TWI520393B - Nitride-based memristors - Google Patents

Nitride-based memristors Download PDF

Info

Publication number
TWI520393B
TWI520393B TW101126933A TW101126933A TWI520393B TW I520393 B TWI520393 B TW I520393B TW 101126933 A TW101126933 A TW 101126933A TW 101126933 A TW101126933 A TW 101126933A TW I520393 B TWI520393 B TW I520393B
Authority
TW
Taiwan
Prior art keywords
nitride
electrode
active region
memristor
switching
Prior art date
Application number
TW101126933A
Other languages
Chinese (zh)
Other versions
TW201314981A (en
Inventor
楊建華
吉貝多 梅戴蘿絲 里拜羅
R 史丹利 威廉斯
Original Assignee
惠普研發公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠普研發公司 filed Critical 惠普研發公司
Publication of TW201314981A publication Critical patent/TW201314981A/en
Application granted granted Critical
Publication of TWI520393B publication Critical patent/TWI520393B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/101Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including resistors or capacitors only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Description

基於氮化物的憶阻器 Nitride-based memristor 【政府權益聲明】 [Government Rights Statement]

本發明係在政府支持下進行。政府對本發明享有某些權利。 The invention is carried out with government support. The government has certain rights in the invention.

本發明係關於憶阻器,特別是基於氮化物的憶阻器。 The present invention relates to memristors, particularly nitride based memristors.

電子裝置之持續發展趨勢為最小化裝置之大小。儘管商用微電子器件之當前產生係基於次微米設計規則,但大量研究及開發努力係針對探索奈米尺度之裝置,其中裝置之尺寸通常量測為數奈米或數十奈米。除了與微米尺度裝置相比之個別裝置大小的顯著減小及高得多的封裝密度之外,奈米尺度裝置亦可能由於奈米尺度上的物理現象(在微米尺度上不能觀測到)而提供新功能性。 The continuing trend in electronic devices is to minimize the size of the device. While current generation of commercial microelectronic devices is based on sub-micron design rules, numerous research and development efforts have been directed to devices that explore nanoscales, where the size of the device is typically measured in the order of nanometers or tens of nanometers. In addition to the significant reduction in individual device sizes and much higher packing densities compared to microscale devices, nanoscale devices may also be provided due to physical phenomena on the nanoscale (not visible on the micrometer scale). New functionality.

例如,近來已報告使用氧化鈦作為切換材料的奈米尺度裝置中之電子切換。已發現此種裝置之電阻性切換行為與最初由L.O.Chua在1971年預測之憶阻器電路元件理論有關。奈米尺度開關中的憶阻性行為之發現已激發了廣泛興趣,且存在大量正在進行的研究努力來進一步開發此等奈米尺度開關且將其實施於各種應用中。許多重要的潛在應用之一為使用此種切換裝置作為記憶體單元來儲存數位資料。 For example, electronic switching in a nanoscale device using titanium oxide as a switching material has recently been reported. The resistive switching behavior of such devices has been found to be related to the memristor circuit component theory originally predicted by L. O. Chua in 1971. The discovery of memristive behavior in nanoscale switches has spurred widespread interest and there are numerous ongoing research efforts to further develop these nanoscale switches and implement them in a variety of applications. One of the many important potential applications is the use of such switching devices as memory cells for storing digital data.

為了能與CMOS快閃記憶體相競爭,新興電阻性開關需要具有至少超過數百萬次切換循環之切換耐久性。裝置 內部的可靠切換通道可顯著改良此等開關之耐久性。正探索不同切換材料系統以達成具有所要電效能,諸如高速度、高耐久性、長保持時間、低能量及低成本之憶阻器。 In order to compete with CMOS flash memory, emerging resistive switches need to have switching durability of at least millions of switching cycles. Device The internal reliable switching channels significantly improve the durability of these switches. Different switching material systems are being explored to achieve memristors with desired electrical performance, such as high speed, high durability, long hold time, low energy, and low cost.

於一實施例中揭示一基於氮化物的憶阻器,包括:一第一電極,其包含一第一氮化物材料;一第二電極,其包含一第二氮化物材料;及作用區,其定位於該第一電極與該第二電極之間。該作用區包括一半導電或標稱絕緣且弱離子性切換氮化物相。 A nitride-based memristor is disclosed in an embodiment, comprising: a first electrode comprising a first nitride material; a second electrode comprising a second nitride material; and an active region; Located between the first electrode and the second electrode. The active zone comprises a half conductive or nominally insulated and weakly ionic switching nitride phase.

於另一實施例中揭示一種用於製造前述憶阻器之方法,該方法包括:提供該第一電極;在該第一電極上形成該作用區;及在該作用區上形成該第二電極。 In another embodiment, a method for fabricating the foregoing memristor is disclosed, the method comprising: providing the first electrode; forming the active region on the first electrode; and forming the second electrode on the active region .

於又另一實施例中揭示一種用於製造前述憶阻器進一步包含一第三氮化物材料之一第三電極,該第三電極安置於該作用區中以便形成兩個分離的作用區之方法,該方法包括:提供該第一電極;在該第一電極上形成該第一作用區;在該第一作用區上形成該第三電極;在該第三電極上形成該第二作用區;及在該第二作用區上形成該第二電極。 In yet another embodiment, a method for fabricating a memristor further comprising a third electrode of a third nitride material, the third electrode being disposed in the active region to form two separate active regions is disclosed The method includes: providing the first electrode; forming the first active region on the first electrode; forming the third electrode on the first active region; forming the second active region on the third electrode; And forming the second electrode on the second active region.

現詳細參考所揭示之完全氮化物憶阻器之特定實施例及用於建立所揭示之完全氮化物憶阻器的方式之特定實施例。適用時,亦簡要描述替代性實施例。 Reference is now made in detail to the specific embodiments of the disclosed fully nitride memristor and specific embodiments for establishing the disclosed fully nitride memristor. Alternative embodiments are also briefly described where applicable.

在本文中之說明書及申請專利範圍中使用時,除非上下文另有清楚指示,否則單數形式「一」及「該」包括複 數個指示物。 In the context of the specification and claims, the singular forms "a" and "the" Several indicators.

在本說明書及隨附申請專利範圍中使用時,「大致(approximately)」及「約(about)」意謂例如由製造過程中之變化引起之±10%變異。 "Approximately" and "about" mean, for example, ±10% variation caused by variations in the manufacturing process, as used in the specification and the accompanying claims.

在以下詳細描述中,參考伴隨本發明之圖式,該等圖式說明其中可實踐本發明之特定實施例。實施例之組件可定位於若干不同定向上,且相對於組件之定向所使用之任何方向性術語均係為了說明而決非限制之目的而使用。方向性術語包括諸如「頂部(top)」、「底部(bottom)」、「前(front)」、「後(back)」、「領前(leading)」、「拖後(trailing)」等措辭。 In the following detailed description, reference is made to the claims The components of the embodiments can be positioned in a number of different orientations, and any directional terminology used with respect to the orientation of the components is used for purposes of illustration and not limitation. Directional terms include terms such as "top", "bottom", "front", "back", "leading", "trailing", etc. .

