TWI520237B - Methods and apparatuses for non-planar chip assembly - Google Patents

Methods and apparatuses for non-planar chip assembly Download PDF

Info

Publication number
TWI520237B
TWI520237B TW101135400A TW101135400A TWI520237B TW I520237 B TWI520237 B TW I520237B TW 101135400 A TW101135400 A TW 101135400A TW 101135400 A TW101135400 A TW 101135400A TW I520237 B TWI520237 B TW I520237B
Authority
TW
Taiwan
Prior art keywords
wafer
pad
curved
desired deformation
deformation
Prior art date
Application number
TW101135400A
Other languages
Chinese (zh)
Other versions
TW201322348A (en
Inventor
范龍生
Original Assignee
晶祈生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/300,547 external-priority patent/US8613135B2/en
Application filed by 晶祈生技股份有限公司 filed Critical 晶祈生技股份有限公司
Publication of TW201322348A publication Critical patent/TW201322348A/en
Application granted granted Critical
Publication of TWI520237B publication Critical patent/TWI520237B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Micromachines (AREA)

Description

用於非平面晶片組件之方法及裝置 Method and apparatus for non-planar wafer assembly

本發明一般而言係有關於微型裝置之組裝程序,特定而言係有關於三維曲面彈性裝置晶片之組裝。 The present invention relates generally to assembly procedures for microdevices, and more particularly to assembly of three-dimensional curved elastic device wafers.

積體電路業依賴於「平面」技術以減少光蝕刻方法之特徵尺寸限制並根據摩爾定律(Moore's law)發展,乃因當數值孔徑被增加以定義光蝕刻方法中的更細微之特徵時,焦距深度會被降低。然而,基於此平面技術之裝置平面表面可能會限制在這些裝置間或與一或多個外部系統間之互動及/或互連的幾何條件。 The integrated circuit industry relies on "planar" techniques to reduce the feature size limitations of photolithography methods and develop according to Moore's law, because when the numerical aperture is increased to define more subtle features in photolithography, the focal length The depth will be reduced. However, device planar surfaces based on this planar technology may limit the geometrical conditions of interaction and/or interconnection between these devices or with one or more external systems.

因此,傳統平面技術可能無法提供具有非平面幾何之裝置,以將裝置間或與外部系統間之互動的複雜性最小化。 Therefore, conventional planar techniques may not provide devices with non-planar geometry to minimize the complexity of interaction between devices or with external systems.

於一實施例中,一種用於非平面(例如類球面)結構例如半導體晶片(或晶片堆疊)之非平面表面片體的組裝方法可包含將受應力膜沈積於薄晶片之薄半導體基板的其中一側(或兩側),以用於晶片之小型形變。受應力膜可沈積成具有受應力膜圖案(例如藉由利用光蝕刻及蝕刻或掀離(lift-off)製程),以用於具有控制形狀之小型形變。另則,槽孔可產生於薄晶片上,且受應力膜可沈積成使得晶片之大型形變得以進行。 In one embodiment, an assembly method for a non-planar surface sheet of a non-planar (eg, spherical-like) structure, such as a semiconductor wafer (or wafer stack), can include depositing a stressed film on a thin semiconductor substrate of a thin wafer. One side (or both sides) for small deformation of the wafer. The stressed film can be deposited to have a stressed film pattern (eg, by utilizing photolithography and etching or lift-off processes) for small deformations with controlled shapes. Alternatively, the slots can be created on a thin wafer and the stressed film can be deposited such that the large shape of the wafer becomes conductive.

於另一實施例中,"槽孔"可產生於薄晶片上,且晶片可接合至限制元件(例如環形片體或另一晶片)之分離塊 體,以使晶片之較大型形變得以進行。"槽孔"可藉由具有變動寬度之連續開孔而形成,上述連續開孔從晶片內之一位置延伸到晶片邊緣且產生新的直線或彎曲邊緣及側壁以用於局部結構,且當局部結構受到彎曲或變形應力時可允許某些側向位移。上述接合可為機械性限制且選擇性地在橫跨槽孔(包含晶片)之元件接合塊體之間提供電性連結。將具有受應力膜之槽孔與限制元件結合可形成用於晶片之彎曲表面。二個或以上之經開槽的晶片塊體可接合成具有相互或多個限制以將彎曲塊體保持於適當地方。於某些實施例中,因而形成之彎曲結構可適用於腦機介面(例如視網膜義體)或訊號處理單元之三維互連的新結構。 In another embodiment, a "slot" can be produced on a thin wafer, and the wafer can be bonded to a separate block of a confinement element (eg, an annular sheet or another wafer) Body to make the larger shape of the wafer work. "Slot" may be formed by a continuous opening having a varying width that extends from a location within the wafer to the edge of the wafer and creates new straight or curved edges and sidewalls for localized structure, and when localized Some lateral displacement is allowed when the structure is subjected to bending or deformation stresses. The bonding described above can be mechanically limited and selectively provide electrical connection between the component bonding blocks that span the slots (including the wafer). Combining a slot having a stressed film with a restraining element can form a curved surface for the wafer. Two or more slotted wafer blocks may be joined to have mutual or multiple confinements to hold the curved block in place. In some embodiments, the resulting curved structure can be applied to new structures of three-dimensional interconnections of brain-computer interfaces (eg, retinal prostheses) or signal processing units.

本發明之一實施例包含一種用於非平面裝置之組裝的方法及裝置,上述非平面裝置係基於彎曲晶片。多個槽孔可予以產生以作為上述晶片中之縱向開孔,以減少彎曲應力進而增加上述晶片之形變可允許角度。上述晶片可透過上述槽孔加以變形至上述形變可允許角度內之期望形變。保持限制可予以提供於至少一部分之上述晶片上,以使上述晶片得以根據上述期望形變保持彎曲。 One embodiment of the present invention includes a method and apparatus for assembly of a non-planar device based on a curved wafer. A plurality of slots can be created to act as longitudinal openings in the wafer to reduce bending stress and thereby increase the allowable angle of deformation of the wafer. The wafer can be deformed through the slot to a desired deformation within the allowable angle of deformation. A retention limit can be provided on at least a portion of the wafer to maintain the bend in accordance with the desired deformation.

於另一實施例中,彎曲晶片可包含多個晶片。一晶片(例如晶片中之第一晶片)可彎曲成一期望形變。另一晶片(例如晶片中之第二晶片)可變形成符合上述第一晶片之期望形變。上述經變形之晶片可彼此結合,使一晶片之連續塊體與另一晶片之槽孔相交,以在這些晶片之間提供保持限制,使這些晶片保持彎曲成上述期望形變。 In another embodiment, the curved wafer can comprise a plurality of wafers. A wafer, such as the first wafer in the wafer, can be bent into a desired deformation. Another wafer, such as a second wafer in the wafer, can be variably formed to conform to the desired deformation of the first wafer described above. The deformed wafers can be bonded to each other such that a continuous block of one wafer intersects the slot of the other wafer to provide a retention constraint between the wafers to maintain the wafers in the desired deformation.

於又另一實施例中,一種用於非平面彎曲晶片之組裝裝置可包含一組擠壓單元、一支架單元及一控制單元。上述擠壓單元可具有一第一表面,上述第一表面係根據一期望曲率彎曲。上述支架單元可具有一第二表面,上述第二表面係彎曲成符合上述期望曲率。上述控制單元可控制上述擠壓單元及上述支架單元之移動。上述擠壓單元可配置成在上述第一表面上將晶片變形成上述期望曲率。上述支架單元可配置成在上述第二表面上根據上述期望曲率將固定結構變形。上述控制單元可配置成使上述擠壓單元及上述支架單元得以透過移動擠壓單元而在上述第一表面與上述第二表面之間將上述晶片與上述固定結構接合。上述接合可提供保持限制予上述晶片及固定結構以保持彎曲。 In still another embodiment, an assembly apparatus for a non-planar curved wafer can include a set of extrusion units, a support unit, and a control unit. The above extrusion unit may have a first surface, and the first surface is curved according to a desired curvature. The bracket unit may have a second surface that is curved to conform to the desired curvature. The control unit can control the movement of the pressing unit and the bracket unit. The extrusion unit may be configured to deform the wafer onto the first surface to form the desired curvature. The bracket unit may be configured to deform the fixed structure on the second surface in accordance with the desired curvature. The control unit may be configured to allow the pressing unit and the holder unit to be coupled to the fixing structure between the first surface and the second surface by moving the pressing unit. The bonding described above provides retention constraints to the wafer and the mounting structure to maintain bending.

從後附圖式及以下詳細敘述將使讀者得以清楚了解本發明之其他特徵。 Other features of the present invention will be apparent from the following description and appended claims.

於此將敘述視網膜晶片組裝程序或(整合)半導體晶片之非平面(例如類球面(quasi-spherical))表面片體及其方法。於以下敘述中將提出若干特定細節,藉以徹底解釋本發明之實施例。然而,本領域具通常知識者皆應瞭解,本發明之實施例在不具有這些特定細節的情況下仍可實施。另外,眾所皆知的元件、結構及技術並未詳細顯示,以避免模糊本發明的技術重點。 Non-planar (e.g., quasi-spherical) surface sheets of retinal wafer assembly procedures or (integrated) semiconductor wafers and methods therefor will be described herein. In the following description, numerous specific details are set forth. However, it should be understood by those of ordinary skill in the art that the embodiments of the invention may be practiced without these specific details. In addition, well-known components, structures, and techniques have not been shown in detail to avoid obscuring the technical aspects of the present invention.

說明書中所提到之「一實施例」係指與實施例有關而敘述之特定特徵、結構或特性可被包含於本發明的至少一 實施例中。在本說明書中不同段落出現之「於一實施例中」並不一定全部指向同一實施例。 The "an embodiment" referred to in the specification means that a specific feature, structure or characteristic described in connection with the embodiment can be included in at least one of the present invention. In the examples. The appearances of the various embodiments in the various embodiments are not necessarily all referring to the same embodiment.

於一實施例中,具有非平面表面之整合主動元件、電晶體電路、轉換器(transducer)或微型系統係有利的,以改變這些裝置、子系統間之互動、互連的幾何條件,或與一或多個外部系統間之互動、互連的幾何條件。具有非平面形狀或幾何之整合裝置可使新運算架構(例如球形幾何為三維中之「圓桌論壇(round-table forum)」,其將表面上之運算元件間的互動、通訊及互連以及球體內之通訊/互動連結最佳化)得以使用。其使得將電子或光子接合至一般之生物神經系統有了新的方法(例如在腦機介面(brain-machine interface)中常遭遇到類球面表面)。 In an embodiment, an integrated active component, a transistor circuit, a transducer, or a microsystem having a non-planar surface is advantageous to change the interaction between the devices, subsystems, interconnected geometric conditions, or The geometrical conditions of interaction and interconnection between one or more external systems. An integrated device with a non-planar shape or geometry enables a new computing architecture (eg, a spherical geometry is a "round-table forum" in three dimensions that interacts, communicates, and interconnects the operational elements on the surface and the ball The communication/interactive link optimization in the body is available. It has new methods for joining electrons or photons to the general biological nervous system (for example, a spherical surface is often encountered in a brain-machine interface).

舉例而言,於人工視網膜之情況中,義體裝置(prosthesis device)與人類眼球後端處的視網膜之間的介面係為具有約12.5毫米(mm)之曲率半徑的類球面表面。為了將穿過眼球之互連的複雜度最小化,較佳為將作為介面之微型電極及電子電路放置在一起,並一同緊靠於視網膜神經元之表面。此說明書將會教導將典型剛性半導體電子器件形成為非平面形狀(於此例如為類球面)之方法。 For example, in the case of an artificial retina, the interface between the prosthesis device and the retina at the posterior end of the human eye is a spherical surface having a radius of curvature of about 12.5 millimeters (mm). In order to minimize the complexity of the interconnection through the eyeball, it is preferred to place the microelectrodes and electronic circuits as interfaces together and abut against the surface of the retinal neurons. This description will teach a method of forming a typical rigid semiconductor electronic device into a non-planar shape (here, for example, a spherical surface).

第一A圖至第一D圖係顯示用於彈性晶片之非平面組件之示範性實施例的概要示意圖。第一A圖之組件100A可顯示類球面(quasi-spherical)形狀之人工視網膜義體裝置,上述類球面形狀與眼球內視網膜之形狀相符合,以使裝置得以緊靠視網膜神經元表面設置。形狀符合可因此減 少神經元之所需電激發閥值(electrical excitation thresholds),並增加裝置(例如透過電極)與視網膜神經元間之介面的顆粒度(granularity)。 1A through 1D are schematic diagrams showing exemplary embodiments of non-planar components for an elastic wafer. The assembly 100A of Figure A can display a quasi-spherical shaped artificial retinal prosthetic device that conforms to the shape of the retina within the eye to allow the device to be placed against the surface of the retinal neuron. Shape conformance can be reduced The lesser electrical neurons require electrical excitation thresholds and increase the granularity of the interface between the device (eg, through the electrodes) and the retinal neurons.

於一實施例中,組件100A可包含彈性晶片103,其具有光感測器、電極、驅動電路等。彈性晶片103可加以機械限制(mechanically constrained)使其彎曲成期望之形狀,或透過固定結構101加以變形。例如,固定結構101可包含彈性高分子材料,其形狀具有期望曲率或變形成具有期望曲率。彈性晶片103可接合或固定至固定結構101,以保持彎曲成期望形狀。 In one embodiment, assembly 100A can include an elastomeric wafer 103 having photosensors, electrodes, drive circuitry, and the like. The elastic wafer 103 can be mechanically constrained to be bent into a desired shape or deformed by the fixed structure 101. For example, the fixed structure 101 may comprise an elastic polymeric material having a shape having a desired curvature or deformed to have a desired curvature. The elastic wafer 103 can be bonded or fixed to the fixed structure 101 to remain curved into a desired shape.

現請參照第一B圖,組件100B可為相對球形組件,其包含多層的彈性晶片。例如,彈性晶片107、109可加以變形以促進彈性晶片107、109之表面元件間的通訊。彈性晶片107、109可設置或配置成彼此正對,以利用光束、導線或其他可行連結建立通訊路徑,例如通訊路徑111。於某些實施例中,面向同一方向之不同彎曲晶片(例如固定結構105、彈性晶片107)間的通訊路徑可基於貫穿矽穿透結構(through silicon via,TSV)。上述貫穿矽穿透結構可將薄積體電路晶片之某些焊墊引導通過其薄矽基板到達薄積體電路晶片之背側(例如從前側),藉此多個晶片可堆疊且接合在一起。多個晶片,例如固定結構105、彈性晶片107,可基於這些晶片間之相互限制(mutual constraints)而在組件100B內保持彎曲。 Referring now to Figure B, assembly 100B can be a relatively spherical component that includes multiple layers of elastomeric wafers. For example, the elastic wafers 107, 109 can be deformed to facilitate communication between the surface elements of the elastic wafers 107, 109. The elastic wafers 107, 109 can be arranged or arranged to face each other to establish a communication path, such as the communication path 111, using light beams, wires or other feasible connections. In some embodiments, the communication path between different curved wafers (eg, fixed structure 105, elastic wafer 107) facing in the same direction may be based on through silicon vias (TSVs). The through-through structure can direct certain pads of the thin-film circuit wafer through its thin substrate to the back side of the thin-film circuit (eg, from the front side), whereby the plurality of wafers can be stacked and bonded together . A plurality of wafers, such as the fixed structure 105, the elastic wafer 107, can remain curved within the assembly 100B based on mutual constraints between the wafers.

組件100B之非平面幾何可使以連結或其他可行之非 平面形特徵為基礎的運算架構得以使用。例如,於球形組件中之球形幾何可為三維幾何中之「圓桌論壇(round-table forum)」,用以將球形組件之表面上的運算元件(或彈性晶片之電路)間的互動、通訊及互連以及用於位在球形組件內之元件的通訊/互動連結最佳化。 The non-planar geometry of component 100B can be linked or otherwise feasible A planar feature-based computing architecture is used. For example, the spherical geometry in a spherical component can be a "round-table forum" in three-dimensional geometry for interaction, communication, and communication between operational components (or circuits of flexible wafers) on the surface of a spherical component. Interconnect and communication/interactive link optimization for components located within the spherical component.

現請參照第一C圖,非平面人工視網膜組件可以視網膜下(sub-retina)方式加以植入以用於眼球113。人工視網膜可包含彈性晶片117,其與眼球113之視網膜121緊密接觸。彈性晶片117可與固定結構115接合以保持彎曲,用以符合眼球113之形狀。於一實施例中,固定結構115與彈性晶片117兩者均可包含透明材料,以允許光線通過其中。 Referring now to Figure C, the non-planar artificial retinal assembly can be implanted for sub-retina in the sub-retina. The artificial retina may include an elastic wafer 117 that is in intimate contact with the retina 121 of the eyeball 113. The elastic wafer 117 can be engaged with the fixed structure 115 to remain curved to conform to the shape of the eye 113. In one embodiment, both the fixed structure 115 and the elastic wafer 117 may comprise a transparent material to allow light to pass therethrough.

另則,於第一D圖中,非平面人工視網膜組件可以視網膜上(epi-retina)方式加以植入以供眼球113之用。人工視網膜可包含彈性晶片119,其從眼球113內側與視網膜121緊密接觸。此外,人工視網膜可包含固定結構123以提供機械約束,用以使彈性晶片119得以保持彎曲以符合眼球113之形狀。非平面人工視網膜組件可具有彈性,藉此可根據所期望之不同配置或形狀加以變形。 Alternatively, in the first D diagram, the non-planar artificial retinal component can be implanted for the eyeball 113 in an epi-retina manner. The artificial retina may include an elastic wafer 119 that is in close contact with the retina 121 from the inside of the eye 113. In addition, the artificial retina may include a fixation structure 123 to provide mechanical restraint for the elastic wafer 119 to remain curved to conform to the shape of the eye 113. The non-planar artificial retinal component can be resilient, whereby it can be deformed depending on the desired configuration or shape.

第二A圖係顯示沈積有受應力薄膜(stressed thin film)之彈性結構(或裝置)的橫切面圖之方塊圖。於一實施例中,結構200可包含薄的元件層205,其夾設於阻障層(barrier layer)203與聚合物層210之間。元件層205可基於用於醫療植入之薄金屬氧化物半導體(MOS,Metal Oxide Semiconductor)晶粒,其由阻障層203及生物相容之聚合物層210所包覆,以使其免受元件腐蝕及/或毒害活體組織。結構200A可足夠薄以根據來自受應力膜層207之應力或拉伸力進行捲曲(或彎曲、變形)。 Figure 2A is a block diagram showing a cross-sectional view of an elastic structure (or device) deposited with a stressed thin film. In an embodiment, the structure 200 can include a thin component layer 205 sandwiched between a barrier layer 203 and the polymer layer 210. The element layer 205 can be based on a thin metal oxide semiconductor for medical implantation (MOS, Metal Oxide) The semiconductor is covered by a barrier layer 203 and a biocompatible polymer layer 210 to protect it from component corrosion and/or poisoning living tissue. The structure 200A can be thin enough to curl (or bend, deform) depending on the stress or tensile force from the stressed film layer 207.

於某些實施例中,受應力薄膜,例如受應力膜層207,可沈積於薄結構或晶片之其中一側或兩側上,以達到晶片之期望形變(例如具有某個角度之彎曲)。例如,受應力薄膜可加以預先壓縮或預先拉伸,以在不同方向施加彎曲力(bending force)。受應力薄膜可選擇性地在製程期間加以圖案化(例如藉由光蝕刻及蝕刻程序形成環狀或長條紋狀),以產生各種薄結構用之彎曲形狀(例如以波狀方式或其他可行之形式)。結構200在從經由黏著劑211附著之厚晶圓載具(carrier wafer)209(或操作晶圓(handle wafer))鬆開時可能會捲曲。 In some embodiments, a stressed film, such as stressed film layer 207, may be deposited on one or both sides of the thin structure or wafer to achieve the desired deformation of the wafer (eg, bending at an angle). For example, the stressed film can be pre-compressed or pre-stretched to apply a bending force in different directions. The stressed film can be selectively patterned during the process (eg, by photolithography and etching processes to form a ring or stripe shape) to produce curved shapes for various thin structures (eg, in a wavy manner or other feasible form). The structure 200 may curl when it is released from a thick wafer carrier 209 (or a handle wafer) attached via the adhesive 211.

第二B圖係根據此處所述實施例顯示以波狀方式變形之非平面裝置的概要示意圖。例如,非平面積體電路裝置200B可包含以波狀方式彎曲之彈性薄結構213。受應力膜215、217可形成(例如透過圖案遮罩)在彈性薄結構213之兩側上,以形成特定(或預先指定)圖案(例如條紋狀、鋸齒狀或其他可行圖案等),用以將彈性薄結構213彎曲成期望之形變,例如波狀方式。於一實施例中,受應力膜215可加以預先壓縮或可為有壓縮性的。另則,受應力膜可加以預先拉伸。受應力膜215、217可提供位移限制(displacement constraints)或力,例如龐大之殘餘薄膜應 力,以將彈性薄結構213彎曲成期望之形變。非平面裝置可包含預先壓縮之膜、預先拉伸之膜或有壓縮性之膜的組合,其以指定圖案形成,以根據指定圖案提供應力分配,用以達到裝置之期望形變。 Second B is a schematic diagram showing a non-planar device that is deformed in a wavy manner in accordance with the embodiments described herein. For example, the non-flat area body circuit device 200B can include an elastic thin structure 213 that is curved in a wavy manner. The stressed films 215, 217 may be formed (eg, through a pattern mask) on both sides of the elastic thin structure 213 to form a specific (or pre-specified) pattern (eg, stripe, zigzag, or other feasible pattern, etc.) for The elastic thin structure 213 is bent into a desired deformation, such as a wavy manner. In one embodiment, the stressed film 215 may be pre-compressed or may be compressible. Alternatively, the stressed film can be pre-stretched. The stressed films 215, 217 can provide displacement constraints or forces, such as bulky residual films. Force to bend the elastic thin structure 213 into a desired deformation. The non-planar device can comprise a combination of a pre-compressed film, a pre-stretched film, or a compressible film formed in a specified pattern to provide a stress distribution in accordance with a specified pattern to achieve the desired deformation of the device.

根據一實施例,期望形變可包含晶片彎曲曲率。例如,若彈性晶片欲被從平面盤體變形成非平面球面片體,則可計算出彈性晶片之外圓圓周所需要縮減的量。於一實施例中,當源自於基板彎曲之位移遠小於晶圓厚度(例如元件層205之厚度)時,具有殘餘膜應力之沈積薄膜(於相對厚之基板上)所造成的晶片彎曲曲率可基於「史東納(Stoney)方程式」(或近似方程式)加以估算。對於薄晶片上之較大應力而言,當位移可輕易地因二維限制(two-dimensional constraints)而大於基板厚度時,數值方法(numerical methods)可用以計算晶片彎曲曲率,而無需透過近似方程式超估位移。 According to an embodiment, the desired deformation may comprise a wafer bending curvature. For example, if the elastic wafer is to be deformed from a planar disk to a non-planar spherical sheet, the amount of reduction required for the outer circumference of the elastic wafer can be calculated. In one embodiment, when the displacement from the bending of the substrate is much smaller than the thickness of the wafer (eg, the thickness of the element layer 205), the curvature of the wafer caused by the deposited film having residual film stress (on a relatively thick substrate) It can be estimated based on the "Stoney equation" (or approximate equation). For large stresses on thin wafers, numerical methods can be used to calculate the curvature of the wafer when the displacement can easily be greater than the thickness of the substrate due to two-dimensional constraints, without the need to apply an approximation equation. Overestimate the displacement.

第三A圖至第三C圖係根據此處所述之實施例顯示以槽孔(slots)為基礎之示範性非平面晶片的概要示意圖。例如,概要圖300A可包含薄晶粒或晶圓之薄晶片305以及經誇張化之槽孔301、303,前述槽孔301之尖端307處具有應力消除圓角。當薄晶片305被變形時,槽孔301之兩側可能會接觸或閉合。薄晶片305在製程期間可於載體基板(carrier substrate)上預先加壓,而當從載體基板鬆開時變成彎曲。 3A through 3C are schematic diagrams showing exemplary non-planar wafers based on slots, in accordance with embodiments described herein. For example, the schematic 300A can include a thin wafer 305 of thin grains or wafers and exaggerated slots 301, 303 having a stress relief fillet at the tip 307 of the slot 301. When the thin wafer 305 is deformed, both sides of the slot 301 may come into contact or close. The thin wafer 305 can be pre-pressurized on the carrier substrate during the process and becomes curved when released from the carrier substrate.

於一實施例中,薄晶片305可包含具有若干(一個或以 上)放射狀槽孔之圓形晶片,前述放射狀槽孔從圓形晶片之中心以扇形/楔形往向外之方向延伸(以直線路徑或以彎曲路徑、螺旋路徑、鋸齒路徑或其他可行路徑),而剩餘邊緣移除。放射狀槽孔可從薄晶片305之邊緣延伸並在到達薄晶片305中心之前(或距離薄晶片305中心一段距離)止於槽孔之尖端處(例如寬度約1微米(μm)之細微尖端),例如槽孔301之尖端307。於一實施例中,槽孔之尖端可設置於薄晶片內,以適應例如微型製程之解析度限制及/或晶片形變所引發在槽孔尖端處之應力強度因子(stress intensity factors)增強。槽孔尖端周圍例如槽孔301之尖端307的周圍的角落可加以圓形化,以減少當有關晶片被變形或彎曲時與尖銳角有關之應力集中並使圓形槽孔角落上之應力散開。 In an embodiment, the thin wafer 305 may comprise a plurality (one or a circular wafer of radial slots extending from the center of the circular wafer in a fan/wedge shape outward (in a straight path or in a curved path, a helical path, a sawtooth path, or other feasible path) ) while the remaining edges are removed. The radial slots may extend from the edge of the thin wafer 305 and terminate at the tip end of the slot (e.g., a fine tip having a width of about 1 micrometer (μm)) before reaching the center of the thin wafer 305 (or a distance from the center of the thin wafer 305). For example, the tip 307 of the slot 301. In one embodiment, the tips of the slots can be placed in a thin wafer to accommodate, for example, resolution limitations of the micro-process and/or enhancement of stress intensity factors at the tip of the slot caused by wafer deformation. The corners around the tip end of the slot, such as the tip end 307 of the slot 301, can be rounded to reduce stress concentrations associated with sharp corners and to spread the stresses on the corners of the circular slot when the wafer is deformed or bent.

槽孔可藉由將晶片之一部分狹窄通道區(例如切孔、縱向開孔或狹窄開孔)例如薄晶片305之槽孔301移除(或切割、撕開)而形成,例如透過微型製程中之深活性離子蝕刻。上述槽孔可減少晶片之形變應力,例如切線同平面應力(tangential in-plane stress),並增加晶片之可容許變形角度。於一實施例中,上述槽孔可能會切斷晶片內橫跨槽孔之電路元件之間的直接通訊,因此槽孔周圍可能需要跨接器(jumpers)(透過接合墊至限制軟性結構(constraining flex)或另一限制晶片(constraining chip),將於以下敘述)或較長之輸電軌道(power rail)及資料匯流排,以分配電源、接地及訊號線。 The slot can be formed by removing (or cutting, tearing) a portion of the narrow channel region of the wafer (eg, a cut-out, a longitudinal opening, or a narrow opening), such as the slot 301 of the thin wafer 305, such as through a micro-process. Deep reactive ion etching. The slots reduce the deformation stress of the wafer, such as tangential in-plane stress, and increase the allowable deformation angle of the wafer. In one embodiment, the slot may cut direct communication between circuit components across the slot in the wafer, so jumpers may be required around the slot (through the bond pad to limit the soft structure (constraining) Flex) or another constraining chip (described below) or a longer power rail and data bus to distribute power, ground and signal lines.

第三B圖係顯示疊層型薄圓盤形晶片結構,其製造有槽孔及受應力膜,以折彎或彎曲成類球面片體,並在從製程期間所使用之晶圓載具鬆開後仍保持彎曲。固定結構可在橫跨晶片結構中之槽孔之下予以接合,以防止彎曲晶片放鬆回到其原本平面形狀。受應力膜可提供額外之彎曲力,以助於約束晶片使其保持在期望形變下。雖然具有一個或以上之槽孔的薄結構上之受應力薄膜所導致的彎曲效果可大為增加,但大幅之彎曲(例如彎曲30微米厚之視網膜晶片所造成之70-90微米的邊緣位移)可能係與二維限制有關。形變角度可例如以邊緣位移之微米數加以測量。因此,可能需要具有龐大應力(例如外部彎曲)之相對較厚膜以達到期望之大曲率。 Figure 3B shows a laminated thin disc-shaped wafer structure made of a slotted and stressed film that is bent or bent into a spherical sheet and released from the wafer carrier used during the manufacturing process. It remains curved afterwards. The fixed structure can be joined across the slots in the wafer structure to prevent the curved wafer from relaxing back to its original planar shape. The stressed film provides additional bending force to help constrain the wafer to remain under the desired deformation. Although the bending effect caused by the stressed film on the thin structure having one or more slots can be greatly increased, the bending is large (for example, the edge displacement of 70-90 micrometers caused by bending a 30 micron thick retinal wafer) May be related to two-dimensional restrictions. The deformation angle can be measured, for example, by the number of micrometers of the edge displacement. Therefore, a relatively thick film with a large amount of stress (e.g., external bending) may be required to achieve the desired large curvature.

第三C圖係顯示用以彎曲平面晶片之示範性機制。當直徑”d”之平面圓盤(例如包含平面晶片)被彎曲成曲率半徑”R”309時,從半徑之中心延伸到圓盤直徑線之端點的角度311為2θ,其中2R*θ=d。圓盤之原本圓周係為S=π*d=2πR*θ;然而,若圓盤被變形成球面形片體,則經變形之圓周313應為S’=2πR*Sin(θ)。由於當θ>0時θ>Sin(θ),故圓盤將經歷對於彎曲之同平面(in-plane)切線壓應力(compressive stresses),乃因在半徑r小於或等於R之處有過量之圓周2πr*[θ-Sin(θ)]。槽孔以適當量之方式移除此過量部分,藉此當圓盤被變形成球面形狀時,槽孔之兩邊會被放置在一起。此從平面晶片移除某些過量材料以成為彎曲非平面形狀之原則可應用於此處所述之某些實施例 中。 The third C diagram shows an exemplary mechanism for bending a planar wafer. When a planar disk of diameter "d" (for example comprising a planar wafer) is bent into a radius of curvature "R" 309, the angle 311 extending from the center of the radius to the end of the diameter line of the disk is 2θ, where 2R*θ= d. The original circumference of the disc is S = π * d = 2πR * θ; however, if the disc is deformed into a spherical sheet, the deformed circumference 313 should be S' = 2πR * Sin (θ). Since θ>Sin(θ) when θ>0, the disk will experience in-plane tangential stresses for bending, because there is an excess in the radius r less than or equal to R. The circumference is 2πr*[θ-Sin(θ)]. The slot removes the excess portion in an appropriate amount whereby the two sides of the slot are placed together when the disk is deformed into a spherical shape. The principle that this removal of some excess material from a planar wafer to become a curved non-planar shape can be applied to certain embodiments described herein. in.

第四A圖至第四B圖係顯示組裝有軟性結構的薄晶片之示範性實施例的概要示意圖。概要圖400A可包含固定結構401及薄晶片403。於一實施例中,固定結構401可為環狀圈形之軟性結構(例如從軟性結構”纜線”所形成)。軟性結構可包含聚合物(例如聚醯胺(Polyamide)),其可為透明或半透明、可變形且/或可模製。於某些實施例中,軟性結構可成形為整個塊體或根據所需要之期望形變成形為不同可行之形狀。薄晶片403可基於具有狹縫之薄晶圓/晶粒,以用於大型形變。於一實施例中,薄晶片403可包含具有四個狹縫(或槽孔)例如槽孔405之彈性材料,以增加晶片之彈性以用於大型形變。固定結構401可接合至彈性薄晶片403,以使晶片保持於彎曲狀態。形成在薄晶片上的槽孔之數量及/或圖案(例如2、12或其他可行數量的槽孔)可依據晶片中之期望形變加以改變。 4A to 4B are schematic diagrams showing an exemplary embodiment of a thin wafer in which a flexible structure is assembled. The outline 400A can include a fixed structure 401 and a thin wafer 403. In one embodiment, the fixed structure 401 can be a ring-shaped soft structure (eg, formed from a flexible structure "cable"). The soft structure may comprise a polymer (e.g., polyamide) that may be transparent or translucent, deformable, and/or moldable. In some embodiments, the flexible structure can be formed into an entire block or shaped into a different shape as desired. The thin wafer 403 can be based on a thin wafer/die with slits for large deformation. In one embodiment, the thin wafer 403 may comprise an elastomeric material having four slits (or slots), such as slots 405, to increase the elasticity of the wafer for large deformation. The fixed structure 401 can be bonded to the elastic thin wafer 403 to maintain the wafer in a bent state. The number and/or pattern of slots formed in the thin wafer (e.g., 2, 12 or other feasible number of slots) may vary depending on the desired deformation in the wafer.

現請參照第四B圖,組件400B可包含彎曲薄晶片403,其透過例如接合墊407與固定結構401相接合。來自固定結構401(或軟性結構)之機械限制可使薄晶片403維持彎曲,而不會放鬆回到其原本平坦狀態。固定結構401可包含金屬線及具有適當厚度(例如約10微米)之金屬接合墊。薄晶片403可包含配對(於相應位置)之接合墊,其欲與固定結構401之對應金屬接合墊相接合。當上述金屬受到壓力且於溫度升高之情況下(一般控制在150度C至450度C的範圍內)時可形成薄膜接合(例如金接合至金)。薄膜 接合亦可用作為用於資料傳遞及電力分配之電性連結。 Referring now to FIG. 4B, assembly 400B can include a curved thin wafer 403 that is joined to the fixed structure 401 by, for example, bond pads 407. The mechanical restriction from the fixed structure 401 (or soft structure) allows the thin wafer 403 to remain curved without relaxing back to its original flat state. The fixed structure 401 can comprise metal lines and metal bond pads of suitable thickness (eg, about 10 microns). The thin wafer 403 can include mating (at corresponding locations) bond pads that are intended to engage with corresponding metal bond pads of the fixed structure 401. Film bonding (e.g., gold bonding to gold) can be formed when the above metal is subjected to pressure and is elevated in temperature (generally controlled in the range of 150 degrees C to 450 degrees C). film Bonding can also be used as an electrical link for data transfer and power distribution.

第五A圖至第五F圖係顯示用於非平面彈性裝置之組裝(或接合)程序的示範性順序之方塊圖。例如,非平面彈性裝置可基於透過配對墊與彈性裝置接合之彎曲薄晶圓/晶粒加以製造或生產。於第五A圖之順序500A,於一實施例中,支架單元501可包含具有內凹形狀例如凹部503之透明支架,用以容納軟性結構或固定結構。凹部503可容納軟性結構材料(例如聚合物),其可加以模製或成形。 Fifth to fifth F diagrams are block diagrams showing exemplary sequences of assembly (or bonding) procedures for non-planar elastic devices. For example, a non-planar elastic device can be manufactured or produced based on a curved thin wafer/die bonded through a mating pad and an elastic device. In the sequence 500A of FIG. 5A, in an embodiment, the bracket unit 501 can include a transparent bracket having a concave shape such as a recess 503 for receiving a soft structure or a fixed structure. The recess 503 can accommodate a soft structural material (e.g., a polymer) that can be molded or formed.

於第五B圖之順序500B,軟性結構507可在凹部503內以工具加工。於一實施例中,擠壓單元505及支架單元501可被放置在一起且同時施加壓力/熱,以將軟性結構507形成為彎曲形狀。擠壓單元505及支架單元501可成形為具有匹配表面,前述匹配表面具有共同或相容之曲率半徑。軟性結構507可夾設於具有球面表面之擠壓單元505(例如上方單元)與具有匹配球面凹部之支架單元501(例如下方單元)之間。於一實施例中,軟性結構507可包含聚合物型環,其由真空(在對應區之表面上具有真空孔且在支架單元501內具有真空通道)或靜電力(例如利用靜電吸附盤(electrostatic chuck))所保持住。於第五C圖之順序500C,擠壓單元505可加以移動以從支架單元501分離,並離開軟性結構507以使其於適當地方(例如凹部503內)保持變形(或成型)。於某些實施例中,與軟性結構接合之薄晶片可基於軟性結構與薄晶片間之相互約束而加以變形,而無需用模具塑造軟性結構。 In the sequence 500B of Figure 5B, the flexible structure 507 can be tooled within the recess 503. In one embodiment, the extrusion unit 505 and the bracket unit 501 can be placed together and simultaneously apply pressure/heat to form the flexible structure 507 into a curved shape. The extrusion unit 505 and the bracket unit 501 can be shaped to have mating surfaces that have a common or compatible radius of curvature. The flexible structure 507 can be sandwiched between a pressing unit 505 having a spherical surface (for example, an upper unit) and a bracket unit 501 (for example, a lower unit) having a matching spherical recess. In one embodiment, the flexible structure 507 can comprise a polymeric ring that is vacuumed (having a vacuum hole in the surface of the corresponding zone and having a vacuum channel in the stent unit 501) or an electrostatic force (eg, using an electrostatic adsorption disk (electrostatic) Chuck)) Keep it. In the sequence 500C of Figure 5C, the extrusion unit 505 can be moved to separate from the bracket unit 501 and exit the flexible structure 507 to maintain deformation (or shaping) in place (e.g., within the recess 503). In some embodiments, a thin wafer bonded to a flexible structure can be deformed based on the mutual constraint between the soft structure and the thin wafer without the need to mold the flexible structure with a mold.

現請參照第五D圖,於順序500D,在擠壓單元517與支架單元501對準之後,擠壓單元517與支架單元501可放置在一起,以用於薄晶片(或晶圓)509與軟性結構507之間的接合。例如,薄晶片509可在特定區域處例如接合區511與軟性結構507接合或結合。薄晶片509可包含金屬型焊墊。相應地,軟性結構507可包含配對焊墊。於一實施例中,擠壓單元505可與支架單元501對準(例如透過三維旋轉移動),以使薄晶片509之焊墊與軟性結構507之對應配對焊墊相接觸。擠壓單元505與支架單元501中之至少一者可為透明,以允許進行對準。第五B圖之擠壓單元505與擠壓單元517可為複數個擠壓單元中之一部分,前述複數個擠壓單元係在用於非平面裝置之一共同組裝裝置中且具有以不同曲率彎曲之表面。 Referring now to FIG. 5D, in sequence 500D, after the pressing unit 517 is aligned with the bracket unit 501, the pressing unit 517 and the bracket unit 501 can be placed together for the thin wafer (or wafer) 509 and Bonding between the flexible structures 507. For example, the thin wafer 509 can be bonded or bonded to the flexible structure 507 at a particular area, such as the land 511. The thin wafer 509 can comprise a metal pad. Accordingly, the flexible structure 507 can include a mating pad. In one embodiment, the extrusion unit 505 can be aligned with the bracket unit 501 (eg, by three-dimensional rotational movement) to bring the pads of the thin wafer 509 into contact with corresponding mating pads of the flexible structure 507. At least one of the extrusion unit 505 and the bracket unit 501 can be transparent to allow for alignment. The pressing unit 505 and the pressing unit 517 of the fifth drawing B may be one of a plurality of pressing units which are used in a co-assembly device for a non-planar device and have bending with different curvatures. The surface.

於一實施例中,熱與壓力可加以施加以接合薄晶片509與軟性結構507,例如一同施加至焊錫金屬焊墊及對應之配對焊墊。薄晶片可例如透過真空或靜電力保持在擠壓單元505(例如頂部擠壓)上。在薄晶片509之焊墊與軟性結構507之配對焊墊對準之後,擠壓單元517可對著支架單元501予以擠壓。 In one embodiment, heat and pressure may be applied to bond the thin wafer 509 to the flexible structure 507, such as to the solder metal pads and the corresponding mating pads. The thin wafer can be held on the extrusion unit 505 (e.g., top extrusion), for example, by vacuum or electrostatic force. After the pads of the thin wafer 509 are aligned with the mating pads of the flexible structure 507, the pressing unit 517 can be pressed against the holder unit 501.

於某些實施例中,軟性結構507可透過透明底部支架例如支架單元501加以製造。多層晶片可透過施加於擠壓單元與支架單元501之間的壓力及熱加以接合。支架單元501可與不同形狀或類型之凹部結合,以依據不同晶片設計使軟性結構或彈性晶片例如軟性結構507變形。當接合 完畢時,於第五E圖之順序500E,擠壓單元505可從支架單元501移開,用以鬆開以非平面形狀與軟性結構507接合之薄晶片509。接合墊在從接合壓力/熱冷卻下來時可能會硬化,以使分離之晶片/晶圓黏合(或接合)在一起成彎曲或非平面形狀。於一實施例中,於順序5E之後,與軟性結構507接合之薄晶片509可以阻障層及/或聚合物層加以鈍化(或塗佈)(例如用以免於受到腐蝕)。軟性結構507(例如分離之晶片相互限制以保持彎曲)與薄晶片509之間的空氣隙可以導熱介電材料予以回填,以增加散熱能力。 In some embodiments, the flexible structure 507 can be fabricated through a transparent bottom bracket such as the bracket unit 501. The multilayer wafer can be joined by pressure and heat applied between the pressing unit and the holder unit 501. The bracket unit 501 can be combined with recesses of different shapes or types to deform a flexible structure or an elastic wafer such as the flexible structure 507 depending on different wafer designs. When engaged Upon completion, in the sequence 500E of FIG. 5E, the extrusion unit 505 can be removed from the holder unit 501 for releasing the thin wafer 509 bonded to the flexible structure 507 in a non-planar shape. The bond pads may harden when cooled from bonding pressure/heat to bond (or bond) the separated wafers/wafers into a curved or non-planar shape. In one embodiment, after the sequence 5E, the thin wafer 509 bonded to the flexible structure 507 can be passivated (or coated) by the barrier layer and/or the polymer layer (eg, to protect from corrosion). The air gap between the flexible structure 507 (e.g., the separated wafers are mutually restrained to remain curved) and the thin wafer 509 can be backfilled with a thermally conductive dielectric material to increase heat dissipation.

第五F圖係顯示薄晶片509與軟性結構507間之接合墊的誇大示意圖。例如,薄晶片509之焊墊513可與軟性結構507之配對焊墊515相接合(或焊接)。焊墊513及配對焊墊515可包含相同或不同之傳導材料(例如金)。非平面裝置之接合接觸,例如與配對焊墊515接合之焊墊513,可以硬鈍化薄層加以覆蓋或塗佈(例如汽相塗佈或真空塗佈),上述硬鈍化薄層可由氮化矽、鑽石碳(diamond carbon)或其他可行材料製成,以提供絕緣及防止暴露裝置之接合接觸。於一實施例中,接合接觸可在不同部分之彎曲晶片之間提供機械結合限制(mechanical joining constraints)及/或選擇性的電性連結。 The fifth F diagram shows an exaggerated schematic view of the bond pads between the thin wafer 509 and the flexible structure 507. For example, the pad 513 of the thin wafer 509 can be bonded (or soldered) to the mating pad 515 of the flexible structure 507. Pad 513 and mating pad 515 may comprise the same or different conductive materials (eg, gold). The bonding contact of the non-planar device, for example, the bonding pad 513 bonded to the mating pad 515, may be covered or coated with a hard passivation layer (for example, vapor phase coating or vacuum coating), and the hard passivation thin layer may be tantalum nitride. Made of diamond carbon or other viable materials to provide insulation and prevent joint contact of exposed devices. In one embodiment, the bond contacts can provide mechanical joining constraints and/or selective electrical bonds between different portions of the curved wafer.

第六A圖至第六B圖係顯示受到相互限制之非平面晶片的示範性實施例之概要示意圖。例如,第六A圖之概要圖600A可顯示二個薄晶圓/晶粒,其具有短距錯開之狹縫及配對接合焊墊,以用於彎曲晶片組件之相互限制。於一 實施例中,第一薄晶片601及第二薄晶片607均可包含四個具有配對金屬接合焊墊之放射狀槽孔。薄晶片可予以組裝成槽孔以一角度對準。例如,在經組裝之彎曲薄晶片中槽孔605可以例如45度角相交於槽孔603。 6A through 6B are schematic diagrams showing an exemplary embodiment of a non-planar wafer that is mutually constrained. For example, a summary view 600A of Figure 6A can show two thin wafers/dies with short staggered slits and mating bond pads for bending the wafer components to each other. Yu Yi In an embodiment, the first thin wafer 601 and the second thin wafer 607 may each include four radial slots having mating metal bond pads. Thin wafers can be assembled into slots that are aligned at an angle. For example, the slots 605 may intersect the slots 603 at an angle of, for example, 45 degrees in the assembled curved thin wafer.

現請參照第六B圖,組件600B可包含第一薄晶片601及第二薄晶片607,其透過相互限制而彎曲。由於相互限制係在接合位置處(例如接合焊墊區域)施加於彼此,故經組裝之彎曲薄晶片,例如第一薄晶片601及第二薄晶片607,不會鬆開回到原本平坦或平面狀態。於一實施例中,接合焊墊可為成對且橫跨薄晶片之每一槽孔,以將橫跨槽孔之晶片部分黏合在一起。 Referring now to FIG. 6B, the assembly 600B can include a first thin wafer 601 and a second thin wafer 607 that are bent through mutual restraints. Since the mutual restraints are applied to each other at the joint positions (for example, the bonding pad regions), the assembled curved thin wafers, such as the first thin wafer 601 and the second thin wafer 607, are not released back to the original flat or flat surface. status. In one embodiment, the bond pads can be in pairs and span each slot of the thin wafer to bond the portions of the wafer across the slot together.

第七A圖至第七B圖係顯示具有接合焊墊之組件的示範性上視圖及橫切面圖之概要示意圖。例如,第七A圖係顯示彎曲成類球面形之二個薄晶片堆疊之非平面三維封裝的上視圖,上述二個薄晶片堆疊例如第二薄晶片607在第一薄晶片601之上。在堆疊晶片之間的鄰近槽孔可以一角度對準(例如45度),例如第二薄晶片607之槽孔605與第一薄晶片601之槽孔603。接合焊墊可設置於槽孔之兩側上,例如橫跨槽孔603之焊墊701與焊墊703。 7A to 7B are schematic diagrams showing an exemplary top view and a cross-sectional view of an assembly having a bonding pad. For example, Figure 7A shows a top view of a non-planar three-dimensional package of two thin wafer stacks bent into a spherical shape, such as a second thin wafer 607 over the first thin wafer 601. Adjacent slots between the stacked wafers may be angularly aligned (e.g., 45 degrees), such as slots 605 of the second thin wafer 607 and slots 603 of the first thin wafer 601. Bonding pads may be disposed on both sides of the slot, such as pads 701 and pads 703 that span the slots 603.

第七B圖係顯示具有接合焊墊區域之薄膜接合的橫切面示意圖(例如未以誇張化之比例繪製)。例如,第二薄晶片607及第一薄晶片601可透過焊墊之接合例如焊墊703與配對焊墊705間的接合而保持彎曲。替代性地或選擇性地,薄晶片可透過黏著劑予以接合,以保持呈非平面形狀。 Figure 7B shows a schematic cross-sectional view of a film bond having a bond pad area (e.g., not drawn to an exaggerated scale). For example, the second thin wafer 607 and the first thin wafer 601 can be kept curved by the bonding of the pads, such as the bonding between the pads 703 and the mating pads 705. Alternatively or selectively, the thin wafer may be bonded by an adhesive to maintain a non-planar shape.

於一實施例中,堆疊多晶片之非平面組件的相鄰晶片間之回填層,例如回填707,可促使晶片間之散熱。回填層可包含導熱介電材料,以控制操作中組裝結構(或非平面晶片)之溫度上升。例如,非平面組件內所內嵌之高速處理電路所產生之熱可允許通過接合焊墊及回填層兩者,以助於冷卻非平面組件。於一實施例中,回填層可減少或消除非平面組件中空氣隙之熱絕緣。替代性地,非平面組件可浸沒於液體中,例如矽油(silicon oil),以填滿空氣隙,用以提供冷卻效果。 In one embodiment, stacking backfill layers between adjacent wafers of non-planar components of a multi-wafer, such as backfill 707, can promote heat dissipation between the wafers. The backfill layer can comprise a thermally conductive dielectric material to control the temperature rise of the assembled structure (or non-planar wafer) in operation. For example, the heat generated by the high speed processing circuitry embedded within the non-planar component can allow both the bond pad and the backfill layer to be bonded to help cool the non-planar component. In one embodiment, the backfill layer reduces or eliminates thermal insulation of the air gap in the non-planar component. Alternatively, the non-planar component can be immersed in a liquid, such as silicon oil, to fill the air gap to provide a cooling effect.

前述堆疊並不限於兩層或限於圓形。可形成具有錯開之槽孔的多晶片非平面三維堆疊。電力、訊號及資料可在多層間跳越以越過槽孔,用以在堆疊塊體與相鄰塊體之間分配電力及訊號。由於主動裝置將會受到彎曲應力,故在系統設計時可考慮且預先補償應力所引發之效果例如N型金屬氧化物半導體(MOS)電晶體上縱向及橫向方向上之拉應力(tensile stresses)所導致之跨導(trans-conductance)上升以及對於P型電晶體而言上升亦或下降。 The foregoing stack is not limited to two layers or limited to a circle. A multi-wafer non-planar three-dimensional stack with staggered slots can be formed. Power, signals, and data can be skipped across multiple layers to pass through the slots to distribute power and signals between the stacked blocks and adjacent blocks. Since the active device will be subjected to bending stress, it is possible to consider and compensate for the effects caused by the stress in the system design, such as tensile stresses in the longitudinal and lateral directions on the N-type metal oxide semiconductor (MOS) transistor. This leads to an increase in trans-conductance and a rise or fall for P-type transistors.

第八A圖至第八C圖係顯示用以組裝此處所述之一實施例中的薄晶粒/晶圓或基板之彎曲堆疊的示範性順序之方塊圖。例如,於第八A圖之順序800A,二個薄晶片,第一薄晶片807及第二薄晶片809,可保持於組裝裝置中。於一實施例中,上述組裝裝置可包含擠壓單元803(例如上方單元)、支架單元805(例如下方單元)以及控制單元801。擠壓單元803及/或支架單元805可以三維方式移動,包含 平移及/或旋轉移動,例如由控制單元801所控制。 8A through 8C are block diagrams showing exemplary sequences for assembling a thin die/wafer or substrate curved stack in one of the embodiments described herein. For example, in the sequence 800A of Figure 8A, two thin wafers, a first thin wafer 807 and a second thin wafer 809, can be held in the assembly apparatus. In an embodiment, the assembly device may include a pressing unit 803 (eg, an upper unit), a bracket unit 805 (eg, a lower unit), and a control unit 801. The extrusion unit 803 and/or the bracket unit 805 can be moved in three dimensions, including The translational and/or rotational movement is controlled, for example, by control unit 801.

於一實施例中,第一薄晶片807及第二薄晶片809可由擠壓單元803及支架單元805藉由真空、靜電亦或其他手段分別保持住。例如,擠壓單元803或支架單元805可包含具有環狀小孔或真空通道之開孔的真空吸附盤,以提供吸力,用以保持住薄晶片。擠壓單元803及支架單元805可與配對表面結合,用以使所保持住之薄晶片變形。於一實施例中,第一薄晶片807在由擠壓單元803所保持住時可在擠壓單元803之第一彎曲表面811上變形。第二薄晶片809在由支架單元805所保持住時可在支架單元805之第二彎曲表面813上變形。第一薄晶片807及/或第二薄晶片809可包含槽孔以增加晶片彈性,用以進行變形(或捲曲、彎曲)。第一彎曲表面811及第二彎曲表面813可具有共同曲率以彼此匹配。 In one embodiment, the first thin wafer 807 and the second thin wafer 809 can be respectively held by the pressing unit 803 and the bracket unit 805 by vacuum, static electricity or other means. For example, the extrusion unit 803 or the holder unit 805 can include a vacuum suction disk having an annular aperture or an opening for a vacuum channel to provide suction to hold the thin wafer. The pressing unit 803 and the bracket unit 805 can be combined with the mating surface to deform the held thin wafer. In an embodiment, the first thin wafer 807 is deformable on the first curved surface 811 of the pressing unit 803 while being held by the pressing unit 803. The second thin wafer 809 is deformable on the second curved surface 813 of the bracket unit 805 when held by the bracket unit 805. The first thin wafer 807 and/or the second thin wafer 809 may include slots to increase wafer elasticity for deformation (or curling, bending). The first curved surface 811 and the second curved surface 813 may have a common curvature to match each other.

於第八B圖之順序800B,支架在對準之後可放置在一起。例如,支架單元805可為透明以允許透過第一薄晶片807及第二薄晶片809與擠壓單元803進行對準。於一實施例中,支架間之對準可基於第一薄晶片807與第二薄晶片809之間的匹配對應接合焊墊(例如基於遮罩)。 In the sequence 800B of Figure 8B, the stents can be placed together after alignment. For example, the bracket unit 805 can be transparent to allow alignment of the first thin wafer 807 and the second thin wafer 809 with the extrusion unit 803. In one embodiment, the alignment between the supports can be based on a matching bond pad (eg, based on a mask) between the first thin wafer 807 and the second thin wafer 809.

擠壓單元803可在三旋轉維度(three rotational dimensions)中旋轉,用以對準所保持住之晶片。於一實施例中,擠壓單元803可限制成在一平移維度中移動,例如朝向或遠離支架單元805,以使支架表面,例如第一彎曲表面811及第二彎曲表面813,得以彼此匹配。於某些實 施例中,支架表面可與一共同曲率中心(或球中心)相匹配。 The extrusion unit 803 is rotatable in three rotational dimensions for aligning the held wafer. In an embodiment, the pressing unit 803 can be constrained to move in a translational dimension, such as toward or away from the bracket unit 805, such that the bracket surfaces, such as the first curved surface 811 and the second curved surface 813, are matched to each other. In some real In an embodiment, the stent surface can be matched to a common center of curvature (or center of the ball).

當擠壓單元803及支架單元805被放置在一起時,熱及壓力可加以施加,以在薄金屬膜接合區域之特定區域處例如接合區819接合第一薄晶片807與第二薄晶片809。薄金屬膜接合區域可包含焊墊,其與薄晶片之間的配對焊墊相對準。於一實施例中,焊墊可利用一控制範圍之高溫融化在一起。例如,對於錫(tin)/鉛(lead)型焊墊而言可使用約100-180度C的熱。另則,對於以金(gold)合金所製造之焊墊而言可能需要約350-450度C的熱。 When the pressing unit 803 and the holder unit 805 are placed together, heat and pressure can be applied to engage the first thin wafer 807 and the second thin wafer 809 at a specific region of the thin metal film bonding region, for example, the bonding region 819. The thin metal film junction region can include a pad that is aligned with the mating pad between the thin wafers. In one embodiment, the pads can be melted together using a controlled range of high temperatures. For example, heat of about 100-180 degrees C can be used for tin/lead pads. Alternatively, heat of about 350-450 degrees C may be required for pads made of gold alloy.

於第八C圖之順序800C,擠壓單元803可鬆開所保持住之第一晶片807並使其本身從支架單元805分離。包含與第二晶片809相接合之第一晶片807的非平面組件可透過晶片間所建立之接合所提供的相互限制而保持彎曲。 In the sequence 800C of the eighth C diagram, the pressing unit 803 can release the held first wafer 807 and separate itself from the holder unit 805. The non-planar component comprising the first wafer 807 bonded to the second wafer 809 can remain curved by mutual restraint provided by the bonding established between the wafers.

於上述敘述中,本發明已參照其特定示範性實施例加以詳細敘述。本領域具通常知識者應得以領會,在不脫離本發明之較寬廣範圍下,可對本發明進行若干修改,上述較寬廣範圍係如下述申請專利範圍所提出者。本發明並不限於所揭露之特定形式、圖式、比例及詳細資訊。是故,本說明書及圖式係用以說明本發明,而非用以限制本發明。 In the above description, the invention has been described in detail with reference to the specific exemplary embodiments thereof. It will be appreciated by those skilled in the art that the present invention may be modified in many ways without departing from the scope of the invention. The invention is not limited to the specific forms, figures, proportions and details disclosed. The description and drawings are intended to be illustrative of the invention and not to limit the invention.

100A‧‧‧組件 100A‧‧‧ components

100B‧‧‧組件 100B‧‧‧ components

101‧‧‧固定結構 101‧‧‧Fixed structure

103‧‧‧彈性晶片 103‧‧‧elastic wafer

105‧‧‧固定結構 105‧‧‧Fixed structure

107‧‧‧彈性晶片 107‧‧‧Flexible wafer

109‧‧‧彈性晶片 109‧‧‧elastic wafer

111‧‧‧通訊路徑 111‧‧‧Communication Path

113‧‧‧眼球 113‧‧‧ eyeballs

115‧‧‧固定結構 115‧‧‧Fixed structure

117‧‧‧彈性晶片 117‧‧‧elastic wafer

119‧‧‧彈性晶片 119‧‧‧elastic wafer

121‧‧‧視網膜 121‧‧‧Retina

123‧‧‧固定結構 123‧‧‧Fixed structure

200A‧‧‧結構 200A‧‧‧ structure

200B‧‧‧非平面積體電路裝置 200B‧‧‧Non-flat area body circuit device

203‧‧‧阻障層 203‧‧‧Barrier layer

205‧‧‧元件層 205‧‧‧ component layer

207‧‧‧受應力膜層 207‧‧‧ stressed layer

209‧‧‧晶圓載具 209‧‧‧ wafer carrier

210‧‧‧聚合物層 210‧‧‧ polymer layer

211‧‧‧黏著劑 211‧‧‧Adhesive

213‧‧‧彈性薄結構 213‧‧‧Flexible thin structure

215‧‧‧受應力膜 215‧‧‧stressed film

217‧‧‧受應力膜 217‧‧‧stressed film

300A‧‧‧概要圖 300A‧‧‧Overview

301、303‧‧‧槽孔 301, 303‧‧‧ slots

305‧‧‧薄晶片 305‧‧‧ Thin wafer

307‧‧‧尖端 307‧‧‧ cutting-edge

309‧‧‧曲率半徑 309‧‧‧ radius of curvature

311‧‧‧角度 311‧‧‧ angle

313‧‧‧圓周 313‧‧‧Circle

400A‧‧‧概要圖 400A‧‧‧Overview

400B‧‧‧組件 400B‧‧‧ components

401‧‧‧固定結構 401‧‧‧Fixed structure

403‧‧‧薄晶片 403‧‧‧ Thin wafer

405‧‧‧槽孔 405‧‧‧Slots

407‧‧‧接合墊 407‧‧‧Join pad

500A‧‧‧順序 500A‧‧‧ Order

500B‧‧‧順序 500B‧‧‧ Order

500C‧‧‧順序 500C‧‧‧ Order

500D‧‧‧順序 500D‧‧‧ Order

500E‧‧‧順序 500E‧‧‧ Order

501‧‧‧支架單元 501‧‧‧ bracket unit

503‧‧‧凹部 503‧‧‧ recess

505‧‧‧擠壓單元 505‧‧‧Extrusion unit

507‧‧‧軟性結構 507‧‧‧Soft structure

509‧‧‧薄晶片 509‧‧‧ Thin wafer

511‧‧‧接合區 511‧‧‧ junction area

513‧‧‧焊墊 513‧‧‧ solder pads

515‧‧‧配對焊墊 515‧‧‧Matching pads

517‧‧‧擠壓單元 517‧‧‧Extrusion unit

600A‧‧‧概要圖 600A‧‧‧Overview

600B‧‧‧組件 600B‧‧‧ components

601‧‧‧第一薄晶片 601‧‧‧First thin wafer

603‧‧‧槽孔 603‧‧‧Slots

605‧‧‧槽孔 605‧‧‧ slots

607‧‧‧第二薄晶片 607‧‧‧Second thin wafer

701‧‧‧焊墊 701‧‧‧ solder pads

703‧‧‧焊墊 703‧‧‧ solder pads

705‧‧‧配對焊墊 705‧‧‧Matching pads

707‧‧‧回填 707‧‧‧ Backfill

800A‧‧‧順序 800A‧‧‧ Order

800B‧‧‧順序 800B‧‧‧ Order

800C‧‧‧順序 800C‧‧‧ Order

801‧‧‧控制單元 801‧‧‧Control unit

803‧‧‧擠壓單元 803‧‧‧Extrusion unit

805‧‧‧支架單元 805‧‧‧ bracket unit

807‧‧‧第一薄晶片 807‧‧‧First thin wafer

809‧‧‧第二薄晶片 809‧‧‧Second thin wafer

811‧‧‧第一彎曲表面 811‧‧‧ first curved surface

813‧‧‧第二彎曲表面 813‧‧‧Second curved surface

819‧‧‧接合區 819‧‧‧ junction area

本發明係藉由後附圖式中之實例加以說明,而非用以限制本發明。後附圖式中相似之元件符號係指類似之元件。 The invention is illustrated by the examples in the following figures, and is not intended to limit the invention. Like reference numerals in the following drawings refer to like elements.

第一A圖至第一D圖係顯示用於彈性晶片之非平面組件之示範性實施例的概要示意圖。 1A through 1D are schematic diagrams showing exemplary embodiments of non-planar components for an elastic wafer.

第二A圖係根據此處所述實施例顯示沈積有受應力薄膜之彈性結構的橫切面圖之方塊圖。 Second A is a block diagram showing a cross-sectional view of an elastic structure deposited with a stressed film in accordance with embodiments described herein.

第二B圖係根據此處所述實施例顯示以波狀方式變形之非平面裝置的概要示意圖。 Second B is a schematic diagram showing a non-planar device that is deformed in a wavy manner in accordance with the embodiments described herein.

第三A圖至第三C圖係根據此處所述之實施例顯示以槽孔為基礎之示範性非平面晶片的概要示意圖。 3A through 3C are schematic diagrams showing exemplary non-planar wafers based on slots, in accordance with embodiments described herein.

第四A圖至第四B圖係顯示組裝有軟性結構的薄晶片之示範性實施例的概要示意圖。 4A to 4B are schematic diagrams showing an exemplary embodiment of a thin wafer in which a flexible structure is assembled.

第五A圖至第五F圖係顯示用於非平面彈性裝置之組裝程序的示範性順序之方塊圖。 Fifth to fifth F diagrams are block diagrams showing exemplary sequences of assembly procedures for non-planar elastic devices.

第六A圖至第六B圖係顯示受到相互限制之非平面晶片的示範性實施例之概要示意圖。 6A through 6B are schematic diagrams showing an exemplary embodiment of a non-planar wafer that is mutually constrained.

第七A圖至第七B圖係顯示具有接合焊墊之組件的示範性上視圖及橫切面圖之概要示意圖。 7A to 7B are schematic diagrams showing an exemplary top view and a cross-sectional view of an assembly having a bonding pad.

第八A圖至第八C圖係顯示用以組裝此處所述之一實施例中的薄晶粒/晶圓之彎曲堆疊的示範性順序之方塊圖。 8A through 8C are block diagrams showing exemplary sequences for assembling a thin die/wafer curved stack in one of the embodiments described herein.

300A‧‧‧概要圖 300A‧‧‧Overview

301、303‧‧‧槽孔 301, 303‧‧‧ slots

305‧‧‧薄晶片 305‧‧‧ Thin wafer

307‧‧‧尖端 307‧‧‧ cutting-edge

Claims (10)

一種用於非平面裝置之組裝方法,該非平面裝置係基於一個或以上之彎曲的晶片,該方法包含:產生複數個槽孔以作為該晶片中之縱向開孔,該槽孔減少位移應力以增加該晶片之形變可允許角度;透過該槽孔將該晶片變形至該形變可允許角度內之期望形變;其中當該期望形變發生時,該槽孔兩側之該晶片部分相互靠近、接觸或閉合;以及提供保持限制於至少一部分之該晶片上,該保持限制使該晶片得以根據該期望形變保持彎曲。 An assembly method for a non-planar device based on one or more curved wafers, the method comprising: generating a plurality of slots as longitudinal openings in the wafer, the slots reducing displacement stress to increase Deformation of the wafer allows for an angle; the wafer is deformed through the slot to a desired deformation within the allowable angle of deformation; wherein when the desired deformation occurs, the portions of the wafer on either side of the slot are adjacent, in contact, or closed And providing a retention limit on at least a portion of the wafer, the retention restriction enabling the wafer to remain curved in accordance with the desired deformation. 如請求項1所述之用於非平面裝置之組裝方法,其中該期望形變對應於一類球面曲率,該類球面曲率與人類眼球相符合,其中該晶片中之至少一者係相對球形且具有一圓周,該圓周具有一中心,其中該晶片中之該至少一者具有該複數個槽孔中之一個或以上之特定槽孔,該複數個槽孔中之該一個或以上之特定槽孔係排列成放射狀圖案,該放射狀圖案係從該中心朝向該圓周向外延伸,其中該固定結構包含分離晶片,其中根據該期望形變該晶片與該分離晶片透過相互限制而維持彎曲,該相互限制包含藉由該固定結構之該保持限制,其中將該晶片變形之步驟包含:將受應力薄膜沈積於該晶片之至少一側上,該受應力薄膜為了至少一部分之該期望形變提供位移力,其中該受 應力薄膜係加以圖案化以配置該位移力。 The method for assembling a non-planar device according to claim 1, wherein the desired deformation corresponds to a type of spherical curvature conforming to a human eyeball, wherein at least one of the wafers is relatively spherical and has a a circumference having a center, wherein at least one of the plurality of wafers has a particular slot of one or more of the plurality of slots, the one or more of the plurality of slots being aligned with the particular slot Forming a radial pattern extending outward from the center toward the circumference, wherein the fixed structure includes a separation wafer, wherein the wafer and the separation wafer are mutually restricted to maintain bending according to the desired deformation, the mutual limitation includes By the retention limitation of the fixed structure, the step of deforming the wafer includes depositing a stressed film on at least one side of the wafer, the stressed film providing a displacement force for at least a portion of the desired deformation, wherein the Subject to The stress film is patterned to configure the displacement force. 如請求項2所述之用於非平面裝置之組裝方法,其中該特定槽孔之每一者係成形為一通道區域,該通道區域從到該中心之一停止距離朝向該圓周伸展,其中產生複數個槽孔之步驟包含:將該晶片之該至少一者沿著該通道區域從該圓周朝向該中心之該停止距離進行切割,其中該停止距離係基於用以切割該晶片之該至少者的設備之有限解析度而決定,其中該切割約在到該晶片之該中心的該停止距離處停止並形成細微尖端,其中該細微尖端在該通道區域周圍具有尖銳角落,其中將該晶片之該至少一者進行切割係對應於沿著該圓周之一開孔,其中該開孔之長度係基於該期望形變而決定,其中將該晶片之該至少一者進行切割之步驟包含移除晶片材料;以及將該細微尖端圓形化以形成該槽孔,使該槽孔在靠近到該中心的該停止距離處沒有尖銳角落之形狀。 The method for assembling a non-planar device according to claim 2, wherein each of the specific slots is formed as a passage region extending from a stop distance to the center toward the circumference, wherein the generation The plurality of slots includes: cutting the at least one of the wafers along the stop distance of the channel region from the circumference toward the center, wherein the stop distance is based on the at least one of the wafers used to cut the wafer Determining a limited resolution of the device, wherein the cutting stops at the stop distance to the center of the wafer and forms a fine tip, wherein the fine tip has sharp corners around the channel region, wherein the wafer is at least One performing the cutting system corresponds to opening a hole along one of the circumferences, wherein the length of the opening is determined based on the desired deformation, wherein the step of cutting the at least one of the wafers comprises removing the wafer material; The fine tip is rounded to form the slot such that the slot has no sharp corner shape at the stop distance to the center. 如請求項1所述之用於非平面裝置之組裝方法,其中該期望形變係透過支架之彎曲表面而配置,其中該支架包含分配於該彎曲表面上之真空孔,其中將該晶片變形之步驟包含:將該晶片擠壓於該支架之該彎曲表面上,以使該晶片彎曲成該期望形變,其中該擠壓係基於透過該真空孔施加 之真空吸力。 The method for assembling a non-planar device according to claim 1, wherein the desired deformation is configured by a curved surface of the stent, wherein the stent comprises a vacuum hole disposed on the curved surface, wherein the step of deforming the wafer The method comprises: pressing the wafer onto the curved surface of the bracket to bend the wafer into the desired deformation, wherein the pressing is based on being applied through the vacuum hole Vacuum suction. 如請求項1所述之用於非平面裝置之組裝方法,其中該期望形變係透過支架之彎曲表面而配置,其中該支架包含該彎曲表面上之靜電吸附盤,其中將該晶片變形之步驟包含:將該晶片擠壓於該支架之該彎曲表面上,以使該晶片彎曲成該期望形變,其中該擠壓係基於透過該靜電吸附盤施加之靜電力。 The method for assembling a non-planar device according to claim 1, wherein the desired deformation is configured by a curved surface of the stent, wherein the stent comprises an electrostatic adsorption disk on the curved surface, wherein the step of deforming the wafer comprises The wafer is extruded onto the curved surface of the stent to bend the wafer to the desired deformation, wherein the extrusion is based on an electrostatic force applied through the electrostatic chuck. 如請求項1所述之用於非平面裝置之組裝方法,其中該晶片包含複數個焊墊,其中該保持限制係機械性限制該焊墊對於一個或以上之固定結構的相對位置,其中提供保持限制之步驟包含:根據該期望形變形成該固定結構之形狀,該固定結構包含與該晶片之該焊墊對應的配對焊墊,其中形成該固定結構之形狀的步驟包含在預定高溫的範圍內利用壓力模製該固定結構,使該固定結構符合該期望形變;以及將該焊墊與對應的該配對焊墊結合,且同時根據該期望形變維持該晶片之形狀,其中將該焊墊與對應的該配對焊墊結合之步驟包含:基於該期望形變將該晶片與該固定結構對準,以及在一控制範圍之高溫內將該晶片對著該固定結構擠壓;其中該複數個焊墊中之至少二者係接合至該固定結構 中之其中一者,其中該複數個焊墊中之該至少二者係橫跨該複數個槽孔之其中一者設置,其中該保持限制包含該一個或以上之固定結構的限制,以沿著該複數個槽孔之其中一者維持該晶片之該期望形變,其中該固定結構包含彈性材料。 The method for assembling a non-planar device according to claim 1, wherein the wafer comprises a plurality of pads, wherein the retention limit mechanically limits a relative position of the pad to one or more fixed structures, wherein the retention is provided The limiting step includes: forming a shape of the fixing structure according to the desired deformation, the fixing structure comprising a mating pad corresponding to the pad of the wafer, wherein the step of forming the shape of the fixing structure comprises utilizing within a predetermined high temperature range Pressure molding the fixed structure to conform to the desired deformation; and bonding the bonding pad to the corresponding mating pad while maintaining the shape of the wafer according to the desired deformation, wherein the pad is corresponding to The step of bonding the mat includes: aligning the wafer with the fixed structure based on the desired deformation, and pressing the wafer against the fixed structure at a high temperature within a control range; wherein the plurality of pads At least two are joined to the fixed structure One of the plurality of pads, wherein the at least two of the plurality of pads are disposed across one of the plurality of slots, wherein the retention limit includes a limit of the one or more fixed structures to One of the plurality of slots maintains the desired deformation of the wafer, wherein the fixed structure comprises an elastomeric material. 一種用於三維彎曲晶片之組裝方法,該三維彎曲晶片包含一第一晶片及一第二晶片,該方法包含:將該第一晶片變形成一期望形變,其中該第一晶片包含一第一槽孔以允許變形該第一晶片;其中當該期望形變發生時,該第一槽孔兩側之該第一晶片部分相互靠近、接觸或閉合;將該第二晶片變形成符合該期望形變,其中該第二晶片包含一第二槽孔以允許變形該第二晶片;其中當該期望形變發生時,該第二槽孔兩側之該第二晶片部分相互靠近、接觸或閉合;以及將經變形之該第一晶片及該第二晶片彼此結合,以在該第一晶片與該第二晶片之間提供相互保持限制,使該第一晶片及該第二晶片保持彎曲成該期望形變。 A method for assembling a three-dimensionally curved wafer, the three-dimensionally curved wafer comprising a first wafer and a second wafer, the method comprising: deforming the first wafer into a desired deformation, wherein the first wafer comprises a first groove a hole to allow deformation of the first wafer; wherein when the desired deformation occurs, the first wafer portions on both sides of the first slot are close to, in contact with, or closed; the second wafer is deformed to conform to the desired deformation, wherein The second wafer includes a second slot to allow deformation of the second wafer; wherein when the desired deformation occurs, the second wafer portions on either side of the second slot are close to, in contact with, or closed; and will be deformed The first wafer and the second wafer are bonded to each other to provide mutual retention between the first wafer and the second wafer, so that the first wafer and the second wafer remain bent to the desired deformation. 如請求項7所述之用於三維彎曲晶片之組裝方法,其中該第一晶片包含複數個第一焊墊,其中該第二晶片包含複數個第二焊墊,該複數個第二焊墊對應於該第一晶片之該第一焊墊,其中將經變形之該第一晶片及該第二晶 片彼此結合之步驟包含:將位於經變形之該第一晶片與該第二晶片之間的該第一焊墊及該第二焊墊對準,其中該對準使得該第一槽孔與該第二槽孔設置成以大體上正交之方式彼此相交;以及於一控制高溫範圍內在經對準之該第一晶片與該第二晶片之間施加壓力,以結合該第一焊墊及該第二焊墊,其中經結合之該第一焊墊及該第二焊墊包含導電材料,其中該第一晶片及該第二晶片係透過在經結合之該第一焊墊及該第二焊墊之外的空氣隙而分離;其中該方法更包含:將該空氣隙以導熱材料回填,以使該第一晶片與該第二晶片之間得以透過該導熱材料進行散熱,以及將經結合之該第一焊墊及該第二焊墊鈍化,以使該導電材料與腐蝕隔絕。 The method for assembling a three-dimensionally bent wafer according to claim 7, wherein the first wafer comprises a plurality of first pads, wherein the second wafer comprises a plurality of second pads, and the plurality of second pads correspond to The first pad of the first wafer, wherein the first wafer and the second crystal are to be deformed The step of bonding the sheets to each other includes: aligning the first pad and the second pad between the deformed first wafer and the second wafer, wherein the alignment causes the first slot and the first slot The second slots are arranged to intersect each other in a substantially orthogonal manner; and a pressure is applied between the aligned first wafer and the second wafer in a controlled high temperature range to bond the first pads and the a second pad, wherein the first pad and the second pad are combined to include a conductive material, wherein the first die and the second die are permeable to the first pad and the second solder Separating the air gap from the pad; wherein the method further comprises: backfilling the air gap with a heat conductive material to allow heat dissipation between the first wafer and the second wafer through the heat conductive material, and combining The first pad and the second pad are passivated to isolate the conductive material from corrosion. 一種用以製造非平面彎曲晶片之裝置,包含:一擠壓單元,具有一第一表面,該第一表面係根據一期望曲率彎曲;一支架單元,具有一第二表面,該第二表面係彎曲成符合該期望曲率;以及一控制單元,用以移動該擠壓單元及該支架單元,其中該擠壓單元係配置成在該第一表面上將晶片變形成該期望曲率, 其中該支架單元係配置成在該第二表面上根據該期望曲率將固定結構變形,以及其中該控制單元係配置成使該擠壓單元及該支架單元得以在該第一表面與該第二表面之間將該晶片與該固定結構接合,該接合提供保持限制予該晶片及該固定結構以保持彎曲。 An apparatus for manufacturing a non-planar curved wafer, comprising: a pressing unit having a first surface, the first surface being curved according to a desired curvature; a bracket unit having a second surface, the second surface Curved to conform to the desired curvature; and a control unit for moving the extrusion unit and the bracket unit, wherein the extrusion unit is configured to deform the wafer to the desired curvature on the first surface, Wherein the bracket unit is configured to deform the fixed structure on the second surface according to the desired curvature, and wherein the control unit is configured to enable the pressing unit and the bracket unit to be on the first surface and the second surface The wafer is bonded to the fixed structure, the bond providing retention constraints to the wafer and the fixed structure to maintain bending. 如請求項9所述之用以製造非平面彎曲晶片之裝置,其中該擠壓單元之該第一表面係根據具有一第一曲率中心之該期望曲率進行彎曲,其中該支架單元之該第二表面係彎曲成符合具有一第二曲率中心之該期望曲率,其中該移動使該第一曲率中心得以重疊該第二曲率中心,以使該第一表面與該第二表面相配合,其中該晶片包含焊墊,其中該固定結構包含配對焊墊,該配對焊墊對應於該焊墊,其中該控制單元使得該擠壓單元在三旋轉維度中旋轉,以使該第一表面與該第二表面對準,其中該擠壓單元與該支架單元中之至少一者係為透明,以使該對準得以基於該焊墊及該配對焊墊。 The apparatus for manufacturing a non-planar curved wafer according to claim 9, wherein the first surface of the pressing unit is bent according to the desired curvature having a first center of curvature, wherein the second of the bracket unit The surface system is curved to conform to the desired curvature having a second center of curvature, wherein the movement causes the first center of curvature to overlap the second center of curvature such that the first surface mates with the second surface, wherein the wafer Including a bonding pad, wherein the fixing structure includes a mating pad corresponding to the pad, wherein the control unit rotates the pressing unit in three rotation dimensions to make the first surface and the second surface Alignment, wherein at least one of the extrusion unit and the holder unit is transparent such that the alignment is based on the pad and the mating pad.
TW101135400A 2011-11-18 2012-09-26 Methods and apparatuses for non-planar chip assembly TWI520237B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/300,547 US8613135B2 (en) 2011-05-06 2011-11-18 Method for non-planar chip assembly

Publications (2)

Publication Number Publication Date
TW201322348A TW201322348A (en) 2013-06-01
TWI520237B true TWI520237B (en) 2016-02-01

Family

ID=49032476

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135400A TWI520237B (en) 2011-11-18 2012-09-26 Methods and apparatuses for non-planar chip assembly

Country Status (1)

Country Link
TW (1) TWI520237B (en)

Also Published As

Publication number Publication date
TW201322348A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
US9155881B2 (en) Non-planar chip assembly
JP6541194B2 (en) Method of assembling non-planar artificial retina prosthetic device
US9731130B2 (en) Flexible artificial retina device
TWI519846B (en) Assembling thin silicon chips on a contact lens
US9967982B2 (en) Method of producing an interposer with microspring contacts
US7910460B2 (en) Metallic electrode forming method and semiconductor device having metallic electrode
CA2821742A1 (en) Thinned and flexible semiconductor elements on three dimensional surfaces
TWI508252B (en) Non-planar chip assembly
TWI520237B (en) Methods and apparatuses for non-planar chip assembly
AU2018208714B2 (en) Non-planar chip assembly
JP2014239131A (en) Junction structure and method for manufacturing the same