TWI517220B - Semiconductor device formation - Google Patents

Semiconductor device formation Download PDF

Info

Publication number
TWI517220B
TWI517220B TW101123568A TW101123568A TWI517220B TW I517220 B TWI517220 B TW I517220B TW 101123568 A TW101123568 A TW 101123568A TW 101123568 A TW101123568 A TW 101123568A TW I517220 B TWI517220 B TW I517220B
Authority
TW
Taiwan
Prior art keywords
shallow trench
trench isolation
sidewall
side wall
implanted
Prior art date
Application number
TW101123568A
Other languages
Chinese (zh)
Other versions
TW201401342A (en
Inventor
郭仲儀
鄭俊民
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW101123568A priority Critical patent/TWI517220B/en
Publication of TW201401342A publication Critical patent/TW201401342A/en
Application granted granted Critical
Publication of TWI517220B publication Critical patent/TWI517220B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

半導體裝置之結構 Structure of semiconductor device

本發明之實施例係關於半導體裝置,更具體的是與製造非揮發半導體裝置相關。 Embodiments of the invention relate to semiconductor devices, and more particularly to the fabrication of non-volatile semiconductor devices.

傳統增加浮動閘極技術之深寬比的方式常會導致孔洞的產生或是在間隙填充製程中發生較大的縫隙。如此或許會減少浮動閘極技術的良率及/或傷害浮動閘極裝置的性能。目前解決這些問題的技術包括於形成浮動閘極裝置時在退火處理時重新加入氫氣、以兩階段方式沈積多晶矽並在形成浮動閘極蝕結合蝕刻製程,以及使用六氧化二矽混合氣體於化學氣相沈積製程中。這些製程不但十分複雜而且沒有效率,且通常無法檢絕上述問題而產生沒有孔洞與縫隙的浮動閘極。因此,需要提種一種簡易的製程以生成沒有孔洞與縫隙的浮動閘極。 The traditional way of increasing the aspect ratio of the floating gate technology often leads to the creation of holes or large gaps in the gap filling process. This may reduce the yield of the floating gate technology and/or the performance of the floating gate device. At present, the techniques for solving these problems include re-adding hydrogen during annealing treatment, depositing polycrystalline germanium in a two-stage manner, forming a floating gate etching combined etching process, and using a hexafluoride mixed gas for chemical gas in forming a floating gate device. In the phase deposition process. These processes are not only complex but inefficient, and often fail to detect the above problems and create floating gates without holes and gaps. Therefore, it is necessary to develop a simple process to generate floating gates without holes and gaps.

此處所揭露的係與大致沒有縫隙及孔洞的浮動閘極半導體結構以及製造此種大致沒有縫隙及孔洞的浮動閘極半導體結構之方法相關。 The disclosure herein relates to a floating gate semiconductor structure having substantially no gaps and holes and a method of fabricating such a floating gate semiconductor structure having substantially no gaps and holes.

此方法包括形成一溝渠於一半導體基板中。該溝渠由一溝渠基底部分及鄰接淺溝渠隔離結構的側壁定義。其中該側壁是逐步傾斜的,且其中該側壁上半部間的距離係大於該側壁下半部間的距離。 The method includes forming a trench in a semiconductor substrate. The trench is defined by a trench base portion and a sidewall adjacent to the shallow trench isolation structure. Wherein the side wall is gradually inclined, and wherein the distance between the upper half of the side wall is greater than the distance between the lower half of the side wall.

根據本發明之一實施例,以一第一角度佈植雜質而形成佈 植區域於該鄰近淺溝渠隔離結構的一第一側壁。可以對該淺溝渠隔離結構、該溝渠及該雜質進行退火。除去該佈植區域的一部分或全部。形成隧道氧化層於該溝渠基底部分及該淺溝渠隔離結構的該側壁之上。形成一導電薄膜於該隧道氧化層之上。 According to an embodiment of the invention, the cloth is formed at a first angle to form a cloth The planting area is adjacent to a first side wall of the shallow trench isolation structure. The shallow trench isolation structure, the trench, and the impurity may be annealed. Part or all of the planting area is removed. Forming a tunnel oxide layer over the trench base portion and the sidewall of the shallow trench isolation structure. A conductive film is formed over the tunnel oxide layer.

可以使用圖案化製程圖案化該多晶矽薄膜而形成一浮動閘極。 The polysilicon film can be patterned using a patterning process to form a floating gate.

根據本發明之另一實施例,該第一傾斜角度是相對於該淺溝渠隔離結構的該側壁的0~30°範圍。 According to another embodiment of the invention, the first angle of inclination is in the range of 0 to 30 degrees relative to the side wall of the shallow trench isolation structure.

根據本發明之另一實施例,該第一傾斜角度是相對於該淺溝渠隔離結構的該側壁的10~70°範圍,旋轉該半導體結構;以及以一第二角度佈植雜質而形成佈植區域於該鄰近淺溝渠隔離結構的一第二側壁。根據設計的考量,該第一傾斜角度與該第二傾斜角度大致相同或是不同。 According to another embodiment of the present invention, the first tilt angle is a range of 10 to 70 degrees with respect to the sidewall of the shallow trench isolation structure, rotating the semiconductor structure; and implanting impurities at a second angle to form a implant The region is adjacent to a second sidewall of the shallow trench isolation structure. According to design considerations, the first tilt angle is substantially the same as or different from the second tilt angle.

根據本發明之另一實施例,該佈植及該隧道清潔導致鋸齒狀結構於該側壁的上半部(或是靠近佈植區域的側壁)產生。 According to another embodiment of the invention, the implant and the tunnel cleaning result in a serrated structure being created in the upper half of the sidewall (or the sidewall adjacent the implanted region).

根據本發明之另一實施例,於該隧道清潔製程之後仍會有佈植區域殘留。 According to another embodiment of the present invention, there is still a residue in the planting area after the tunnel cleaning process.

根據本發明之另一實施例,所植入的該雜質包括氮氣體(N2)、鍺、碳和氟。 According to another embodiment of the invention, the impurities implanted include nitrogen gas (N 2 ), helium, carbon, and fluorine.

本發明之又一目的為提供一種浮動閘極半導體結構,包含:一淺溝渠隔離結構形成於一半導體基板中,因此定義出該半導體結構的主動區域溝渠。該溝渠包含由一溝渠基底部分及鄰接淺溝渠隔離結構的側壁定義之一開口。其中該側壁是逐步傾斜的,且其中該側壁上半部間的距離係大於該側壁下半部間的距離。 It is still another object of the present invention to provide a floating gate semiconductor structure comprising: a shallow trench isolation structure formed in a semiconductor substrate, thereby defining an active region trench of the semiconductor structure. The trench includes an opening defined by a trench base portion and a sidewall adjacent the shallow trench isolation structure. Wherein the side wall is gradually inclined, and wherein the distance between the upper half of the side wall is greater than the distance between the lower half of the side wall.

根據本發明之一實施例,鋸齒狀結構定義於該側壁的上半部。 According to an embodiment of the invention, the serrated structure is defined in the upper half of the side wall.

根據本發明之另一實施例,殘留佈植區域可以定義於鄰 近該淺溝渠隔離結構的該側壁的該上半部。 According to another embodiment of the present invention, the residual implanted area may be defined adjacent to Near the upper half of the side wall of the shallow trench isolation structure.

請參閱第1A及1B圖,其分別顯示濕式清潔氧化物的損失與氟植入劑量的關係圖100以及濕式清潔氧化物的損失與硼植入劑量的關係圖150。圖表100顯示在有退火102及沒有退火104的情況下氧化物的損失與氟植入劑量的關係。而圖表150顯示氧化物的損失與硼植入劑量的關係。當植入劑量超過1E13cm-2時熱氧化物的蝕刻速率會隨著氟或硼的植入劑量之增加而增加。因此,此退火製程可以降低蝕刻速率,且劑量與退火製程可以用來調整在高密度電漿(HDP)淺溝渠隔離區域的適當損失數量。 Please refer to Figures 1A and 1B, which show the relationship between the loss of wet cleaning oxide and the fluorine implant dose, respectively, and the relationship between the loss of wet cleaning oxide and the boron implant dose. Graph 100 shows the relationship between oxide loss and fluorine implant dose in the presence of annealing 102 and without annealing 104. Graph 150 shows the relationship between oxide loss and boron implant dose. When the implant dose exceeds 1E13 cm -2 , the etch rate of the thermal oxide increases as the implant dose of fluorine or boron increases. Therefore, this annealing process can reduce the etch rate, and the dose and anneal process can be used to adjust the appropriate amount of loss in the high-density plasma (HDP) shallow trench isolation region.

第2A~2D圖顯示沒有使用本發明之佈植製程的標準浮動閘極裝置200、201與使用本發明之氟佈植製程的浮動閘極裝置250、251的比較圖。第2B和2D圖顯示區域201和251的放大圖。舉例而言,此氟的佈植製程是使用能量約15keV,劑量1.5E15 cm-2,佈植角度55°,之後再旋轉90°的兩階段旋轉製程進行。此浮動閘極裝置250、251大致是沒有縫隙及孔洞的,而標準浮動閘極裝置200、201則是含有孔洞202。 Figures 2A-2D show a comparison of standard floating gate devices 200, 201 without the implantation process of the present invention with floating gate devices 250, 251 using the fluorine implant process of the present invention. The 2B and 2D views show enlarged views of the areas 201 and 251. For example, the fluorine implantation process is carried out using a two-stage rotary process with an energy of about 15 keV, a dose of 1.5E15 cm -2 , a planting angle of 55°, and then a 90° rotation. The floating gate devices 250, 251 are substantially free of gaps and holes, while the standard floating gate devices 200, 201 include holes 202.

此氟佈植製程係使用反或閘(NOR)快閃記憶體之55奈米節點技術而產生大致沒有縫隙及孔洞的浮動閘極結構。 This fluorine implant process uses a 55 nm node technology of the anti-gate (NOR) flash memory to create a floating gate structure with substantially no gaps and holes.

第3圖為形成此大致沒有縫隙及孔洞的浮動閘極裝置的製程300流程圖。在步驟302,形成淺溝渠隔離(STI)結構於一半導體基板中,定義出此半導體裝置的主動區域溝渠。 Figure 3 is a flow diagram of a process 300 for forming a floating gate device having substantially no gaps and holes. In step 302, a shallow trench isolation (STI) structure is formed in a semiconductor substrate to define an active region trench of the semiconductor device.

在步驟304,將雜質植入此淺溝渠隔離(STI)結構的側壁。這些雜質係利用許多不同的傾斜角度方式將離子斜向 的植入此淺溝渠隔離(STI)結構的側壁。 At step 304, impurities are implanted into the sidewalls of the shallow trench isolation (STI) structure. These impurities use a number of different tilt angles to tilt the ions The sidewalls of this shallow trench isolation (STI) structure are implanted.

舉例而言,在某些實施例中,這些雜質係利用第一角度植入此淺溝渠隔離(STI)結構的第一側壁且利用第二角度植入此淺溝渠隔離(STI)結構的第二側壁,其是鄰近第一側壁。第一角度和第二角度最好是大致相同的,但是根據設計考量也可以是不同的。此第一角度和第二角度的佈植可以是大致同時進行,但是也可以是利用兩階段或多階段佈植方式進行。在兩階段或多階段佈植方式的情形中,此裝置可以在佈植階段中進行旋轉使得可以使用相同的離子槍來進行對不同側壁區域的佈植。此裝置可以根據設計的考量旋轉一次、兩次或多次。在其他的實施例中,雜質係利用大致為0°的(或是垂直)植入。以下將會搭配第7圖對這些不同的佈植方式作更詳細地描述。 For example, in some embodiments, the impurities are implanted into the first sidewall of the shallow trench isolation (STI) structure using a first angle and the second shallow trench isolation (STI) structure is implanted using the second angle a sidewall adjacent the first sidewall. The first angle and the second angle are preferably substantially the same, but may be different depending on design considerations. The implantation of the first angle and the second angle may be performed substantially simultaneously, but may also be performed using a two-stage or multi-stage planting method. In the case of a two-stage or multi-stage planting mode, the device can be rotated during the implantation phase so that the same ion gun can be used to implant different sidewall regions. This device can be rotated one, two or more times depending on design considerations. In other embodiments, the impurities are implanted using a substantially 0° (or vertical). These different arrangements will be described in more detail below in conjunction with Figure 7.

這些(在步驟304)植入的雜質可以包括但是不侷限於氮氣體(N2)、鍺、碳和氟。在一實施例中,第一傾斜角度是55°。在某些實施例中,第一傾斜角度是在10~70°的範圍。 These (in step 304) implanted impurities may include, but are not limited to, nitrogen gas (N 2 ), helium, carbon, and fluorine. In an embodiment, the first angle of inclination is 55°. In some embodiments, the first angle of inclination is in the range of 10 to 70 degrees.

之後,在步驟304中,某些實施例可以根據植入雜質的入射角度而採用不同的植入能量與劑量範圍。舉例而言,雜質係利用大致為0°的(或是垂直)植入的實施例中,植入能量範圍可以是在1keV到20keV之間而劑量範圍則是在1E12cm-2到1E14cm-2。大致為0°的(或是垂直)植入角度可以包括自0~30°的傾斜角度。在其他傾斜角度是在10~70°的範圍之實施例中,植入能量範圍可以是在1keV到100keV之間而劑量範圍則是在1E12cm-2到1E16cm-2Thereafter, in step 304, certain embodiments may employ different implant energies and dose ranges depending on the angle of incidence of the implanted impurities. For example, in embodiments where the impurity is implanted using a substantially 0 (or vertical) implant, the implant energy range can be between 1 keV and 20 keV and the dose range is between 1E12 cm" 2 and 1E14 cm" 2 . Approximately 0° (or vertical) implant angle may include an angle of inclination from 0 to 30°. In another embodiment, the inclination angle is in the range of 10 ~ 70 °, the implant energy may be between the range 1keV to 100keV and a dose is in the range of 1E12cm -2 to 1E16cm -2.

在步驟306,此淺溝渠隔離(STI)結構及溝渠進行退火。此淺溝渠隔離(STI)結構的退火包括將一記憶胞臨界電壓佈植區域中的雜質活化。一般而言,此退火步驟可以修復半導體結構在佈植時受到損害的區域。 At step 306, the shallow trench isolation (STI) structure and the trench are annealed. Annealing of the shallow trench isolation (STI) structure includes activating impurities in a memory cell critical voltage implant region. In general, this annealing step can repair areas of the semiconductor structure that are damaged during implantation.

在某些實施例中,步驟306的對淺溝渠隔離(STI)結構及溝渠進行退火是在將雜質植入此淺溝渠隔離(STI)結構的側壁之前(步驟304)。而在其他的實施例中,步驟306的對淺溝渠隔離(STI)結構及溝渠進行退火則是在將雜質植入此淺溝渠隔離(STI)結構的側壁之後(步驟304)。 In some embodiments, the shallow trench isolation (STI) structure and trenches of step 306 are annealed prior to implanting impurities into the sidewalls of the shallow trench isolation (STI) structure (step 304). In other embodiments, the shallow trench isolation (STI) structure and trenches of step 306 are annealed after implanting impurities into the sidewalls of the shallow trench isolation (STI) structure (step 304).

在步驟308,於淺溝渠隔離(STI)結構及溝渠區域進行一隧道清潔步驟。此隧道清潔步驟可以包括在具有雜質植入此淺溝渠隔離(STI)結構的側壁區域中使其的蝕刻速率增加。在步驟310,形成一隧道氧化層於淺溝渠隔離(STI)結構的側壁及溝渠之上。在步驟312,形成一浮動閘極。步驟312可以包括形成一多晶矽薄膜於隧道氧化層之上然後使用圖案化製程將此多晶矽薄膜進行圖案化成浮動閘極。 At step 308, a tunnel cleaning step is performed in the shallow trench isolation (STI) structure and the trench region. This tunnel cleaning step can include an increase in the etch rate of the sidewall regions having impurities implanted into the shallow trench isolation (STI) structure. At step 310, a tunnel oxide layer is formed over the sidewalls and trenches of the shallow trench isolation (STI) structure. At step 312, a floating gate is formed. Step 312 can include forming a polysilicon film over the tunnel oxide layer and then patterning the polysilicon film into a floating gate using a patterning process.

第4A~4C、5A~5C、6A~6C和7A~7C圖是顯示此處所揭露浮動閘極裝置製程步驟中不同階段的剖面示意圖。第4A~4C、5A~5C、6A~6C和7A~7C圖也顯示此浮動閘極結構中不同深寬比的示意圖。舉例而言,第4A、5A、6A和7A圖中的區域412、422、432和452分別顯示其深寬比約為1,第4B、5B、6B和7B圖中的區域414、424、434和454分別顯示其深寬比約為1.5,而第4C、5C、6C和7C圖中的區域416、426、436和456分別顯示其深寬比約為2。 4A~4C, 5A~5C, 6A~6C and 7A~7C are schematic cross-sectional views showing different stages in the process steps of the floating gate device disclosed herein. Figures 4A~4C, 5A~5C, 6A~6C, and 7A~7C also show schematic diagrams of different aspect ratios in this floating gate structure. For example, the regions 412, 422, 432, and 452 in the 4A, 5A, 6A, and 7A diagrams respectively show an aspect ratio of about 1, and the regions 414, 424, 434 in the 4B, 5B, 6B, and 7B diagrams. And 454 respectively show an aspect ratio of about 1.5, while the regions 416, 426, 436, and 456 in the 4C, 5C, 6C, and 7C diagrams respectively show an aspect ratio of about 2.

請首先參閱第4A~4C圖,提供一基板402然後使用傳統的微影及蝕刻技術進行蝕刻,以產生具有輪廓的基板402。在一實施例中,此基板402是矽。一氧化層404形成於此矽基板402之上。對此裝置進行化學機械研磨,產生淺溝渠隔離(STI)結構404及溝渠406。因此,淺溝渠隔離(STI)結構404形成於此半導體基板402之上,定義此裝置的主動區域406(例如第3圖中的步驟302)。 Referring first to Figures 4A-4C, a substrate 402 is provided and then etched using conventional lithography and etching techniques to produce a patterned substrate 402. In an embodiment, the substrate 402 is germanium. An oxide layer 404 is formed over the germanium substrate 402. The device is chemically mechanically ground to produce a shallow trench isolation (STI) structure 404 and a trench 406. Thus, a shallow trench isolation (STI) structure 404 is formed over the semiconductor substrate 402, defining an active region 406 of the device (eg, step 302 in FIG. 3).

第4A~4C圖也顯示將雜質植入此淺溝渠隔離(STI)結構404的側壁403、405(例如第3圖中的步驟304)。在一實施例中,雜質以相對於此淺溝渠隔離(STI)結構404的第一側壁403之第一傾斜角度401的方式植入以在第一側壁411形成佈植區域。也佈植也可以包括以相對於此淺溝渠隔離(STI)結構404的第二側壁405之第二傾斜角度407的方式植入以在第二側壁410形成佈植區域。這些佈植進入淺溝渠隔離(STI)結構404之第一和第二側壁403、405中的雜質構成佈植區域409且可以是同時或先後植入。第一和第二佈植角度401和407可以是大致相同或不同的。 Figures 4A-4C also show the implantation of impurities into the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 (e.g., step 304 in Figure 3). In one embodiment, the impurities are implanted in a manner relative to the first slope angle 401 of the first sidewall 403 of the shallow trench isolation (STI) structure 404 to form a implant region on the first sidewall 411. Also implanting may also include implanting in a second oblique angle 407 relative to the second sidewall 405 of the shallow trench isolation (STI) structure 404 to form a implanted region on the second sidewall 410. These implants entering the first and second sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 constitute the implant region 409 and may be implanted simultaneously or sequentially. The first and second implant angles 401 and 407 can be substantially the same or different.

此外,佈植進入淺溝渠隔離(STI)結構404之第一和第二側壁403、405中的步驟可以是利用兩階段或多階段(未示)佈植方式進行。舉例而言,可以利用第一角度401植入此淺溝渠隔離(STI)結構的第一側壁403,然後將此裝置旋轉180°,且之後再利用相同的離子槍以植入此淺溝渠隔離(STI)結構的第二側壁405(於旋轉180°之後大致與相對於第一側壁403的第一角度401相同的角度植入)。或是在其他的實施例中,可以利用第一角度401植入此淺溝渠隔離(STI)結構的第一側壁403,然後將此裝置旋轉90°,且之後再將雜質植入此淺溝渠隔離(STI)結構的另一側壁(於旋轉180°之後大致與相對於第一側壁403的第一角度401相同的角度植入),然後將此裝置再次旋轉90°,且之後再使用相同的離子槍將雜質植入此淺溝渠隔離(STI)結構的另一側壁(於旋轉180°之後大致與相對於第一側壁403的第一角度401相同的角度植入,)等等。因此,植入側壁的佈植次數以及旋轉次數均是根據佈植區域409的尺寸、形狀和深度而具有彈性的。 Additionally, the step of implanting into the first and second sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 can be performed using a two-stage or multi-stage (not shown) implant. For example, the first sidewall 403 of the shallow trench isolation (STI) structure can be implanted using the first angle 401, and then the device is rotated 180°, and then the same ion gun is used to implant the shallow trench isolation ( The second sidewall 405 of the STI) structure (substantially implanted at the same angle relative to the first angle 401 of the first sidewall 403 after being rotated 180°). Or in other embodiments, the first sidewall 403 of the shallow trench isolation (STI) structure can be implanted using the first angle 401, and then the device can be rotated by 90°, and then impurities are implanted into the shallow trench isolation. The other side wall of the (STI) structure (substantially implanted at the same angle relative to the first angle 401 of the first side wall 403 after being rotated 180°), then the device is rotated 90° again, and then the same ions are used The gun implants impurities into the other side wall of the shallow trench isolation (STI) structure (substantially implanted at the same angle relative to the first angle 401 of the first sidewall 403 after being rotated 180°), and the like. Therefore, the number of implants and the number of rotations of the implanted side walls are both elastic according to the size, shape and depth of the implanted region 409.

在某些實施例中,這些植入的雜質可以包括但是不侷限 於氮氣體(N2)、鍺、碳和氟。此外,在某實施例中,此離子佈植是以傾斜角度(例如401和407)植入的方式進行。如之前在第3圖中所描述的,在一實施例中,傾斜角度可以是55°。在某些實施例中,傾斜角度是在10~70°的範圍。此外,某些實施例可以根據植入雜質的入射角度而採用不同的植入能量與劑量範圍,其植入能量範圍可以是在1keV到100keV之間,而劑量範圍則是在1E12cm-2到1E16cm-2。此劑量可以根據高密度電漿氧化物淺溝渠隔離的損失決定。 In certain embodiments, these implanted impurities may include, but are not limited to, nitrogen gas (N 2 ), helium, carbon, and fluorine. Moreover, in an embodiment, the ion implantation is performed in an implanted manner at an oblique angle (e.g., 401 and 407). As previously described in FIG. 3, in an embodiment, the tilt angle may be 55°. In some embodiments, the angle of inclination is in the range of 10 to 70 degrees. In addition, some embodiments may employ different implant energies and dose ranges depending on the angle of incidence of the implanted impurities, the implant energy range being between 1 keV and 100 keV, and the dose range being 1E12 cm -2 to 1E16 cm. -2 . This dose can be determined based on the loss of high density plasma oxide shallow trench isolation.

第5A~5C圖則顯示將雜質植入此淺溝渠隔離(STI)結構404的側壁403、405(例如第3圖中的步驟304)的另一實施例。在一實施例中,雜質以相對於此淺溝渠隔離(STI)結構404的第一側壁403大致相對於淺溝渠隔離(STI)結構404之第一和第二側壁403、405為0°的角度421(或是垂直)植入。在一實施例中,雜質以相對於此淺溝渠隔離(STI)結構404的第一側壁403大致為0°的傾斜角度421的方式植入以在第一側壁411形成佈植區域。在一實施例中,雜質以相對於此淺溝渠隔離(STI)結構404的第二側壁405大致為0°的傾斜角度421的方式植入以在第二側壁410形成佈植區域。這些雜質也可以大致為0°的傾斜角度421的方式植入矽基板402的表面,以在基板408的表面形成佈植區域。這些佈植進入淺溝渠隔離(STI)結構404之第一和第二側壁403、405中的雜質構成佈植區域409且可以是同時或先後植入。 The 5A-5C diagram shows another embodiment of implanting impurities into the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 (e.g., step 304 in FIG. 3). In one embodiment, the impurity is at an angle of 0° relative to the first sidewall 403 of the shallow trench isolation (STI) structure 404, substantially opposite the first and second sidewalls 403, 405 of the shallow trench isolation (STI) structure 404. 421 (or vertical) implant. In one embodiment, the impurities are implanted in a manner that is substantially at an angle of inclination 421 of 0° with respect to the first sidewall 403 of the shallow trench isolation (STI) structure 404 to form a implanted region on the first sidewall 411. In one embodiment, the impurities are implanted in a manner that is at an oblique angle 421 of substantially 0° relative to the second sidewall 405 of the shallow trench isolation (STI) structure 404 to form a implanted region in the second sidewall 410. These impurities may also be implanted on the surface of the ruthenium substrate 402 at a tilt angle 421 of approximately 0° to form a implanted region on the surface of the substrate 408. These implants entering the first and second sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 constitute the implant region 409 and may be implanted simultaneously or sequentially.

同樣地,在某些實施例中,這些植入的雜質可以包括但是不侷限於氮氣體(N2)、鍺、碳和氟。如之前在第3圖中所描述的,在一實施例中,傾斜角度可以是0°。在某些實施例中,傾斜角度是在0~30°的範圍。此外,某些實施例 可以根據植入雜質的入射角度而採用不同的植入能量與劑量範圍,其植入能量範圍可以是在1keV到20keV之間,而劑量範圍則是在1E12cm-2到1E14cm-2。此劑量可以根據高密度電漿氧化物淺溝渠隔離的損失決定。 Likewise, in certain embodiments, these implanted impurities can include, but are not limited to, nitrogen gas (N 2 ), helium, carbon, and fluorine. As previously described in FIG. 3, in an embodiment, the tilt angle may be 0°. In some embodiments, the angle of inclination is in the range of 0 to 30 degrees. In addition, some embodiments may employ different implant energies and dose ranges depending on the angle of incidence of the implanted impurities, the implant energy range being between 1 keV and 20 keV, and the dose range being 1E12 cm -2 to 1E14 cm. -2 . This dose can be determined based on the loss of high density plasma oxide shallow trench isolation.

第6A~6C圖顯示上述各實施例之此裝置於隧道清潔與隧道氧化層形成之後的輪廓。於隧道清潔之後,佈植區域(第4A~4C和5A~5C圖中的409)相對於未被佈植的區域具有較高的蝕刻速率。換句話說,佈植區域相對於沒有任何雜質佈植的區域會被更快的蝕刻。第6A~6C圖顯示蝕刻完成後的輪廓。此淺溝渠隔離(STI)結構404側壁403、405的上方部分442、444、446相較於側壁403、405的下方部分443、445、447會有較多的高密度電漿(HDCVD)氧化物損失,導致此淺溝渠隔離(STI)溝渠406之一個上寬下窄的V形輪廓。換句話說,側壁405是逐漸收縮的,導致一個上寬下窄V形輪廓的主動區域溝渠。因此,淺溝渠隔離(STI)結構404側壁403、405的上方部分442、444、446之間的距離D1會大於側壁403、405的下方部分443、445、447之間的距離D2。 Figures 6A-6C show the outline of the apparatus of the above embodiments after tunnel cleaning and tunnel oxide formation. After the tunnel is cleaned, the implanted areas (409 in Figures 4A-4C and 5A-5C) have a higher etch rate relative to the unimplanted areas. In other words, the implanted area will be etched faster than the area without any impurity implants. Figures 6A-6C show the outline after the etching is completed. The upper portions 442, 444, 446 of the shallow trench isolation (STI) structure 404 sidewalls 403, 405 have more high density plasma (HDCVD) oxide than the lower portions 443, 445, 447 of the sidewalls 403, 405. The loss results in a wide, narrow, V-shaped profile of the shallow trench isolation (STI) trench 406. In other words, the side wall 405 is gradually contracted, resulting in an active area trench having an upper wide and a lower narrow V-shaped profile. Thus, the distance D1 between the upper portions 442, 444, 446 of the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404 will be greater than the distance D2 between the lower portions 443, 445, 447 of the sidewalls 403, 405.

由於佈植與隧道清潔製程的結果,會形成較粗造(或是具有小鋸齒狀皺摺)的表面449於淺溝渠隔離(STI)結構404側壁403、405的上方部分442、444、446。為了說明起見,第6A~6C圖僅顯示一部分的小鋸齒狀皺摺449,但是這些小鋸齒狀皺摺可以存在於整個淺溝渠隔離(STI)結構404側壁403、405的上方部分442、444、446(例如第4A~4C和5A~5C圖靠近佈植區域409的部分)。因此,側壁403、405的上方部分442、444、446較此淺溝渠隔離(STI)結構404側壁403、405的下方部分443、445、447更粗糙。 As a result of the implant and tunnel cleaning process, a rougher (or small zigzag wrinkle) surface 449 is formed over the upper portions 442, 444, 446 of the shallow trench isolation (STI) structure 404 sidewalls 403, 405. For purposes of illustration, FIGS. 6A-6C show only a portion of the small zigzag wrinkles 449, but these small zigzag wrinkles may exist over the upper portions 442, 444 of the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404. 446 (for example, the portions of the 4A to 4C and 5A to 5C maps near the planting region 409). Thus, the upper portions 442, 444, 446 of the sidewalls 403, 405 are rougher than the lower portions 443, 445, 447 of the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404.

在某些實施例中,此佈植區域(如4A~4C和5A~5C圖中 的409)於隧道清潔製程時不會被完整的去除。因此,或許會存在殘留的佈植區域419。在一實施例中,隧道清潔製程除去幾乎全部的佈植區域(如4A~4C和5A~5C圖中的409)。 In some embodiments, the implanted area (eg, 4A~4C and 5A~5C) 409) will not be completely removed during the tunnel cleaning process. Therefore, there may be residual planting areas 419. In one embodiment, the tunnel cleaning process removes almost all of the implanted areas (e.g., 409 in Figures 4A-4C and 5A-5C).

簡而言之,在佈植製程中結構受到傷害最嚴重的區域是在淺溝渠隔離(STI)結構404側壁403、405的上方部分442、444、446,其或許允許上方的高密度電漿氧化物損失較上方的高密度電漿氧化物損失更多且其可以導致在沿著側壁403、405的上方部分442、444、446產生小鋸齒狀結構。如此會產生大致沒有縫隙及孔洞的浮動閘極結構因為例如是隧道氧化層或是多晶矽等後續層次會因為此溝渠上寬下窄的輪廓而更容易及平順地填入此V形輪廓的溝渠406內。 In short, the most severely damaged area of the implant process is the upper portion 442, 444, 446 of the sidewalls 403, 405 of the shallow trench isolation (STI) structure 404, which may allow for high density plasma oxidation above. The loss of material is more lost than the upper high density plasma oxide and it can result in a small zigzag structure at the upper portions 442, 444, 446 along the sidewalls 403, 405. This results in a floating gate structure that is substantially free of gaps and holes because subsequent layers, such as tunnel oxide layers or polysilicon, can more easily and smoothly fill the V-shaped trenches 406 due to the wide and narrow profile on the trench. Inside.

第7A~7C圖顯示此大致沒有縫隙及孔洞的浮動閘極裝置452、454、456。一隧道氧化層408形成於基板402之上,且一多晶矽層418形成於隧道氧化層408之上,產生大致沒有縫隙及孔洞的浮動閘極裝置452、454、456。 Figures 7A-7C show the floating gate devices 452, 454, 456 with substantially no gaps and holes. A tunnel oxide layer 408 is formed over the substrate 402, and a polysilicon layer 418 is formed over the tunnel oxide layer 408 to create floating gate devices 452, 454, 456 that are substantially free of gaps and holes.

雖然此發明係以浮動閘極記憶體作為實施例,此處所揭露的製程可以適用於各種記憶體中,例如浮動閘及記憶體、電荷捕捉記憶體、非揮發記憶體或是嵌入記憶體等。 Although the invention uses floating gate memory as an embodiment, the process disclosed herein can be applied to various memories, such as floating gates and memories, charge trapping memories, non-volatile memories, or embedded memories.

雖然本發明係已參照實施例來加以描述,然本發明創作並未受限於其詳細描述內容。替換方式及修改樣式係已於先前描述中所建議,且其他替換方式及修改樣式將為熟習此項技藝之人士所思及。特別是,所有具有實質上相同於本發明之構件結合而達成與本發明實質上相同結果者,皆不脫離本發明之精神範疇。因此,所有此等替換方式及修改樣式係意欲落在本發明於隨附申請專利範圍及其均等物所界定的範疇之中。 Although the present invention has been described with reference to the embodiments, the present invention is not limited by the detailed description thereof. Alternatives and modifications are suggested in the foregoing description, and other alternatives and modifications will be apparent to those skilled in the art. In particular, all combinations of components that are substantially identical to the invention can achieve substantially the same results as the present invention without departing from the spirit of the invention. Therefore, all such alternatives and modifications are intended to be within the scope of the invention as defined by the appended claims and their equivalents.

200、201‧‧‧標準浮動閘極裝置 200, 201‧‧‧ standard floating gate device

250、251‧‧‧本發明之氟佈植製程的浮動閘極裝置 250,251‧‧‧Floating gate device of the fluorine cloth planting process of the invention

202‧‧‧孔洞 202‧‧‧ hole

402‧‧‧基板 402‧‧‧Substrate

403、405‧‧‧側壁 403, 405‧‧‧ side wall

404‧‧‧淺溝渠隔離(STI)結構 404‧‧‧Shallow trench isolation (STI) structure

406‧‧‧溝渠 406‧‧‧ Ditch

408‧‧‧隧道氧化層 408‧‧‧ Tunnel Oxidation Layer

409‧‧‧佈植區域 409‧‧‧planting area

410‧‧‧第二側壁 410‧‧‧ second side wall

411‧‧‧第一側壁 411‧‧‧First side wall

418‧‧‧多晶矽層 418‧‧‧Polysilicon layer

本發明係由申請專利範圍所界定。這些和其它目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述,其中: The invention is defined by the scope of the patent application. These and other objects, features, and embodiments are described in the following sections of the accompanying drawings, in which:

第1A及1B圖分別顯示濕式清潔氧化物的損失與氟植入劑量的關係圖以及濕式清潔氧化物的損失與硼植入劑量的關係圖。 Figures 1A and 1B are graphs showing the relationship between the loss of wet cleaning oxide and the amount of fluorine implant, and the relationship between the loss of wet cleaning oxide and the boron implant dose, respectively.

第2A~2D圖顯示沒有使用本發明之佈植製程的標準浮動閘極裝置與使用本發明之氟佈植製程的浮動閘極裝置的比較圖。 Figures 2A-2D show a comparison of a standard floating gate device without the implantation process of the present invention and a floating gate device using the fluorine cloth implant process of the present invention.

第3圖為根據本發明一範例實施例形成此大致沒有縫隙及孔洞的浮動閘極裝置的製程流程圖。 FIG. 3 is a flow chart showing the process of forming a floating gate device having substantially no gaps and holes according to an exemplary embodiment of the present invention.

第4A、4B和4C圖是顯示此處所揭露製程步驟中不同階段的剖面示意圖。 Figures 4A, 4B, and 4C are schematic cross-sectional views showing different stages in the process steps disclosed herein.

第5A、5B和5C圖是顯示此處所揭露製程步驟中不同階段的剖面示意圖。 Figures 5A, 5B, and 5C are schematic cross-sectional views showing different stages in the process steps disclosed herein.

第6A、6B和6C圖是顯示此處所揭露製程步驟中不同階段的剖面示意圖。 Figures 6A, 6B, and 6C are schematic cross-sectional views showing different stages in the process steps disclosed herein.

第7A、7B和7C圖是顯示此處所揭露浮動閘極裝置製程步驟中不同階段的剖面示意圖。 Figures 7A, 7B, and 7C are schematic cross-sectional views showing different stages in the process steps of the floating gate device disclosed herein.

Claims (23)

一種製造一浮動閘極半導體結構的方法,包含:形成一溝渠於一半導體基板中,該溝渠由一溝渠基底部分及鄰接淺溝渠隔離結構的側壁定義;以及形成佈植區域於該鄰接淺溝渠隔離結構的一個或兩個側壁,其中該側壁是逐步傾斜的,且其中該側壁上半部間的距離係大於該側壁下半部間的距離。 A method of fabricating a floating gate semiconductor structure, comprising: forming a trench in a semiconductor substrate, the trench being defined by a trench base portion and a sidewall adjacent to the shallow trench isolation structure; and forming a trench region to be isolated from the adjacent shallow trench One or both side walls of the structure, wherein the side walls are progressively inclined, and wherein the distance between the upper halves of the side walls is greater than the distance between the lower half of the side walls. 如申請專利範圍第1項所述之方法,更包含形成一V形輪廓開口於該溝渠中。 The method of claim 1, further comprising forming a V-shaped profile opening in the trench. 如申請專利範圍第1項所述之方法,更包含:對該淺溝渠隔離結構、該溝渠及該佈植區域進行退火;除去該佈植區域的一部分;形成隧道氧化層於該溝渠基底部分及該淺溝渠隔離結構的該側壁之上;形成一導電薄膜於該隧道氧化層之上。 The method of claim 1, further comprising: annealing the shallow trench isolation structure, the trench and the implanted region; removing a portion of the implanted region; forming a tunnel oxide layer on the base portion of the trench and Overlying the sidewall of the shallow trench isolation structure; forming a conductive film over the tunnel oxide layer. 如申請專利範圍第3項所述之方法,其中形成佈植區域包括以一第一傾斜角度佈植雜質以形成佈植區域於該鄰接淺溝渠隔離結構的一第一側壁。 The method of claim 3, wherein forming the implanted region comprises implanting the implant at a first oblique angle to form a first sidewall of the implanted region adjacent the shallow trench isolation structure. 如申請專利範圍第4項所述之方法,其中該第一傾斜角度是相對於該淺溝渠隔離結構的該側壁的0~30°範圍。 The method of claim 4, wherein the first angle of inclination is in the range of 0 to 30 degrees relative to the side wall of the shallow trench isolation structure. 如申請專利範圍第4項所述之方法,其中形成佈植區域更包括 以一第二傾斜角度佈植雜質以形成佈植區域於該鄰近淺溝渠隔離結構的一第二側壁。 The method of claim 4, wherein forming the planting area further comprises Impurities are implanted at a second angle of inclination to form a second sidewall of the adjacent shallow trench isolation structure. 如申請專利範圍第3項所述之方法,其中該佈植更包含形成另一佈植區域於該溝渠隔基底部分。 The method of claim 3, wherein the implanting further comprises forming another implanted region in the trench partition base portion. 如申請專利範圍第4項所述之方法,其中該第一傾斜角度是相對於該淺溝渠隔離結構的該側壁大致為0°。 The method of claim 4, wherein the first angle of inclination is substantially 0° with respect to the side wall of the shallow trench isolation structure. 如申請專利範圍第4項所述之方法,更包含:旋轉該半導體結構;以及其中形成佈植區域更包括以一第二角度佈植雜質而形成佈植區域於該鄰近淺溝渠隔離結構的一第二側壁。 The method of claim 4, further comprising: rotating the semiconductor structure; and wherein forming the implanted region further comprises implanting the impurity at a second angle to form the implanted region in the adjacent shallow trench isolation structure Second side wall. 如申請專利範圍第9項所述之方法,其中該第一傾斜角度與該第二傾斜角度大致相同。 The method of claim 9, wherein the first tilt angle is substantially the same as the second tilt angle. 如申請專利範圍第9項所述之方法,其中該第一及該第二傾斜角度是相對於該淺溝渠隔離結構的該側壁的10~70°範圍。 The method of claim 9, wherein the first and the second angle of inclination are in the range of 10 to 70 degrees with respect to the side wall of the shallow trench isolation structure. 如申請專利範圍第9項所述之方法,其中該第一及該第二傾斜角度是相對於該淺溝渠隔離結構的該側壁大致為55°。 The method of claim 9, wherein the first and second angles of inclination are substantially 55° with respect to the side wall of the shallow trench isolation structure. 如申請專利範圍第3項所述之方法,其中該佈植及該除去導致鋸齒狀結構於該側壁的上半部產生。 The method of claim 3, wherein the implanting and the removing result in a serrated structure being produced in the upper half of the sidewall. 如申請專利範圍第13項所述之方法,其中該側壁的上半部包含鄰近該佈植區域的該側壁部分。 The method of claim 13, wherein the upper half of the side wall includes the side wall portion adjacent to the planting area. 如申請專利範圍第3項所述之方法,其中於該除去製程之後仍會有佈植區域殘留。 The method of claim 3, wherein the planting area remains after the removal process. 如申請專利範圍第4項所述之方法,其中所植入的該雜質包括氮氣體(N2)、鍺、碳和氟。 The method of claim 4, wherein the impurities implanted include nitrogen gas (N 2 ), helium, carbon, and fluorine. 一種半導體結構,包含:一淺溝渠隔離結構形成於一半導體基板中,因此定義出該半導體結構的一溝渠;以及其中該溝渠包含由一溝渠基底部分及鄰接淺溝渠隔離結構的側壁定義之一開口,其中該側壁是逐步傾斜的,且該側壁上半部間的距離係大於該側壁下半部間的距離,且該側壁的該上半部包含佈植區域。 A semiconductor structure comprising: a shallow trench isolation structure formed in a semiconductor substrate, thereby defining a trench of the semiconductor structure; and wherein the trench comprises an opening defined by a trench base portion and a sidewall of the adjacent shallow trench isolation structure Wherein the side wall is progressively inclined, and the distance between the upper halves of the side wall is greater than the distance between the lower half of the side wall, and the upper half of the side wall includes the implanted area. 如申請專利範圍第17項所述之半導體結構,其中鋸齒狀結構定義於該側壁的上半部。 The semiconductor structure of claim 17, wherein the sawtooth structure is defined in an upper half of the sidewall. 如申請專利範圍第17項所述之半導體結構,更包含殘留佈植區域由靠近該側壁的該上半部之淺溝渠隔離區域所定義。 The semiconductor structure of claim 17 further comprising a residual implant region defined by a shallow trench isolation region adjacent the upper half of the sidewall. 如申請專利範圍第19項所述之半導體結構,其中該殘留佈植區域所植入的雜質包括氮氣體(N2)、鍺、碳和氟之一。 The semiconductor structure according to claim 19, wherein the impurity implanted in the residual implant region comprises one of nitrogen gas (N 2 ), helium, carbon and fluorine. 如申請專利範圍第19項所述之半導體結構,其中該殘留佈植區域包括以植入劑量範圍在1E12cm-2到1E16cm-2之間進行 佈植。 The application of the semiconductor structure of patentable scope of item 19, wherein the remaining region comprises implanting the implant dose range between implant 1E12cm -2 to 1E16cm -2. 如申請專利範圍第17項所述之半導體結構,其中該側壁的該上半部包含鄰近該佈植區域的該側壁部分。 The semiconductor structure of claim 17 wherein the upper half of the sidewall comprises the sidewall portion adjacent the implant region. 如申請專利範圍第17項所述之半導體結構,更包含佈植區域於該側壁的該上半部及該溝渠基底部分。 The semiconductor structure of claim 17, further comprising a planting region on the upper half of the sidewall and the trench base portion.
TW101123568A 2012-06-29 2012-06-29 Semiconductor device formation TWI517220B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101123568A TWI517220B (en) 2012-06-29 2012-06-29 Semiconductor device formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101123568A TWI517220B (en) 2012-06-29 2012-06-29 Semiconductor device formation

Publications (2)

Publication Number Publication Date
TW201401342A TW201401342A (en) 2014-01-01
TWI517220B true TWI517220B (en) 2016-01-11

Family

ID=50345130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101123568A TWI517220B (en) 2012-06-29 2012-06-29 Semiconductor device formation

Country Status (1)

Country Link
TW (1) TWI517220B (en)

Also Published As

Publication number Publication date
TW201401342A (en) 2014-01-01

Similar Documents

Publication Publication Date Title
CN105374688B (en) Embedded transistor
JP2012216876A5 (en)
US8835278B2 (en) Method for forming a buried dielectric layer underneath a semiconductor fin
CN105826273A (en) Flash memory device and manufacturing method thereof
US10714381B2 (en) Semiconductor device having composite structures and fabrication method thereof
JP2008124461A (en) Manufacturing method of semiconductor element having recess gate
CN107919284A (en) The forming method of semiconductor structure
TWI624032B (en) Semiconductor device and method of forming the same
US20060186509A1 (en) Shallow trench isolation structure with active edge isolation
TW200304221A (en) Memory cell
JP2011049215A (en) Method of manufacturing semiconductor device
CN105789129A (en) Method for improving profile of side wall of grid electrode, and semiconductor device manufacturing method
CN108010835B (en) Semiconductor device, manufacturing method thereof and electronic device
CN107919387A (en) A kind of semiconductor devices and its manufacture method
CN105575906B (en) A kind of manufacturing method and electronic device of semiconductor devices
TWI517220B (en) Semiconductor device formation
US20180315614A1 (en) PROCESS FOR ETCHING A SiN-BASED LAYER
CN101989576A (en) Manufacture method of semiconductor device
CN103545192B (en) Manufacture method and the semiconductor structure of non-volatile semiconductor structure
CN109712978A (en) A kind of semiconductor devices and preparation method, electronic device
CN104952804B (en) A method of making embedded flash memory
JP2009021550A (en) Manufacturing method of semiconductor device
US8872260B2 (en) Semiconductor device formation
CN105047552A (en) Method for fabricating metal grid
CN106252282A (en) A kind of semiconductor device and manufacture method, electronic installation