應理解,存在其中可實踐本發明之其他實施例,且可在不脫離本發明之範疇的情況下進行結構或邏輯改變。因此,以下詳細描述並不在限制性意義上進行。實情為,本發明之範疇由隨附申請專利範圍界定。 It is understood that there are other embodiments in which the invention may be practiced, and structural or logical changes may be made without departing from the scope of the invention. Therefore, the following detailed description is not to be taken in a limiting sense. In fact, the scope of the invention is defined by the scope of the accompanying application.

憶阻器為可用作各種電子電路(諸如記憶體、開關以及邏輯電路及系統)中之組件的奈米尺度裝置。在記憶體結構中,可使用縱橫式憶阻器。當用作記憶體之基礎時,憶阻器可用以儲存一位元之資訊,1或0。當用作邏輯電路時,憶阻器可用作在類似於場可程式化閘陣列之邏輯電路中之組態位元及開關,或可為有線邏輯可程式化邏輯陣列之基礎。 Memristors are nanoscale devices that can be used as components in various electronic circuits, such as memory, switches, and logic circuits and systems. In the memory structure, a crossbar type memristor can be used. When used as the basis for memory, the memristor can be used to store one-bit information, 1 or 0. When used as a logic circuit, the memristor can be used as a configuration bit and switch in a logic circuit similar to a field programmable gate array, or can be the basis of a wired logic programmable logic array.

當用作開關時,憶阻器可為交叉點記憶體中的封閉式或開啟式開關。近幾年期間,研究者已在發現使此等憶阻 器之切換功能高效地運作的方式方面取得極大進展。例如,基於氧化鉭(TaOx)的憶阻器已證明具有優於能夠進行電子切換之其他奈米尺度裝置的極佳耐久性。在實驗室設置中,基於氧化鉭的憶阻器能夠進行超過100億次切換循環,而諸如基於氧化鉭(WOx)或基於氧化鈦(TiOx)的憶阻器之其他憶阻器可能需要複雜的反饋機構來避免過激勵該等裝置,或可能需要用較強電壓脈衝再新裝置以便獲得在1000萬次切換循環範圍內的耐久性之額外步驟。 When used as a switch, the memristor can be a closed or open switch in the cross-point memory. In recent years, researchers have made great progress in discovering ways to make these memristor switching functions work efficiently. For example, yttrium oxide (TaO x ) based memristors have proven to have superior durability over other nanoscale devices capable of electronic switching. In laboratory settings, yttria-based memristors can perform more than 10 billion switching cycles, while other memristors such as yttria-based (WO x ) or titanium oxide (TiO x ) based memristors may be required Complex feedback mechanisms to avoid over-energizing such devices, or may require additional steps to renew the device with a stronger voltage pulse in order to achieve durability over a range of 10 million switching cycles.

憶阻器裝置典型地可包含包夾一絕緣層之兩個電極。可形成在兩個電極之間的絕緣層中之導電通道,其能夠在兩種狀態之間切換:在一個狀態中,導電通道形成兩個電極之間的導電路徑(「接通(ON)」),且在一個狀態中,導電通道不形成兩個電極之間的導電路徑(「斷開(OFF)」)。 The memristor device typically can include two electrodes that sandwich an insulating layer. A conductive path can be formed in the insulating layer between the two electrodes, which is switchable between two states: in one state, the conductive path forms a conductive path between the two electrodes ("ON" ), and in one state, the conductive path does not form a conductive path between the two electrodes ("OFF").

圖1中描繪本發明裝置之一實施例。裝置100包含底部或第一電極102、金屬氧化物層104,及頂部或第二電極106。 One embodiment of the apparatus of the present invention is depicted in FIG. Device 100 includes a bottom or first electrode 102, a metal oxide layer 104, and a top or second electrode 106.

在一實施例中,底部電極102可為厚度為100 nm之鉑,金屬氧化物層104可為厚度為12 nm之金屬氧化物,諸如TaOx,且頂部電極106可為厚度為100 nm之鉭。 In one embodiment, the bottom electrode 102 can be platinum having a thickness of 100 nm, the metal oxide layer 104 can be a metal oxide having a thickness of 12 nm, such as TaO x , and the top electrode 106 can be 100 nm thick. .

在一些實施例中,在切換層104中達成憶阻器100之切換功能。大體而言,切換層104為弱離子性導體,其在無摻雜劑之情況下為半導性及/或絕緣的。此等材料可摻雜有原生摻雜劑,諸如氧空位或雜質摻雜劑(例如,有意將 不同金屬離子引入至切換層104中)。所得經摻雜材料係導電的,此係因為摻雜劑帶電,且在電場下可移動。因此,摻雜劑在切換層104內部之濃度分佈可藉由電場而重新組態,從而導致裝置在電場下之電阻改變,亦即電切換。 In some embodiments, the switching function of the memristor 100 is achieved in the switching layer 104. In general, the switching layer 104 is a weakly ionic conductor that is semiconducting and/or insulating without dopants. These materials may be doped with native dopants such as oxygen vacancies or impurity dopants (eg, intentionally Different metal ions are introduced into the switching layer 104). The resulting doped material is electrically conductive because the dopant is charged and is movable under an electric field. Therefore, the concentration distribution of the dopant inside the switching layer 104 can be reconfigured by the electric field, resulting in a change in the resistance of the device under the electric field, that is, electrical switching.

在一些實施例中,切換層104可包括過渡金屬氧化物,諸如氧化鉭、氧化鈦、氧化釔、氧化鉿、氧化鋯、或其他類似氧化物,或可包括金屬氧化物,諸如氧化鋁、氧化鈣、氧化鎂、或其他類似氧化物。在一個實施例中,切換層104可包括由電極102、106之一的金屬形成的氧化物。在替代實施例中,切換層104可包含三元氧化物、四元氧化物,或其他複合氧化物,諸如鈦酸鍶(STO)或鐠鈣錳氧化物(PCMO)。 In some embodiments, the switching layer 104 can include a transition metal oxide such as hafnium oxide, titanium oxide, hafnium oxide, tantalum oxide, zirconium oxide, or other similar oxide, or can include a metal oxide such as aluminum oxide, oxidation. Calcium, magnesium oxide, or other similar oxides. In one embodiment, the switching layer 104 can include an oxide formed from a metal of one of the electrodes 102, 106. In an alternate embodiment, the switching layer 104 can comprise a ternary oxide, a quaternary oxide, or other composite oxide such as barium titanate (STO) or barium calcium manganese oxide (PCMO).

可使用退火製程或其他熱成形製程(諸如藉由曝露於高溫環境或藉由曝露於電阻加熱而進行加熱或其他適當製程)在切換層104中形成一或多個切換通道(圖中未示),以引起切換層中之局部化原子修改。在一些實施例中,可藉由橫越第一電極102與第二電極106施加不同偏壓來調整切換通道之導電性。在其他實施例中,切換層104可加以特殊組態。在其他實施例中,憶阻器之切換層104可由相對較薄的絕緣氧化物層(大致5 nm厚)及相對較厚的重度還原氧化物層組成。在此等實施例(亦稱為免成形憶阻器)中,不需要用於形成切換通道之製程,此係由於氧化物層較薄,以致無需施加高電壓或熱來形成切換通道。在開關操作期間所施加之電壓足以形成切換通道。 One or more switching channels (not shown) may be formed in the switching layer 104 using an annealing process or other thermoforming process, such as by exposure to a high temperature environment or by exposure to resistive heating or other suitable process. To cause localized atomic modifications in the switching layer. In some embodiments, the conductivity of the switching channel can be adjusted by applying a different bias voltage across the first electrode 102 and the second electrode 106. In other embodiments, the switching layer 104 can be specially configured. In other embodiments, the memristor switching layer 104 can be comprised of a relatively thin layer of insulating oxide (approximately 5 nm thick) and a relatively thick, heavily reduced oxide layer. In these embodiments (also referred to as freeform memristors), a process for forming a switching channel is not required because the oxide layer is thin so that no high voltage or heat is applied to form the switching channel. The voltage applied during the switching operation is sufficient to form a switching channel.

在一個實施例中,憶阻器可斷開及接通,此時氧或金屬原子在電場中移動,從而導致切換通道在切換層104中之重組態。特定言之,當原子移動而使得所形成之切換通道自第一電極102到達第二電極106時,憶阻器處於接通狀態,且對於第一電極與第二電極之間提供的電壓具有相對較低的電阻。同樣,當原子移動而使得所形成之切換通道在第一電極102與第二電極106之間具有間隙(稱為切換區(圖中未示))時,憶阻器處於斷開狀態,且對於第一電極與第二電極之間提供的電壓具有相對較高的電阻。在一些實施例中,一個以上切換通道可在加熱時形成於切換層104中。 In one embodiment, the memristor can be turned off and on, at which point oxygen or metal atoms move in the electric field, resulting in reconfiguration of the switching channel in the switching layer 104. In particular, when the atoms move such that the formed switching channel reaches the second electrode 106 from the first electrode 102, the memristor is in an on state, and the voltage supplied between the first electrode and the second electrode has a relative Lower resistance. Similarly, when the atoms move such that the formed switching channel has a gap between the first electrode 102 and the second electrode 106 (referred to as a switching region (not shown)), the memristor is in an off state, and The voltage provided between the first electrode and the second electrode has a relatively high resistance. In some embodiments, more than one switching channel can be formed in the switching layer 104 when heated.

切換層104可介於第一電極102與第二電極106之間。在一些實施例中,第一電極102及第二電極106可包括任何習知電極材料。習知電極材料之實例可包括(但不限於)鋁(Al)、銅(Cu)、金(Au)、鉬(Mo)、鈮(Nb)、鈀(Pd)、鉑(Pt)、釕(Ru)、氧化釕(RuO2)、銀(Ag)、鉭(Ta)、氮化鉭(TaN)、氮化鈦(TiN)、鎢(W)及氮化鎢(WN)。 The switching layer 104 can be interposed between the first electrode 102 and the second electrode 106. In some embodiments, first electrode 102 and second electrode 106 can comprise any conventional electrode material. Examples of conventional electrode materials may include, but are not limited to, aluminum (Al), copper (Cu), gold (Au), molybdenum (Mo), niobium (Nb), palladium (Pd), platinum (Pt), niobium ( Ru), ruthenium oxide (RuO 2 ), silver (Ag), tantalum (Ta), tantalum nitride (TaN), titanium nitride (TiN), tungsten (W), and tungsten nitride (WN).

諸如TiN之金屬氮化物可用作憶阻器裝置之電極材料。使用氧化物切換材料之氮化物電極可能由於不按化學計算量的氮化物對氧化物之化學還原而不穩定。另一方面,使用氮化物憶阻性切換材料之金屬電極在無大的氮儲存器的情況下無法實現數十億次切換循環。 A metal nitride such as TiN can be used as the electrode material of the memristor device. Nitride electrodes using oxide switching materials may be unstable due to chemical reduction of the stoichiometric amount of nitride to oxide. On the other hand, metal electrodes using nitride memristive switching materials cannot achieve billions of switching cycles without large nitrogen reservoirs.

然而,諸如AlN之一些絕緣氮化物可與諸如TiN之氮 化物電極處於熱力平衡。TiN具有大的N溶解度,此使得其成為候選憶阻性電極材料。AlN具有大的帶隙且在Al-N系統中僅具有兩個固相,該兩者使得AlN成為候選憶阻性切換材料。 However, some insulating nitrides such as AlN may be combined with nitrogen such as TiN. The compound electrode is in thermal equilibrium. TiN has a large N solubility, which makes it a candidate memristive electrode material. AlN has a large band gap and has only two solid phases in the Al-N system, both of which make AlN a candidate memristive switching material.

根據本文中之教示,揭示完全氮化物憶阻器。在一實施例中,基於氮化物的憶阻器可包含TiN/AlN/TiN之堆疊。高耐久性、大的接通/斷開比率、低成本及CMOS相容性係所期望的。 According to the teachings herein, a fully nitride memristor is disclosed. In an embodiment, the nitride-based memristor may comprise a stack of TiN/AlN/TiN. High durability, large on/off ratios, low cost, and CMOS compatibility are desirable.

圖2為類似於圖1之視圖,但圖1之切換層104在圖2中由作用區204替換。作用區204具有與切換層104相同之屬性及功能性,但可包含如上文所述之金屬氮化物,諸如AlN。另外,電極202及206具有與電極102、106相同之屬性及功能性,但可包含如上文所述之金屬氮化物,諸如TiN。 2 is a view similar to FIG. 1, but the switching layer 104 of FIG. 1 is replaced by the active area 204 in FIG. The active region 204 has the same properties and functionality as the switching layer 104, but may comprise a metal nitride such as AlN as described above. Additionally, electrodes 202 and 206 have the same properties and functionality as electrodes 102, 106, but may include a metal nitride such as TiN as described above.

圖2與圖1相比進一步展示實例憶阻性元件或憶阻器200之更多細節。憶阻性元件200可包括安置於第一電極202與第二電極206之間的作用區204。作用區204可包括一個或兩個切換相(此處展示為層208、210),及由摻雜劑來源材料形成之導電層212。切換層208、210可各自由能夠載運一種摻雜劑且在所施加電位下運輸該等摻雜劑之切換材料形成。導電層212可安置於切換層208、210之間,且與切換層208、210電接觸。導電層212可由包括該種摻雜劑之摻雜劑來源材料形成,該種摻雜劑能夠在所施加電位下漂移至切換層中且因此改變憶阻性元件200之電導 率。在一些實施例中,可僅存在切換層208;在其他實施例中,可僅存在切換層210,且在其他實施例中,可存在切換層208及210兩者,皆取決於對裝置200之電流-電壓特徵的特定要求。在一些狀況下,202及206之氮化物層可充當摻雜劑來源材料,且導電層212可不包含摻雜劑來源材料。 2 shows further details of an example memristive element or memristor 200 as compared to FIG. The memristive element 200 can include an active region 204 disposed between the first electrode 202 and the second electrode 206. The active region 204 can include one or two switching phases (shown here as layers 208, 210), and a conductive layer 212 formed of a dopant-derived material. The switching layers 208, 210 can each be formed of a switching material capable of carrying a dopant and transporting the dopants at an applied potential. Conductive layer 212 can be disposed between switching layers 208, 210 and in electrical contact with switching layers 208, 210. Conductive layer 212 may be formed of a dopant-derived material including such dopants that are capable of drifting into the switching layer at the applied potential and thus changing the conductance of memristive element 200 rate. In some embodiments, only the switching layer 208 may be present; in other embodiments, only the switching layer 210 may be present, and in other embodiments, there may be both switching layers 208 and 210, depending on the device 200 Specific requirements for current-voltage characteristics. In some cases, the nitride layers 202 and 206 can serve as dopant source materials, and the conductive layer 212 can comprise no dopant source material.

當將電位在第一方向上(諸如在正z軸方向上)施加至憶阻性元件200時,該等切換層之一(第一切換層)顯現摻雜劑過量,且另一切換層(第二切換層)顯現摻雜劑不足。當反轉電位之方向時,電壓電位極性被反轉,且摻雜劑之漂移方向被反轉。第一切換層顯現摻雜劑不足,且第二切換層顯現摻雜劑過量。 When a potential is applied to the memristive element 200 in a first direction, such as in the positive z-axis direction, one of the switching layers (the first switching layer) exhibits an excess of dopant and another switching layer ( The second switching layer) exhibits insufficient dopant. When the direction of the potential is reversed, the polarity of the voltage potential is reversed, and the drift direction of the dopant is reversed. The first switching layer exhibits insufficient dopant and the second switching layer exhibits an excess of dopant.

在圖2中所描繪之裝置中,可藉由在作用區204之至少部分中引入氮空位而使其導電。摻雜劑種類(亦即氮空位VN)在電場下擴散(可藉由焦耳(Joule)加熱來輔助)。在彼等部分中,金屬氮化物處於氮不足狀態,表示(在AlN之狀況下)為AlN1-x,其中x表示來自AlN之氮不足。在一些實施例中,x之值可小於0.2。在其他實施例中,x之值可小於0.02。 In the device depicted in FIG. 2, it can be made conductive by introducing nitrogen vacancies in at least a portion of the active region 204. The dopant species (i.e., nitrogen vacancies V N ) diffuses under an electric field (which can be assisted by Joule heating). In these sections, the metal nitride is in a nitrogen-deficient state, indicating (in the case of AlN) AlN 1-x , where x represents the nitrogen deficiency from AlN. In some embodiments, the value of x can be less than 0.2. In other embodiments, the value of x can be less than 0.02.

可使用其他材料替代AlN作為作用區204。此種材料之實例包括(但不限於)三價元素之氮化物,諸如BN、GaN及InN,以及最大原子價為3且形成半導性氮化物之金屬的氮化物,諸如ScN、YN、LaN、NdN、SmN、EuN、GdN、DyN、HoN、ErN、TmN、YbN及LuN。當元素之總原子價與氮之原子價互補以形成填滿價層時(例如,對於Si3N4及 Ge3N4),其他半導性化合物出現。此作用區204之導電部分212可包含AN1-x,其中A可為B、Ga、In、Sc、Y、La、Nd、Sm、Eu、Gd、Dy Ho、Er、Tm、Yb或Lu,且x之值可小於0.2,或包含Si3N4-x或Ge3N4-x,其中現在x之值可小於0.8。此外,可藉由以任何組合使用上述化合物與彼此或與未明確提及之其他氮化物之合金來獲得極佳憶阻器效能。另外,可藉由使用由不同氮化物及/或合金之多個層構成之異質結構來獲得新特性及極佳效能。 Other materials may be used in place of AlN as the active region 204. Examples of such materials include, but are not limited to, nitrides of trivalent elements such as BN, GaN, and InN, and nitrides of metals having a maximum valence of 3 and forming a semiconducting nitride, such as ScN, YN, LaN , NdN, SmN, EuN, GdN, DyN, HoN, ErN, TmN, YbN and LuN. When the total valence of the element is complementary to the valence of nitrogen to form a filled valence layer (eg, for Si 3 N 4 and Ge 3 N 4 ), other semiconductive compounds are present. The conductive portion 212 of the active region 204 may comprise AN 1-x , where A may be B, Ga, In, Sc, Y, La, Nd, Sm, Eu, Gd, Dy Ho, Er, Tm, Yb or Lu, And the value of x can be less than 0.2, or include Si 3 N 4-x or Ge 3 N 4-x , where the value of x can now be less than 0.8. Furthermore, excellent memristor performance can be obtained by using the above compounds in any combination with each other or with other nitrides not specifically mentioned. In addition, new features and excellent performance can be obtained by using heterostructures composed of multiple layers of different nitrides and/or alloys.

其他材料可替代TiN用作電極202、206。此種材料之實例包括(但不限於)非三價過渡金屬之金屬一氮化物化合物,諸如氮化鉭(TaN)、氮化鉿(HfN)、氮化鋯(ZrN)、氮化鉻(CrN)及氮化鈮(NbN),以及金屬或半金屬氮化物,諸如氮化鎢(WN2)、氮化鉬(Mo2N)及氮化鐵(Fe2N、Fe3N、Fe4N及Fe16N2),以及其合金,諸如三元氮化物。另外,亦可使用此等氮化物與其他金屬氮化物(例如,AlN)之合金來形成三元合金,諸如TiAlN。電極202、206可各自由相同材料或不同材料構成。 Other materials may be used as the electrodes 202, 206 instead of TiN. Examples of such materials include, but are not limited to, metal-nitride compounds other than trivalent transition metals, such as tantalum nitride (TaN), hafnium nitride (HfN), zirconium nitride (ZrN), chromium nitride (CrN) And bismuth nitride (NbN), and metal or semi-metal nitrides such as tungsten nitride (WN 2 ), molybdenum nitride (Mo 2 N), and iron nitride (Fe 2 N, Fe 3 N, Fe 4 N) And Fe 16 N 2 ), and alloys thereof, such as ternary nitrides. Alternatively, alloys of such nitrides with other metal nitrides (e.g., AlN) may be used to form ternary alloys, such as TiAlN. The electrodes 202, 206 can each be constructed of the same material or different materials.

已識別出針對改良之裝置效能之條件。此等條件可包括(1)基質與通道之間的熱穩定性;(2)電極與切換材料之間的熱穩定性;及(3)用於可移動種類(N空位)之儲存器。 Conditions for improved device performance have been identified. Such conditions may include (1) thermal stability between the substrate and the channel; (2) thermal stability between the electrode and the switching material; and (3) reservoir for the movable species (N vacancy).

圖3描繪Al-Ti-N系統之三元相圖300。Al-N系統之二元相圖302與該三元相圖之Al-N部分相關聯,且Ti-N系統之二元相圖304與該三元相圖之Ti-N部分相關聯。 FIG. 3 depicts a ternary phase diagram 300 of an Al-Ti-N system. The binary phase diagram 302 of the Al-N system is associated with the Al-N portion of the ternary phase diagram, and the binary phase diagram 304 of the Ti-N system is associated with the Ti-N portion of the ternary phase diagram.

基質與通道之間的熱穩定性之實例由Al-N提供。Al-N系統提供相當簡單的相圖302,其中形成單一化合物,即AlN。因此,(Al)與Al側上的AlN平衡,且N與N側上的AlN平衡。(Al)係指具有特定量的N溶質之Al金屬。 An example of thermal stability between the substrate and the channel is provided by Al-N. The Al-N system provides a relatively simple phase diagram 302 in which a single compound, AlN, is formed. Therefore, (Al) is balanced with AlN on the Al side, and N is balanced with AlN on the N side. (Al) means an Al metal having a specific amount of N solute.

電極與切換材料之間的熱穩定性之實例由Al-Ti-N三元相圖300中展示之TiN-AlN提供。連結線306連接三元相圖300中之AlN與TiN相,從而指示此兩個相處於熱力平衡,亦即,此兩個相之間無反應,即使在由切換操作中的電加熱誘發之高溫下亦如此。基於此情況,可藉由組合TiN/AlN/TiN來提供憶阻器之完整結構(電極/作用層/電極)。 An example of thermal stability between the electrode and the switching material is provided by TiN-AlN as shown in the Al-Ti-N ternary phase diagram 300. The connecting line 306 connects the AlN and TiN phases in the ternary phase diagram 300, thereby indicating that the two phases are in thermal equilibrium, that is, there is no reaction between the two phases, even in the high temperature induced by electric heating in the switching operation. The same is true. Based on this, the complete structure (electrode/active layer/electrode) of the memristor can be provided by combining TiN/AlN/TiN.

用於可移動種類(此處為N空位)之儲存器之實例為對可移動種類具有較大溶解度之材料,亦即TiN,諸如展示於Ti-N二元相圖304中。 An example of a reservoir for a movable species (here N vacancies) is a material that has greater solubility for the movable species, i.e., TiN, such as shown in the Ti-N binary phase diagram 304.

因此,完全氮化物憶阻器可包括(作為一實例)具有導電部分AlN1-x(212)/TiN(電極206)之TiN(電極202)/AlN(作用區204),或更簡單地,TiN/AlN-AlN1-x/TiN。TiN對於N具有較大溶解度,從而使其成為充當N空位之儲存器及儲集器之適當電極。AlN僅具有兩個穩定的固相(如Ta-O,常用於憶阻器中之另一材料)。AlN為大帶隙絕緣體,從而導致大的接通/斷開電導比,以及減小之漏電流且因此導致減小之寄生電阻。TiN/AlN-AlN1-x/TiN系統具有熱穩定性,且無歸因於電加熱之熱反應發生,熱反應可不利地改變裝置狀態。最終,基於前述各項,此系統可具 有極大耐久性,大約至少數十億次切換循環。 Thus, a fully nitride memristor can include, as an example, TiN (electrode 202) / AlN (active region 204) having a conductive portion AlN 1-x (212) / TiN (electrode 206), or more simply, TiN/AlN-AlN 1-x /TiN. TiN has a greater solubility for N, making it the appropriate electrode for the reservoir and reservoir that acts as an N vacancy. AlN has only two stable solid phases (such as Ta-O, which is commonly used in another material in memristors). AlN is a large bandgap insulator, resulting in a large on/off conductance ratio, as well as reduced leakage current and thus reduced parasitic resistance. The TiN/AlN-AlN 1-x /TiN system is thermally stable and does not occur due to the thermal reaction of electrical heating, which can adversely alter the state of the device. Finally, based on the foregoing, the system can have great durability, with at least a few billion switching cycles.

同樣,在另一實施例中,完全氮化物憶阻器可包含具有導電部分Si3N4-x(212)/TiN(電極206)之TiN(電極202)/Si3N4(作用區204),或更簡單地,TiN/Si3N4-Si3N4-x/TiN。 Also, in another embodiment, the fully nitride memristor may comprise TiN (electrode 202) / Si 3 N 4 having a conductive portion Si 3 N 4-x (212) / TiN (electrode 206) (acting region 204 ) or, more simply, TiN/Si 3 N 4 -Si 3 N 4-x /TiN.

圖4為描繪根據本文中所揭示的實施例之用於製造憶阻器之實例方法400之流程圖。應理解,圖4中所描繪之方法400可包括額外步驟,且可在不脫離方法400之範疇的情況下移除及/或修改本文中所描述之一些步驟。 4 is a flow diagram depicting an example method 400 for fabricating a memristor in accordance with embodiments disclosed herein. It should be understood that the method 400 depicted in FIG. 4 may include additional steps, and some of the steps described herein may be removed and/or modified without departing from the scope of the method 400.

首先,可形成(402)底部或第一電極202,諸如藉由濺鍍、蒸鍍、ALD、共沈積、化學氣相沈積、IBAD(離子束輔助沈積)或任何其他薄膜沈積技術。第一電極202之厚度可在約50 nm至數微米之範圍內。 First, a bottom or first electrode 202 can be formed (402), such as by sputtering, evaporation, ALD, co-deposition, chemical vapor deposition, IBAD (ion beam assisted deposition), or any other thin film deposition technique. The thickness of the first electrode 202 may range from about 50 nm to several microns.

可接著在電極202上形成(404)作用區204。在一個實施例中,作用區204為半導電或標稱絕緣且弱離子性導體。可藉由濺鍍、原子層沈積、化學氣相沈積、蒸鍍、共濺鍍(例如使用兩種金屬氧化物靶材)或其他此種製程來沈積作用區204。作用區204之厚度可大致為4 nm至50 nm。 An active region 204 can then be formed (404) on the electrode 202. In one embodiment, the active region 204 is a semiconducting or nominally insulating and weakly ionic conductor. The active region 204 can be deposited by sputtering, atomic layer deposition, chemical vapor deposition, evaporation, co-sputtering (e.g., using two metal oxide targets), or other such process. The thickness of the active region 204 can be approximately 4 nm to 50 nm.

可在作用區204上形成(406)頂部或第二電極206。可藉由諸如上文針對形成第一電極302所描述之任何適當形成製程來提供電極306。在一些實施例中,可提供一個以上電極。第二電極306之厚度可在約50 nm至數微米之範圍內。 A top or second electrode 206 can be formed (406) on the active region 204. Electrode 306 can be provided by any suitable forming process such as described above for forming first electrode 302. In some embodiments, more than one electrode can be provided. The thickness of the second electrode 306 can range from about 50 nm to a few microns.

在一些實施例中,可形成切換通道(圖中未示)。在一實施例中,切換通道係藉由加熱作用區204而形成。可 使用許多不同製程(包括熱退火或使電流流過憶阻器)來完成加熱。在使用具有內建式電導通道的免成形憶阻器之其他實施例中,由於切換通道為內建式的而可能無需加熱,且如前文所論述,施加第一電壓(其可與操作電壓大致相同)至憶阻器200之原態(virgin state)可能足以形成切換通道。 In some embodiments, a switching channel (not shown) can be formed. In one embodiment, the switching channel is formed by heating the active region 204. can Heating is accomplished using a number of different processes, including thermal annealing or passing current through a memristor. In other embodiments using a freeform memristor having a built-in conductance channel, since the switching channel is built-in, heating may not be required, and as discussed above, a first voltage is applied (which may approximate the operating voltage) The same) to the virgin state of the memristor 200 may be sufficient to form a switching channel.

在一些狀況下,可改變底部電極202及頂部電極206之形成順序。 In some cases, the order in which the bottom electrode 202 and the top electrode 206 are formed can be changed.

圖5展示根據本文中所描述之原理的另一實例憶阻性元件500。憶阻性元件500包括安置於第一電極502與第二電極506之間的兩個作用區504a、504b。作用區504a、504b中之每一者可包括由能夠載運一種摻雜劑之切換材料形成之切換層508、510及由摻雜劑來源材料形成之導電層512a、512b。第三或中間電極514安置於作用區504a、504b之間且與作用區504a、504b兩者電接觸。可交換元件510與512a之相對位置,且亦可交換元件508與512b之相對位置。 FIG. 5 shows another example memristive element 500 in accordance with the principles described herein. The memristive element 500 includes two active regions 504a, 504b disposed between the first electrode 502 and the second electrode 506. Each of the active regions 504a, 504b can include switching layers 508, 510 formed of a switching material capable of carrying a dopant and conductive layers 512a, 512b formed of a dopant source material. A third or intermediate electrode 514 is disposed between the active regions 504a, 504b and in electrical contact with both active regions 504a, 504b. The relative positions of the interchangeable elements 510 and 512a, and the relative positions of the elements 508 and 512b, may also be exchanged.

當將電位在第一方向上(諸如在正z軸方向上)施加至憶阻性元件500時,該等切換層之一(第一切換層)顯現摻雜劑過量,且另一切換層(第二切換層)顯現摻雜劑不足。當反轉電位之方向時,電壓電位極性被反轉,且摻雜劑之漂移方向被反轉。第一切換層顯現摻雜劑不足,且第二切換層顯現摻雜劑過量。第三電極514可阻斷可移動摻雜劑種類,且亦取決於電極與憶阻性氮化物之相對工作功 能而調諧此界面之接觸特性。 When a potential is applied to the memristive element 500 in a first direction, such as in the positive z-axis direction, one of the switching layers (the first switching layer) exhibits an excess of dopant and another switching layer ( The second switching layer) exhibits insufficient dopant. When the direction of the potential is reversed, the polarity of the voltage potential is reversed, and the drift direction of the dopant is reversed. The first switching layer exhibits insufficient dopant and the second switching layer exhibits an excess of dopant. The third electrode 514 can block the movable dopant species and also depends on the relative working work of the electrode and the memristive nitride. Can adjust the contact characteristics of this interface.

應理解,本文中所描述之憶阻器200、500(諸如圖2及圖5中所描繪之實例憶阻器)可包括額外組件,且可在不脫離本文中所揭示的憶阻器之範疇的情況下移除及/或修改本文中所描述之一些組件。亦應理解,諸圖中所描繪之組件並非按比例繪製,且因此,該等組件可相對於彼此具有與諸圖中所展示不同之相對大小。例如,上部或第二電極206可實質上垂直於下部或第一電極202而配置,或可相對於彼此以某一其他非零角配置。作為另一實施例,作用區204可比電極202及206中的任一者或兩者相對較小或相對較大。 It should be understood that the memristors 200, 500 described herein (such as the example memristors depicted in Figures 2 and 5) may include additional components and may be within the scope of the memristor disclosed herein. Some of the components described herein are removed and/or modified. It is also understood that the components depicted in the figures are not drawn to scale, and therefore, the components may have different relative sizes relative to each other as shown in the figures. For example, the upper or second electrode 206 can be configured substantially perpendicular to the lower or first electrode 202, or can be disposed at some other non-zero angle relative to each other. As another example, the active region 204 can be relatively smaller or relatively larger than either or both of the electrodes 202 and 206.

完全氮化物憶阻器200可解決具有氮化物電極之基於氧化物的憶阻器之由氧化物切換層104與氮化物電極102、106之間的反應所引起的可靠性及穩定性問題。用氮化物作用區204替換氧化物切換層104可減少此等反應。 The fully nitride memristor 200 solves the reliability and stability problems caused by the reaction between the oxide switching layer 104 and the nitride electrodes 102, 106 of the oxide-based memristor having a nitride electrode. Replacing the oxide switching layer 104 with the nitride active region 204 reduces these reactions.

完全氮化物憶阻器可具有高耐久性、簡單結構、長期可靠性及低成本。 A fully nitride memristor can have high durability, simple structure, long-term reliability, and low cost.

100‧‧‧裝置 100‧‧‧ device

102‧‧‧底部或第一電極 102‧‧‧ bottom or first electrode

104‧‧‧金屬氧化物層/切換層 104‧‧‧Metal oxide layer/switching layer

106‧‧‧頂部或第二電極 106‧‧‧Top or second electrode

200‧‧‧憶阻性元件或憶阻器/裝置 200‧‧‧Resistance elements or memristors/devices

202‧‧‧第一電極 202‧‧‧First electrode

204‧‧‧作用區 204‧‧‧Action area

206‧‧‧第二電極 206‧‧‧second electrode

208‧‧‧切換層 208‧‧‧Switching layer

210‧‧‧切換層 210‧‧‧Switching layer

212‧‧‧導電層 212‧‧‧ Conductive layer

300‧‧‧三元相圖 300‧‧‧ ternary phase diagram

302‧‧‧二元相圖 302‧‧‧ binary phase diagram

304‧‧‧二元相圖 304‧‧‧ binary phase diagram

400‧‧‧方法 400‧‧‧ method

500‧‧‧憶阻性元件 500‧‧‧Resistive components

502‧‧‧第一電極 502‧‧‧First electrode

504a‧‧‧作用區 504a‧‧‧Action area

504b‧‧‧作用區 504b‧‧‧Action area

506‧‧‧第二電極 506‧‧‧second electrode

508‧‧‧切換層 508‧‧‧Switching layer

510‧‧‧切換層 510‧‧‧Switching layer

512a‧‧‧導電層 512a‧‧‧ Conductive layer

512b‧‧‧導電層 512b‧‧‧ Conductive layer

514‧‧‧第三或中間電極 514‧‧‧ Third or intermediate electrode

圖1為本發明憶阻器裝置之一實施例。 1 is an embodiment of a memrist device of the present invention.

圖2為基於本文中所揭示之原理的憶阻器裝置之一實施例。 2 is an embodiment of a memristor device based on the principles disclosed herein.

圖3為可用於實踐本文中所揭示之各種實施例的Al-Ti-N系統之三元相圖,連同Al-N及Ti-N系統之二元相圖。 3 is a ternary phase diagram of an Al-Ti-N system that can be used to practice the various embodiments disclosed herein, along with binary phase diagrams of Al-N and Ti-N systems.

圖4為描繪根據本文中所揭示的實施例之用於製造憶阻器之實例方法的流程圖。 4 is a flow chart depicting an example method for fabricating a memristor in accordance with embodiments disclosed herein.

圖5說明基於本文中所揭示之原理之憶阻器裝置之另一實施例。 FIG. 5 illustrates another embodiment of a memristor device based on the principles disclosed herein.

200‧‧‧憶阻性元件或憶阻器/裝置 200‧‧‧Resistance elements or memristors/devices

202‧‧‧第一電極 202‧‧‧First electrode

204‧‧‧作用區 204‧‧‧Action area

206‧‧‧第二電極 206‧‧‧second electrode

208‧‧‧切換層 208‧‧‧Switching layer

210‧‧‧切換層 210‧‧‧Switching layer

212‧‧‧導電層 212‧‧‧ Conductive layer

Claims (14)

一種基於氮化物之憶阻器,其包括:一第一電極,其包含一第一氮化物材料;一第二電極,其包含一第二氮化物材料;及一作用區,其定位於該第一電極與該第二電極之間,其中該作用區包括一半導電或標稱絕緣且弱離子性切換氮化物相,其中每一作用區或其一部分將形成一切換通道。 A nitride-based memristor comprising: a first electrode comprising a first nitride material; a second electrode comprising a second nitride material; and an active region positioned at the first Between an electrode and the second electrode, wherein the active region comprises a semiconducting or nominally insulating and weakly ionic switching nitride phase, wherein each active region or a portion thereof will form a switching channel. 如申請專利範圍第1項之憶阻器,其進一步包括包含一第三氮化物材料之一第三電極,該第三電極安置於該作用區中以便形成兩個分離的作用區。 The memristor of claim 1, further comprising a third electrode comprising a third nitride material disposed in the active region to form two separate active regions. 如申請專利範圍第1項或第2項之憶阻器,其中每一電極包含獨立地選自由以下各物組成之群的氮化物:非三價過渡金屬之金屬一氮化物化合物;金屬氮化物;及半金屬氮化物。 A memristor according to claim 1 or 2, wherein each electrode comprises a nitride independently selected from the group consisting of: a metal-nitride compound other than a trivalent transition metal; a metal nitride ; and semi-metal nitrides. 如申請專利範圍第3項之憶阻器,其中每一電極包含獨立地選自由以下各物組成之群的氮化物:氮化鉭、氮化鉿、氮化鋯、氮化鉻及氮化鈮;氮化鈦、氮化鎢、氮化鉬及氮化鐵;及其合金,及與其他金屬氮化物之合金。 A memristor according to claim 3, wherein each of the electrodes comprises a nitride independently selected from the group consisting of tantalum nitride, tantalum nitride, zirconium nitride, chromium nitride, and tantalum nitride. Titanium nitride, tungsten nitride, molybdenum nitride and iron nitride; and alloys thereof, and alloys with other metal nitrides. 如申請專利範圍第1項或第2項之憶阻器,其中該作用區選自由以下各物組成之群:三價元素之氮化物; 最大原子價為3且形成半導性氮化物的金屬之氮化物;及與氮的原子價互補以形成填滿價層之元素。 The memristor of claim 1 or 2, wherein the active region is selected from the group consisting of: a nitride of a trivalent element; A nitride of a metal having a maximum valence of 3 and forming a semiconducting nitride; and an atomic valence complementary to nitrogen to form an element filling the valence layer. 如申請專利範圍第5項之憶阻器,其中該作用區選自由以下各物組成之群:AlN、BN、GaN及InN;ScN、YN、LaN、NdN、SmN、EuN、GdN、DyN、HoN、ErN、TmN、YbN及LuN;及Si3N4及Ge3N4The memristor of claim 5, wherein the active region is selected from the group consisting of: AlN, BN, GaN, and InN; ScN, YN, LaN, NdN, SmN, EuN, GdN, DyN, HoN , ErN, TmN, YbN and LuN; and Si 3 N 4 and Ge 3 N 4 . 如申請專利範圍第5項之憶阻器,其中該切換氮化物相選自由以下各物組成之群:AN1-x,其中A選自由以下各物組成之群:Al、B、Ga、In、Sc、Y、La、Nd、Sm、Eu、Gd、Ho、Er、Tm、Yb及Lu,且其中x小於0.2;及Si3N4-x及Ge3N4-x,其中x小於0.8;及其合金,及與其他氮化物之合金。 The memristor of claim 5, wherein the switching nitride phase is selected from the group consisting of: AN 1-x , wherein A is selected from the group consisting of: Al, B, Ga, In , Sc, Y, La, Nd, Sm, Eu, Gd, Ho, Er, Tm, Yb, and Lu, and wherein x is less than 0.2; and Si 3 N 4-x and Ge 3 N 4-x , wherein x is less than 0.8 ; and its alloys, and alloys with other nitrides. 如申請專利範圍第1項之憶阻器,其中該第一電極包含氮化鈦,該作用區包含氮化鋁,該切換氮化物相包含AlN1-x,其中x小於0.2,且該第二電極包含氮化鈦。 The memristor of claim 1, wherein the first electrode comprises titanium nitride, the active region comprises aluminum nitride, the switching nitride phase comprises AlN 1-x , wherein x is less than 0.2, and the second The electrode comprises titanium nitride. 如申請專利範圍第1項之憶阻器,其中該第一電極包含氮化鈦,該作用區包含氮化矽,該切換氮化物相包含Si3N4-x,其中x小於0.8,且該第二電極包含氮化鈦。 The memristor of claim 1, wherein the first electrode comprises titanium nitride, the active region comprises tantalum nitride, and the switching nitride phase comprises Si 3 N 4-x , wherein x is less than 0.8, and The second electrode comprises titanium nitride. 如申請專利範圍第1項或第2項之憶阻器,其中每一電極具有50nm或50nm以上之一厚度,且其中每一作 用區具有在4nm至50nm之範圍內的一厚度。 A memristor according to claim 1 or 2, wherein each electrode has a thickness of 50 nm or more, and each of them The use zone has a thickness in the range of 4 nm to 50 nm. 如申請專利範圍第1項或第2項之憶阻器,其中該作用區包含一異質結構,該異質結構包含不同氮化物之多個層。 A memristor according to claim 1 or 2, wherein the active region comprises a heterostructure comprising a plurality of layers of different nitrides. 一種用於製造如申請專利範圍第1項之憶阻器之方法,該方法包括:提供該第一電極;在該第一電極上形成該作用區;及在該作用區上形成該第二電極。 A method for manufacturing a memristor according to claim 1, the method comprising: providing the first electrode; forming the active region on the first electrode; and forming the second electrode on the active region . 如申請專利範圍第12項之方法,其進一步包括在該作用區中形成一切換通道。 The method of claim 12, further comprising forming a switching channel in the active area. 一種用於製造如申請專利範圍第2項之憶阻器之方法,該方法包括:提供該第一電極;在該第一電極上形成該第一作用區;在該第一作用區上形成該第三電極;在該第三電極上形成該第二作用區;及在該第二作用區上形成該第二電極。 A method for manufacturing a memristor according to claim 2, the method comprising: providing the first electrode; forming the first active region on the first electrode; forming the first active region a third electrode; forming the second active region on the third electrode; and forming the second electrode on the second active region.
TW101126933A 2011-08-03 2012-07-26 Nitride-based memristors TWI520393B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/046467 WO2013019228A1 (en) 2011-08-03 2011-08-03 Nitride-based memristors

