TWI519136B - 一種用以移除編碼視頻數據中的編碼瑕疵之自適應過濾機構的方法、資料處理裝置及系統 - Google Patents
一種用以移除編碼視頻數據中的編碼瑕疵之自適應過濾機構的方法、資料處理裝置及系統 Download PDFInfo
- Publication number
- TWI519136B TWI519136B TW102148394A TW102148394A TWI519136B TW I519136 B TWI519136 B TW I519136B TW 102148394 A TW102148394 A TW 102148394A TW 102148394 A TW102148394 A TW 102148394A TW I519136 B TWI519136 B TW I519136B
- Authority
- TW
- Taiwan
- Prior art keywords
- edge
- video frame
- pixel
- filter
- video
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/85—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
- H04N19/86—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/117—Filters, e.g. for pre-processing or post-processing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/136—Incoming video signal characteristics or properties
- H04N19/14—Coding unit complexity, e.g. amount of activity or edge presence estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/172—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Description
本發明通常有關視頻處理,且更具體地,有關一種用以移除視頻數據中之編碼瑕疵的自適應過濾機構。
使用者對於具有視頻處理能力之數據處理裝置(例如膝上型電腦、行動裝置)的經驗係與視頻播放品質有關。視頻編碼技術會產生不佳程度依例如所選定位元速率之因素而改變的數位瑕疵。因此,播放內容會在不同的位元速率下結合不佳數位瑕疵之效應。由於視頻內容也可以在大顯示器單元(例如高畫質電視(HDTV)裝置的顯示單元)上觀看,因此前述瑕疵甚至會更被發現且更為不佳。特別是,在接近一視頻訊框上物件邊緣處之漣波瑕疵與飛蚊雜訊瑕疵會產生不佳效果,因其出現在物件的邊界附近。
本發明揭露一種自適應過濾機構以移除視頻數據中的編碼瑕疵之方法、裝置及/或系統。
在一態樣中,一種方法包括根據一預定臨界值,透過通訊耦接一記憶體之一數據處理裝置的一處理器及/或一硬體引擎,在一視頻序列的解碼期間、或與解碼相關聯的後處理期間,決定該視頻序列的一視頻訊框中的邊緣像素與平像素。該等邊緣像素係有關該視頻訊框的一或多個邊緣,在該邊緣處附近有高於一臨界值之一強度位準變化;而該平像素係有關該視頻訊框之至少一區域,在該區域處附近有低於該臨界值之該強度位準變化。
該方法也包括透過該處理器及/或該硬體引擎,根據所決定
的邊緣像素與平像素、及該解碼的一原始輸出,量化在該等一或多個邊緣附近的該視頻訊框的像素空間關聯性以估算漣波瑕疵的強度、該視頻訊框內的該漣波瑕疵持續性、及該視頻訊框的時間持續性、與該視頻序列的另一視頻訊框。此外,該方法包括透過一邊緣保留過濾器,根據有關該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性之元數據,自適應及空間性過濾在該視頻訊框的該等一或多個邊緣附近之像素,其中該邊緣保留過濾器係透過執行該處理器及/或該硬體引擎上的指令而實施。
另外,該方法包括透過該處理器及/或該硬體引擎,自適應及時間性過濾該視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;及透過該處理器及/或該硬體引擎,混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
在另一態樣中,一種數據處理裝置包括一記憶體;及一處理器,其通訊耦接該記憶體。該處理器係構成執行指令以在一視頻序列的解碼期間、或在有關解碼的後處理期間,根據一預定臨界值來決定該視頻序列的一視頻訊框中的邊緣像素與平像素。該邊緣像素係與該視頻訊框的至少一邊緣相關聯,在該邊緣處附近有高於一臨界值之一強度位準變化;而該平像素係與該視頻訊框之至少一區域相關聯,在該區域處附近之該強度位準變化係低於該臨界值。
該處理器亦構成執行指令,以根據所決定的邊緣像素與平像素、及該解碼的一原始輸出,量化該等一或多個邊緣附近的該視頻訊框的像素空間關聯性以估算其中的漣波瑕疵之強度、該漣波瑕疵在該視頻訊框內的持續性、及其於該視頻訊框與該視頻序列的另一視頻訊框間的時間持續性。此外。該處理器構成執行指令,以透過一邊緣保留過濾器,根據有關該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性之元數據,自適應及空間性過濾在該視頻訊框的該至少一邊緣附近之像素。
另外,該處理器係構成執行指令,以自適應及時間性過濾該
視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;並且混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
在仍舊另一態樣中,一種系統包括:一數據來源,其構成產生編碼為一視頻序列之視頻數據;及一硬體引擎及/或一用戶端裝置,其通訊耦接該數據來源。該硬體引擎及/或用戶端裝置係構成在一視頻序列的解碼期間、或在有關解碼的後處理期間,根據一預定臨界值來決定該視頻序列的一視頻訊框中的邊緣像素與平像素。該邊緣像素係與該視頻訊框的至少一邊緣相關聯,在該邊緣處附近有高於一臨界值之一強度位準變化;而該平像素係與該視頻訊框之至少一區域相關聯,在該區域處附近之該強度位準變化係低於該臨界值。
該硬體引擎及/或用戶端裝置亦構成根據所決定的邊緣像素與平像素、及該解碼的一原始輸出,量化該至少一邊緣附近的該視頻訊框的像素空間關聯性以估算其中的漣波瑕疵之強度、該漣波瑕疵在該視頻訊框內的持續性、及其於該視頻訊框與該視頻序列的另一視頻訊框間的時間持續性。該硬體引擎及/或用戶端裝置更構成透過一邊緣保留過濾器,根據與該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性相關聯之元數據,自適應及空間性過濾在該視頻訊框的該至少一邊緣附近之像素。
更另外,該硬體引擎及/或該用戶端裝置係構成自適應及時間性過濾該視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;及混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
本說明書討論之方法與系統係可以用於達成各種態樣之任何構件實施,且可以具體實施一組指令的非暫態機械可讀取媒體的形式來執行,該組指令在由一機器執行時,係使該機器執行本說明書所揭露的任
何方法步驟。
從如附圖式與下述詳細說明將可顯然得知其他特徵。
100‧‧‧視頻系統
102‧‧‧伺服器
104‧‧‧用戶端裝置
106‧‧‧電腦網路
108‧‧‧處理器
110‧‧‧記憶體
112‧‧‧解碼器引擎
116‧‧‧視訊資料
120‧‧‧顯示單元
1221-N‧‧‧視頻訊框
130‧‧‧後處理引擎
172‧‧‧臨界值
202‧‧‧邊緣
402‧‧‧輸出
404‧‧‧邊緣偵測引擎
406‧‧‧分析引擎
408‧‧‧過濾器引擎
410‧‧‧元數據
412‧‧‧組合引擎
502-526‧‧‧步驟
602-610‧‧‧步驟
藉由如附圖的圖示舉例而非限制來說明本發明之具體實施例,其中,相同的元件符號表示類似的元件,其中:第一圖為根據一或多個具體實施例之一視頻系統的示意圖。
第二圖為一簡化視頻訊框中之一例示邊緣的示意圖。
第三圖為根據一或多個具體實施例之對一視頻訊框的一邊緣像素周圍的視頻訊框像素進行標記以加寬有關其之邊緣的外廓的示意圖。
第四圖是在第一圖的視頻系統之用戶端裝置執行的後處理引擎之實施的示意圖。
第五圖為詳細說明根據一或多個具體實施例之用以移除第一圖的視頻數據中的編碼缺陷之自適應過濾機構所含步驟的流程圖。
第六圖為詳細說明根據一或多個具體實施例之移除第一圖的視頻數據中的編碼瑕疵之自適應過濾機構所含步驟的處理流程圖。
從如附圖式與下述實施方式詳細說明,將可清楚理解本發明之具體實施例的其他特徵。
下述之例示具體實施例係用以提供一種用以移除視頻數據中編碼瑕疵的自適應過濾機構之方法、裝置及/或系統。雖然本發明之具體實施例是參照特定的例示實施例來描述,但顯知也可對這些具體實施例進行各種修飾與變化,而不脫離該各種具體實施例的較廣精神及範疇。
第一圖為根據一或多個具體實施例之視頻系統100的示意圖。在一或多個具體實施例中,視頻系統100係包括一伺服器102,其通訊耦接一用戶端裝置104(例如,透過一電腦網路106)。在一或多個具體實施例中,伺服器102(或一數據來源)係構成產生視頻數據,該視頻數據係經編碼為一視頻序列且被傳送至用戶端裝置104。在一或多個具體實施例中,所傳送的視頻數據係於用戶端裝置104進行解碼,並顯示在有關其的
一顯示單元120。在一或多個具體實施例中,用戶端裝置104可為一桌上型電腦、一膝上型電腦、一筆記型電腦、一隨身型易網機(netbook)、一平板電腦或行動裝置(例如行動電話)。其他形式的用戶端裝置104也在本說明書該之例示具體實施例範疇內。在一替代例示具體實施例中,伺服器102與用戶端裝置104是同一數據處理裝置。
在一或多個具體實施例中,用戶端裝置104係包括一處理器108(例如中央處理單元(CPU)、圖形處理單元(GPU))其通訊耦接一記憶體110(例如揮發性記憶體及/或非揮發性記憶體);記憶體110包括可透過處理器108來進行定址之儲存位置。在一或多個具體實施例中,處理器係執行在其上之一解碼器引擎112(例如一組指令),以對所接收之視頻數據(例如視頻數據116)進行解碼,以能將其顯示於顯示單元120上;在第一圖中,顯示單元120係顯示為介接處理器108。第一圖也顯示解碼器引擎112係儲存於記憶體110中,以透過處理器108而被執行;此外,第一圖顯示視頻數據116係儲存於記憶體110(例如揮發性記憶體)中。
在一或多個具體實施例中,處理器108亦執行其上之一後處理引擎130(同樣,其藉由正對其施加之解碼器引擎112的輸出而為記憶體110的部分)。在一或多個具體實施例中,後處理引擎130係處理解碼器引擎112的輸出(例如視頻數據116),以抑制/緩和其中的編碼相關漣波/飛蚊雜訊瑕疵,如下面的討論。在一或多個替代具體實施例中,後處理引擎130可為解碼器引擎112的部分。應注意,視頻系統100需要即時處理以抑制/緩和前述瑕疵。因此,雖然本說明書討論的例示具體實施例較佳地針對解決這類需求,但計算上更為昂貴的解決方式也同樣在其範疇內。
在一或多個具體實施例中,視頻數據116係包括數個視頻訊框(例如視頻訊框1221-N),其係被掃描(例如透過處理器108)以保留其邊緣。在一或多個具體實施例中,邊緣為視頻訊框1221-N的一點,在該點周圍有高於一臨界值(例如儲存在記憶體110中的臨界值172)的強度位準變化。第二圖顯示在一簡化視頻訊框1221-N中的一邊緣202的例子。在一或多個具體實施例中,每一視頻訊框1221-N會被掃描,以辨識出其與預期瑕疵表現相關聯的區域,並且捨棄其他區域。換言之,在一或多個具體實
施例中,係保留視頻數據116的邊緣。
在一例示實施方式中,係利用一索貝爾運算子來計算視頻訊框1221-N的強度位準函數之近似梯度,作為上述邊緣偵測的一部分。索貝爾運算子係屬該領域技術人士所熟知,因此為求方便簡要,已略去有關其的詳細說明。其他用來逼近梯度的方法也在本說明書討論的例示具體實施例的範疇內。
視頻壓縮/編碼方法會在顯示視頻數據116時顯現之瑕疵,其係基於一選擇位元速率而有不佳程度的變化。靠近視頻訊框1221-N中的一平背景之強邊緣會導致顯現漣波瑕疵。因此,在一或多個具體實施例中,上述處理係辨識出視頻訊框1221-N中可能顯現漣波瑕疵的區域,並且捨棄所有其他區域,藉此消除誤確認的可能性。
在一或多個具體實施例中,根據上述之邊緣計算,根據與一像素相關聯之強度位準是否超過前一像素達一臨界位準,視頻訊框1221-N之像素會被歸類為邊緣像素與平像素。在一或多個具體實施例中,對於各邊緣像素而言,圍繞該邊緣像素的像素也會被標記(例如透過處理器108)為邊緣像素。因此,在一或多個具體實施例中,在一視頻訊框1221-N內的邊緣外廓會被加寬。舉例而言,在視頻訊框1221-N的中間部分的像素之情況下,一邊緣外廓會是3個像素寬。第三圖顯示在一例示視頻訊框1221-N內的前述標記。應注意,本說明書討論的邊緣加寬處理也可基於有關該視頻序列之元數據(例如,顯示單元120的尺寸)而自適應。
在一或多個具體實施例中,後處理引擎130也具有有關可於其中實施範圍分析的指令。在一或多個具體實施例中,係針對視頻訊框1221-N的每一子區塊(例如一8X8區塊)計算一範圍,作為介於在其內之像素的強度值之一最大值與一最小值之間的差異。在一或多個具體實施例中,該範圍係接著與基於區塊中哪些像素被標記為平像素與邊緣像素之一臨界值(例如預設的、或根據實驗而決定的)相比較。舉例而言,若所計算之範圍小於該臨界值,則該區塊的所有像素都會被標記為平像素;若所計算之範圍大於該臨界值,則該區塊的所有像素都會被標記為邊緣像素。
在一或多個具體實施例中,係執行該範圍分析,以藉由減少
誤確認及/或誤否定而對邊緣偵測處理顯現錯誤性的程度。現在,在一或多個具體實施例中,係針對視頻訊框1221-N的每一子區塊計算平像素百分比與邊緣像素百分比。接著,在一或多個具體實施例中,若是在該子區塊內的平像素百分比高於一臨界值(例如90%),則保留該子區塊並且不過濾其像素;這是為了避免過濾掉視頻訊框1221-N中具有低漣波瑕疵發生機率的平區域。在一或多個具體實施例中,若是該子區塊內的邊緣像素百分比高於另一臨界值(例如40%),則同樣地,保留該子區塊且不過濾其像素;這是為了避免過濾掉視頻訊框1221-N中高度聚集之邊緣區域。在一或多個具體實施例中,除了被保留的像素以外的像素會被歸類為要過濾的候選像素。
在一或多個具體實施例中,接著係根據分析候選像素來量化可能的漣波瑕疵的強度和其持續性。在一或多個具體實施例中,透過在「邊緣」(例如邊緣像素)周圍之視頻訊框1221-N的子區塊之間的常態化關聯性來計算漣波的強度。此外,在一或多個具體實施例中,由於空間關聯性的持續性之故,計算會考量漣波強度的修改。同時,在一或多個具體實施例中,係於多重視頻訊框1221-N之間追蹤漣波的時間性持續性。
在一或多個具體實施例中,在視頻訊框1221-N的像素間的空間關聯性及其持續性係可辨識出視頻訊框1221-N中有關可能漣波瑕疵的區域(或像素),並且量化其強度。換言之,會量化兩件事情:關聯性的強度及其於視頻訊框1221-N的像素間、及視頻訊框1221-N間的持續性。應注意,在視頻訊框1221-N之間的時間性持續性與關聯性係可根據數學函數來量化。然而,考慮有關本說明書討論的概念之實施態樣的即時性本質,根據數學函數之時間性關聯性計算會是在計算上昂貴且/或極可能有問題的。然而,涉及這些數學函數的實施方式也在本說明書討論的例示具體實施例的範圍內。
因此,在一或多個具體實施例中係可估算參數(例如雜訊水平)。舉例而言,在視頻訊框1221-N的邊緣像素處的雜訊水平會是低的,而在其的一中間部分則會是高的。在一或多個具體實施例中,在邊緣周圍的像素(或是候選像素)是透過一邊緣保留過濾器(例如一雙側過濾器)來過濾,以移除漣波瑕疵。在一或多個具體實施例中,也使用時間性過濾來
移除在視頻數據116的編碼期間因壓縮的累積效應而產生的瑕疵(例如飛蚊雜訊瑕疵)。在一或多個具體實施例中,視頻訊框1221-N的過濾像素接著與其未過濾像素結合,以產生一最終輸出,該最終輸出中具有減少之漣波/蚊雜訊瑕疵。
第四圖顯示根據一或多個具體實施例之後處理引擎130的實施方式。在一或多個具體實施例中,後處理引擎130係構成接收解碼器引擎112的一輸出(例如原始視頻數據116),並且處理該輸出以產生具有減少之漣波/飛蚊雜訊瑕疵之最終輸出(例如輸出402)。在一或多個具體實施例中,後處理引擎130可包括一邊緣偵測引擎404,其係構成執行上述邊緣偵測;邊緣偵測引擎404的輸出係接著被饋送至一分析引擎406,該分析引擎406係構成執行上述邊緣分析,以產生視頻訊框1221-N的邊緣像素與平像素。在一或多個具體實施例中,使用作為其一參考輸入的來自解碼器引擎112的元數據410(例如在編碼期間的量化參數(QP)、編碼類型),透過過濾器引擎408的執行,而在空間與時間上自適應過濾邊緣周圍的像素。
應注意,本說明書討論的元數據410可為在適當地用於本說明書討論的自適應的一或多個位準處之資訊。在一高位準下,元數據410可為一顯示單元120之類型;在大顯示單元120或HDTV裝置/4KTV裝置的顯示單元120中會顯現出比小顯示單元120更多的瑕疵。元數據410也可為訊框數據116基於參數(例如訊框速率、訊框大小與位元速率)的分類(例如低位元速率、高位元速率)、及/或編解碼器的類型。在一較低位準下,元數據410係有關解碼器引擎112之一平均量化位準及/或參數等。前述量化位準認為在視頻訊框1221-N之一位準的自適應因子。在最低位準,視頻像素分析(例如透過分析引擎406)係用以自適應該過濾,其利用高位準元數據410作為參考。
在一或多個具體實施例中,接著組合分析引擎406與過濾器引擎408的輸出(例如透過一組合引擎412),以產生輸出402。在一或多個具體實施例中,過濾器引擎408的空間性組件係透過一邊緣保留過濾器而實施。邊緣保留過濾器的一實例為一雙側過濾器,其輸出一般係表示為:
亦即,對於一輸入視頻訊框1221-N I而言,像素p之輸出訊號BF[I] D 可表示為例示方程式(1)。在此處,σ s 與σ r 分別為空間偏差與輻射偏差;
為有關空間位置的高斯函數,且為有關像素強度(範圍)的高斯函數;而常態化因子W p 係定義如下:
常態化因子可確保所有像素的過濾器權重都加至1。因此,雙側過濾器的權重係根據空間性高斯函數和範圍高斯函數兩者而定。雙側過濾器係藉由改變σ s 及/或σ r 而進行自適應。在一例示實施中,σ s 係基於先前計算的統計數據而針對亮度與色度值做個別調整。在範圍部分的情況下,σ r 為平衡解漣波與特徵保留值,且也會根據先前計算的統計數據來進行調整。然後雙側過濾即自適應施加至邊緣周圍的像素(或候選像素),如上述所說明。
在一例示實施中,時間性過濾係透過一第一階無限脈衝響應(IIR)過濾器來實現,以藉由利用一先前時間性過濾視頻訊框1221-N對一當前視頻訊框1221-N x(t)進行遞歸施加阿爾法混合(α-blending)而產生一輸出y(t)。簡言之,
其中0<<1。
此外,空間性(y s (t))與時間性(y t (t))過濾影像係混合在一起以產生一最終輸出(y o (t))為:y o (t)=βy s (t)+(1-β)y t (t), (4)
其中0β1。顯然β的下限與上限純粹是分別代表時間性與空間性過濾。
應注意,上述雙側過濾器與IIR過濾器僅為例示目的而說明。其他的邊緣保留過濾器和時間性過濾器也是在本說明書該例示具體實施例的範疇內。同時,上述高斯函數與IIR過濾器的第一階性本質也僅為例示實施目的。其他較簡單、或複雜的函數也是在本說明書中討論的示範性
具體實施例的範疇內。
第五圖簡要說明根據一或多個具體實施例之上述自適應過濾機構移除視頻數據116中之編碼瑕疵的流程圖。在一或多個具體實施例中,步驟502讀取(例如透過處理器108)解碼器引擎112的一輸出。在一或多個具體實施例中,步驟504利用一索貝爾(Sobel)運算子計算視頻數據116的每一視頻訊框1221-N之邊緣。在一或多個具體實施例中,步驟506將視頻訊框1221-N的像素歸類為邊緣像素與平像素。在一或多個具體實施例中,步驟518將邊緣加寬,如上面討論。在一或多個具體實施例中,步驟510包括關聯性計算與範圍分析,再次如上面討論。
在一或多個具體實施例中,步驟512包括將視頻訊框1221-N的每一子區塊之計算範圍與一臨界值相比較。在一或多個具體實施例中,若步驟512的結果小於該臨界值,則步驟514增量平像素數量的計數。而且,在一或多個具體實施例中,步驟514藉由不過濾視頻訊框1221-N的邊緣像素來保留其邊緣。在一或多個具體實施例中,步驟516包括根據視頻訊框1221-N的邊緣以計算像素統計數據、與在視頻訊框1221-N的邊緣周圍之像素統計數據,以決定要過濾的候選像素,如上述所說明者。在一或多個具體實施例中,步驟518根據統計數據與解碼器引擎112的輸出來估算有關候選像素之各別漣波瑕疵的強度、及其在視頻訊框1221-N內和在視頻訊框1221-N間的持續性。
在一或多個具體實施例中,步驟520包括自適應及空間性過濾邊緣像素周圍的候選像素,如上述。在一或多個具體實施例中,步驟522包括基於一混合因子(例示方程式(4)中的β)來混合空間性過濾與時間性過濾的輸出。關於步驟502的結果,在一或多個具體實施例中,一並行步驟524係包括檢查是否可進行時間性過濾。在一或多個具體實施例中,如是,則步驟526在目前視頻訊框1221-N施加空間性過濾(例如透過一階IIR過濾器)。同時,在一或多個具體實施例中,步驟526利用一先前過濾之視頻訊框1221-N來實施目前視頻訊框1221-N的阿爾法混合(α-blending)(例示方程式(3)中的)。在一或多個具體實施例中,控制然後轉移至步驟522而組合空間性過濾與時間性過濾的輸出。
應注意,上述處理係透過處理器108上執行之解碼器引擎112及/或後處理引擎130而進行。或者,解碼器引擎112及/或後處理引擎130為硬體引擎。硬體與軟體的組合也是可行的。
在一或多個具體實施例中,上述邊緣保留過濾器係可根據來自解碼器引擎112的元數據(例如量化步驟、視頻標準)、漣波瑕疵的強度及其持續性等而加以自適應。自適應的某些實例包括根據一高量化步驟之低位元速率自適應(且反之亦同)、視頻標準自適應、根據視頻訊框1221-N中漣波強度之邊緣保留過濾器(例如雙側過濾器)範圍參數與空間範圍及解漣波強度隨多個視頻訊框1221-N間之漣波瑕疵的持續性增加而增加之自適應。其他形式的元數據(例如關於第四圖討論之元數據410)也在本說明書討論示範性具體實施例的範疇內。
可為本說明書該之例示體實施例設想出數種實施態樣,舉例而言,本說明書該概念係可應用於手持裝置以增進多媒體播放經驗、耦接手持裝置之數位電視裝置、無雜訊呈現之智慧型電視盒、以及用於視頻播放之遊戲機。其他實施方式也在本說明書該例示具體實施例的範疇內。
應注意,雖然在整個詳細說明內容中已說明視頻訊框,然有關例示具體實施例的概念亦可應用於影像。第六圖說明一處理流程圖,其詳述根據一或多個具體實施例之用以移除視頻數據16中編碼瑕疵之自適應過濾機構所包含的步驟。在一或多個具體實施例中,步驟602包括在有關視頻序列解碼或解碼的後處理期間,基於一預定臨界值,透過處理器108及/或硬體引擎來決定一視頻序列之一視頻訊框1221-N的邊緣像素與平像素。在一或多個具體實施例中,邊緣像素係與視頻訊框1221-N的一或多個邊緣相關聯,在該處周圍存在高於其一臨界值之強度位準變化;而平像素係與視頻訊框1221-N的一或多個區域相關聯,在該處周圍存在低於該臨界值之強度位準變化。
在一或多個具體實施例中,步驟604包括透過處理器108及/或硬體引擎來量化在該一或多個邊緣周圍之視頻訊框1221-N的像素的空間關聯性,以基於所決定的邊緣像素和平像素、及解碼的原始輸出而預估其中的漣波瑕疵的強度、漣波瑕疵在視頻訊框1221-N內的持續性、及在視
訊訊框1221-N與視頻序列的另一視頻訊框1221-N間的時間性持續性。在一或多個具體實施例中,步驟606透過一邊緣保留過濾器,基於有關視頻序列之元數據、漣波瑕疵的預估強度、漣波瑕疵在視頻訊框1221-N內的持續性、漣波瑕疵在視頻訊框1221-N和另一視頻訊框1221-N間之時間性持續性,而自適應及空間性過濾在視頻訊框1221-N的該一或多個邊緣周圍之像素,其中該邊緣保留過濾器係透過執行處理器108及/或硬體引擎上的指令而實施。
在一或多個具體實施例中,步驟608包括透過該處理器108及/或該硬體引擎,自適應及時間性地過濾該視頻訊框1221-N,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵。在一或多個具體實施例中,步驟610然後透過該處理器108及/或該硬體引擎,混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
雖已參照特定例示具體實施例來說明本發明之具體實施例,但可知亦可對這些具體實施例進行諸般修飾與變化,其皆不脫離各種具體實施例的較廣精神與範疇。舉例而言,可利用硬體電路(例如CMOS邏輯電路)、韌體、軟體、或是硬體、韌體與軟體的任何組合(例如具體實施於一非暫態機器可讀取媒體中)來實施或運作本說明書該的各種裝置和模組。舉例而言,可使用電晶體、邏輯閘、以及電氣電路(例如專用積體電路(ASIC)電路及/或數位訊號處理器(DSP)電路)來具體實施各種電氣結構與方法。
此外,可知本說明書中所揭示的各種操作、處理與方法係可具體實施於一機器可讀取媒體、及/或可與一數據處理系統(例如用戶端裝置104)相容的機器可存取媒體中。因此,說明書及圖式係應是為例示性而非限制性意義。
100‧‧‧視頻系統
102‧‧‧伺服器
104‧‧‧用戶端裝置
106‧‧‧電腦網路
108‧‧‧處理器
110‧‧‧記憶體
112‧‧‧解碼器引擎
116‧‧‧視訊資料
120‧‧‧顯示單元
1221-N‧‧‧視頻訊框
130‧‧‧後處理引擎
172‧‧‧臨界值
Claims (20)
- 一種方法,包括:根據一預定臨界值,透過通訊耦接一記憶體之一數據處理裝置的一處理器與一硬體引擎之至少一者,在一視頻序列的解碼期間及有關解碼的後處理之一者期間,決定該視頻序列的一視頻訊框中的複數個邊緣像素與複數個平像素,該等邊緣像素係與該視頻訊框之至少一邊緣相關聯,在該邊緣處附近有高於一臨界值之一強度位準變化,該等平像素係與該視頻訊框之至少一區域相關聯,在該區域處附近之該強度位準變化係低於該臨界值;透過該處理器與該硬體引擎之至少一者,根據所決定的邊緣像素與平像素、及該解碼的一原始輸出,量化該至少一邊緣附近的該視頻訊框的像素空間關聯性,以估算其中的漣波瑕疵之強度、該漣波瑕疵在該視頻訊框內的持續性、及其於該視頻訊框與該視頻序列的另一視頻訊框間的時間持續性;透過一邊緣保留過濾器,根據有關該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性之元數據,自適應及空間性過濾在該視頻訊框之該至少一邊緣附近的像素,其中該邊緣保留過濾器係透過下述之一者而實施:執行該處理器與該硬體引擎上的指令;透過該處理器與該硬體引擎之至少一者,自適應及時間性過濾該視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;及透過該處理器與該硬體引擎之至少一者,混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
- 如申請專利範圍第1項該之方法,其中決定該等邊緣像素與該等平像素更包括下列之至少一者:預估該視頻訊框的該至少一邊緣;將在一邊緣像素周圍的至少一像素也標記為一邊緣像素,以加寬該 至少一邊緣的外廓;計算該視頻訊框的各子區塊的範圍,作為在其內之像素的一最大與最小強度位準之間的差異;比較該各子區塊之該範圍與另一預定臨界值,以決定在其內的平像素與邊緣像素;及保留該各子區塊內的該邊緣像素。
- 如申請專利範圍第2項該之方法,更包括:當該各子區塊之一平像素百分比與一邊緣像素百分比分別高於一第一臨界值與一第二臨界值時,避免過濾該各子區塊。
- 如申請專利範圍第2項該之方法,包括利用一索貝爾運算子來計算該視頻訊框的一強度位準函數之近似梯度,作為其該至少一邊緣之預估的一部分。
- 如申請專利範圍第1項該之方法,包括下列之至少一者:實施一雙側過濾器作為該邊緣保留過濾器,該雙側過濾器具有一空間性過濾器組件與一範圍過濾器組件;及實施一第一階無限脈衝響應(IIR)過濾器,作為執行該自適應時間性過濾之一組件,該IIR過濾器係構成藉由利用該視頻序列的一先前時間性過濾視頻訊框遞歸施加阿爾法混合(α-blending)而產生一輸出。
- 如申請專利範圍第5項該之方法,更包括:透過改變有關該空間性過濾器組件之一偏差參數及有關該範圍過濾器組件一輻射偏差參數之至少一者而自適應該雙側過濾器。
- 如申請專利範圍第6項該之方法,包括實施該空間過濾器組件與該範圍過濾器組件為高斯函數。
- 一種數據處理裝置,包括:一記憶體;及一處理器,其通訊耦接該記憶體,該處理器係構成執行指令以在一視頻序列的解碼及有關解碼的後處理之一者期間,根據一預定臨界值來決定該視頻序列的一視頻訊框中的邊緣像素與平像素,該邊 緣像素係與該視頻訊框的至少一邊緣相關聯,在該邊緣處附近有高於一臨界值之一強度位準變化,該平像素係與該視頻訊框之至少一區域相關聯,在該區域處附近之該強度位準變化係低於該臨界值;根據所決定的邊緣像素與平像素、及該解碼的一原始輸出,量化該至少一邊緣附近的該視頻訊框的像素空間關聯性,以估算其中的漣波瑕疵之強度、該視頻訊框內的該漣波瑕疵的持續性、及該視頻序列的的該視頻訊框與另一視頻訊框間的時間持續性;透過一邊緣保留過濾器,根據有關該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性之元數據,自適應及空間性過濾在該視頻訊框的該至少一邊緣附近之像素;自適應及時間性過濾該視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;及混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
- 如申請專利範圍第8項該之數據處理裝置,其中該處理器係構成執行指令,以根據下述而決定該等邊緣像素與該等平像素:預估該視頻訊框的該至少一邊緣;將在一邊緣像素周圍的至少一像素也標記為一邊緣像素,以加寬該至少一邊緣的外廓;計算該視頻訊框的各子區塊的範圍,作為在其內之像素的一最大與最小強度位準之間的差異;比較該各子區塊之該範圍與另一預定臨界值,以決定該等平像素與該等邊緣像素;及保留該各子區塊內之該邊緣像素。
- 如申請專利範圍第9項該之數據處理裝置,其中該處理器更構成執行指令,以於該各子區塊之一平像素百分比與一邊緣像素百分比分別高於一第一臨界值與一第二臨界值時,避免過濾該各子區塊。
- 如申請專利範圍第9項該之數據處理裝置,其中該處理器係構成執行指令,以利用一索貝爾運算子來計算該視頻訊框的一強度位準函數之近似梯度,作為其該至少一邊緣之預估的一部分。
- 如申請專利範圍第8項該之數據處理裝置,其中該處理器係構成執行有關下述之至少一者之指令:一雙側過濾器,其具有作為該邊緣保留過濾器之一空間性過濾器組件與一範圍過濾器組件;及一第一階無限脈衝響應(IIR)過濾器,作為執行該自適應時間性過濾之一組件,該IIR過濾器係構成藉由利用該視頻序列的一先前時間性過濾視頻訊框進行遞歸施加阿爾法混合(α-blending)而產生一輸出。
- 如申請專利範圍第12項該之數據處理裝置,其中該處理器更構成執行指令,以透過改變有關該空間性過濾器組件之一偏差參數及有關該範圍過濾器組件之一輻射偏差參數之至少一者,而自適應該雙側過濾器。
- 如申請專利範圍第13項該之數據處理裝置,其中該處理器係構成執行有關作為高斯函數之該空間性過濾器組件和該範圍過濾器組件之指令。
- 一種系統,包括:一數據來源,其構成產生經編碼為一視頻序列之視頻數據;及一硬體引擎與一用戶端裝置之至少一者,其通訊耦接該數據來源,該硬體引擎與該用戶端裝置之該至少一者係構成:在一視頻序列的解碼期間及有關解碼的後處理之一者期間,根據一預定臨界值來決定該視頻序列的一視頻訊框中的邊緣像素與平像素,該邊緣像素係與該視頻訊框的至少一邊緣相關聯,在該邊緣處附近有高於一臨界值之一強度位準變化,該平像素係與該視頻訊框之至少一區域相關聯,在該區域處附近之該強度位準變化係低於該臨界值;根據所決定的邊緣像素與平像素、及該解碼的一原始輸出,量化該至少一邊緣附近的該視頻訊框的像素空間關聯性,以估算其中的漣波瑕疵之強度、該漣波瑕疵在該視頻訊框內的持續性、及其於該視頻訊框與該視頻序列的另一視頻訊框間的時間持續性; 透過一邊緣保留過濾器,根據有關該視頻序列、該漣波瑕疵的估算強度、該漣波瑕疵在該視頻訊框內之持續性、及該漣波瑕疵在該視頻訊框與該另一視頻訊框間之時間持續性之元數據,自適應及空間性過濾在該視頻訊框的該至少一邊緣附近之像素;自適應及時間性過濾該視頻訊框,以緩和在該視頻序列的編碼期間因壓縮累積效應而產生的瑕疵;及混合該自適應空間性過濾與該自適應時間性過濾之輸出,以產生一輸出,該輸出具有受抑制的漣波瑕疵、空間與時間持續性、及因其中壓縮累積效應所致之瑕疵。
- 如申請專利範圍第15項該之系統,其中該硬體引擎與該用戶端裝置之至少一者係構成根據下述而決定該邊緣像素和該平像素:預估該視頻訊框的該至少一邊緣;將在一邊緣像素周圍的至少一像素也標記為一邊緣像素,以加寬該至少一邊緣的外廓;計算該視頻訊框的各子區塊的範圍,作為在其內之像素的一最大與最小強度位準之間的差異;比較該各子區塊之該範圍與另一預定臨界值,以決定在其內的平像素與邊緣像素;及保留該各子區塊內之該邊緣像素。
- 如申請專利範圍第16項該之系統,其中該硬體引擎與該用戶端裝置之該至少一者係構成於該各子區塊之一平像素百分比與一邊緣像素百分比分別高於一第一臨界值與一第二臨界值時,避免過濾該各子區塊。
- 如申請專利範圍第16項該之系統,其中該硬體引擎與該用戶端裝置之該至少一者係構成利用一索貝爾運算子來計算該視頻訊框的一強度位準函數之近似梯度,作為其該至少一邊緣之預估的一部分。
- 如申請專利範圍第15項該之系統,其中下列之至少一者:該邊緣保留過濾器係一雙側過濾器,其具有一空間性過濾器組件與一範圍過濾器組件;及執行該自適應時間性過濾之一組件係一第一階無限脈衝響應(IIR) 過濾器,該IIR過濾器係構成藉由利用該視頻序列的一先前時間性過濾視頻訊框進行遞歸施加阿爾法混合(α-blending)而產生一輸出。
- 如申請專利範圍第19項該之系統,其中該硬體引擎與該用戶端裝置之該至少一者係構成透過改變有關該空間性過濾器組件之一偏差參數及有關該範圍過濾器組件之一輻射偏差參數之至少一者而自適應該雙側過濾器。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/917,669 US9118932B2 (en) | 2013-06-14 | 2013-06-14 | Adaptive filtering mechanism to remove encoding artifacts in video data |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201448571A TW201448571A (zh) | 2014-12-16 |
TWI519136B true TWI519136B (zh) | 2016-01-21 |
Family
ID=52009572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102148394A TWI519136B (zh) | 2013-06-14 | 2013-12-26 | 一種用以移除編碼視頻數據中的編碼瑕疵之自適應過濾機構的方法、資料處理裝置及系統 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9118932B2 (zh) |
CN (1) | CN104244015B (zh) |
DE (1) | DE102013021991B4 (zh) |
TW (1) | TWI519136B (zh) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140192266A1 (en) * | 2013-01-04 | 2014-07-10 | Qualcomm Incorporated | Method and apparatus of reducing compression noise in digital video streams |
WO2016182142A1 (ko) * | 2015-05-12 | 2016-11-17 | 삼성전자 주식회사 | 샘플 값 보상을 위한 영상 부호화 방법과 그 장치, 및 샘플값 보상을 위한 영상 복호화 방법과 그 장치 |
JP6619638B2 (ja) * | 2015-12-09 | 2019-12-11 | Eizo株式会社 | 画像処理装置及びプログラム |
US10931974B2 (en) * | 2016-10-14 | 2021-02-23 | Mediatek Inc. | Method and apparatus of smoothing filter for ringing artefact removal |
US10694202B2 (en) * | 2016-12-01 | 2020-06-23 | Qualcomm Incorporated | Indication of bilateral filter usage in video coding |
US10694181B2 (en) * | 2017-01-27 | 2020-06-23 | Qualcomm Incorporated | Bilateral filters in video coding with reduced complexity |
US10506196B2 (en) | 2017-04-01 | 2019-12-10 | Intel Corporation | 360 neighbor-based quality selector, range adjuster, viewport manager, and motion estimator for graphics |
US11054886B2 (en) | 2017-04-01 | 2021-07-06 | Intel Corporation | Supporting multiple refresh rates in different regions of panel display |
US10904535B2 (en) | 2017-04-01 | 2021-01-26 | Intel Corporation | Video motion processing including static scene determination, occlusion detection, frame rate conversion, and adjusting compression ratio |
US10506255B2 (en) | 2017-04-01 | 2019-12-10 | Intel Corporation | MV/mode prediction, ROI-based transmit, metadata capture, and format detection for 360 video |
US10882453B2 (en) | 2017-04-01 | 2021-01-05 | Intel Corporation | Usage of automotive virtual mirrors |
US10574995B2 (en) | 2017-04-10 | 2020-02-25 | Intel Corporation | Technology to accelerate scene change detection and achieve adaptive content display |
US10587800B2 (en) | 2017-04-10 | 2020-03-10 | Intel Corporation | Technology to encode 360 degree video content |
US10638124B2 (en) | 2017-04-10 | 2020-04-28 | Intel Corporation | Using dynamic vision sensors for motion detection in head mounted displays |
US10453221B2 (en) | 2017-04-10 | 2019-10-22 | Intel Corporation | Region based processing |
US10402932B2 (en) | 2017-04-17 | 2019-09-03 | Intel Corporation | Power-based and target-based graphics quality adjustment |
US10456666B2 (en) | 2017-04-17 | 2019-10-29 | Intel Corporation | Block based camera updates and asynchronous displays |
US10547846B2 (en) | 2017-04-17 | 2020-01-28 | Intel Corporation | Encoding 3D rendered images by tagging objects |
US10623634B2 (en) | 2017-04-17 | 2020-04-14 | Intel Corporation | Systems and methods for 360 video capture and display based on eye tracking including gaze based warnings and eye accommodation matching |
US10726792B2 (en) | 2017-04-17 | 2020-07-28 | Intel Corporation | Glare and occluded view compensation for automotive and other applications |
US10565964B2 (en) | 2017-04-24 | 2020-02-18 | Intel Corporation | Display bandwidth reduction with multiple resolutions |
US10525341B2 (en) | 2017-04-24 | 2020-01-07 | Intel Corporation | Mechanisms for reducing latency and ghosting displays |
US10424082B2 (en) | 2017-04-24 | 2019-09-24 | Intel Corporation | Mixed reality coding with overlays |
US10908679B2 (en) | 2017-04-24 | 2021-02-02 | Intel Corporation | Viewing angles influenced by head and body movements |
US10939038B2 (en) | 2017-04-24 | 2021-03-02 | Intel Corporation | Object pre-encoding for 360-degree view for optimal quality and latency |
US10643358B2 (en) | 2017-04-24 | 2020-05-05 | Intel Corporation | HDR enhancement with temporal multiplex |
US10158833B2 (en) | 2017-04-24 | 2018-12-18 | Intel Corporation | High dynamic range imager enhancement technology |
US10475148B2 (en) | 2017-04-24 | 2019-11-12 | Intel Corporation | Fragmented graphic cores for deep learning using LED displays |
US10979728B2 (en) | 2017-04-24 | 2021-04-13 | Intel Corporation | Intelligent video frame grouping based on predicted performance |
WO2018200993A1 (en) | 2017-04-28 | 2018-11-01 | Zermatt Technologies Llc | Video pipeline |
US10979685B1 (en) | 2017-04-28 | 2021-04-13 | Apple Inc. | Focusing for virtual and augmented reality systems |
US10861142B2 (en) | 2017-07-21 | 2020-12-08 | Apple Inc. | Gaze direction-based adaptive pre-filtering of video data |
CN109257600B (zh) * | 2018-11-28 | 2020-11-17 | 福建帝视信息科技有限公司 | 一种基于深度学习的视频压缩伪影自适应去除方法 |
KR20200140096A (ko) * | 2019-06-05 | 2020-12-15 | 삼성전자주식회사 | 영상의 ai 부호화 및 ai 복호화 방법, 및 장치 |
CN111698503B (zh) * | 2020-06-22 | 2022-09-09 | 深圳市迪威码半导体有限公司 | 一种基于预处理的视频高倍压缩方法 |
CN111899171B (zh) * | 2020-07-10 | 2022-08-12 | 罗雄彪 | 一种医疗机器人手术视频运动放大方法 |
CN112085755B (zh) * | 2020-09-14 | 2024-08-13 | 贝壳技术有限公司 | 物体轮廓检测方法、装置以及设备、存储介质 |
CN115150674B (zh) * | 2021-03-31 | 2024-07-26 | 深圳云天励飞技术股份有限公司 | 视频处理方法、系统、设备及存储介质 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0165497B1 (ko) | 1995-01-20 | 1999-03-20 | 김광호 | 블럭화현상 제거를 위한 후처리장치 및 그 방법 |
US6320905B1 (en) | 1998-07-08 | 2001-11-20 | Stream Machine Company | Postprocessing system for removing blocking artifacts in block-based codecs |
US6993191B2 (en) | 2001-05-04 | 2006-01-31 | Pts Corporation | Methods and apparatus for removing compression artifacts in video sequences |
US7426315B2 (en) | 2001-09-05 | 2008-09-16 | Zoran Microelectronics Ltd. | Method for reducing blocking artifacts |
US7362810B2 (en) | 2003-05-13 | 2008-04-22 | Sigmatel, Inc. | Post-filter for deblocking and deringing of video data |
US7539248B2 (en) | 2004-04-29 | 2009-05-26 | Mediatek Incorporation | Adaptive de-blocking filtering apparatus and method for MPEG video decoder |
US7397854B2 (en) | 2004-04-29 | 2008-07-08 | Mediatek Incorporation | Adaptive de-blocking filtering apparatus and method for MPEG video decoder |
US7359565B2 (en) | 2004-05-03 | 2008-04-15 | International Business Machines Corporation | Method of filtering pixels in a video encoding process |
US7724307B2 (en) * | 2004-07-28 | 2010-05-25 | Broadcom Corporation | Method and system for noise reduction in digital video |
JP2008508751A (ja) * | 2004-07-30 | 2008-03-21 | アルゴリス インコーポレイテッド | 符号化された画像信号に関する適応型3d虚構映像削減のための装置および方法 |
US8537903B2 (en) * | 2005-09-23 | 2013-09-17 | Entropic Communications, Inc. | De-blocking and de-ringing systems and methods |
US7760964B2 (en) * | 2006-11-01 | 2010-07-20 | Ericsson Television Inc. | Method and architecture for temporal-spatial deblocking and deflickering with expanded frequency filtering in compressed domain |
US7952646B2 (en) * | 2006-12-27 | 2011-05-31 | Intel Corporation | Method and apparatus for content adaptive spatial-temporal motion adaptive noise reduction |
US8063995B2 (en) * | 2007-02-23 | 2011-11-22 | Samsung Electronics Co., Ltd. | System and method for video noise reduction using a unified three-dimensional non-linear filtering |
US8305497B2 (en) * | 2007-07-27 | 2012-11-06 | Lsi Corporation | Joint mosquito and aliasing noise reduction in video signals |
US8447130B2 (en) * | 2007-12-31 | 2013-05-21 | Intel Corporation | History-based spatio-temporal noise reduction |
US7894685B2 (en) * | 2008-07-01 | 2011-02-22 | Texas Instruments Incorporated | Method and apparatus for reducing ringing artifacts |
EP2327219B1 (en) * | 2008-09-09 | 2016-11-09 | Marvell World Trade Ltd. | Reducing digital image noise |
US8265421B2 (en) | 2008-11-06 | 2012-09-11 | Sony Corporation | Video system with blocking artifact two-dimensional cross filtering |
TWI413415B (zh) | 2009-06-17 | 2013-10-21 | Novatek Microelectronics Corp | 以h264解方塊為基礎的多源過濾器以及多源過濾方法 |
US8306355B2 (en) | 2009-07-13 | 2012-11-06 | Sharp Laboratories Of America, Inc. | Methods and systems for reducing compression artifacts |
EP2522145B1 (en) * | 2010-01-08 | 2021-09-08 | Nokia Technologies Oy | An apparatus and a method for video processing |
US8885969B2 (en) * | 2010-03-29 | 2014-11-11 | Sony Corporation | Method and apparatus for detecting coding artifacts in an image |
US8564724B2 (en) * | 2010-04-04 | 2013-10-22 | Texas Instruments Incorporated | Ghosting artifact reduction in temporal noise filtering |
US8811757B2 (en) * | 2012-01-05 | 2014-08-19 | Texas Instruments Incorporated | Multi-pass video noise filtering |
-
2013
- 2013-06-14 US US13/917,669 patent/US9118932B2/en active Active
- 2013-12-26 TW TW102148394A patent/TWI519136B/zh active
- 2013-12-28 DE DE102013021991.4A patent/DE102013021991B4/de active Active
-
2014
- 2014-05-30 CN CN201410240571.2A patent/CN104244015B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
US9118932B2 (en) | 2015-08-25 |
CN104244015A (zh) | 2014-12-24 |
US20140369613A1 (en) | 2014-12-18 |
TW201448571A (zh) | 2014-12-16 |
CN104244015B (zh) | 2017-12-19 |
DE102013021991B4 (de) | 2020-03-19 |
DE102013021991A1 (de) | 2014-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI519136B (zh) | 一種用以移除編碼視頻數據中的編碼瑕疵之自適應過濾機構的方法、資料處理裝置及系統 | |
JP7355894B2 (ja) | 双方向オプティカル・フローに対するビット幅制御方法およびデバイス | |
CN110036637B (zh) | 去噪声化已重构图像的方法及装置 | |
US20100080472A1 (en) | Image processing apparatus, moving image decoding apparatus, moving image encoding apparatus and method | |
US9838690B1 (en) | Selective prediction signal filtering | |
CN109891894B (zh) | 用于恢复由重构产生的劣化帧的劣化图块的方法和装置 | |
WO2019152134A1 (en) | Adaptive thresholding for computer vision on low bitrate compressed video streams | |
US9294676B2 (en) | Choosing optimal correction in video stabilization | |
US20130235931A1 (en) | Masking video artifacts with comfort noise | |
Wang et al. | Semantic-aware video compression for automotive cameras | |
Gandam et al. | An efficient post-processing adaptive filtering technique to rectifying the flickering effects | |
CN106664404A (zh) | 视频编码中的块分割方式处理方法和相关装置 | |
WO2019037471A1 (zh) | 视频处理方法、视频处理装置以及终端 | |
JP2022534572A (ja) | 映像圧縮のための前処理 | |
US20100322304A1 (en) | Multi-source filter and filtering method based on h.264 de-blocking | |
CN115311161B (zh) | 基于人工智能的图像增强方法、装置、设备以及存储介质 | |
US8831354B1 (en) | System and method for edge-adaptive and recursive non-linear filtering of ringing effect | |
US10080032B2 (en) | Lossy channel video blur avoidance | |
US10405002B2 (en) | Low complexity perceptual visual quality evaluation for JPEG2000 compressed streams | |
WO2017036386A1 (zh) | 一种视频去噪方法及装置、终端、存储介质 | |
CN114175659A (zh) | 用于双向光流的比特宽度控制的装置和方法 | |
CN111212198B (zh) | 一种视频去噪的方法和设备 | |
CN109906610B (zh) | 使用滤波和子空间投影的视频编译的恢复 | |
CN115280772A (zh) | 有损压缩的二重标准块分割启发法 | |
EP3151565A1 (en) | A low complexity perceptual visual quality evaluation method for jpeg2000 compressed streams |