TWI519091B - Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system - Google Patents

Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system Download PDF

Info

Publication number
TWI519091B
TWI519091B TW101140622A TW101140622A TWI519091B TW I519091 B TWI519091 B TW I519091B TW 101140622 A TW101140622 A TW 101140622A TW 101140622 A TW101140622 A TW 101140622A TW I519091 B TWI519091 B TW I519091B
Authority
TW
Taiwan
Prior art keywords
data
subcarriers
mimo
streams
transmitted
Prior art date
Application number
TW101140622A
Other languages
Chinese (zh)
Other versions
TW201334454A (en
Inventor
關傑勇
章修 谷
羅伯特 奧勒森
艾庫特 波坦
費堤 歐茲魯特
Original Assignee
內數位科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 內數位科技公司 filed Critical 內數位科技公司
Publication of TW201334454A publication Critical patent/TW201334454A/en
Application granted granted Critical
Publication of TWI519091B publication Critical patent/TWI519091B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

MIMO-OFDM系統中結合空間-頻率區塊編碼、空間多工及波束成形之方 法及裝置 Combining space-frequency block coding, spatial multiplexing and beamforming in MIMO-OFDM systems Method and device

本發明是關於一種無線通訊系統,尤其是關於在多重輸入多重輸出(MIMO)正交頻分多工(OFDM)系統中,一種結合空間-頻率區塊編碼(SFBC)、空間多工(SM)以及波束成形的方法及裝置。 The present invention relates to a wireless communication system, and more particularly to a combination of space-frequency block coding (SFBC) and spatial multiplexing (SM) in a Multiple Input Multiple Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) system. And a method and apparatus for beamforming.

OFDM是一種資料傳輸機制,其係將資料分成複數個小串流,且每個串流係使用其頻寬比總有效傳輸頻寬還小的子載波來傳輸。OFDM的有效性是視選擇這些互相正交的子載波而定,當每個子載波攜帶總使用者資料的一部份時,其並不會互相影響。 OFDM is a data transmission mechanism that divides data into a plurality of small streams, and each stream is transmitted using subcarriers whose bandwidth is smaller than the total effective transmission bandwidth. The effectiveness of OFDM depends on the selection of these mutually orthogonal subcarriers. When each subcarrier carries a portion of the total user data, it does not affect each other.

一個OFDM系統具有勝過其他無線通訊系統的優勢,當使用者資料分成由不同載波所攜帶的串流時,每個子載波的有效資料率就會小很多,因此,符號週期會大很多。一個大的符號週期可容忍較大的延遲展開,因此,其不會受到多重路徑的嚴重影響。因此,OFDM符號可容忍延遲展開,而不需要複雜的接收器設計,然而,典型的無線系統需要複雜的頻道等化機制,以便抵抗多重路徑的衰退。 An OFDM system has advantages over other wireless communication systems. When the user data is divided into streams carried by different carriers, the effective data rate of each subcarrier is much smaller, and therefore, the symbol period is much larger. A large symbol period can tolerate a large delay spread, so it is not severely affected by multiple paths. Thus, OFDM symbols can tolerate delay spread without the need for complex receiver designs, however, typical wireless systems require complex channel equalization mechanisms to resist multipath degradation.

OFDM的另一個優勢便是,在傳輸器和接收器端所產生的正 交子載波可使用反轉快速傅立葉轉換(IFFT)及快速傅立葉轉換(FFT)引擎完成,由於IFFT和FFT已是習知技術,因此,OFDM可以輕易地實施而不需要複雜的接收器。 Another advantage of OFDM is that it is generated at the transmitter and receiver. The inter-subcarriers can be implemented using Inverted Fast Fourier Transform (IFFT) and Fast Fourier Transform (FFT) engines. Since IFFT and FFT are already well known techniques, OFDM can be easily implemented without the need for complex receivers.

MIMO所參考無線傳輸和接收機制係為傳輸器和接收器皆使用一個以上的天線。一個MIMO系統所佔有的優勢在於其空間多樣性或是空間多工,且可以改善信號雜訊比(SNR)並增加總處理能力。 The MIMO reference wireless transmission and reception mechanism uses more than one antenna for both the transmitter and the receiver. The advantage of a MIMO system is its spatial diversity or spatial multiplexing, and it can improve the signal-to-noise ratio (SNR) and increase the total processing power.

SFBC是一種用以傳輸空間多樣性編碼符號的機制,其係在連續時槽中的鄰近子載波上,而非在相同的子載波上。該SFBC避免了與空間時間區塊編碼(STBC)有關的快速時間變換的問題,然而,當結合發生時,在子載波上的頻道必須維持穩定。 SFBC is a mechanism for transmitting spatially diverse coded symbols on adjacent subcarriers in a continuous time slot, rather than on the same subcarrier. This SFBC avoids the problem of fast time transforms associated with Spatial Time Block Coding (STBC), however, when combining occurs, the channels on the subcarriers must remain stable.

本發明是關於一種用以在MIMO-OFDM系統中結合SFBC、SM及波束成形的方法和裝置,該系統包含一具有複數個傳輸天線的傳輸器,以及一具有複數個接收天線的接收器。該傳輸器產生至少一資料串流及複數個空間串流,空間串流的產生數量取決於傳輸天線的數量以及接收天線的數量。該傳輸器根據SFBC、SM及波束成形中至少其中之一來決定一傳輸機制,該傳輸器根據該所選的傳輸機制,在該資料串流中傳輸資料至該接收器。 The present invention relates to a method and apparatus for combining SFBC, SM and beamforming in a MIMO-OFDM system, the system comprising a transmitter having a plurality of transmit antennas, and a receiver having a plurality of receive antennas. The transmitter generates at least one data stream and a plurality of spatial streams, and the number of spatial streams generated depends on the number of transmitting antennas and the number of receiving antennas. The transmitter determines a transmission mechanism based on at least one of SFBC, SM, and beamforming, and the transmitter transmits data to the receiver in the data stream according to the selected transmission mechanism.

100‧‧‧實施一封閉回路模式的OFDM-MIMO系統 100‧‧‧ Implementation of a closed loop mode OFDM-MIMO system

110‧‧‧傳輸器 110‧‧‧Transporter

115、215‧‧‧資料串流 115, 215‧‧‧ data stream

126、226‧‧‧傳輸天線 126, 226‧‧‧ transmission antenna

128、231‧‧‧接收天線 128, 231‧‧‧ receiving antenna

130‧‧‧接收器 130‧‧‧ Receiver

150‧‧‧回饋 150‧‧‧Feedback

200‧‧‧實施一開放回路模式的系統 200‧‧‧ Implementing an open loop mode system

CQI‧‧‧頻道狀態資訊 CQI‧‧‧ channel status information

CSI‧‧‧頻道品質資訊 CSI‧‧‧ channel quality information

FFT‧‧‧快速傅立葉轉換 FFT‧‧‧fast Fourier transform

IFFT‧‧‧反轉快速傅立葉轉換 IFFT‧‧‧Inverse Fast Fourier Transform

MIMO-OFDM‧‧‧多重輸入多重輸出-正交頻分多工 MIMO-OFDM‧‧‧Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing

SFBC‧‧‧空間-頻率區塊編碼 SFBC‧‧‧ space-frequency block coding

SM‧‧‧空間多工 SM‧‧‧ Space multiplex

S/P‧‧‧序列至平行 S/P‧‧ ‧ sequence to parallel

第1圖所示為一種實施一封閉回路模式的OFDM-MIMO系統方塊圖,其係根據本發明所配置;以及第2圖所示為一種實施一開放回路模式的OFDM-MIMO系1 is a block diagram of an OFDM-MIMO system implementing a closed loop mode, which is configured in accordance with the present invention; and FIG. 2 is an OFDM-MIMO system implementing an open loop mode. 統方塊圖,其係根據本發明所配置。Block diagram, which is configured in accordance with the present invention.

本發明之較佳實施方式將參照圖式描述,其中,全文中相同的號碼皆代表相同的元件。 The preferred embodiments of the present invention will be described with reference to the drawings, wherein like reference numerals refer to the same elements throughout.

本發明之特徵可整合至一積體電路(IC)上,或是配置在一個包含許多互連元件之電路上。 Features of the invention may be integrated into an integrated circuit (IC) or on a circuit comprising a plurality of interconnected components.

本發明提供複數個SFBC、SM、FD和波束選擇的組合,其 係根據有效資料串流和空間串流以及傳輸和接收天線的數量所選擇,該組合可提供設計MIMO-OFSM系統的彈性,以及對任何數量的傳輸和接收天線配置的解決方案。每該組合在效能、可靠度及資料率之間會交換,因此,可根據某些準則來選擇組合,像是強健性、資料率、頻道狀態或是諸如此類。資料串流的數量較佳地是根據一調變和編碼機制所決定,該空間串流的數量則是由傳輸和接收天線的數量所決定。 The present invention provides a combination of a plurality of SFBC, SM, FD, and beam selection, Selected based on the effective data stream and spatial stream and the number of transmit and receive antennas, this combination provides the flexibility to design a MIMO-OFSM system, as well as a solution for any number of transmit and receive antenna configurations. Each combination is exchanged between performance, reliability, and data rate, so combinations can be selected based on certain criteria, such as robustness, data rate, channel status, or the like. The number of data streams is preferably determined according to a modulation and coding mechanism, the number of which is determined by the number of transmission and reception antennas.

本系統運作有兩種模式:封閉回路及開放回路。封閉回路係於當頻道狀態資訊(CSI)可供傳輸器使用時所使用,而開放回路則是當CSI無法給傳輸器使用時所使用。可使用一變形傳輸至遺留站台(legacy STA),並在該處提供多樣性的優勢。 The system operates in two modes: closed loop and open loop. The closed loop is used when Channel Status Information (CSI) is available to the transmitter, while the open loop is used when the CSI is not available to the transmitter. A variant can be transmitted to the legacy station where it provides the advantages of diversity.

在封閉回路模式中,CSI是用以虛擬地產生獨立頻道,其係藉由在在傳輸器端預編碼,並更進一步在接收器端進行天線處理,以便分解和對角化頻道矩陣來完成,展開無線頻道之特徵根後,藉由使用SFBC及/或SM便能達成在資料率和強健性間的交易。此機制允許使用簡單的接收器實施,其係比最小均方錯誤(MMSE)接收器還簡單。此組合方式與傳統技術 比較,在較大範圍內有較高的總處理能力,此技術允許每子載波功率/位元負載,並透過封閉回路運作及CSI回饋來維持一個可接受的強健鍊結。本技術的另一個優點便是,其在任何數量的傳輸器和接收器端都可輕易地實施。 In closed loop mode, CSI is used to virtually generate independent channels, which are done by precoding at the transmitter end and further antenna processing at the receiver end to decompose and diagonalize the channel matrix. After the feature root of the wireless channel is expanded, transactions between data rate and robustness can be achieved by using SFBC and/or SM. This mechanism allows for a simple receiver implementation that is simpler than a Minimum Mean Square Error (MMSE) receiver. This combination and traditional technology Comparing, with a higher total processing power over a larger range, this technique allows per subcarrier power/bit load and maintains an acceptable robust link through closed loop operation and CSI feedback. Another advantage of the present technology is that it can be easily implemented on any number of transmitters and receivers.

CSI可由接收器的回饋或是透過頻道相互作用在傳輸器獲得,延遲需求和回饋資料率典型地對繼承頻率非選擇性特徵根來說並不顯著。此外,需要一個傳輸天線校正機制,另外,頻道品質資訊(CQI)亦被用以決定子載波群的每一子載波之一編碼率及一調變機制。根據資料串流的數量,該組合係以有效空間串流選擇。 The CSI can be obtained by the receiver's feedback or by channel interaction at the transmitter. The delay demand and feedback data rate are typically not significant for the inheritance frequency non-selective feature root. In addition, a transmission antenna correction mechanism is required. In addition, channel quality information (CQI) is also used to determine a coding rate and a modulation mechanism for each subcarrier of the subcarrier group. Depending on the number of data streams, the combination is selected with a valid space stream.

第1圖所示為一個實施一封閉回路模式的OFDM-MIMO系統100方塊圖,其係根據本發明所配置,該系統100包含一傳輸器110及一接收器130。該傳輸器110包含一頻道編碼器112、一多工器114、一功率負載單元116、複數個非必須的SFBC單元118、複數個序列至平行(S/P)轉換器120、一傳輸波束成形器122、複數個IFFT單元124以及複數個傳輸天線126。該頻道編碼器112編碼資料較佳地係根據一CQI,其係由該接收器130所提供,該CQI係用以決定每子載波或子載波群之一編碼率及調變機制,該編碼資料串流係由該多工器114多工處理成二或多個資料串流115。 1 is a block diagram of an OFDM-MIMO system 100 implementing a closed loop mode, which is configured in accordance with the present invention, the system 100 including a transmitter 110 and a receiver 130. The transmitter 110 includes a channel encoder 112, a multiplexer 114, a power load unit 116, a plurality of optional SFBC units 118, a plurality of sequence-to-parallel (S/P) converters 120, and a transmit beamforming. The device 122, the plurality of IFFT units 124, and the plurality of transmission antennas 126. Preferably, the channel encoder 112 encodes data according to a CQI, which is provided by the receiver 130, and the CQI is used to determine a coding rate and a modulation mechanism of each subcarrier or subcarrier group. The stream is multiplexed by the multiplexer 114 into two or more data streams 115.

每該資料串流115之該傳輸功率等級係由該功率負載單元116所調整,其係根據該接收器130所提供的回饋150,該功率負載單元116係提整關於每個特徵波束的資料率之功率等級,以便平衡所有特徵波束(或子載波)之總傳輸功率。 The transmission power level of each data stream 115 is adjusted by the power load unit 116 based on the feedback 150 provided by the receiver 130, which adjusts the data rate for each eigenbeam. The power level is used to balance the total transmission power of all eigenbeams (or subcarriers).

該非必要的SFBC單元118在該資料串流115上執行SFBC,SFBC係在傳輸的每該資料率之特徵波束和子載波上執行,特徵波束和子載 波對係被選擇以確保獨立頻道。OFDM符號係由K子載波所攜帶,為了搭載SFBC,該子載波係分成L對的子載波(或是子載波群),每該子載波群的頻寬應該小於頻道的相干載波,然而,當組合特徵波束成形時,此限制會因為該特徵波束的頻率不敏感性而放寬。 The non-essential SFBC unit 118 performs SFBC on the data stream 115, and the SFBC is performed on the eigenbeams and subcarriers of each of the transmitted data rates, the eigenbeams and the subcarriers. The wave pair is selected to ensure an independent channel. The OFDM symbol is carried by the K subcarrier. To carry the SFBC, the subcarrier is divided into L pairs of subcarriers (or subcarrier groups), and the bandwidth of the subcarrier group should be smaller than the coherent carrier of the channel. When combining feature beamforming, this limitation is relaxed due to the frequency insensitivity of the eigenbeam.

由區塊編碼所使用的子載波群對係獨立考慮,下列為Alamouti形式的SFBC用於OFDM符號的一個例子: The subcarrier group pairs used by block coding are considered independently. The following is an example of SFBC in the Alamouti form for OFDM symbols:

一旦非必要的SFBC單元118建構所有所有子載波的OFDM符 號,則該編碼區塊係由該S/P轉換器120多工處理,且輸入至該傳輸波束成形器122,該傳輸波束成形器122分配特徵波束至該傳輸天線,而該IFFT單元124則將在頻率域的資料轉換成為時間域的資料。 Once the non-essential SFBC unit 118 constructs the OFDM symbols for all of the subcarriers The code block is multiplexed by the S/P converter 120 and input to the transmit beamformer 122, the transmit beamformer 122 assigns a eigenbeam to the transmit antenna, and the IFFT unit 124 Convert data in the frequency domain into data in the time domain.

該接收器130包含複數個接收天線128、複數個FFT單元132、一接收波束成形器134、複數個非必要SFBC解碼單元136、一解多工器138、一頻道解碼器144、一頻道估測器140、一CSI產生器142、以及一CQI產生器146。 The receiver 130 includes a plurality of receiving antennas 128, a plurality of FFT units 132, a receive beamformer 134, a plurality of unnecessary SFBC decoding units 136, a demultiplexer 138, a channel decoder 144, and a channel estimation. The device 140, a CSI generator 142, and a CQI generator 146.

該FFT單元132將由該天線128在時間域中所接收的樣本轉換為頻率域,該接收波束成形器134、該非必要SFBC解碼單元136、該解多工器138、以及該頻道估測器144則繼續處理轉換為頻率域的樣本。 The FFT unit 132 converts samples received by the antenna 128 in the time domain into a frequency domain, the receive beamformer 134, the non-essential SFBC decoding unit 136, the demultiplexer 138, and the channel estimator 144. Continue processing samples that are converted to the frequency domain.

該頻道估測器140產生頻道矩陣,其係使用由該傳輸器所傳輸之一訓練序列,並且將該每該子載波(或每該子載波群)之頻道矩陣分解成兩個波束成形單位矩陣U和V(U為傳輸而V為接收),以及一對角矩陣D,其 係藉由奇異值分解法(SVD)或是特徵值分解法完成。該CSI產生器142由該頻道估測結果產生CSI 147,且該CQI產生器根據該解碼結果產生一CQI 148,該CSI及該CQI由該接收器130提供回饋150給該傳輸器110。 The channel estimator 140 generates a channel matrix that uses one of the training sequences transmitted by the transmitter and decomposes the channel matrix per subcarrier (or per subcarrier group) into two beamforming unit matrices. U and V (U is transmission and V is reception), and a pair of angular matrix D, It is done by singular value decomposition (SVD) or eigenvalue decomposition. The CSI generator 142 generates CSI 147 from the channel estimation result, and the CQI generator generates a CQI 148 according to the decoding result, and the CSI and the CQI are fed back to the transmitter 110 by the receiver 130.

在nT傳輸天線及nR接收天線間的頻道矩陣H可如下表示: 該頻道矩陣H係由SVD分解如下:H=UDV H 其中U和V係為單一矩陣,而D係為對角矩陣,U C nRxnR V C nTxnT 。接著,在傳輸符號向量s方面,傳輸欲編碼係簡單表示如下:x=Vs該接收信號則變成如下:y=HVs+n其中n係為注入頻道的雜訊,該接收器使用一匹配濾波器完成分解:V H H H =V H VD H U H =D H U H 在正規化特徵波束之頻道增益後,該傳輸符號s之估測變為: 該符號s不需執行連續干擾消除或是MMSE形式偵測器便可偵測。D H D係為一對角矩陣,其係由H的特徵根乘上對角所形成,因此,該正規化因子α=D -2。U係為HHH之特徵向量,V係為HHH之特徵向量,而D係為H之奇異 值的對角矩陣(HHH之特徵根的平方根)。 The channel matrix H between the nT transmission antenna and the nR reception antenna can be expressed as follows: The channel matrix H is decomposed by SVD as follows: H = UDV H where U and V are a single matrix, and D is a diagonal matrix, U C nRxnR and V C nTxnT . Next, in terms of transmitting the symbol vector s, the transmission code is simply expressed as follows: x = Vs The received signal becomes as follows: y = HVs + n where n is the noise of the injected channel, and the receiver uses a matched filter Completion of the decomposition: V H H H = V H VD H U H = D H U H After normalizing the channel gain of the eigenbeam, the estimate of the transmitted symbol s becomes: The symbol s does not need to perform continuous interference cancellation or the MMSE form detector can detect. The D H D system is a pair of angular matrices which are formed by multiplying the characteristic root of H by a diagonal, and therefore, the normalization factor α = D -2 . U is the eigenvector of HH H , V is the eigenvector of H H H, and D is the diagonal matrix of the singular value of H (the square root of the eigenvalue of HH H ).

如果非必要SFBC單元118及該非必要SFBC解碼單元136分別由該傳輸器110及該接收器130移除的話,則該傳輸器110及該接收器130可由SM使用。 If the non-essential SFBC unit 118 and the non-essential SFBC decoding unit 136 are removed by the transmitter 110 and the receiver 130, respectively, the transmitter 110 and the receiver 130 can be used by the SM.

在開放回路模式中,在該傳輸器110中空間頻率編碼及空間展開的組合可提供多樣性,而不需要CSI 147。該CQI 148係用以決定每子載波或子載波群之一編碼率及調變。此編碼率及調變機制決定資料串流的數量。根據該資料串流之數量,該組合可以有效空間串流選擇。 In open loop mode, the combination of spatial frequency coding and spatial expansion in the transmitter 110 provides diversity without the need for CSI 147. The CQI 148 is used to determine the coding rate and modulation of one subcarrier or subcarrier group. This coding rate and modulation mechanism determine the number of data streams. Depending on the number of streams, the combination can be efficiently streamed.

第2圖所示為一個實施一開放回路模式的系統200方塊圖,其係根據本發明所配置,該系統200包含一傳輸器210以及一接收器230。在該開放回路模式中,在該傳輸器210中空間頻率編碼及空間展開的組合便提供了多樣向,而不在需要CSI。當運作於遺留IEEE 802.11a/g使用者設備時,亦可使用此機制之變形。 2 is a block diagram of a system 200 implementing an open loop mode, which is configured in accordance with the present invention, the system 200 including a transmitter 210 and a receiver 230. In this open loop mode, the combination of spatial frequency coding and spatial expansion in the transmitter 210 provides a variety of directions without requiring CSI. This mechanism variant can also be used when operating on legacy IEEE 802.11a/g user devices.

該傳輸器210包含一頻道編碼器212、一多工器214、一功率負載單元216、複數個SFBC單元218、複數個序列至平行(S/P)轉換器220、一波束成形器網路(BFN)222、複數個IFFT單元224、以及複數個傳輸天線226。如同在該封閉回路模式一般,該頻道編碼器212使用CQI以決定每子載波或子載波群之編碼率和調變,該編碼資料串流213係由該多工器214多工處理成二或多個資料串流215。該BFN 222在空間中形成N個波束,其中N係為天線226之數量,該波束係由該BFN矩陣運算偽隨機建構。用於SFBC編碼的該獨立子載波群係於個別波束中傳輸。 The transmitter 210 includes a channel encoder 212, a multiplexer 214, a power load unit 216, a plurality of SFBC units 218, a plurality of sequence-to-parallel (S/P) converters 220, and a beamformer network ( BFN) 222, a plurality of IFFT units 224, and a plurality of transmission antennas 226. As in the closed loop mode, the channel encoder 212 uses the CQI to determine the coding rate and modulation for each subcarrier or subcarrier group, and the encoded data stream 213 is multiplexed by the multiplexer 214 into two or Multiple data streams 215. The BFN 222 forms N beams in space, where N is the number of antennas 226 that are pseudo-randomly constructed from the BFN matrix operation. The independent subcarrier group for SFBC coding is transmitted in an individual beam.

在遺留支援方便,SFBC編碼可能無法執行,取而代之的多 樣性係透過波束的排列所達成,其係改善多樣性以及遺留IEEE 802.11a/g使用者設備的效能。 With the convenience of legacy support, SFBC encoding may not be executed and replaced by more The pattern is achieved by the arrangement of the beams, which improves the diversity and the legacy of legacy IEEE 802.11a/g user equipment.

該接受器230包含複數個接收天線231、FFT單元232、一BFN 234、一SFBC解碼和組合單元236、以及一頻道解碼器238。該FFT單元232將由該接收天線231在時間域中所接收的樣本轉換成頻率域。該SFBC解碼和組合單元236解碼並組合子載波群/特徵波束所接收的符號,並將其由平行轉換為序列,其係使用叢集大小的習知技術。符號係使用MRC組合,該頻道解碼器238將該組合符號解碼並產生一CQI 240。 The receiver 230 includes a plurality of receive antennas 231, FFT units 232, a BFN 234, an SFBC decoding and combining unit 236, and a channel decoder 238. The FFT unit 232 converts the samples received by the receive antenna 231 in the time domain into a frequency domain. The SFBC decoding and combining unit 236 decodes and combines the symbols received by the subcarrier group/feature beam and converts them from parallel to a sequence, which is a conventional technique using cluster size. The symbol uses an MRC combination, and the channel decoder 238 decodes the combined symbol and produces a CQI 240.

如果該SFBC單元218及該SBC解碼和組合單元236之SFBC解碼功能分別由該傳輸器210及該接收器230移除的話,則該傳輸器210和該接收器230可由SM使用。 If the SFBC unit 218 and the SFBC decoding function of the SBC decoding and combining unit 236 are removed by the transmitter 210 and the receiver 230, respectively, the transmitter 210 and the receiver 230 can be used by the SM.

根據本發明之SFBC、SM、FD及波束選擇組合的範例係於下文中解釋。Si表示調變符號群,長度則取決於該資料分成多少個子載波群,子載波係分成兩個群組,每該Si包含長度為資料之子載波數目一半的符號。dn表示該頻道矩陣之奇異值,其中d1>d2>d3>…>dM,M係為奇異值之最大數量(亦即:傳輸天線的數量)。速率=1表示在一OFDM符號期間,每一子載波所發送和復原的M符號,當發送和復原小於M符號,該速率則為少量。在FD中,Si係在子載波的一半發送,而Si *則在子載波的另一半發送。 Examples of SFBC, SM, FD, and beam selection combinations in accordance with the present invention are explained below. S i represents a group of modulation symbols, the length of the data depends on how many sub-carriers divided into a group sub-carriers into two groups based, each of the S i comprises a length of half the number of sub-carrier symbol information. d n represents the singular value of the channel matrix, where d 1 >d 2 >d 3 >...>d M , and M is the maximum number of singular values (ie, the number of transmission antennas). Rate = 1 indicates the M symbol transmitted and restored per subcarrier during an OFDM symbol. When the transmission and recovery are less than the M symbol, the rate is a small amount. In the FD, S i is transmitted in one half of the subcarrier, and S i * is transmitted in the other half of the subcarrier.

單一傳輸天線實施例一單一輸入單一輸出(SISO)在一SISO實施例中,僅實施一個資料串流及一個空間串流,在不使用FD的 情況下,一個符號係由經由一個子載波發送,在使用FD的情況下,一個符號則經由兩個子載波發送,其係總結於表1中。 Single Transmission Antenna Embodiment - Single Input Single Output (SISO) In a SISO embodiment, only one data stream and one spatial stream are implemented. In the case where FD is not used, one symbol is transmitted via one subcarrier. In the case of FD, one symbol is transmitted via two subcarriers, which are summarized in Table 1.

兩個傳輸天線實施例Two transmission antenna embodiments

由於有兩個傳輸天線,因此便可支援2x1或2x2 MIMO-OFDM系統,且亦可支援一或兩個資料串流。 With two transmit antennas, it can support 2x1 or 2x2 MIMO-OFDM systems and can also support one or two streams.

2x1 MIMO-OFDM封閉回路-一個資料串流實施例2x1 MIMO-OFDM closed loop - a data stream embodiment

在一封閉回路模式中,可使用具有或不具有FD及SFBC之波束選擇。由於在具有較小奇異值之波束傳輸的資料會死亡,因此波束選擇會透過SVD,會選擇具有較大奇異值之該SVD波束。在不具FD之波束選擇情況下,一資料符號係經由一子載波所發送,而在具有FD之波束選擇情況下,一資料符號可經由兩個子載波所發送。在具有FD之波束選擇情況下,該速率係為不具FD之波束選擇情況之一半,但可靠度會增加。 In a closed loop mode, beam selection with or without FD and SFBC can be used. Since the data transmitted by the beam with smaller singular values will die, the beam selection will pass through the SVD, and the SVD beam with a larger singular value will be selected. In the case of beam selection without FD, a data symbol is transmitted via a subcarrier, and in the case of beam selection with FD, a data symbol can be transmitted via two subcarriers. In the case of beam selection with FD, this rate is one-half of the beam selection without FD, but the reliability will increase.

雖然在具有較小奇異值的波束上傳輸之資料會死亡,但兩個符號可使用SFBC透過兩個子載波同時發送,使用此機制的話,一資料符號係由子載波發送。與波束選擇的例子相比,此實施方式的效能將會降低這是因為具有較小奇異值的第二個串流所包含的只有雜訊而已。 Although data transmitted on a beam with a smaller singular value will die, two symbols can be transmitted simultaneously through two subcarriers using SFBC. With this mechanism, a data symbol is transmitted by a subcarrier. The performance of this embodiment will be reduced compared to the beam selection example because the second stream with smaller singular values contains only the noise.

2x1 MIMO-OFDM封閉回路之一個資料串流的實施例係總結於表2中。 An embodiment of a data stream of a 2x1 MIMO-OFDM closed loop is summarized in Table 2.

2x1 MIMO-OFDM開放回路-一個資料串流實施例2x1 MIMO-OFDM open loop - a data stream embodiment

在一開放回路模式中,可使用具有或不具有FD及SFBC之SM。對不具有FD之SM(具有固定波束成形矩陣)的情況下,一資料符號係使用該固定波束成形及SM之每該空間串流之子載波發送,而在具有FD之SM的情況下,一資料符號係使用該固定波束成形及SM之每該空間串流之兩個子載波發送。 In an open loop mode, SMs with or without FD and SFBC can be used. For SMs without FD (with fixed beamforming matrix), a data symbol is transmitted using the fixed beamforming and subcarriers of each spatial stream of the SM, and in the case of an SM with FD, a data The symbol is transmitted using the fixed beamforming and the two subcarriers of the spatial stream of the SM.

將FD和非FD組合在一起是可行的,在每個實施例中,一符號係在一空間串流之兩個子載波上發送,而一符號係在另一個空間串流之一子載波上發送,在不具有FD之SM的案例中,資料率係為¾。 It is possible to combine FD and non-FD. In each embodiment, one symbol is transmitted on two subcarriers of one spatial stream, and one symbol is on one subcarrier of another spatial stream. Send, in the case of SM without FD, the data rate is 3⁄4.

如果使用具有固定波束成形矩陣的SFBC,則該資料串流的兩個資料符號係使用固定波束成形透過兩個天線在兩個子載波上發送,該資料率係為不具FD之SM案例的一半。 If SFBC with a fixed beamforming matrix is used, the two data symbols of the data stream are transmitted over two subcarriers using two antennas using fixed beamforming, which is half of the SM case without FD.

2x1 MIMO-OFDM開放回路之一資料串流的實施例係總結於表3中。 An embodiment of one of the 2x1 MIMO-OFDM open loop data streams is summarized in Table 3.

2x1 MIMO-OFDM開放回路之兩個資料串流實施例係總結於表4中。Two data stream embodiments of the 2x1 MIMO-OFDM open loop are summarized in Table 4.

2x2 MIMO-OFDM封閉回路-一資料串流實施例 2x2 MIMO-OFDM closed loop - a data stream embodiment

在封閉回路模式中,可使用具有或不具有FD的SM,具有或不具有FD和SFBC的波束選擇。在封閉回路模式中,可藉由SVD為每個子載波形成兩個空間波束。 In closed loop mode, SM with or without FD, beam selection with or without FD and SFBC may be used. In closed loop mode, two spatial beams can be formed for each subcarrier by SVD.

在不具有FD的SM的情況下,一資料符號係經由每該空間串流之一子載波發送,在具有FD的SM情況下,一資料符號係使用一空間串流經由兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per one spatial stream. In the case of an SM with FD, a data symbol is transmitted via two subcarriers using a spatial stream. Combining FD and non-FD is feasible.

在波束選擇方面,在每該子載波之兩個波束間選擇一SVD 波束,其係具有較大的奇異值,每該子載波的另一個波束便被丟棄。在不具有FD的波束選擇方面,一資料符號係使用一空間串流經由一子載波發送,在具有FD的波束選擇方面,一資料符號係使用一空間串流經由兩個子載波發送。 In terms of beam selection, select an SVD between two beams per subcarrier The beam, which has a large singular value, is discarded for each other beam of the subcarrier. In terms of beam selection without FD, a data symbol is transmitted over a subcarrier using a spatial stream. In the beam selection with FD, a data symbol is transmitted over two subcarriers using a spatial stream.

每該子載波之兩個空間串流係根據每該子載波之頻道的SVD所產生,且兩個資料符號可使用SFBC在兩個子載波上發送。 Two spatial streams per subcarrier are generated based on the SVD of the channel for each subcarrier, and two data symbols can be transmitted on the two subcarriers using SFBC.

2x2 MIMO-OFDM封閉回路之一資料串流實施例係總結於表5。 A data stream embodiment of a 2x2 MIMO-OFDM closed loop is summarized in Table 5.

2x2 MIMO-OFDM開放回路-一資料串流實施例2x2 MIMO-OFDM open loop - a data stream embodiment

在一開放回路中,可支援具有或不具有FD和SFBC的SM,SM係以一固定波束成形矩陣,且可使用每該子載波之兩個空間串流。 In an open loop, SMs with or without FD and SFBC can be supported, the SM is in a fixed beamforming matrix, and two spatial streams per subcarrier can be used.

在不具有FD之SM的情況下,一資料符號係經由每該空間串 流之一個子載波發送,而在具有FD之SM的情況下,一資料符號係使用一空間串流經由兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted through each of the space strings. One subcarrier of the stream is transmitted, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers using a spatial stream, and combining FD and non-FD is feasible.

該資料串流之兩個資料符號係使用該固定波束成形及SFBC,在每該空間串流之兩個子載波上發送。 The two data symbols of the data stream are transmitted on the two subcarriers of the spatial stream using the fixed beamforming and SFBC.

傳輸的方法係與2x1系統的方法相同,然而,效能會比較佳,這是因為在一接收器中使用兩個接收天線的緣故。 The method of transmission is the same as that of the 2x1 system, however, the performance will be better because two receive antennas are used in one receiver.

2x2 MIMO-OFDM開放回路之一資料串流實施例係總結於表6。 One of the data stream embodiments of the 2x2 MIMO-OFDM open loop is summarized in Table 6.

2x2 MIMO-OFDM封閉回路-兩資料串流實施例2x2 MIMO-OFDM closed loop - two data stream embodiments

在一封閉回路模式中,可使用具有或不具有FD的SM。SM係以SVD波束成形所執行,而每該子載波係有兩個空間串流可供使用。由於有兩個資料串流,每該資料串流需要分派一個空間串流,而由於相同的原因,因此無法使用SFBC。 In a closed loop mode, an SM with or without FD can be used. The SM system is implemented with SVD beamforming, and two spatial streams are available for each subcarrier. Since there are two data streams, each data stream needs to be assigned a spatial stream, and for the same reason, SFBC cannot be used.

在不具有FD之SM的情況下,一資料符號係經由每該空間串流之一個子載波發送,而在具有FD之SM的情況下,一資料符號係使用一空間串流經由兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol uses a spatial stream via two subcarriers. Sending, combining FD and non-FD is feasible.

2x2 MIMO-OFDM封閉回路之兩資料串流實施例係總結於表7。 The two data stream embodiments of the 2x2 MIMO-OFDM closed loop are summarized in Table 7.

2x2 MIMO-OFDM開放回路-兩資料串流實施例2x2 MIMO-OFDM open loop - two data stream embodiments

在一開放回路中,SM係以固定波束成形矩陣實施,且每該子載波係有兩個空間串流可供使用,如同前文所述,每該資料串流係分派一個空間串流。 In an open loop, the SM is implemented in a fixed beamforming matrix, and two spatial streams are available for each subcarrier, as described above, each spatial stream is assigned a spatial stream.

在不具有FD之SM的情況下,一資料符號係經由每該空間串流之一個子載波發送,而在具有FD之SM的情況下,一資料符號係使用一空間串流經由兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol uses a spatial stream via two subcarriers. Sending, combining FD and non-FD is feasible.

2x2 MIMO-OFDM開放回路之兩資料串流實施例係總結於表8。 The two data stream embodiments of the 2x2 MIMO-OFDM open loop are summarized in Table 8.

三個傳輸天線實施例Three transmission antenna embodiments

有了三個傳輸天線,便可支援3x1、3x2、以及3x3 MIMO-OFDM系統,且亦可支援一、二或三個資料串流。 With three transmit antennas, it can support 3x1, 3x2, and 3x3 MIMO-OFDM systems, and can also support one, two, or three data streams.

3x1 MIMO-OFDM封閉回路-一資料串流實施例3x1 MIMO-OFDM closed loop - a data stream embodiment

在一封閉回路模式中,可使用具有或不具有FD及SFBC之波束選擇,波束係以SVD波束成形產生,且在波束選擇方面,係選擇一空間波束(僅有一個波束可供使用,因為其他兩個波束只有雜訊且將會死亡),所選擇的是具有最大奇異值之波束。 In a closed loop mode, beam selection with or without FD and SFBC can be used, the beam system is generated by SVD beamforming, and in terms of beam selection, a spatial beam is selected (only one beam is available, since the other The two beams have only noise and will die. The beam with the largest singular value is chosen.

在不具有FD的波束選擇情況下,一資料符號係經由所選空間串流之一子載波發送,而在具有FD之波束選擇情況下,一資料符號係經由所選空間串流之兩個子載波發送。 In the case of beam selection without FD, a data symbol is transmitted via one of the selected spatial streams, and in the case of beam selection with FD, a data symbol is passed through two sub-streams of the selected space. Carrier transmission.

對具有SVD波束成形的SFBC來說,係為每該子載波選擇兩個空間串流:一個對應最大奇異值,而另一個對應剩下的其中之一,然而,即便兩個資料符號可透過兩個子載波使用SFBC同時發送,效能還是會非常低,這是因為一個空間串流僅包含雜訊的緣故。 For SFBC with SVD beamforming, two spatial streams are selected for each subcarrier: one corresponding to the largest singular value and the other corresponding to one of the remaining ones, however, even though two data symbols are permeable to both The subcarriers are transmitted simultaneously using SFBC, and the performance is still very low, because a space stream contains only noise.

3x1 MIMO-OFDM封閉回路之一資料串流實施例係總結於表9。 A data stream embodiment of a 3x1 MIMO-OFDM closed loop is summarized in Table 9.

3x1 MIMO-OFDM開放回路-一資料串流實施例3x1 MIMO-OFDM open loop - a data stream embodiment

在一開放回路實施例中,SM及SFBC係以固定波束成形矩陣實施,且三個空間串流可供使用。 In an open loop embodiment, the SM and SFBC are implemented in a fixed beamforming matrix and three spatial streams are available.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一個子載波發送,而在具有FD之SM情況下,一資料符號係經由每該空間串流之兩個子載波發送一。組合FD和非FD是可行的,一資料串流在一空間串流上經由一子載波發送而一符號在另兩個空間串流上經由一子載波發送,或是,一資料符號在兩個空間串流上經由兩個子載波發送而一符號在另一個空間串流上經由一子載波發送。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream. One. Combining FD and non-FD is feasible. One data stream is transmitted on one spatial stream via one subcarrier and one symbol is transmitted on one of the other two spatial streams via one subcarrier, or one data symbol is in two The spatial stream is transmitted via two subcarriers and one symbol is transmitted over another spatial stream via a subcarrier.

SFBC可在具有或不具有FD之狀況下實施。在每該子載波之三個空間串流之間,兩個空間串流係由SFBC所使用,而另一個則給獨立資料符號所使用,因此,在每一瞬間,每該子載波可發送三個符號。 SFBC can be implemented with or without FD. Between each of the three spatial streams of the subcarrier, two spatial streams are used by the SFBC, and the other is used for the independent data symbols. Therefore, at each instant, each subcarrier can be sent three times. Symbols.

3x1 MIMO-OFDM開放回路之一資料串流實施例係總結於表10。 One of the data stream embodiments of the 3x1 MIMO-OFDM open loop is summarized in Table 10.

3x1 MIMO-OFDM(開放回路)-兩資料串流實施例3x1 MIMO-OFDM (Open Loop) - Two Data Streaming Embodiments

在這實施例中,一開放回路結構可用以發送及回復兩個資料串流。SM及SFBC係以固定波束成形矩陣實施,且兩個資料串流係為每該子載波分成三個空間串流。 In this embodiment, an open loop structure can be used to send and reply two streams of data. The SM and SFBC are implemented in a fixed beamforming matrix, and the two data streams are divided into three spatial streams per subcarrier.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一個子載波發送,而在具有FD之SM情況下,一資料符號係經由每該空間串流之兩個子載波發送一。組合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream. One. Combining FD and non-FD is feasible.

在具有SFBC之情況下,一資料串流係使用SFBC發送和回復,而另一個資料串流並不使用SFBC。在每該子載波之三個空間串流之間,兩個空間串流給SFBC使用,而另一個則給另一個資料串流使用。 In the case of SFBC, one data stream is sent and replied using SFBC, while the other data stream does not use SFBC. Between three spatial streams per subcarrier, two spatial streams are used by the SFBC and the other is used for another data stream.

3x1 MIMO-OFDM開放回路之兩個資料串流係總結於表11。 The two data stream systems of the 3x1 MIMO-OFDM open loop are summarized in Table 11.

3x1 MIMO-OFDM(開放回路)-三個資料串流實施例3x1 MIMO-OFDM (Open Loop) - Three Data Streaming Embodiments

一開放回路結構可用以發送及回復三個資料串流。SM及SFBC係以固定波束成形矩陣實施,且三個資料串流係為每該子載波分成三個空間串流,而且,在此實施例中無法使用SFBC。 An open loop structure can be used to send and reply three streams of data. The SM and SFBC are implemented in a fixed beamforming matrix, and the three data streams are divided into three spatial streams per subcarrier, and SFBC cannot be used in this embodiment.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream, Combining FD and non-FD is feasible.

3x1 MIMO-OFDM開放回路之三個資料串流實施例係總結於表12。 The three data stream embodiments of the 3x1 MIMO-OFDM open loop are summarized in Table 12.

3x2 MIMO-OFDM封閉回路-一資料串流實施例3x2 MIMO-OFDM closed loop - a data stream embodiment

在這實施例中,有兩個空間串流可供使用,透過SVD在每該子載波之三個波束間選擇兩個波束,具有較大奇異值的兩個SVD波束會被選擇。 In this embodiment, two spatial streams are available, two beams are selected between each of the three sub-carriers through the SVD, and two SVD beams with larger singular values are selected.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream, Combining FD and non-FD is feasible.

在SFBC方面,係選擇每該子載波之兩個空間串流,且兩個符號係透過兩個子載波使用SFBC在同一時間發送,使用此機制,兩個資料符號可經由兩個子載波回復。 In terms of SFBC, two spatial streams per subcarrier are selected, and two symbols are transmitted at the same time using SFBC through two subcarriers. With this mechanism, two data symbols can be replied via two subcarriers.

3x2 MIMO-OFDM封閉回路之一資料串流實施例係總結於表13。 One of the data stream embodiments of the 3x2 MIMO-OFDM closed loop is summarized in Table 13.

3x2 MIMO-OFDM開放回路-一資料串流實施例3x2 MIMO-OFDM open loop - a data stream embodiment

3x2開放回路之一資料串流與3x1開放回路之一資料串流相同。 One of the 3x2 open loop data streams is the same as one of the 3x1 open loop data streams.

3x2 MIMO-OFDM封閉回路-兩資料串流實施例3x2 MIMO-OFDM closed loop - two data stream embodiments

此實施例有兩個空間串流可供使用,從透過SVD所產生每該子載波之三個波束間選出兩個波束,具有較大奇異值的兩個SVD波束會被選擇。 In this embodiment, two spatial streams are available, two beams are selected from each of the three sub-carriers generated by the SVD, and two SVD beams having larger singular values are selected.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream, Combining FD and non-FD is feasible.

3x2 MIMO-OFDM封閉回路之兩個資料串流係總結於表14。 The two data stream systems of the 3x2 MIMO-OFDM closed loop are summarized in Table 14.

3x2 MIMO-OFDM開放回路-兩資料串流實施例3x2開放回路之兩個資料串流與3x1開放回路之兩個資料串流相同。 3x2 MIMO-OFDM Open Loop - Two Data Streaming Embodiments The two data streams of the 3x2 open loop are the same as the two data streams of the 3x1 open loop.

3x2 MIMO-OFDM-三個資料串流實施例 3x2 MIMO-OFDM系統之三個資料串流實施例係與3x1 MIMO-OFDM系統之三個資料串流實施例相同。 3x2 MIMO- OFDM -Three Data Streaming Embodiments The three data stream embodiments of the 3x2 MIMO-OFDM system are identical to the three data stream embodiments of the 3x1 MIMO-OFDM system.

3x3 MIMO-OFDM封閉回路-一資料串流實施例3x3 MIMO-OFDM closed loop - a data stream embodiment

在一封閉回路實施例中,可使用三個空間串流。在不具有FD之SM情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In a closed loop embodiment, three spatial streams can be used. In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream, Combining FD and non-FD is feasible.

在SFBC方面,係從三個空間串流間選擇兩個空間串流,較佳地是,為每該子載波選擇兩個壞的空間串流,其係具有較小的奇異值,兩個符號係使用SFBC在兩個子載波之兩個壞空間串流上同時發送,而在每該載波之另一個好串流方面,一資料符號則不使用SFBC發送。 In terms of SFBC, two spatial streams are selected from three spatial streams. Preferably, two bad spatial streams are selected for each subcarrier, which have smaller singular values, two symbols. The SFBC is transmitted simultaneously on two bad spatial streams of two subcarriers, and in the case of another good stream per carrier, a data symbol is not transmitted using SFBC.

在非SFBC空間串流方面,如果使用FD,則一資料符號係經由此空間串流之一子載波發送,而如果不使用FD,則一資料符號係經由此空間串流之兩個子載波發送。 In the case of non-SFBC spatial stream, if FD is used, a data symbol is transmitted via one of the spatial streams, and if FD is not used, a data symbol is transmitted via two subcarriers of the spatial stream. .

3x3 MIMO-OFDM封閉回路之一資料串流實施例係總結於表15。 One of the data stream embodiments of the 3x3 MIMO-OFDM closed loop is summarized in Table 15.

3x3 MIMO-OFDM開放回路-一資料串流實施例3x3 MIMO-OFDM open loop-a data stream embodiment

在一開放回路實施例中,3x1開放回路之一資料串流實施例的所有選擇性都可使用。 In an open loop embodiment, all of the selectivity of one of the 3x1 open loop data stream embodiments can be used.

3x3 MIMO-OFDM封閉回路-兩資料串流實施例3x3 MIMO-OFDM closed loop - two data stream embodiments

此實施例中有三個空間串流可供使用,而兩個資料串流係為每該子載波分成三個空間串流。在一封閉回路中,在不具FD之SM的情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每該空間串流之兩個子載波發送,結合FD和非FD是可行的。 In this embodiment, three spatial streams are available, and two data streams are divided into three spatial streams per subcarrier. In a closed loop, in the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is streamed through each space. The transmission of the two subcarriers, combined with FD and non-FD is feasible.

在SFBC方面,係從三個空間串流中選擇兩個空間串流,較佳地,係選擇每該子載波之兩個壞空間串流,其係具有較小的奇異值。對於一個資料串流而言,兩個符號係使用SFBC在兩個子載波之兩個壞空間串流上同時發送,而對另一個每該載波之好串流而言,另一個資料串流係不使用SFBC發送。 In terms of SFBC, two spatial streams are selected from three spatial streams. Preferably, two bad spatial streams per subcarrier are selected, which have smaller singular values. For a data stream, two symbols are transmitted simultaneously on two bad spatial streams of two subcarriers using SFBC, and another data stream is transmitted to another good stream per carrier. Not sent using SFBC.

對非SFBC空間串流而言,如果不使用FD,一資料符號係經由此空間串流之一個子載波發送,而如果使用FD,則一資料符號係經由此 空間串流之兩個子載波發送。 For non-SFBC spatial streams, if FD is not used, a data symbol is sent via one subcarrier of the spatial stream, and if FD is used, a data symbol is transmitted via this Two subcarriers of the spatial stream are transmitted.

3x3 MIMO-OFDM封閉回路之兩資料串流實施例係總結於表16。 The two data stream embodiments of the 3x3 MIMO-OFDM closed loop are summarized in Table 16.

3x3 MIMO-OFDM開放回路-兩資料串流實施例3x3 MIMO-OFDM open loop - two data stream embodiments

在一開放回路實施例中,3x1開放回路之兩資料串流實施例的所有選擇性都可使用。 In an open loop embodiment, all of the selectivity of the two data stream embodiments of the 3x1 open loop can be used.

3x3 MIMO-OFDM封閉回路-三資料串流實施例3x3 MIMO-OFDM closed loop - three data stream embodiment

此實施例有三個空間串流可供使用,且三個資料串流係為每該子載波分成三個空間串流。在一封閉回路中,在不具FD之SM的情況下,一資料符號係經由每該空間串流之一子載波所發送,在具有FD之SM的情況下,一資料符 號係經由每該空間串流之兩個子載波所發送,結合FD和非FD是可行的。 This embodiment has three spatial streams available, and three data streams are divided into three spatial streams per subcarrier. In a closed loop, in the case of an SM without FD, a data symbol is transmitted via one subcarrier per one spatial stream, and in the case of an SM with FD, a data symbol The number is transmitted via two subcarriers per stream, and it is feasible to combine FD and non-FD.

3x3 MIMO-OFDM封閉回路之三個資料串流實施例係總結於表17。 The three data stream embodiments of the 3x3 MIMO-OFDM closed loop are summarized in Table 17.

3x3 MIMO-OFDM開放回路-三資料串流實施例3x3 MIMO-OFDM open loop-three data stream embodiment

在一開放回路實施例中,3x1開放回路之三資料串流實施例的所有選擇性都可使用。 In an open loop embodiment, all of the selectivity of the 3x1 open loop data stream embodiment can be used.

四個傳輸天線實施例Four transmit antenna embodiments

有了四個傳輸天線,便可支援4x1、4x2、4x3、以及4x4 MIMO-OFDM系統,且亦可支援一、二、三或四個資料串流。 With four transmit antennas, it can support 4x1, 4x2, 4x3, and 4x4 MIMO-OFDM systems, and can also support one, two, three, or four data streams.

4x1 MIMO-OFDM封閉回路-一資料串流實施例4x1 MIMO-OFDM closed loop - a data stream embodiment

此實施例僅有一個空間串流。在一封閉回路實施例中,係從透過SVD所產生的每該子載波之四個波束中選擇一個波束,所選擇的SVD波束具有最大的奇 異值。 This embodiment has only one spatial stream. In a closed loop embodiment, one of each of the four beams of the subcarrier generated by the SVD is selected, and the selected SVD beam has the largest oddity. Different value.

在不具FD之SM的情況下,一資料符號係經由每該空間串流之一子載波所發送,在具有FD之SM的情況下,一資料符號係經由每該空間串流之兩個子載波所發送。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream. In the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream. Sent.

對具有SVD波束成形的SFBC來說,係為每該子載波從透過SVD所產生的四個波束間選擇兩個空間串流:一個對應最大奇異值,而另一個對應剩下的其中之一,然而,即便兩個資料符號可透過兩個子載波使用SFBC同時發送,效能還是會非常低,這是因為一個空間串流僅包含雜訊的緣故。 For SFBC with SVD beamforming, two spatial streams are selected between the four beams generated by the SVD per subcarrier: one corresponding to the maximum singular value and the other corresponding to one of the remaining ones, However, even if two data symbols can be transmitted simultaneously using SFBC through two subcarriers, the performance is still very low, because a spatial stream contains only noise.

4x1 MIMO-OFDM封閉回路之一資料串流實施例係總結於表18。 One of the data stream embodiments of the 4x1 MIMO-OFDM closed loop is summarized in Table 18.

4x1 MIMO0OFDM開放回路-一資料串流實施例4x1 MIMO0OFDM open loop - a data stream embodiment

在一開放回路實施例中,SM係以固定波束成形矩陣實施,且四個空間串流可供使用。 In an open loop embodiment, the SM is implemented in a fixed beamforming matrix and four spatial streams are available.

在不具有FD之SM情況下,一資料符號係經由每該空間串流 之一個子載波發送,而在具有FD之SM情況下,一資料符號係經由每該空間串流之兩個子載波發送一。組合FD和非FD是可行的,其係如表19所示。對一個資料串流而言,這些組合可能不會用來維持所有資料符號的相同品質。 In the case of an SM without FD, a data symbol is streamed through each space. One subcarrier is transmitted, and in the case of an SM with FD, a data symbol is transmitted by two subcarriers per spatial stream. Combination FD and non-FD are possible, as shown in Table 19. For a data stream, these combinations may not be used to maintain the same quality of all data symbols.

SM和具有固定波束成形矩陣的SFBC組合是可行的,第一個選擇便是一個2x2 SFBC及兩個SM。對一資料串流而言,此選擇不會用來維持所有資料符號相同的品質,每該子載波的另兩個空間串流會給該資料串流之另兩個資料符號的SM使用。在不具FD的情況下,一資料符號係經由每該空間串流之一子載波所發送,而在具有FD的情況下,一資料符號係經由每該空間串流之兩個子載波所發送。結合FD和非FD是可行的,其係如表20所示。 The combination of SM and SFBC with a fixed beamforming matrix is feasible. The first option is a 2x2 SFBC and two SMs. For a data stream, this selection is not used to maintain the same quality of all data symbols, and the other two spatial streams for that subcarrier are used by the SM of the other two data symbols of the data stream. In the absence of FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an FD, a data symbol is transmitted via two subcarriers per spatial stream. It is possible to combine FD and non-FD, as shown in Table 20.

第二個選擇便是使用兩個2x2 SFBC。每該子載波之四個空間串流係分成兩組,每兩個串流一組,且每組係被分派給每個SFBC。對每個瞬時而言,四(4)個資料符號係使用該固定波束成形及兩個2x2 SFBCs在兩個子載波上發送。 The second option is to use two 2x2 SFBCs. The four spatial streams per subcarrier are divided into two groups, one for each two streams, and each group is assigned to each SFBC. For each instant, four (4) data symbols are transmitted on the two subcarriers using the fixed beamforming and two 2x2 SFBCs.

4x1 MIMO-OFDM(開放回路)-兩個資料串流實施例4x1 MIMO-OFDM (Open Loop) - Two Data Streaming Embodiments

在此實施例中,開放回路應該用以發送和回復兩個資料串流。SM係以該固定波束成形矩陣實施,4E14兩個資料串流係為每該子載波分成四個空間串流。 In this embodiment, the open loop should be used to send and reply two streams of data. The SM system is implemented with the fixed beamforming matrix, and the 4E14 two data streams are divided into four spatial streams per subcarrier.

在不具有FD之SM情況下,一資料符號係經由每該空間串流之一個子載波發送,而在具有FD之SM情況下,一資料符號係經由每該空間串流之兩個子載波發送一。組合FD和非FD是可行的,其係如表21所示,表21中案例1和3的組合不會用來維6301每該資料串流之每該資料符號相同的品質。 In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream. One. Combining FD and non-FD is possible, as shown in Table 21, and the combination of Cases 1 and 3 in Table 21 is not used to maintain the same quality for each data symbol of the data stream of 6301.

SM和具有固定波束成形矩陣的SFBC組合是可行的,第一個選擇便是一個2x2 SFBC及兩個SM。一資料串流係分派給該SFBC,而另一個資料串流係由SM發送,每該子載波之兩個空間串流細由SFBC使用,而每該子載波之另外兩個空間串流則給SM使用。在不具FD的情況下,一資料符號係經由每該空間串流之一子載波所發送,而在具有FD的情況下,一資料符 號係經由每該空間串流之兩個子載波所發送。結合FD和非FD是可行的,其係如表22所示,此結合不會用於維持該資料串流之每該資料符號之相同品質,其係使用SM。 The combination of SM and SFBC with a fixed beamforming matrix is feasible. The first option is a 2x2 SFBC and two SMs. One data stream is assigned to the SFBC, and the other data stream is sent by the SM. The two spatial streams of the subcarrier are used by the SFBC, and the other two spatial streams of the subcarrier are given. SM is used. In the absence of FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of FD, a data symbol The number is transmitted via two subcarriers per stream. It is possible to combine FD and non-FD, as shown in Table 22, this combination is not used to maintain the same quality of each data symbol of the data stream, which uses SM.

第二個選擇便是使用兩個2x2 SFBC,每該資料串流係分派給兩個分離的2x2 SFBC。每該子載波之四個空間串流係分成兩組,每兩個串流一組,且每組係被分派給每個SFBC。對每個瞬時而言,二(2)個資料符號係使用該固定波束成形及每該2x2 SFBCs在兩個子載波上發送。 The second option is to use two 2x2 SFBCs, each of which is assigned to two separate 2x2 SFBCs. The four spatial streams per subcarrier are divided into two groups, one for each two streams, and each group is assigned to each SFBC. For each instant, two (2) data symbols are transmitted using the fixed beamforming and on each of the 2x2 SFBCs on two subcarriers.

4x1 MIMO-OFDM(開放回路)-三資料串流實施例4x1 MIMO-OFDM (Open Loop) - Three Data Streaming Embodiment

在這實施例中,一開放回路結構可用以發送及回復三個資料串流。SM係以固定波束成形矩陣實施,且三個資料串流係為每該子載波分成四個資料符號,表21中的所有組合都可使用。 In this embodiment, an open loop structure can be used to send and reply three streams of data. The SM system is implemented with a fixed beamforming matrix, and three data streams are divided into four data symbols per subcarrier, and all combinations in Table 21 can be used.

SM和具有固定波束成形矩陣的SFBC組合是可行的,第一個選擇便是一個2x2 SFBC及兩個SM。每該子載波之兩個空間串流係使用SFBC,一資料串流係使用SFBC和該固定波束成形發送,而每該子載波之另兩個空間串流族使用另兩個資料串流之SM。在不具FD的情況下,一資料符號係經由每該空間串流之一子載波所發送,而在具有FD的情況下,一資料符號係經由每該空間串流之兩個子載波所發送。結合FD和非FD是可行的,其係如表23所示。 The combination of SM and SFBC with a fixed beamforming matrix is feasible. The first option is a 2x2 SFBC and two SMs. Two spatial streams per subcarrier use SFBC, one data stream is transmitted using SFBC and the fixed beamforming, and the other two spatial stream families of the subcarrier use the other two data streams. . In the absence of FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an FD, a data symbol is transmitted via two subcarriers per spatial stream. It is possible to combine FD and non-FD, as shown in Table 23.

SFBC之4x1 MIMO-OFDM開放回路之三資料串流實施例係總結於表23。 The SFBC 4x1 MIMO-OFDM Open Loop Data Streaming Embodiment is summarized in Table 23.

4x1 MIMO-OFDM(開放回路)-四資料串流實施例4x1 MIMO-OFDM (Open Loop) - Four Data Streaming Embodiment

在這實施例中,一開放回路結構可用以發送及回復四個資料串流。SM係以固定波束成形矩陣實施,且四個資料串流係為每該子載波分成四個空間串流,表21中的所有方法都可使用。 In this embodiment, an open loop structure can be used to send and reply four data streams. The SM system is implemented with a fixed beamforming matrix, and four data streams are divided into four spatial streams per subcarrier, and all methods in Table 21 can be used.

4x2 MIMO-OFDM封閉回路-一資料串流實施例4x2 MIMO-OFDM closed loop - a data stream embodiment

在這實施例中,有兩個空間串流可供使用,透過SVD在每該子載波之四個波束間選擇兩個波束,具有較大奇異值的兩個SVD波束會被選擇。在不具有FD之SM情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之SM情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的,其係如表24所示。 In this embodiment, two spatial streams are available, two beams are selected between each of the four sub-carriers through the SVD, and two SVD beams with larger singular values are selected. In the case of an SM without FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of an SM with FD, a data symbol is transmitted via two subcarriers per spatial stream, It is possible to combine FD and non-FD as shown in Table 24.

在SFBC方面,係選擇每該子載波之兩個空間串流,其係具有較大的奇異值。兩個符號係透過兩個子載波使用SFBC在同一時間發送,使用此機制,兩個資料符號可經由兩個子載波回復。 In terms of SFBC, two spatial streams per subcarrier are selected, which have larger singular values. Two symbols are transmitted at the same time using SFBC through two subcarriers. With this mechanism, two data symbols can be replied via two subcarriers.

4x2 MIMO-OFDM封閉回路之一資料串流實施例係總結於表24。 One of the data stream embodiments of the 4x2 MIMO-OFDM closed loop is summarized in Table 24.

4x2 MIMO-OFDM開放回路-一資料串流實施例4x2 MIMO-OFDM open loop - a data stream embodiment

在此實施例中,4x1開放回路之一資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the selections of one of the 4x1 open loop data stream embodiments can be used.

4x2 MIMO-OFDM封閉回路-兩資料串流實施例4x2 MIMO-OFDM closed loop - two data stream embodiments

此實施例有兩個空間串流可供使用,從透過SVD所產生每該子載波之四個波束間選出兩個波束,具有較大奇異值的兩個SVD波束會被選擇。在不具有FD之情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD之情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In this embodiment, two spatial streams are available, two beams are selected from each of the four sub-carriers generated by the SVD, and two SVD beams having larger singular values are selected. In the case of no FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of FD, a data symbol is transmitted via two subcarriers per spatial stream, combined with FD And non-FD are feasible.

4x2 MIMO-OFDM封閉回路之兩個資料串流係總結於表25。 The two data streams of the 4x2 MIMO-OFDM closed loop are summarized in Table 25.

4x2 MIMO-OFDM開放回路-兩資料串流實施例4x2 MIMO-OFDM open loop - two data stream embodiments

在此實施例中,4x1開放回路之兩資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the options for the two data stream embodiments of the 4x1 open loop can be used.

4x2 MIMO-OFDM開放回路-三資料串流實施例4x2 MIMO-OFDM open loop-three data stream embodiment

在此實施例中,4x1開放回路之三資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the selections of the 4x1 open loop data stream embodiment can be used.

4x2 MIMO-OFDM開放回路-四資料串流實施例4x2 MIMO-OFDM open loop-four data stream embodiment

在此實施例中,4x1開放回路之四資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the four data stream embodiments of the 4x1 open loop can be used.

4x3 MIMO-OFDM開放回路-一資料串流實施例4x3 MIMO-OFDM open loop-a data stream embodiment

在此實施例中,SM係以SVD波束成形實施,且三個空間串流可供使用,具有較大奇異值的三個空間串流會被選擇。在不具有FD情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的,其係如表26所示。 In this embodiment, the SM is implemented in SVD beamforming, and three spatial streams are available, and three spatial streams with larger singular values are selected. In the case of no FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of FD, a data symbol is transmitted via two subcarriers per spatial stream, combining FD and non FD is feasible, as shown in Table 26.

在SFBC方面,係選擇每該子載波之三個空間串流,其具有較大的奇異值。在其間,兩個空間串流,較佳地是兩個壞的空間串流,係分派給SFBC。兩個符號係使用SFBC在兩個子載波之兩個壞的空間穿流上同時發送,且在每該載波之最佳空間串流方面,一資料符號係不使用SFBC發 送。對於後者,在不具FD的情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD情況下,一資料符號係經由每空間串流之兩個子載波發送。 In terms of SFBC, three spatial streams per subcarrier are selected, which have larger singular values. In the meantime, two spatial streams, preferably two bad spatial streams, are assigned to the SFBC. Two symbols are transmitted simultaneously on the two bad spatial flows of the two subcarriers using SFBC, and in terms of the optimal spatial stream per carrier, a data symbol is not sent using SFBC. give away. For the latter, in the absence of FD, a data symbol is transmitted via one subcarrier per spatial stream, whereas in the case of FD, a data symbol is transmitted via two subcarriers per spatial stream.

4x3 MIMO-OFDM封閉回路之一資料串流係總結於表26。 One of the data stream systems of the 4x3 MIMO-OFDM closed loop is summarized in Table 26.

4x3 MIMO-OFDM開放回路-兩資料串流實施例4x3 MIMO-OFDM open loop - two data stream embodiments

在此實施例中,4x1之一資料串流之所有選擇皆可使用。 In this embodiment, all of the 4x1 data stream selections are available.

4x3 MIMO-OFDM封閉回路-兩資料串流實施例4x3 MIMO-OFDM closed loop - two data stream embodiments

在此實施例中,SM係以SVD波束成形實施,且三個空間串流可供使用,兩個資料串流係為每該子載波分成三個空間串流,所有在表26中的方法皆可在此實施例中使用。 In this embodiment, the SM system is implemented by SVD beamforming, and three spatial streams are available. The two data streams are divided into three spatial streams for each subcarrier, and all the methods in Table 26 are It can be used in this embodiment.

在SFBC方面,一資料串流係使用SFBC發送,且每該子載波之三個空間串流係被選擇,其係具有較大的奇異值。在其間,兩個空間串 流,較佳地是兩個壞的空間串流,係分派給SFBC。兩個符號係使用SFBC在兩個子載波之兩個壞的空間穿流上同時發送。 In terms of SFBC, a data stream is transmitted using SFBC, and three spatial streams per subcarrier are selected, which have larger singular values. In between, two space strings The stream, preferably two bad spatial streams, is assigned to the SFBC. Two symbols are transmitted simultaneously on the two bad spatial flows of the two subcarriers using SFBC.

另一個資料便使用SM發送,所有在表26中的SFBC方法皆可在此實施例中使用。 Another data is sent using SM, and all of the SFBC methods in Table 26 can be used in this embodiment.

4x3 MIMO-OFDM封閉回路之兩資料串流實施例係總結於表27。 The two data stream embodiments of the 4x3 MIMO-OFDM closed loop are summarized in Table 27.

4x3 MIMO-OFDM開放回路-兩資料串流實施例4x3 MIMO-OFDM open loop - two data stream embodiments

在此實施例中,4x1之兩資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the options of the 4x1 data stream embodiment can be used.

4x3 MIMO-OFDM封閉回路-三資料串流實施例4x3 MIMO-OFDM closed loop - three data stream embodiment

在此實施例中,SM係以SVD波束成形實施,且三個空間串流可供使用,三個資料串流係為每該子載波分成三個空間串流。在不具有FD情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD情況下,一資料符 號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的。 In this embodiment, the SM system is implemented with SVD beamforming, and three spatial streams are available, and three data streams are divided into three spatial streams per subcarrier. In the absence of FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of FD, a data symbol The number is transmitted via two subcarriers per spatial stream, and combining FD and non-FD is feasible.

4x3 MIMO-OFDM封閉回路之三資料串流實施例係總結於表28。 The three data stream embodiment of the 4x3 MIMO-OFDM closed loop is summarized in Table 28.

4x3 MIMO-OFDM開放回路-三資料串流實施例4x3 MIMO-OFDM open loop-three data stream embodiment

在此實施例中,4x1之三資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the selections of the 4x1 third data stream embodiment can be used.

4x3 MIMO-OFDM封閉回路-四資料串流實施例4x3 MIMO-OFDM closed loop-four data stream embodiment

在此實施例中,4x1之四資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the selections of the 4x1 fourth data stream embodiment can be used.

4x4 MIMO-OFDM封閉回路-一資料串流實施例4x4 MIMO-OFDM closed loop - a data stream embodiment

在此實施例中,SM係以SVD波束成形實施,且四個空間串流可供使用,在不具有FD情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的,其係如表29所示。 In this embodiment, the SM is implemented by SVD beamforming, and four spatial streams are available. In the case of no FD, a data symbol is transmitted via one subcarrier per one of the spatial streams. In the case of FD, a data symbol is transmitted via two subcarriers per spatial stream, and FD and non-FD are combined, as shown in Table 29.

第一個選擇是使用一個2x2 SFBC及兩個SM。藉由每該子載波之奇異值,選擇兩個空間串流,較佳地是兩個壞的空間串流,其係具有較小的奇異值。該資料符號係使用SFBC在這兩個壞的空間串流上發送,而兩個資料符號則使用SM而非SFBC在每該子載波的另兩個好的空間串流上發送。在不具有FD情況下,一資料符號係經由每該空間串流之一子載波發送,而在具FD情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的,其係如表30所示。 The first option is to use a 2x2 SFBC and two SMs. By each singular value of the subcarrier, two spatial streams, preferably two bad spatial streams, are selected, which have smaller singular values. The data symbol is transmitted on the two bad spatial streams using SFBC, and the two data symbols are transmitted on the other two good spatial streams per subcarrier using SM instead of SFBC. In the case of no FD, a data symbol is transmitted via one subcarrier per spatial stream, and in the case of FD, a data symbol is transmitted via two subcarriers per spatial stream, combining FD and non FD is feasible, as shown in Table 30.

第二個選擇便是使用兩個2x2 SFBC,每兩個資料符號係分派給分離的2x2 SFBC。每該子載波之四個空間串流係分成兩個群組,每個群組有兩個空間串流,且每個群組係分派給每個SFBC。在每個瞬時方面,在兩個子載波上之該資料串流之四個(4)資料符號係使用SVD波束成形及兩個2x2 SFBC發送。 The second option is to use two 2x2 SFBCs, each of which is assigned to a separate 2x2 SFBC. Each of the four spatial streams of the subcarrier is divided into two groups, each group having two spatial streams, and each group is assigned to each SFBC. In each instant aspect, the four (4) data symbols of the data stream on the two subcarriers are transmitted using SVD beamforming and two 2x2 SFBC.

SM之4x4 MIMO封閉回路之一資料串流實施例係總結於表29,而SFBC之4x4 MIMO封閉回路之一資料串流實施例係總結於表30。 One of the data stream embodiments of the 4x4 MIMO closed loop of SM is summarized in Table 29, and one of the data stream embodiments of the 4x4 MIMO closed loop of SFBC is summarized in Table 30.

4x4 MIMO-OFDM開放回路-一資料串流實施例4x4 MIMO-OFDM open loop - a data stream embodiment

在此實施例中,4x1之一資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the 4x1 data stream embodiments can be used.

4x4 MIMO-OFDM封閉回路-兩資料串流實施例4x4 MIMO-OFDM closed loop - two data stream embodiments

在此實施例中,SM係以SVD波束成形實施,且有四個空間串流可供使用。 兩個資料串流係為每該子載波分成四個空間串流。表29及表30中的所有方法都可使用。 In this embodiment, the SM is implemented in SVD beamforming and there are four spatial streams available. The two data streams are divided into four spatial streams per subcarrier. All of the methods in Tables 29 and 30 can be used.

4x4 MIMO-OFDM開放回路-兩資料串流實施例4x4 MIMO-OFDM open loop - two data stream embodiments

在此實施例中,4x1之兩資料串流實施例的所有選擇皆可使用。 In this embodiment, all of the options of the 4x1 data stream embodiment can be used.

4x4 MIMO-OFDM封閉回路-三資料串流實施例4x4 MIMO-OFDM closed loop - three data stream embodiment

在此實施例中,SM係以SVD波束成形實施,且有四個空間串流可供使用。三個資料串流係為每該子載波分成四個空間串流。表29的所有方法都可使用。 In this embodiment, the SM is implemented in SVD beamforming and there are four spatial streams available. The three data streams are divided into four spatial streams per subcarrier. All methods of Table 29 can be used.

在SFBC方面,一個2x2 SFBC及兩個SM供三個資料串流使用,一資料串流係使用該2x2 SFBC及SVD波束成形發送。藉由每該子載波之奇異值,選擇兩個空間串流,較佳地是兩個壞的空間串流,其係具有較小的奇異值。兩個子載波上之一資料串流之兩個資料符號,係使用SFBC及波束成形在每該子載波的兩個壞的空間串流上發送,另兩個資料串流則使用SM及SVD波束成形發送。兩個資料符號經由子載波使用每該子載波之另外兩個好的空間串流發送,其係使用SM而非SFBC發送給另外兩個資料串流。在此實施例中,在不具有FD情況下,一資料符號係經由每該空間串流之一子載波發送,在具FD情況下,一資料符號係經由每空間串流之兩個子載波發送,結合FD和非FD是可行的,其係如表31所示。 In terms of SFBC, one 2x2 SFBC and two SMs are used for three data streams, and one data stream is transmitted using the 2x2 SFBC and SVD beamforming. By each singular value of the subcarrier, two spatial streams, preferably two bad spatial streams, are selected, which have smaller singular values. Two data symbols of one data stream on two subcarriers are transmitted on two bad spatial streams per subcarrier using SFBC and beamforming, and SM and SVD beams are used in the other two data streams. Formed to send. The two data symbols are transmitted via subcarriers using two other good spatial streams per subcarrier, which are sent to the other two data streams using SM instead of SFBC. In this embodiment, in the case of no FD, a data symbol is transmitted via one subcarrier per one spatial stream, and in the case of FD, a data symbol is transmitted via two subcarriers per spatial stream. It is feasible to combine FD and non-FD, as shown in Table 31.

SFBC之4x4 MIMO-OFDM封閉回路之三資料串流實施例係總結於表31。 The three data stream embodiments of the 4x4 MIMO-OFDM closed loop of SFBC are summarized in Table 31.

4x4 MIMO-OFDM開放回路-三資料串流實施例4x4 MIMO-OFDM open loop-three data stream embodiment

在此實施例中,4x1之三資料串流的所有選擇皆可使用。 In this embodiment, all selections of the 4x1 third data stream can be used.

4x4 MIMO-OFDM封閉回路-四資料串流實施例4x4 MIMO-OFDM closed loop - four data stream embodiment

在此實施例中,SM係以SVD波束成形實施,且有四個空間串流可供使用。四個資料串流係為每該子載波分成四個空間串流。表29的所有方法都可使用。 In this embodiment, the SM is implemented in SVD beamforming and there are four spatial streams available. The four data streams are divided into four spatial streams per subcarrier. All methods of Table 29 can be used.

4x4 MIMO-OFDM開放回路-四資料串流實施例4x4 MIMO-OFDM open loop-four data stream embodiment

在此實施例中,4x1之四資料串流的所有選擇皆可使用。 In this embodiment, all selections of the 4x1 fourth data stream can be used.

儘管本發明之特徵和元件皆於實施例中以特定組合方式所描述,但實施例中每一特徵或元件能獨自使用,而不需與較佳實施方式之其他特徵或元件組合,或是與/不與本發明之其他特徵和元件做不同之組合。儘管本發明已經透過較佳實施例描述,其他不脫附本發明之申請專利範圍之變型對熟習此技藝之人士來說還是顯而易見的。上述說明書內容係以說明為目的,且不會以任何方式限制特別發明。 Although the features and elements of the present invention are described in a particular combination of the embodiments, each feature or element of the embodiments can be used alone, without being combined with other features or elements of the preferred embodiment, or with / No combination of other features and elements of the invention. While the invention has been described in terms of the preferred embodiments, it will be apparent to those skilled in the art The above description is intended to be illustrative, and does not limit the invention in any way.

100‧‧‧實施一封閉回路模式的OFDM-MIMO系統 100‧‧‧ Implementation of a closed loop mode OFDM-MIMO system

110‧‧‧傳輸器 110‧‧‧Transporter

115‧‧‧資料串流 115‧‧‧ data stream

126‧‧‧傳輸天線 126‧‧‧ transmit antenna

128‧‧‧接收天線 128‧‧‧ receiving antenna

130‧‧‧接收器 130‧‧‧ Receiver

150‧‧‧回饋 150‧‧‧Feedback

CQI‧‧‧頻道狀態資訊 CQI‧‧‧ channel status information

CSI‧‧‧頻道品質資訊 CSI‧‧‧ channel quality information

FFT‧‧‧快速傅立葉轉換 FFT‧‧‧fast Fourier transform

IFFT‧‧‧反轉快速傅立葉轉換 IFFT‧‧‧Inverse Fast Fourier Transform

MIMO-OFDM‧‧‧多重輸入多重輸出-正交頻分多工 MIMO-OFDM‧‧‧Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing

SFBC‧‧‧空間-頻率區塊編碼 SFBC‧‧‧ space-frequency block coding

S/P‧‧‧序列至平行 S/P‧‧ ‧ sequence to parallel

Claims (3)

一種傳輸裝置,包括:一電路,該電路被配置以使用空間頻率區塊編碼(SFBC)而傳輸使用一第一組的正交頻分多工(OFDM)子載波的第一資料符號;其中該等第一資料符號的每一對被SFBC編碼成要被傳輸於4個天線的其中兩個上,而不被傳輸於該4個天線的其它兩個上;以及該電路更被配置以從一接收裝置接收頻道狀態資訊(CSI);其中該CSI包括針對複數組的子載波之每一組的針對該複數組的子載波之每一組的一頻道品質資訊(CQI);其中該電路更被配置以針對該複數組的子載波的每一組而確定使用多重輸入多重輸出(MIMO)空間多工之傳輸的串流的一數量以及用於該複數組的子載波的每一組的一調變與編碼,以回應該組的該CQI;其中該複數組的至少其中兩個具有串流的一不同數量以及不同調變與編碼方案;其中該電路被配置以使用MIMO空間多工而傳輸使用該複數組的第二資料符號,該複數組具有串流之該所確定分別數量。 A transmission device comprising: a circuit configured to transmit a first data symbol using a first set of orthogonal frequency division multiplexing (OFDM) subcarriers using spatial frequency block coding (SFBC); Each pair of first data symbols is SFBC encoded to be transmitted on two of the four antennas and not transmitted on the other two of the four antennas; and the circuit is further configured to The receiving device receives channel state information (CSI); wherein the CSI includes a channel quality information (CQI) for each group of sub-carriers of the complex array for each of the sub-carriers of the complex array; wherein the circuit is further Configuring to determine, for each set of subcarriers of the complex array, a number of streams transmitted using multiple input multiple output (MIMO) spatial multiplexing and a tone for each group of subcarriers for the complex array Transforming and encoding to return the CQI of the group; wherein at least two of the complex arrays have a different number of streams and different modulation and coding schemes; wherein the circuitry is configured to transmit using MIMO spatial multiplexing The complex array Two data symbols, the plurality of groups having the number of streams determined respectively. 一種藉由一傳輸裝置而使用的方法,該方法包括:使用空間頻率區塊編碼(SFBC)而藉由該傳輸裝置傳輸使用一第一組的正交頻分多工(OFDM)子載波的第一資料符號;其中該等第一資料符號的每一對被SFBC編碼成要被傳輸於4個天線的其中兩個上,而不被傳輸於該4個天線的其它兩個上;以及藉由該傳輸裝置從一接收裝置接收頻道狀態資訊(CSI);其中該CSI包括針對複數組的子載波之每一組的針對該複數組的子載波之每一組的一頻道品質資訊(CQI);針對該複數組的子載波的每一組而確定使用多重輸入多重輸出(MIMO)空間多工之傳輸的串流的一數量以及用於該複數組的子載波的每一組的一調變與編碼,以回應該組的該CQI;其中該複 數組的至少其中兩個具有一不同數量的串流以及不同調變與編碼方案;以及藉由該傳輸裝置而使用MIMO空間多工來傳輸使用該複數組的第二資料符號,該複數組具有串流之該所確定分別數量。 A method for use by a transmission device, the method comprising: transmitting, by using the spatial frequency block coding (SFBC), a first set of orthogonal frequency division multiplexing (OFDM) subcarriers by the transmission device a data symbol; wherein each pair of the first data symbols is SFBC encoded to be transmitted on two of the four antennas, and not transmitted on the other two of the four antennas; The transmitting device receives channel state information (CSI) from a receiving device; wherein the CSI includes a channel quality information (CQI) for each of the subcarriers of the complex array for each of the complex array of subcarriers; Determining, for each set of subcarriers of the complex array, a number of streams transmitted using multiple input multiple output (MIMO) spatial multiplexing and a modulation of each group of subcarriers for the complex array Encoding to return the CQI of the group; where the complex At least two of the arrays have a different number of streams and different modulation and coding schemes; and MIMO spatial multiplexing is used by the transmission device to transmit a second data symbol using the complex array, the complex array having a string The number of streams is determined by the flow. 一種接收裝置,包括:一電路,該電路被配置以從一傳輸裝置接收第一資料符號與第二資料符號的至少其中之一,並從該至少一第一資料符號與第二資料符號復原資料;其中該等第一資料符號使用一第一組的正交頻分多工(OFDM)子載波而被傳輸,該第一組的正交頻分多工(OFDM)子載波使用空間頻率區塊編碼;其中該等第一資料符號的每一對被SFBC編碼成要被傳輸於4個天線的其中兩個上,而不被傳輸於該4個天線的其它兩個上;以及該電路被配置以將頻道狀態資訊(CSI)傳輸到該傳輸裝置;其中該CSI包括針對複數組的子載波之每一組的針對該複數組的子載波之每一組的一頻道品質資訊(CQI);其中該電路更被配置以針對該複數組的子載波的每一組而確定使用多重輸入多重輸出(MIMO)空間多工之傳輸的串流的一數量以及用於該複數組的子載波的每一組的一調變與編碼;其中該複數組的至少其中兩組具有一不同數量的串流以及不同調變與編碼方案;以及其中該等第二資料符號使用具有串流之該所確定分別數量之該複數組而被傳輸,該等串流使用多輸入多輸出(MIMO)空間多工。 A receiving device comprising: a circuit configured to receive at least one of a first data symbol and a second data symbol from a transmitting device and to recover data from the at least one first data symbol and the second data symbol Where the first data symbols are transmitted using a first set of orthogonal frequency division multiplexing (OFDM) subcarriers, the first set of orthogonal frequency division multiplexing (OFDM) subcarriers using spatial frequency blocks Encoding; wherein each pair of the first data symbols is SFBC encoded to be transmitted on two of the four antennas, not transmitted on the other two of the four antennas; and the circuit is configured Transmitting channel state information (CSI) to the transmitting device; wherein the CSI includes a channel quality information (CQI) for each of the subcarriers of the complex array for each of the plurality of subcarriers of the complex array; The circuit is further configured to determine, for each set of subcarriers of the complex array, a number of streams transmitted using multiple input multiple output (MIMO) spatial multiplexing and each of the subcarriers for the complex array Group modulation and coding Wherein at least two of the plurality of complex arrays have a different number of streams and different modulation and coding schemes; and wherein the second data symbols are transmitted using the determined number of the complex arrays having the stream These streams use multiple input multiple output (MIMO) spatial multiplexing.
TW101140622A 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system TWI519091B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62721004P 2004-11-12 2004-11-12
US11/254,358 US8130855B2 (en) 2004-11-12 2005-10-20 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system

Publications (2)

Publication Number Publication Date
TW201334454A TW201334454A (en) 2013-08-16
TWI519091B true TWI519091B (en) 2016-01-21

Family

ID=36407600

Family Applications (6)

Application Number Title Priority Date Filing Date
TW094138465A TWI308428B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW104140234A TW201620262A (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
TW095115965A TWI419494B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW097142424A TWI437839B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW101140622A TWI519091B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW103113496A TW201507384A (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system

Family Applications Before (4)

Application Number Title Priority Date Filing Date
TW094138465A TWI308428B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW104140234A TW201620262A (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
TW095115965A TWI419494B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TW097142424A TWI437839B (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW103113496A TW201507384A (en) 2004-11-12 2005-11-02 Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system

Country Status (14)

Country Link
US (4) US8130855B2 (en)
EP (2) EP1815630A4 (en)
JP (5) JP5238257B2 (en)
KR (6) KR101470269B1 (en)
CN (4) CN101120529B (en)
AU (2) AU2005306875B2 (en)
BR (1) BRPI0516688A (en)
CA (2) CA2587846C (en)
IL (2) IL183081A0 (en)
MX (1) MX2007005536A (en)
NO (1) NO340390B1 (en)
SG (1) SG170650A1 (en)
TW (6) TWI308428B (en)
WO (1) WO2006055241A2 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4433867B2 (en) 2004-04-28 2010-03-17 ソニー株式会社 Wireless communication system
CA2771267C (en) 2004-08-12 2016-03-15 Interdigital Technology Corporation Method and apparatus for implementing space frequency block coding
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
US8594207B2 (en) 2005-10-31 2013-11-26 Motorola Mobility Llc Method and apparatus for providing channel quality feedback in an orthogonal frequency division multiplexing communication system
CN100340077C (en) * 2005-11-29 2007-09-26 东南大学 Channel environment self-adaption transmission plan in multi-antenna wireless transmission system
US8155597B2 (en) * 2006-01-10 2012-04-10 Marvell World Trade Ltd. Transmission scheduling for receiver feedback
CA2640577C (en) * 2006-02-02 2017-03-21 Fujitsu Limited Wireless transmission method, and wireless transmitter and wireless receiver
US20070211813A1 (en) * 2006-03-10 2007-09-13 Shilpa Talwar MIMO precoding in the presence of co-channel interference
US7787554B1 (en) * 2006-05-02 2010-08-31 Marvell International Ltd. Beamforming to a subset of receive antennas in a wireless MIMO communication system
US8107543B2 (en) * 2006-06-27 2012-01-31 Amimon Ltd. High diversity time-space coding and decoding for MIMO systems
US7680205B2 (en) 2006-07-28 2010-03-16 Broadcom Corporation Method and system for transmitter beamforming for reduced complexity multiple input multiple output (MIMO) transceivers
JP5061189B2 (en) * 2006-08-07 2012-10-31 インターデイジタル テクノロジー コーポレーション Method, apparatus, and system for implementing multi-user virtual MIMO
CN101132381B (en) * 2006-08-22 2010-08-11 上海无线通信研究中心 Pilot frequency data transmission channel estimation method for MIMO-OFDM system
CN1917498B (en) * 2006-09-08 2010-05-12 清华大学 Phase compensation method of space-frequency group code in use for overcoming drift of interception position in OFDM
US20080080434A1 (en) * 2006-09-28 2008-04-03 Guy Wolf Method and apparatus of system scheduler
US7702029B2 (en) * 2006-10-02 2010-04-20 Freescale Semiconductor, Inc. MIMO precoding enabling spatial multiplexing, power allocation and adaptive modulation and coding
US7940690B2 (en) 2006-11-07 2011-05-10 Samsung Electronics Co., Ltd. Apparatus and method for determining transmission mode in wireless communication system
US20080139153A1 (en) * 2006-12-12 2008-06-12 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Antenna configuration selection using outdated channel state information
IL180537A0 (en) * 2007-01-04 2007-12-03 Runcom Technologies Ltd Mimo communication system and method
US8077796B2 (en) * 2007-03-05 2011-12-13 Intel Corporation Methods and arrangements for communicating in a multiple input multiple output system
US8831116B2 (en) 2007-03-20 2014-09-09 Motorola Mobility Llc Method and apparatus for providing channel quality and precoding metric feedback in an orthogonal frequency division multiplexing communication system
KR100840618B1 (en) * 2007-04-23 2008-06-24 한국전자통신연구원 Close loop transmission method and apparatus
US8019016B1 (en) 2007-04-27 2011-09-13 Marvell International Ltd. System and method of transmit beam selection
EP2165446A1 (en) * 2007-05-08 2010-03-24 InterDigital Technology Corporation Method and apparatus for reducing interference in space frequency block coding communication
KR101414565B1 (en) * 2007-06-19 2014-07-03 가부시키가이샤 엔티티 도코모 Transmission device and transmission method
KR101365565B1 (en) * 2007-08-08 2014-02-21 포항공과대학교 산학협력단 Space frequency block code signal processing system
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US8842606B2 (en) 2007-08-31 2014-09-23 Koninklijke Philips N.V. Enhanced multi-user transmission
WO2009110240A1 (en) * 2008-03-06 2009-09-11 パナソニック株式会社 Wireless receiver and feedback method
CN102067476B (en) * 2008-07-07 2013-06-05 上海贝尔股份有限公司 Transmission apparatus, reception apparatus, transmission method, and reception method
US8098750B2 (en) 2008-07-10 2012-01-17 Infineon Technologies Ag Method and device for transmitting a plurality of data symbols
KR101603338B1 (en) 2008-08-11 2016-03-15 엘지전자 주식회사 Method and apparatus of transmitting information in wireless communication system
KR101571566B1 (en) 2008-08-11 2015-11-25 엘지전자 주식회사 Method of transmitting control signal in wireless communication system
KR101597573B1 (en) * 2008-08-11 2016-02-25 엘지전자 주식회사 Method for uplink transmitting a control information
KR101646249B1 (en) * 2008-08-11 2016-08-16 엘지전자 주식회사 Method and apparatus of transmitting information in wireless communication system
KR20100019947A (en) 2008-08-11 2010-02-19 엘지전자 주식회사 Method of transmitting information in wireless communication system
US8274937B2 (en) * 2008-08-26 2012-09-25 Samsung Electronics Co., Ltd. Method and apparatus for beamforming in OFDM wireless system
US8442162B2 (en) 2008-11-12 2013-05-14 Nec Corporation Method for QR-MLD demodulation
US8908793B2 (en) * 2008-11-14 2014-12-09 Lg Electronics Inc. Method and apparatus for signal transmission in wireless communication system
WO2010056078A2 (en) 2008-11-14 2010-05-20 엘지전자주식회사 Method and apparatus for information transmission in wireless communication system
KR20100091876A (en) 2009-02-11 2010-08-19 엘지전자 주식회사 Ue behavior for multi-antenna transmission
CN101944978B (en) 2009-07-03 2013-01-16 中兴通讯股份有限公司 Data demodulation method and device based on downlink emission diversity mode of LTE (Long Term Evolution) system
TWI562554B (en) * 2009-12-30 2016-12-11 Sony Corp Communications system and device using beamforming
US9407409B2 (en) 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
US9048907B2 (en) 2010-03-10 2015-06-02 Alcatel Lucent Methods for reducing interference in communication systems
CN102792606B (en) * 2010-03-16 2015-07-22 瑞典爱立信有限公司 Switching method and device between open and closed loop multi-stream transmission
EP2586165B1 (en) * 2010-06-23 2014-01-01 Koninklijke Philips N.V. A method for operating a secondary station
JP5578617B2 (en) 2010-10-18 2014-08-27 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ Transmission method, transmission device, reception method, and reception device
CN103026768B (en) * 2011-07-29 2017-02-01 华为技术有限公司 Resource allocation method and base station in orthogonal frequency division multiplexing system
EP2774449A4 (en) * 2011-10-31 2015-06-17 Nec Corp Apparatus and method for csi calculation and reporting
KR101935782B1 (en) * 2012-03-29 2019-01-08 삼성전자주식회사 Method and apparatus for transmitting and receiving signals in multiple cellular network
WO2016058179A1 (en) 2014-10-17 2016-04-21 华为技术有限公司 Wireless communication method and system
KR102650862B1 (en) * 2015-10-19 2024-03-26 삼성전자 주식회사 How to transmit a signal, how to receive a signal, transmitter and receiver
US10199742B2 (en) * 2016-04-19 2019-02-05 Raytheon Company Passive frequency multiplexer
EP3713178B1 (en) 2016-05-12 2022-07-20 Panasonic Intellectual Property Corporation of America Apparatus and method for diversity transmission in a wireless communications system
TWI618374B (en) * 2017-04-21 2018-03-11 國立臺灣大學 Methods of beam-indexed spatial modulation
EP3844901A4 (en) * 2018-08-30 2022-09-07 Nokia Technologies Oy Frequency time domain channel hardening and overhead reduction
KR200494991Y1 (en) 2020-07-29 2022-02-10 주식회사 한국가스기술공사 Portable packing cutter
US11153000B1 (en) * 2020-11-19 2021-10-19 Qualcomm Incorporated Multi-factor beam selection for channel shaping
CN112511471B (en) * 2021-02-01 2021-05-07 中国人民解放军国防科技大学 Channel estimation method, device, equipment and medium based on space-frequency block code

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041831A (en) * 1983-08-17 1985-03-05 Japan Radio Co Ltd Diversity system
CA2183140C (en) 1996-08-12 2001-11-20 Grant Mcgibney Ofdm timing and frequency recovery system
EP1372271A3 (en) 1997-09-16 2005-01-12 AT&T Wireless Services, Inc. Transmitter diversity technique for wireless communications
JPH11308130A (en) * 1998-04-17 1999-11-05 Mitsubishi Electric Corp Interference wave suppressing device
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
US6473467B1 (en) * 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US7020072B1 (en) * 2000-05-09 2006-03-28 Lucent Technologies, Inc. Orthogonal frequency division multiplexing transmit diversity system for frequency-selective fading channels
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
JP2002101062A (en) * 2000-09-26 2002-04-05 Yrp Kokino Idotai Tsushin Kenkyusho:Kk Multicarrier communication system and radio receiver
US6961388B2 (en) * 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
EP1241824A1 (en) * 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Multiplexing method in a multicarrier transmit diversity system
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
EP1282245A1 (en) 2001-07-30 2003-02-05 Telefonaktiebolaget L M Ericsson (Publ) Channel estimation in a multi carrier transmit diversity system
US7961589B2 (en) 2001-09-28 2011-06-14 Intel Corporation System and related methods for introducing sub-carrier diversity in a wideband communication system
US6956907B2 (en) * 2001-10-15 2005-10-18 Qualcomm, Incorporated Method and apparatus for determining power allocation in a MIMO communication system
US20030125040A1 (en) * 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
CA2434123C (en) * 2001-11-10 2007-06-12 Samsung Electronics Co., Ltd. Stfbc coding/decoding apparatus and method in an ofdm mobile communication system
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
US7154936B2 (en) * 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
JP2003264527A (en) 2002-03-12 2003-09-19 Mega Chips Corp Device and method for detecting ofdm frequency error, and ofdm receiver
TWI508493B (en) 2002-05-10 2015-11-11 Interdigital Tech Corp A radio network controller and a node b
US7327800B2 (en) 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
GB0212165D0 (en) * 2002-05-27 2002-07-03 Nokia Corp A wireless system
EP1367760B1 (en) 2002-05-27 2009-11-18 Nokia Corporation Transmit/receive diversity wireless communication
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7020446B2 (en) 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
US6940917B2 (en) * 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US20040121730A1 (en) * 2002-10-16 2004-06-24 Tamer Kadous Transmission scheme for multi-carrier MIMO systems
US6873606B2 (en) 2002-10-16 2005-03-29 Qualcomm, Incorporated Rate adaptive transmission scheme for MIMO systems
JP4602641B2 (en) 2002-10-18 2010-12-22 株式会社エヌ・ティ・ティ・ドコモ Signal transmission system, signal transmission method and transmitter
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
KR100511559B1 (en) 2002-11-28 2005-08-31 한국전자통신연구원 Transmitting and Receiving Method having Distortion Reduction Caused by a Time-varying Channel in an Orthogonal Frequency Division Multiplex System
WO2004073275A1 (en) * 2003-02-13 2004-08-26 Docomo Communications Laboratories Europe Gmbh Space-time-frequency diversity for multi-carrier systems
AU2003269742A1 (en) 2003-03-28 2004-10-18 Dmitry V. Akhmetov System and method for two channel frequency offset estimation of ofdm signals
US7327795B2 (en) * 2003-03-31 2008-02-05 Vecima Networks Inc. System and method for wireless communication systems
KR100591890B1 (en) * 2003-04-01 2006-06-20 한국전자통신연구원 Method for adaptive transmission and receiving in a wireless communication system with multiple antennas
KR101188396B1 (en) * 2003-04-23 2012-10-08 콸콤 인코포레이티드 Methods and apparatus of enhancing performance in wireless communication systems
KR100713403B1 (en) * 2003-09-30 2007-05-04 삼성전자주식회사 Apparatus and method for controlling transmission scheme according to channel state in a communication system
KR100739679B1 (en) 2004-01-05 2007-07-13 삼성전자주식회사 Optical Recording medium and defect management apparatus
US7408909B2 (en) * 2004-04-28 2008-08-05 Intel Corporation Method and apparatus to enable multiple receivers
KR100754795B1 (en) * 2004-06-18 2007-09-03 삼성전자주식회사 Apparatus and method for encoding/decoding space frequency block code for orthogonal frequency division multiplexing system
CA2771267C (en) 2004-08-12 2016-03-15 Interdigital Technology Corporation Method and apparatus for implementing space frequency block coding
US7978778B2 (en) 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7545875B2 (en) * 2004-11-03 2009-06-09 Nokia Corporation System and method for space-time-frequency coding in a multi-antenna transmission system
US7848291B2 (en) 2004-11-05 2010-12-07 Interdigital Technology Corporation Wireless metropolitan area network architecture for managing network resources and mobility
US8130855B2 (en) * 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system

Also Published As

Publication number Publication date
US8130855B2 (en) 2012-03-06
EP1815630A4 (en) 2007-11-28
KR101492360B1 (en) 2015-02-11
JP6275754B2 (en) 2018-02-07
AU2009208166A1 (en) 2009-09-10
JP2015065683A (en) 2015-04-09
KR101313422B1 (en) 2013-10-01
AU2005306875A1 (en) 2006-05-26
CN101120529A (en) 2008-02-06
EP2101435A2 (en) 2009-09-16
CA2587846A1 (en) 2006-05-26
EP2101435B1 (en) 2020-05-27
US20150381319A1 (en) 2015-12-31
MX2007005536A (en) 2007-07-17
US20060133530A1 (en) 2006-06-22
JP2014099901A (en) 2014-05-29
TW200711349A (en) 2007-03-16
JP6491857B2 (en) 2019-03-27
US20120140845A1 (en) 2012-06-07
CA2836722A1 (en) 2006-05-26
IL183081A0 (en) 2007-09-20
JP2013042508A (en) 2013-02-28
JP5238257B2 (en) 2013-07-17
KR101315551B1 (en) 2013-10-08
EP1815630A2 (en) 2007-08-08
KR20130081311A (en) 2013-07-16
CN105071901A (en) 2015-11-18
BRPI0516688A (en) 2008-09-16
KR20140119166A (en) 2014-10-08
US10135574B2 (en) 2018-11-20
TW201334454A (en) 2013-08-16
JP5632432B2 (en) 2014-11-26
TW200939665A (en) 2009-09-16
TW201507384A (en) 2015-02-16
TW200627837A (en) 2006-08-01
NO20072994L (en) 2007-08-07
US20170195084A1 (en) 2017-07-06
CA2587846C (en) 2013-12-17
KR101577556B1 (en) 2015-12-15
AU2009208166B2 (en) 2012-08-02
AU2005306875B2 (en) 2009-05-14
IL224691A (en) 2015-01-29
JP5886882B2 (en) 2016-03-16
EP2101435A3 (en) 2012-08-15
TWI437839B (en) 2014-05-11
WO2006055241A3 (en) 2007-02-22
JP2016106470A (en) 2016-06-16
KR20150143883A (en) 2015-12-23
WO2006055241A2 (en) 2006-05-26
KR20120023727A (en) 2012-03-13
SG170650A1 (en) 2011-05-30
CN101120529B (en) 2015-09-02
US9544093B2 (en) 2017-01-10
KR20070095888A (en) 2007-10-01
TWI419494B (en) 2013-12-11
KR20140001252A (en) 2014-01-06
KR101470269B1 (en) 2014-12-05
JP2008520167A (en) 2008-06-12
CN105071847A (en) 2015-11-18
TW201620262A (en) 2016-06-01
CN103731187A (en) 2014-04-16
US9160492B2 (en) 2015-10-13
TWI308428B (en) 2009-04-01
NO340390B1 (en) 2017-04-10

Similar Documents

Publication Publication Date Title
TWI519091B (en) Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a mimo-ofdm system
TWI543572B (en) Method and apparatus for implementing space frequency block coding in an orthogonal frequency division multiplexing wireless communication system
AU2012241132B2 (en) Method and apparatus for combining space-frequency block coding, spatial multi-plexing and beamforming in a MIMO-OFDM system