Publications (2)

Publication Number Publication Date
TW201314981A TW201314981A (en) 2013-04-01
TWI520393B true TWI520393B (en) 2016-02-01

Family

ID=47629568

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101126933A TWI520393B (en) 2011-08-03 2012-07-26 Nitride-based memristors

Country Status (6)

Country Link
US (1) US20140158973A1 (en)
EP (1) EP2740151A4 (en)
KR (1) KR101528572B1 (en)
CN (1) CN103797573A (en)
TW (1) TWI520393B (en)
WO (1) WO2013019228A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870322A (en) * 2016-04-22 2016-08-17 长安大学 Aluminum-based thin film memristor having self-studying function and fabrication method of aluminum-based thin film memristor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015167351A1 (en) 2014-04-30 2015-11-05 Nokia Technologies Oy Memristor and method of production thereof
WO2016085470A1 (en) * 2014-11-25 2016-06-02 Hewlett-Packard Development Company, L.P. Bi-polar memristor
US9735357B2 (en) 2015-02-03 2017-08-15 Crossbar, Inc. Resistive memory cell with intrinsic current control
US10840442B2 (en) * 2015-05-22 2020-11-17 Crossbar, Inc. Non-stoichiometric resistive switching memory device and fabrication methods
CN105720193A (en) * 2016-02-02 2016-06-29 中国科学院长春光学精密机械与物理研究所 III group nitride memristor with repeatable bipolar impedance switching characteristics
CN108091657B (en) * 2017-12-27 2020-05-12 中国科学院长春光学精密机械与物理研究所 Nonvolatile memory unit, preparation method thereof and nonvolatile memory
CN109449286B (en) * 2018-10-10 2020-04-24 清华大学 Phase-change nanoparticle-embedded nitride memristor and preparation method thereof
CN110379919B (en) * 2019-05-30 2021-04-02 西安电子科技大学 Resistive random access memory and preparation method thereof
CN110224064B (en) * 2019-06-26 2020-10-27 西安交通大学 BN (Al) film-based resistance switch and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935951B2 (en) * 1996-10-28 2011-05-03 Ovonyx, Inc. Composite chalcogenide materials and devices
US7741638B2 (en) * 2005-11-23 2010-06-22 Hewlett-Packard Development Company, L.P. Control layer for a nanoscale electronic switching device
KR100706803B1 (en) * 2006-01-19 2007-04-12 삼성전자주식회사 Semiconductor device and method of forming the same
US7829875B2 (en) * 2006-03-31 2010-11-09 Sandisk 3D Llc Nonvolatile rewritable memory cell comprising a resistivity-switching oxide or nitride and an antifuse
JP4857014B2 (en) * 2006-04-19 2012-01-18 パナソニック株式会社 Resistance change element and resistance change type memory using the same
US8766224B2 (en) * 2006-10-03 2014-07-01 Hewlett-Packard Development Company, L.P. Electrically actuated switch
US8101937B2 (en) * 2007-07-25 2012-01-24 Intermolecular, Inc. Multistate nonvolatile memory elements
US8455855B2 (en) * 2009-01-12 2013-06-04 Micron Technology, Inc. Memory cell having dielectric memory element
US8450711B2 (en) * 2009-01-26 2013-05-28 Hewlett-Packard Development Company, L.P. Semiconductor memristor devices
JP2010225741A (en) * 2009-03-23 2010-10-07 Toshiba Corp Nonvolatile semiconductor memory device
TW201121041A (en) * 2009-07-30 2011-06-16 Hewlett Packard Development Co Thermally stable nanoscale switching device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870322A (en) * 2016-04-22 2016-08-17 长安大学 Aluminum-based thin film memristor having self-studying function and fabrication method of aluminum-based thin film memristor

Also Published As

Publication number Publication date
WO2013019228A1 (en) 2013-02-07
CN103797573A (en) 2014-05-14
KR101528572B1 (en) 2015-06-12
KR20140051346A (en) 2014-04-30
EP2740151A1 (en) 2014-06-11
EP2740151A4 (en) 2014-07-02
TW201314981A (en) 2013-04-01
US20140158973A1 (en) 2014-06-12

Similar Documents

Publication Publication Date Title
TWI520393B (en) Nitride-based memristors
US10403681B2 (en) Memory device including a variable resistance material layer
US10566529B2 (en) Memory cell and memory device comprising selection device layer, middle electrode layer and variable resistance layer
CN112652643B (en) memory device
TWI529988B (en) Memristor structure with a dopant source
TWI457926B (en) Memory devices with enhanced isolation of memory cells, systems including same and methods of forming same
US20170244026A1 (en) Variable resistance memory device and method of manufacturing the same
US8891284B2 (en) Memristors based on mixed-metal-valence compounds
JP5796079B2 (en) Device structure for long-term durability memristors
CN103907192A (en) Resistive switching devices having alloyed electrodes and methods of formation thereof
US9257645B2 (en) Memristors having mixed oxide phases
CN114447220A (en) Semiconductor device including chalcogen compound and semiconductor apparatus including the same
US8779409B2 (en) Low energy memristors with engineered switching channel materials
US20140291599A1 (en) Resistive random access memory
US20160028005A1 (en) Memristor structure with a dopant source
EP2997597A1 (en) Nanochannel array of nanowires for resistive memory devices
KR20170107453A (en) A resistive memory array having a negative resistance temperature coefficient material
KR20220063573A (en) Chalcogen compound and semiconductor device inclduing the same
KR20150128930A (en) Memristors with dopant-compensated switching
WO2017131643A1 (en) Stable threshold switching materials for selectors of resistive memories
US20160225823A1 (en) Switching resistance memory devices with interfacial channels
US20220406842A1 (en) Chalcogenide material, device and memory device including the same
KR20220059879A (en) Semiconductor device including chalcogen compound and semiconductor appratus inclduing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees