至圖2F的實施例是以從顆粒複合碳膜離型層 130與支撐基板110之間的界面分離(亦即,顆粒複合碳膜離型層130與支撐基板110完全分離)為例來說明,但本發明不限於此。 在其他實施例中,亦可以是從顆粒複合碳膜離型層130中分離(亦即,顆粒複合碳膜離型層130的一部分與支撐基板110分離,而另一部分仍附著在支撐基板110上),或者是從軟性基板140與顆粒複合碳膜離型層130之間的界面分離(亦即,軟性基板140與顆粒複合碳膜離型層130完全分離),本發明不特別限定分離的界面。 The above embodiment of FIG. 2E to FIG. 2F is a release layer from a granular composite carbon film. The interface separation between the 130 and the support substrate 110 (that is, the particle composite carbon film release layer 130 is completely separated from the support substrate 110) is taken as an example, but the invention is not limited thereto. In other embodiments, it may be separated from the particle composite carbon film release layer 130 (that is, a portion of the particle composite carbon film release layer 130 is separated from the support substrate 110 while another portion remains attached to the support substrate 110. Or, the interface between the flexible substrate 140 and the particle composite carbon film release layer 130 is separated (that is, the flexible substrate 140 is completely separated from the particle composite carbon film release layer 130), and the present invention does not particularly limit the separated interface. .
舉例來說,請同時參照圖4A至圖4B,可透過顆粒複合碳膜離型層130中由顆粒122所構成的任兩層之間的界面,以鏟 刀、風刀、線或其他合適的方式使部分顆粒複合碳膜離型層130與支撐基板110分離。因此,在進行離型程序時,一部分的顆粒複合碳膜離型層130會與支撐基板110分離(亦即,一部分的顆粒複合碳膜離型層130會附著在軟性基板140上),而另一部分的顆粒複合碳膜離型層130仍會附著在支撐基板110上。其中,附著在軟性基板140上的顆粒複合碳膜離型層130的部分130’具有厚度T’,且厚度T’例如是小於厚度T。換句話說,本發明不特別限定附著在軟性基板140上的顆粒複合碳膜離型層130的部分130’的厚度T’,其中厚度0<T’≦T。如此一來,在軟性基板140及部分顆粒複合碳膜離型層130與支撐基板110分離之後,即完成面板結構100’的製作。如圖4B所示,面板結構100’包括軟性基板140、顆粒複合碳膜離型層130的部分130’以及元件層150。顆粒複合碳膜離型層130的部分130’位於軟性基板140之第一表面140a上,其中顆粒複合碳膜離型層130(如圖3B所示)的部分130’包括複數個顆粒122,且每一顆粒122之表面122a具有碳膜134。 元件層150位於軟性基板140之第二表面140b上,其中第二表面140b係相對於第一表面140a。 For example, please refer to FIG. 4A to FIG. 4B simultaneously, through the interface between any two layers of particles 122 formed by the particles 122 in the particle composite carbon film release layer 130. A portion of the particulate composite carbon film release layer 130 is separated from the support substrate 110 by a knife, air knife, wire or other suitable means. Therefore, when the release process is performed, a part of the particle composite carbon film release layer 130 is separated from the support substrate 110 (that is, a part of the particle composite carbon film release layer 130 adheres to the flexible substrate 140), and A portion of the particulate composite carbon film release layer 130 will still adhere to the support substrate 110. Here, the portion 130' of the particle composite carbon film release layer 130 attached to the flexible substrate 140 has a thickness T', and the thickness T' is, for example, smaller than the thickness T. In other words, the present invention does not particularly limit the thickness T' of the portion 130' of the particle composite carbon film release layer 130 attached to the flexible substrate 140, wherein the thickness 0 < T' ≦ T. In this manner, after the flexible substrate 140 and the partial particle composite carbon film release layer 130 are separated from the support substrate 110, the fabrication of the panel structure 100' is completed. As shown in FIG. 4B, the panel structure 100' includes a flexible substrate 140, a portion 130' of the particulate composite carbon film release layer 130, and an element layer 150. A portion 130' of the particle composite carbon film release layer 130 is disposed on the first surface 140a of the flexible substrate 140, wherein the portion 130' of the particle composite carbon film release layer 130 (shown in FIG. 3B) includes a plurality of particles 122, and The surface 122a of each particle 122 has a carbon film 134. The component layer 150 is on the second surface 140b of the flexible substrate 140, wherein the second surface 140b is opposite to the first surface 140a.
為了證明本發明之顆粒複合碳膜離型層130的設計確實可以提高離型層的高溫耐受度,特以一實驗來做驗證。此實驗的實驗例1~3所使用的顆粒122的材質分別為氧化鈦(TiO2)、氧化矽(SiO2)及氧化鋁(Al2O3)。再者,在此實驗中,碳氫氧化合物124為PEG-PPG-PEG的共聚物(分子量約140000),且碳氫氧化合物124 與顆粒122之重量比(碳氫氧化合物124/顆粒122)為1.2/1。在碳氫氧化合物124與顆粒122之重量比固定為1.2/1的條件下,隨著顆粒122的固含量(%)的增加,則所形成的顆粒複合碳膜離型層130的厚度T亦增加。此外,形成顆粒複合碳膜離型層130所使用的最高燒結溫度為350℃,形成軟性基板140所使用的最高烘烤溫度為450℃,而形成元件層150後所使用的最高烘烤溫度為430℃。 In order to prove that the design of the particle composite carbon film release layer 130 of the present invention can indeed improve the high temperature tolerance of the release layer, it is verified by an experiment. The materials of the particles 122 used in Experimental Examples 1 to 3 of this experiment were respectively titanium oxide (TiO 2 ), cerium oxide (SiO 2 ), and aluminum oxide (Al 2 O 3 ). Further, in this experiment, the carbon oxyhydroxide 124 is a copolymer of PEG-PPG-PEG (molecular weight of about 140,000), and the weight ratio of the carbon oxyhydroxide 124 to the particles 122 (carbon oxyhydroxide 124 / granule 122) It is 1.2/1. Under the condition that the weight ratio of the carbon oxyhydroxide 124 to the particles 122 is fixed at 1.2/1, as the solid content (%) of the particles 122 increases, the thickness T of the formed granular composite carbon film release layer 130 is also increase. Further, the highest baking temperature used to form the particle composite carbon film release layer 130 is 350 ° C, the highest baking temperature used to form the flexible substrate 140 is 450 ° C, and the highest baking temperature used after forming the element layer 150 is 430 ° C.
由表1的實驗結果可知,在最高溫度450℃的軟性基板 140烘烤步驟以及最高溫度430℃的元件層150烘烤步驟之後,實驗例1~3的離型力皆在100gf以下,甚至在50gf以下。由於實驗例1~3在經受高溫製程(例如450℃)之後皆仍可有效地離型(例如離型力在50gf以下),因此本發明之顆粒複合碳膜離型層130的設計確實可以提高離型層的高溫耐受度。再者,隨著顆粒複合碳膜離型層130的厚度T的增加(或顆粒122的固含量(%)的增加),實驗例2~3的離型力皆明顯地減少。由此可知,增加顆粒複合碳膜離型層130的厚度T,可避免後續形成的軟性基板140穿透至支撐 基板110。也就是說,具有較厚的顆粒複合碳膜離型層130可阻隔並避免軟性基板140與支撐基板110形成較強鍵結之氫鍵,進而可使離型力減少。此外,當顆粒複合碳膜離型層130的厚度T夠厚時,則實驗例1~3皆可有效地離型。舉例來說,顆粒122的固含量為2.7%時,則實驗例1~3的離型力皆減少至約10gf。 From the experimental results in Table 1, the soft substrate at the highest temperature of 450 ° C is known. After the 140 baking step and the baking step of the element layer 150 having a maximum temperature of 430 ° C, the release forces of the experimental examples 1 to 3 were all below 100 gf, even below 50 gf. Since the experimental examples 1 to 3 can be effectively released after being subjected to a high temperature process (for example, 450 ° C) (for example, the release force is 50 gf or less), the design of the particle composite carbon film release layer 130 of the present invention can be improved. High temperature tolerance of the release layer. Further, as the thickness T of the particle composite carbon film release layer 130 was increased (or the solid content (%) of the particles 122 was increased), the release forces of Experimental Examples 2 to 3 were all remarkably reduced. It can be seen that increasing the thickness T of the particle composite carbon film release layer 130 can prevent the subsequently formed flexible substrate 140 from penetrating to the support. Substrate 110. That is to say, the thicker composite carbon film release layer 130 can block and prevent the soft substrate 140 from forming a stronger bonding hydrogen bond with the support substrate 110, thereby reducing the release force. Further, when the thickness T of the particle composite carbon film release layer 130 is sufficiently thick, the experimental examples 1 to 3 can be effectively released. For example, when the solid content of the particles 122 is 2.7%, the release forces of the experimental examples 1 to 3 are all reduced to about 10 gf.
綜上所述,在本發明的面板結構及其製造方法中,面板結構的顆粒複合碳膜離型層包括複數個顆粒,且每一顆粒之表面具有碳膜。由於本發明的顆粒複合碳膜離型層包括複數個顆粒(例如奈米顆粒),因此不僅可藉由濕式塗佈方式形成,而且還更容易控制膜厚(一層或多層)及其均勻性,故具有製程簡單以及製程時間較短等優點。再者,由於本發明的顆粒複合碳膜離型層的每一顆粒之表面具有碳膜,因此不僅可耐高溫製程(因碳膜於惰性氣體下具有良好的高溫定性),而且還不需進行表面改質的步驟以降低成本。因此,具有緻密結構的顆粒複合碳膜離型層可避免軟性基板穿透至支撐基板(亦即,可避免形成較強鍵結之氫鍵),進而可降低離型力(或附著力)。此外,當使用導電性顆粒來形成顆粒複合碳膜離型層時,可避免軟性基板在離型時因靜電累積而損傷到其上的元件層,進而可提高面板結構的製程良率。 In summary, in the panel structure of the present invention and the method of manufacturing the same, the particle composite carbon film release layer of the panel structure includes a plurality of particles, and the surface of each particle has a carbon film. Since the particle composite carbon film release layer of the present invention comprises a plurality of particles (for example, nano particles), it can be formed not only by wet coating but also by easier control of film thickness (layer or layers) and uniformity thereof. Therefore, it has the advantages of simple process and short process time. Furthermore, since the surface of each particle of the particle composite carbon film release layer of the present invention has a carbon film, it is not only resistant to a high temperature process (because the carbon film has good high temperature properties under an inert gas), and does not need to be performed. Surface modification steps to reduce costs. Therefore, the granular composite carbon film release layer having a dense structure can prevent the soft substrate from penetrating to the support substrate (that is, the formation of a strong bonding hydrogen bond can be avoided), thereby reducing the release force (or adhesion). Further, when the conductive particles are used to form the release layer of the particle composite carbon film, the element layer which is damaged by the static buildup of the flexible substrate during the release can be avoided, and the process yield of the panel structure can be improved.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
S102、S104、S106、S108、S110‧‧‧步驟 S102, S104, S106, S108, S110‧‧ steps
Claims (21)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103110511A TWI522684B (en) | 2014-03-20 | 2014-03-20 | Panel structure and fabricating method thereof |
CN201410211082.4A CN104009065B (en) | 2014-03-20 | 2014-05-19 | Panel structure and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103110511A TWI522684B (en) | 2014-03-20 | 2014-03-20 | Panel structure and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201537260A TW201537260A (en) | 2015-10-01 |
TWI522684B true TWI522684B (en) | 2016-02-21 |
Family
ID=51369654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103110511A TWI522684B (en) | 2014-03-20 | 2014-03-20 | Panel structure and fabricating method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104009065B (en) |
TW (1) | TWI522684B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105374829B (en) * | 2015-12-01 | 2018-03-27 | 上海天马有机发光显示技术有限公司 | A kind of flexible display substrates and preparation method thereof |
CN106888550A (en) * | 2016-10-12 | 2017-06-23 | 柏弥兰金属化研究股份有限公司 | Metallization flexible base plate and the multilayer circuit board fabrication method using the substrate |
CN110875355A (en) * | 2018-08-30 | 2020-03-10 | 上海和辉光电有限公司 | Flexible display mother board, flexible display panel and application thereof |
TWI698958B (en) * | 2019-07-25 | 2020-07-11 | 陽程科技股份有限公司 | Method for separating flexible display from substrate |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4304993B2 (en) * | 2003-01-31 | 2009-07-29 | 三菱樹脂株式会社 | Release film |
CN101785086B (en) * | 2007-09-20 | 2012-03-21 | 夏普株式会社 | Display device manufacturing method and laminated structure |
CN102194829B (en) * | 2010-03-11 | 2013-07-10 | 财团法人工业技术研究院 | Substrate structure and manufacturing method thereof |
TWI468092B (en) * | 2013-04-08 | 2015-01-01 | Au Optronics Corp | Method of detaching for flexible substrate and flexible substrate structure |
-
2014
- 2014-03-20 TW TW103110511A patent/TWI522684B/en not_active IP Right Cessation
- 2014-05-19 CN CN201410211082.4A patent/CN104009065B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104009065A (en) | 2014-08-27 |
CN104009065B (en) | 2016-06-08 |
TW201537260A (en) | 2015-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101295758B (en) | Indium gallium aluminum nitrogen illuminating device containing carbon based underlay and its production method | |
TWI522684B (en) | Panel structure and fabricating method thereof | |
US8222062B2 (en) | Method for fabricating a flexible display device | |
US8664086B2 (en) | Semiconductor wafer, semiconductor thin film, and method for manufacturing semiconductor thin film devices | |
US10155368B2 (en) | Separation method and separation apparatus | |
KR101777913B1 (en) | Graphene structure and method of fabricating the same | |
TW201314643A (en) | Fabricating method of flexible display and flexible display | |
US20170282500A1 (en) | Glass laminate, method for producing electronic device, method for producing glass laminate, and glass plate package | |
TWI765904B (en) | Laminate, method for manufacturing electronic device, and method for manufacturing laminate | |
JP2015116694A (en) | Method for manufacturing support substrate with resin layer, method for manufacturing glass laminate, and method for manufacturing electronic device | |
KR102475698B1 (en) | Manufacturing method of laminated board and electronic device | |
JP5584846B1 (en) | SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE | |
US10049847B2 (en) | Electron emitting device using graphite adhesive material and manufacturing method for the same | |
Tatebayashi et al. | Optical characteristics of GaInP/GaP double-heterostructure core-shell nanowires embedded in polydimethylsiloxane membranes | |
JP6120680B2 (en) | SOLAR CELL, MANUFACTURING METHOD THEREOF, AND SOLAR CELL MODULE | |
TWI813882B (en) | Laminated substrate, method of manufacturing electronic device, and method of manufacturing laminated substrate | |
TW201241874A (en) | Composite substrate with protection film and method of manufacturing semiconductor device | |
CN101097867A (en) | Peeling method, semiconductor device, and manufacturing method therefor | |
KR101695761B1 (en) | Flexible light emitting device and method of manufacturing the same | |
US20180061792A1 (en) | Ubm (under bump metal) electrode structure for radiation detector, radiation detector and production method thereof | |
EP2124251B1 (en) | Method of manufacturing a backside illumination solid imaging device | |
EP2105954B1 (en) | Method of manufacturing a backside illumination solid imaging device | |
JP2014229877A (en) | Solar cell and manufacturing method therefor, and solar cell module | |
TW201545988A (en) | Oxide particles, production method of the same, oxide particles dispersion liquid, thin film layer production method of oxide particles, thin film transistor and electron element using the same | |
TW554551B (en) | Method of fabricating organic light emitting diode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |