TWI520226B - Semiconductor device and fabricating method thereof - Google Patents
Semiconductor device and fabricating method thereof Download PDFInfo
- Publication number
- TWI520226B TWI520226B TW101114674A TW101114674A TWI520226B TW I520226 B TWI520226 B TW I520226B TW 101114674 A TW101114674 A TW 101114674A TW 101114674 A TW101114674 A TW 101114674A TW I520226 B TWI520226 B TW I520226B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- metal
- semiconductor device
- fin structure
- fabricating
- Prior art date
Links
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
本發明係關於一種半導體元件的製作方法,尤其是一種形成金屬矽化物於鰭狀結構上的方法。The present invention relates to a method of fabricating a semiconductor device, and more particularly to a method of forming a metal halide on a fin structure.
金屬氧化半導體(metal-oxide-semiconductor,MOS)電晶體是半導體積體電路中非常重要的元件,而其閘極與源極/汲極之電性表現更是MOS電晶體品質的重要關鍵。習知閘極通常包含有一多晶矽層(poly-silicon)用來當作主傳導層,而源極/汲極則是由離子佈植在單晶矽基底的摻雜區所構成,因此會在該多晶矽層與摻雜區的上方再形成一金屬矽化物層,來降低閘極的片電阻(sheet resistance),並提高MOS電晶體的操作速度。Metal-oxide-semiconductor (MOS) transistors are very important components in semiconductor integrated circuits, and the electrical performance of gate and source/drain is the key to the quality of MOS transistors. Conventional gates typically include a poly-silicon layer used as the primary conductive layer, and the source/drain electrodes are formed by doping regions of ions implanted on the single crystal germanium substrate, so A metal germanide layer is formed over the polysilicon layer and over the doped region to reduce the sheet resistance of the gate and increase the operating speed of the MOS transistor.
而近年來發展出鰭狀電晶體(fin FET)等非平面結構的電晶體,其可以有效增加閘極通道的寬度,並提高積體電路的積集度,因此被廣泛地應用在目前的半導體業界。但隨著鰭狀電晶體的鰭狀結構(fin)愈來愈薄,於鰭狀結構表面形成金屬矽化物的技術難度也隨之提升,此外,若於形成金屬矽化物的過程中過度加熱,將會導致所形成的金屬矽化物鑽入矽基底中,而使鰭狀電晶體的漏電流增大,嚴重影響鰭狀電晶體的品質。In recent years, non-planar crystals such as fin FETs have been developed, which can effectively increase the width of gate channels and improve the integration of integrated circuits, and thus are widely used in current semiconductors. industry. However, as the fin structure (fin) of the fin-shaped transistor becomes thinner and thinner, the technical difficulty of forming a metal telluride on the surface of the fin structure is also increased, and if excessive heating is performed during the formation of the metal telluride, This will cause the formed metal halide to penetrate into the germanium substrate, and increase the leakage current of the fin transistor, which seriously affects the quality of the fin transistor.
本發明之目的之一在於提供一種半導體元件的製作方法,其形成金屬矽化物於鰭狀結構表面,且可有效降低漏電流形成的可能。It is an object of the present invention to provide a method of fabricating a semiconductor device which forms a metal halide on the surface of a fin structure and which can effectively reduce the possibility of leakage current formation.
本發明提供一種半導體元件之製作方法,包括提供一基板,且其具有至少一鰭狀結構,然後沉積一金屬層於該鰭狀結構上,以形成一金屬矽化物層於該鰭狀結構上,在沉積該金屬層之後,不進行任何加溫步驟,直接去除該金屬層;在去除該金屬層之後,進行一快速加熱製程。The present invention provides a method of fabricating a semiconductor device, comprising: providing a substrate having at least one fin structure, and then depositing a metal layer on the fin structure to form a metal telluride layer on the fin structure, After depositing the metal layer, the metal layer is directly removed without any heating step; after the metal layer is removed, a rapid heating process is performed.
本發明提供另一種半導體元件之製作方法,包括提供一基板,且其具有至少一鰭狀結構,之後沉積一金屬層於該鰭狀結構上,以形成一金屬矽化物層於該鰭狀結構上,在沉積該金屬層之後,進行一低溫加溫步驟,其中該低溫加熱步驟的溫度範圍介於80℃到120℃之間,然後去除該金屬層,以及進行一快速加熱製程。The present invention provides a method of fabricating another semiconductor device, comprising providing a substrate having at least one fin structure, and then depositing a metal layer on the fin structure to form a metal halide layer on the fin structure. After depositing the metal layer, a low temperature heating step is performed, wherein the low temperature heating step has a temperature ranging from 80 ° C to 120 ° C, then the metal layer is removed, and a rapid heating process is performed.
本發明另提供一半導體元件結構,包含有一基板,基板上具有至少一鰭狀結構;一金屬矽化物層,覆蓋該鰭狀結構一頂面與兩側壁,且該金屬矽化物層具有均勻膜厚;以及複數個接觸,位於該金屬矽化物層上。The present invention further provides a semiconductor device structure including a substrate having at least one fin structure thereon, a metal telluride layer covering a top surface and two sidewalls of the fin structure, and the metal telluride layer having a uniform film thickness And a plurality of contacts on the metal halide layer.
本發明於形成金屬矽化物過程中,在移除金屬層前,不進行任何加熱步驟,或僅進行一較低溫的加熱步驟(80℃到120℃),以形成極薄的金屬矽化物於鰭狀結構表面,因此可降低漏電流形成的可能,進而提升元件效能。In the process of forming a metal telluride, the present invention does not perform any heating step before removing the metal layer, or only performs a relatively low temperature heating step (80 ° C to 120 ° C) to form a very thin metal telluride on the fin. The surface of the structure, thus reducing the possibility of leakage current formation, thereby improving component performance.
請參考第1~7圖,第1~7圖繪製本發明第一較佳實施例的半導體元件結構示意圖。首先,如第1圖所示,提供一基底100,例如是矽基底(silicon substrate)、磊晶矽(epitaxial silicon substrate)、矽鍺半導體基底(silicon germanium substrate)或碳化矽基底(silicon carbide substrate)等,本發明之一較佳實施例係以塊狀矽基底(bulk silicon substrate)為例,但不以此為限。接著,在基底100上方形成一圖案化之遮罩層112,並可選擇性的在基底100以及圖案化之遮罩層112之間形成一圖案化襯墊層(圖未示)。於本發明之一較佳實施例中,圖案化遮罩層包含各種適合作為硬遮罩的材質,例如氮化矽(silicon nitride,SiN)或是應用材料公司提供之進階圖案化薄膜(advanced pattern film,APF)等,而圖案化襯墊層則可例如是二氧化矽層(SiO2)等。隨後,以圖案化之遮罩層112為遮罩進行一第一蝕刻製程,以於基底100上之至少一鰭狀結構110,每一鰭狀結構110寬度約為10奈米(nm),並同時於此鰭狀結構110周圍的基底100中形成複數個溝渠102。Please refer to FIGS. 1-7, and FIGS. 1-7 are schematic diagrams showing the structure of a semiconductor device according to a first preferred embodiment of the present invention. First, as shown in FIG. 1, a substrate 100 is provided, such as a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, or a silicon carbide substrate. The preferred embodiment of the present invention is exemplified by a bulk silicon substrate, but is not limited thereto. Next, a patterned mask layer 112 is formed over the substrate 100, and a patterned liner layer (not shown) is selectively formed between the substrate 100 and the patterned mask layer 112. In a preferred embodiment of the present invention, the patterned mask layer comprises various materials suitable for use as a hard mask, such as silicon nitride (SiN) or an advanced patterned film provided by Applied Materials (advanced). Pattern film, APF), etc., and the patterned liner layer may be, for example, a hafnium oxide layer (SiO 2 ) or the like. Subsequently, a first etching process is performed with the patterned mask layer 112 as a mask to form at least one fin structure 110 on the substrate 100, each fin structure 110 having a width of about 10 nanometers (nm), and At the same time, a plurality of trenches 102 are formed in the substrate 100 around the fin structure 110.
接著如第2圖所示,全面性形成一介電層114覆蓋基底100與圖案化之遮罩層112,並填滿各溝渠102。之後對介電層114施以一平坦化製程,如化學機械研磨(CMP),並利用圖案化之遮罩層112當作停止層(stop layer),使圖案化之遮罩層112曝露於平坦化之介電層114表面。其中,介電層114可以是一般用以形成淺溝渠隔離(STI)之介電材料,其可由單層或複數層的絕緣材料所構成,此為本技藝人士之通常知識,故不多加贅述。Next, as shown in FIG. 2, a dielectric layer 114 is formed to cover the substrate 100 and the patterned mask layer 112, and fills the trenches 102. The dielectric layer 114 is then subjected to a planarization process, such as chemical mechanical polishing (CMP), and the patterned mask layer 112 is used as a stop layer to expose the patterned mask layer 112 to a flat surface. The surface of the dielectric layer 114. The dielectric layer 114 may be a dielectric material generally used to form shallow trench isolation (STI), which may be composed of a single layer or a plurality of layers of insulating materials. This is a general knowledge of those skilled in the art, and therefore will not be further described.
然後,如第3圖所示,接續再以一蝕刻製程去除部份的介電層114,用以於鰭狀結構110周圍的各溝渠102中分別形成一淺溝渠隔離(STI) 115作為基底100上各鰭狀結構110之間的絕緣物。其中,蝕刻製程並不限於使用乾式蝕刻或濕式蝕刻或上述之組合,乾蝕刻條件可以為CF4、O2與Ar,濕蝕刻條件可以是稀釋氫氟酸等。此外,在適當的條件下,本實施例亦可於形成覆蓋基底100與圖案化之遮罩層112的介電層114之後,便直接以蝕刻製程去除部份的介電層114而於各第一溝渠102中形成淺溝渠隔離(STI) 115。Then, as shown in FIG. 3, a portion of the dielectric layer 114 is removed by an etching process to form a shallow trench isolation (STI) 115 as the substrate 100 in each of the trenches 102 around the fin structure 110. The insulation between the upper fin structures 110. The etching process is not limited to the use of dry etching or wet etching or a combination thereof, and the dry etching conditions may be CF 4 , O 2 and Ar, and the wet etching conditions may be diluted hydrofluoric acid or the like. In addition, under appropriate conditions, in this embodiment, after the dielectric layer 114 covering the substrate 100 and the patterned mask layer 112 is formed, a portion of the dielectric layer 114 is directly removed by an etching process. A shallow trench isolation (STI) 115 is formed in a trench 102.
然後移除該圖案化之遮罩層112之後,如第4圖所示,形成一閘極結構124覆蓋於部份之鰭狀結構110上。閘極結構124包含一介電層(圖未示)、一導電層(圖未示)以及一遮罩層125,其中,介電層可包含氧化物或氮化物等,導電層可包含多晶矽或金屬等,遮罩層可包含氮化物或氧化物等。此外,本實施例亦可與高介電常數優先閘極後製製程(high-k first gate last process)、高介電常數後製閘極後製置製程(high-k last gate last process)或閘極優先製程(gate first process)整合前閘極介電層(high-k first)等之金屬閘極製程相整合,因此在鰭狀結構110與介電層之間,可選擇性形成一襯墊層(圖未示),且此介電層較佳為一高介電常數(high dielectric constant,high-k)材料層,其可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。After the patterned mask layer 112 is removed, as shown in FIG. 4, a gate structure 124 is formed overlying the portion of the fin structure 110. The gate structure 124 includes a dielectric layer (not shown), a conductive layer (not shown), and a mask layer 125. The dielectric layer may include an oxide or a nitride, and the conductive layer may include polysilicon or The metal or the like, the mask layer may contain a nitride or an oxide or the like. In addition, the present embodiment can also be combined with a high-k first gate last process, a high-k last gate last process or a high-k last gate last process or The gate first process integrates the metal gate process of the front gate-high dielectric layer (high-k first), so that a lining can be selectively formed between the fin structure 110 and the dielectric layer. a pad layer (not shown), and the dielectric layer is preferably a high dielectric constant (high-k) material layer, which may be selected from hafnium oxide (HfO 2 ), barium strontium sulphate. Hafnium silicon oxide (HfSiO 4 ), hafnium silicon oxynitride (HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), oxidation Tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium oxynitride (zirconium silicon oxide, ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), antimony Strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x ) A group consisting of Sr 1-x TiO 3 , BST).
隨後於閘極結構124周圍再形成一側壁子127覆蓋閘極結構124側邊,接著以離子佈植方式於鰭狀結構110上未被閘極結構124覆蓋之處形成源/汲極區域126。此外,在形成源/汲極區域126之前或之後,更可選擇性地形成一磊晶層於鰭狀結構110表面,或者是先移除部份源/汲極區域再以磊晶層取代之,而此磊晶層可例如為鍺化矽(SiGe)或碳化矽(SiC)等,此磊晶層可以是共形的(conformal)、六角形、八角形等等多邊形狀的。A sidewall 127 is then formed around the gate structure 124 to cover the side of the gate structure 124, and then the source/drain region 126 is formed by ion implantation on the fin structure 110 without being covered by the gate structure 124. In addition, an epitaxial layer may be selectively formed on the surface of the fin structure 110 before or after the source/drain region 126 is formed, or a part of the source/drain region may be removed first and then replaced by an epitaxial layer. The epitaxial layer may be, for example, germanium telluride (SiGe) or tantalum carbide (SiC), etc., and the epitaxial layer may be conformal, hexagonal, octagonal, or the like polygonal.
請參考第5圖,第5圖為沿著第4圖中的AA’剖面線所得的截面示意圖。以鰭狀結構110表面形成有一共形的磊晶層120的實施態樣為例,接著沉積一金屬層116覆蓋於閘極結構124與鰭狀結構110上,而且當金屬層116沉積於源/汲極區域126表面,金屬層116與磊晶層120(或是鰭狀結構110)之交界處將會形成一金屬矽化物層118,亦即在沉積時,磊晶層120表面(或是鰭狀結構110表面)即會形成於沉積一厚度極薄的金屬矽化物層118,其厚度僅約2奈米~4奈米,金屬矽化物118具有均勻膜厚,覆蓋鰭狀結構110的頂面以及兩側壁,本發明中,此金屬矽化物層118已足以有效降低金屬與矽界面之間的能障差異,提升不同材料之間的傳導效率。其中,金屬層116可例如為一鎳鉑合金(Ni/Pt)等材料,而金屬矽化物層118主要成分例如為Ni2Si。此外,在本實施例中,覆蓋源/汲極區域126的磊晶層120,可用以提供此自對準金屬矽化物(salicide)製程額外的矽原子來源,而不僅單獨消耗鰭狀結構110或下方基底100的矽原子,因此,形成金屬矽化物118後,被金屬矽化物118所覆蓋的鰭狀結構110並不會完全被消耗,換句話說,鰭狀結構110仍會存在於金屬矽化物118的兩側壁之間。以避免完成後之半導體元件漏電流增加,其更可以增加完成後的半導體元件的閘極通道寬度,並提供對通道以一適當應力而增加載子速度。Please refer to FIG. 5, which is a schematic cross-sectional view taken along line AA' in FIG. 4. Taking an embodiment in which a conformal epitaxial layer 120 is formed on the surface of the fin structure 110 as an example, a metal layer 116 is deposited over the gate structure 124 and the fin structure 110, and when the metal layer 116 is deposited on the source/ On the surface of the drain region 126, a metal telluride layer 118 is formed at the interface between the metal layer 116 and the epitaxial layer 120 (or the fin structure 110), that is, the surface of the epitaxial layer 120 (or the fin) during deposition. The surface of the structure 110 is formed by depositing a very thin metal bismuth layer 118 having a thickness of only about 2 nm to 4 nm. The metal telluride 118 has a uniform film thickness covering the top surface of the fin structure 110. And two sidewalls, in the present invention, the metal telluride layer 118 is sufficient to effectively reduce the energy barrier difference between the metal and germanium interfaces, and improve the conduction efficiency between different materials. The metal layer 116 may be, for example, a material such as a nickel-platinum alloy (Ni/Pt), and the main component of the metal telluride layer 118 is, for example, Ni 2 Si. Moreover, in the present embodiment, the epitaxial layer 120 covering the source/drain region 126 can be used to provide an additional source of germanium atoms for this self-aligned metal salicide process, without separately consuming the fin structure 110 or The germanium atom of the lower substrate 100, therefore, after the metal germanide 118 is formed, the fin structure 110 covered by the metal germanide 118 is not completely consumed. In other words, the fin structure 110 is still present in the metal telluride. Between the two side walls of the 118. In order to avoid an increase in leakage current of the semiconductor element after completion, it is possible to increase the gate channel width of the completed semiconductor element and to increase the carrier speed with a proper stress to the channel.
接著移除金屬層116之後,如第6圖所示,對金屬矽化物層118進行一快速加熱製程122,其溫度較佳介於400℃到600℃之間,用以進一步降低金屬矽化物層118的電阻值,例如將金屬矽化物層118內部的成分由Ni2Si轉換成為NiSi。After the metal layer 116 is removed, as shown in FIG. 6, the metal telluride layer 118 is subjected to a rapid heating process 122, preferably at a temperature between 400 ° C and 600 ° C, to further reduce the metal telluride layer 118. The resistance value, for example, converts the composition inside the metal telluride layer 118 from Ni 2 Si to NiSi.
值得注意的是,在本較佳實施例之自對準金屬矽化物(salicide)製程中,只進行一次快速加熱製程122,且其係實施於移除金屬層116之後。而在移除金屬層116之前,本較佳實施例不會進行任何快速加熱製程,以避免形成過多的金屬矽化物鑽入矽基底中,致使鰭狀電晶體的漏電流增大,嚴重影響鰭狀電晶體的品質。換言之,本較佳實施例在形成金屬矽化物層118的過程中,尤其是在沉積金屬層116後到移除金屬層116之前,沒有使用額外的加熱步驟,所以磊晶層120表面(或是鰭狀結構110表面)所形成的金屬矽化物層118厚度極薄,如此一來,便可以有效避免在金屬矽化物118形成過程中存在過多的高溫製程,使金屬矽化物118持續性地往鰭狀結構110內部或矽基底中轉換NiSi,進而造成漏電流過大的問題。It should be noted that in the self-aligned metal salicide process of the preferred embodiment, only one rapid heating process 122 is performed and is performed after the metal layer 116 is removed. Before the metal layer 116 is removed, the preferred embodiment does not perform any rapid heating process to avoid the formation of excessive metal germanium into the germanium substrate, resulting in an increase in leakage current of the fin transistor, which seriously affects the fin. The quality of the transistor. In other words, in the preferred embodiment of the present invention, in the process of forming the metal telluride layer 118, especially after depositing the metal layer 116 to remove the metal layer 116, no additional heating step is used, so the surface of the epitaxial layer 120 (or The metal telluride layer 118 formed on the surface of the fin structure 110 is extremely thin, so that excessive high temperature process during the formation of the metal telluride 118 can be effectively avoided, and the metal telluride 118 is continuously extended to the fin. The NiSi is converted inside the germanium structure 110 or in the germanium substrate, thereby causing a problem of excessive leakage current.
之後如第7圖所示,沉積一介電層128於基底100表面,並覆蓋閘極結構124、金屬矽化物層118與鰭狀結構110,然後於介電層128中形成複數個接觸130,以分別與閘極結構124以及位於源/汲極區域126上的金屬矽化物層118電性連接。此外,本較佳實施例亦可應用在後接觸(post-contact)製程中,亦即在介電層128覆蓋閘極結構124與鰭狀結構110之後,再於介電層128中形成複數個接觸洞(圖未示)暴露源/汲極區域126,然後進行本發明之自對準金屬矽化物(salicide)製程,包含沉積金屬層、移除金屬層與一次的快速加熱製程等連續步驟,以於接觸洞(圖未示)暴露之部份源/汲極區域表面形成厚度極薄的金屬矽化物層。Then, as shown in FIG. 7, a dielectric layer 128 is deposited on the surface of the substrate 100, and covers the gate structure 124, the metal telluride layer 118 and the fin structure 110, and then forms a plurality of contacts 130 in the dielectric layer 128. Electrically connected to the gate structure 124 and the metal telluride layer 118 on the source/drain region 126, respectively. In addition, the preferred embodiment can also be applied in a post-contact process, that is, after the dielectric layer 128 covers the gate structure 124 and the fin structure 110, a plurality of dielectric layers 128 are formed. A contact hole (not shown) exposes the source/drain region 126, and then performs the self-aligned metal salicide process of the present invention, including successive steps of depositing a metal layer, removing the metal layer, and a rapid heating process, A thin metal tantalum layer is formed on a portion of the source/drain region exposed by the contact hole (not shown).
下文將針對本發明之金屬矽化物層及其製作方法的不同實施樣態進行說明,且為簡化說明,以下說明主要針對各實施例不同之處進行詳述,而不再對相同之處作重覆贅述。此外,本發明之各實施例中相同之元件係以相同之標號進行標示,以利於各實施例間互相對照。The different embodiments of the metal telluride layer of the present invention and the method for fabricating the same are described below, and for simplicity of explanation, the following description mainly focuses on the differences of the embodiments, and no longer focuses on the same. Overwrite the statement. In addition, the same elements in the embodiments of the present invention are denoted by the same reference numerals to facilitate the comparison between the embodiments.
第8-9圖繪製本發明第二較佳實施例的半導體元件結構示意圖。請參閱第8圖,本發明第二較佳實施例與第一較佳實施例同樣具有一基底100,在基底上形成至少一鰭狀結構110,然後形成閘極結構、遮罩層與側壁子(圖未示)於鰭狀結構110上,且以離子佈植方式形成源/汲極區域126於鰭狀結構110表面,之後覆蓋一金屬層116及一選擇性的阻障蓋層(圖未示)於源/汲極126區域上,其中覆蓋金屬層116之前,可選擇性地先在鰭狀結構110表面形成一磊晶層120。而本實施例與第一實施例不同之處在於,沉積金屬層116於鰭狀結構110表面或磊晶層120表面之後,會先另外進行一低溫加熱步驟222,該低溫加熱步驟比起製作傳統金屬矽化物的加熱溫度更低,傳統的加熱步驟溫度約200℃,而本發明之此低溫加熱步驟222溫度僅約50℃~150℃,較佳為80℃~120℃。本發明第二較佳實施例採用此低溫加熱步驟222係用來微調金屬矽化物層118厚度,以藉由低溫加熱步驟222來增加金屬矽化物層118的厚度,但又不至於過度形成而造成漏電流變大的問題。其餘步驟與元件使用材料與本發明第一實施例相同,如第9圖所示,其餘步驟與第一較佳實施例相同,將金屬層116移除,然後再次進行一快速加熱製程122,並且形成介電層與接觸。同樣地,本實施例的半導體製作方法也可以應用在複數個鰭狀結構的元件或後接觸(post-contact)製程中,並且接觸也可選擇柱狀接觸或是條狀接觸。8-9 are schematic views showing the structure of a semiconductor device according to a second preferred embodiment of the present invention. Referring to FIG. 8, the second preferred embodiment of the present invention has a substrate 100 having at least one fin structure 110 formed on the substrate, and then forming a gate structure, a mask layer and a sidewall portion. (not shown) on the fin structure 110, and the source/drain region 126 is formed on the surface of the fin structure 110 by ion implantation, and then covered with a metal layer 116 and a selective barrier cap layer (Fig. An epitaxial layer 120 is selectively formed on the surface of the fin structure 110 before the metal layer 116 is covered. The difference between the present embodiment and the first embodiment is that after depositing the metal layer 116 on the surface of the fin structure 110 or the surface of the epitaxial layer 120, a low temperature heating step 222 is additionally performed, which is different from the conventional manufacturing process. The heating temperature of the metal halide is lower, and the temperature of the conventional heating step is about 200 ° C, and the temperature of the low temperature heating step 222 of the present invention is only about 50 ° C to 150 ° C, preferably 80 ° C to 120 ° C. The second preferred embodiment of the present invention employs the low temperature heating step 222 to fine tune the thickness of the metal telluride layer 118 to increase the thickness of the metal telluride layer 118 by the low temperature heating step 222, but without excessive formation. The problem of large leakage current. The remaining steps and component use materials are the same as the first embodiment of the present invention. As shown in FIG. 9, the remaining steps are the same as in the first preferred embodiment, the metal layer 116 is removed, and then a rapid heating process 122 is performed again, and A dielectric layer is formed and contacted. Similarly, the semiconductor fabrication method of the present embodiment can also be applied to a plurality of fin-shaped components or post-contact processes, and the contacts can also be selected as columnar contacts or strip contacts.
此外,本發明的半導體元件製作方法並不限於僅應用於單一個鰭狀結構上,換句話說,當基底上具有複數個鰭狀結構時,本發明的半導體元件製作方法可同時於複數個鰭狀結構上完成。此外,本發明中所提到的接觸130,並不限於柱狀接觸(pole contact),也可為條狀接觸(slot contact),並且同時跨越複數個鰭狀結構,舉例來說,如第10圖所示,第10圖繪示本發明應用於複數個鰭狀結構的半導體元件結構示意圖,其具有條狀接觸140(slot contact),可同時與複數個鰭狀結構接觸,其餘元件與步驟皆與本發明第一較佳實施例或第二較佳實施例同,在此不再贅述。In addition, the method of fabricating the semiconductor device of the present invention is not limited to being applied to only a single fin structure. In other words, when the substrate has a plurality of fin structures, the semiconductor device fabrication method of the present invention can simultaneously apply a plurality of fins. The structure is completed. In addition, the contact 130 mentioned in the present invention is not limited to a pole contact, but may also be a slot contact, and simultaneously spans a plurality of fin structures, for example, as the 10th. As shown in the figure, FIG. 10 is a schematic view showing the structure of a semiconductor device applied to a plurality of fin structures according to the present invention, which has a slot contact 140, which can simultaneously contact a plurality of fin structures, and the remaining components and steps are The same as the first preferred embodiment or the second preferred embodiment of the present invention, and details are not described herein again.
綜上所述,本發明提供一種半導體元件的製作方法,其特徵是在鰭狀結構上覆蓋金屬層後,不進行額外加熱步驟或是進行一較低溫的加熱步驟(80℃~120℃),藉以控制形成於鰭狀結構110表面的金屬矽化物層厚度,僅在2奈米~4奈米的範圍。同時,在本發明的第一較佳實施例更省略額外的加熱步驟,因此可減少成本並且提高產能。本發明之金屬矽化物製程可廣泛應用在各式半導體元件中,提高金屬與矽介面的傳導率,並且避免完成後半導體元件漏電流過大的問題,大幅改善製程良率。In summary, the present invention provides a method of fabricating a semiconductor device, characterized in that after the metal layer is covered on the fin structure, no additional heating step or a lower temperature heating step (80 ° C to 120 ° C) is performed. The thickness of the metal telluride layer formed on the surface of the fin structure 110 is controlled only in the range of 2 nm to 4 nm. At the same time, the additional heating step is omitted in the first preferred embodiment of the present invention, thereby reducing costs and increasing productivity. The metal telluride process of the invention can be widely applied to various semiconductor elements, improve the conductivity of the metal and germanium interface, and avoid the problem of excessive leakage current of the semiconductor element after completion, and greatly improve the process yield.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
100...基底100. . . Base
102...溝渠102. . . ditch
110...鰭狀結構110. . . Fin structure
112...圖案化之遮罩層112. . . Patterned mask layer
114...介電層114. . . Dielectric layer
115...淺溝渠隔離(STI)115. . . Shallow trench isolation (STI)
116...金屬層116. . . Metal layer
118...金屬矽化物層118. . . Metal telluride layer
120...磊晶層120. . . Epitaxial layer
122...快速加熱製程122. . . Rapid heating process
124...閘極結構124. . . Gate structure
125...遮罩層125. . . Mask layer
126...源/汲極區域126. . . Source/bungee area
127...側壁子127. . . Side wall
128...介電層128. . . Dielectric layer
130...第一接觸130. . . First contact
140...條狀接觸140. . . Strip contact
222...低溫加熱步驟222. . . Low temperature heating step
第1~7圖繪製本發明第一較佳實施例的半導體元件結構示意圖。1 to 7 are views showing the structure of a semiconductor device according to a first preferred embodiment of the present invention.
第8-9圖繪製本發明第二較佳實施例的半導體元件結構示意圖。8-9 are schematic views showing the structure of a semiconductor device according to a second preferred embodiment of the present invention.
第10圖繪製本發明應用於複數個鰭狀結構的半導體元件結構示意圖。Fig. 10 is a view showing the structure of a semiconductor device to which a plurality of fin structures are applied in the present invention.
100...基底100. . . Base
110...鰭狀結構110. . . Fin structure
115...淺溝渠隔離(STI)115. . . Shallow trench isolation (STI)
118...金屬矽化物層118. . . Metal telluride layer
120...磊晶層120. . . Epitaxial layer
124...閘極結構124. . . Gate structure
125...遮罩層125. . . Mask layer
126...源/汲極區域126. . . Source/bungee area
127...側壁子127. . . Side wall
128...介電層128. . . Dielectric layer
130...第一接觸130. . . First contact
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101114674A TWI520226B (en) | 2012-04-25 | 2012-04-25 | Semiconductor device and fabricating method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101114674A TWI520226B (en) | 2012-04-25 | 2012-04-25 | Semiconductor device and fabricating method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201344803A TW201344803A (en) | 2013-11-01 |
TWI520226B true TWI520226B (en) | 2016-02-01 |
Family
ID=49990306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101114674A TWI520226B (en) | 2012-04-25 | 2012-04-25 | Semiconductor device and fabricating method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI520226B (en) |
-
2012
- 2012-04-25 TW TW101114674A patent/TWI520226B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201344803A (en) | 2013-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8765546B1 (en) | Method for fabricating fin-shaped field-effect transistor | |
TWI722073B (en) | Semiconductor device and method for fabricating the same | |
US8993390B2 (en) | Method for fabricating semiconductor device | |
US9666715B2 (en) | FinFET transistor with epitaxial structures | |
TWI624863B (en) | Semiconductor device and method for fabricating the same | |
TW201714208A (en) | Semiconductor device and method for fabricating the same | |
US20160104673A1 (en) | Fin-shaped field-effect transistor with a germanium epitaxial cap and a method for fabricating the same | |
US9312365B2 (en) | Manufacturing method of non-planar FET | |
US20150035069A1 (en) | Finfet and method for fabricating the same | |
US8691651B2 (en) | Method of forming non-planar FET | |
US8278184B1 (en) | Fabrication method of a non-planar transistor | |
TW201905974A (en) | Semiconductor component and manufacturing method thereof | |
TWI804632B (en) | Semiconductor device and method for fabricating the same | |
US12020986B2 (en) | Semiconductor structure and method of manufacturing the same | |
TW202029354A (en) | Semiconductor device and method for fabricating the same | |
TWI814888B (en) | Method for fabricating semiconductor device | |
TWI612666B (en) | Method for fabricating finfet transistor | |
TW201707206A (en) | Semiconductor device and a fabrication method thereof | |
TW201624712A (en) | Epitaxial structure and process thereof for forming fin-shaped field effect transistor | |
TW202029300A (en) | Semiconductor device and method for fabricating the same | |
TWI520226B (en) | Semiconductor device and fabricating method thereof | |
TWI523114B (en) | Fin-fet and method of forming the same | |
TWI517392B (en) | Finfet structure and method for making the same | |
TWI505376B (en) | Method of forming a non-planar transistor | |
TWI515798B (en) | Method of forming non-planar fet |