TWI515879B - Wafer level microelectronic imager - Google Patents

Wafer level microelectronic imager Download PDF

Info

Publication number
TWI515879B
TWI515879B TW100109393A TW100109393A TWI515879B TW I515879 B TWI515879 B TW I515879B TW 100109393 A TW100109393 A TW 100109393A TW 100109393 A TW100109393 A TW 100109393A TW I515879 B TWI515879 B TW I515879B
Authority
TW
Taiwan
Prior art keywords
optical lens
optical
image sensing
lens stack
wafer level
Prior art date
Application number
TW100109393A
Other languages
Chinese (zh)
Other versions
TW201240070A (en
Inventor
陳振亨
Original Assignee
奇景光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇景光電股份有限公司 filed Critical 奇景光電股份有限公司
Priority to TW100109393A priority Critical patent/TWI515879B/en
Publication of TW201240070A publication Critical patent/TW201240070A/en
Application granted granted Critical
Publication of TWI515879B publication Critical patent/TWI515879B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

晶圓級微電子成像器Wafer-level microelectronic imager

本發明是有關於一種微電子成像器,且特別是有關於一種晶圓級微電子成像器。This invention relates to a microelectronic imager, and more particularly to a wafer level microelectronic imager.

隨著電子科技的進步,微電子成像器在電子裝置上的應用越來越多廣泛,微電子成像器可應用在如平板電腦、掌上型遊戲裝置或手機等可攜式電子裝置。一般之微電子成像器主要係由多個光學透鏡以及至少一影像感測晶粒所組成,其中多個光學透鏡依照光學透鏡之光軸堆疊形成一光學透鏡堆疊,而影像感測晶粒則鄰設於上述之光學透鏡堆疊。此外,上述之影像感測晶粒可例如為電荷耦合元件(Charge-coupled Device;CCD)晶粒或互補金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor;CMOS)晶粒。With the advancement of electronic technology, microelectronic imagers are increasingly used in electronic devices. Microelectronic imagers can be applied to portable electronic devices such as tablet computers, handheld game devices or mobile phones. A general microelectronic imager is mainly composed of a plurality of optical lenses and at least one image sensing die, wherein a plurality of optical lenses are stacked according to an optical axis of the optical lens to form an optical lens stack, and the image sensing die is adjacent. It is provided in the above optical lens stack. In addition, the image sensing die described above may be, for example, a Charge-coupled Device (CCD) die or a Complementary Metal-Oxide-Semiconductor (CMOS) die.

微電子成像器主要係利用光學透鏡堆疊來接收外部之光線,而當外部之光線通過多個光學透鏡至影像感測晶粒時,影像感測晶粒可將接收到之光訊號轉變成電子數位信號,以利於後續如儲存等其他步驟的進行。The microelectronic imager mainly uses an optical lens stack to receive external light, and when the external light passes through the plurality of optical lenses to the image sensing die, the image sensing die can convert the received optical signal into an electronic digital position. Signals to facilitate subsequent steps such as storage.

在微電子成像器中,光學性能需求主要係藉由改變多個光學透鏡彼此之間的相對位置來達成。當多個光學透鏡彼此之間的相對位置改變時,相鄰光學透鏡之間光線的行進路徑,以及光學透鏡堆疊最末端之光學透鏡所射出之光線的行進路徑即隨之而改變,故可藉此調整微電子成像器的光學性能。In microelectronic imagers, optical performance requirements are primarily achieved by varying the relative position of multiple optical lenses to each other. When the relative positions of the plurality of optical lenses are changed from each other, the traveling path of the light between the adjacent optical lenses and the traveling path of the light emitted from the optical lens at the end of the optical lens stack are changed accordingly, so that This adjusts the optical performance of the microelectronic imager.

然而,在目前市場上之微電子成像器中,通常有整體厚度過大之缺點,故對於採用微電子成像器之電子裝置的薄型化相當不利。However, in the microelectronic imager currently on the market, there is usually a disadvantage that the overall thickness is too large, so that the thinning of the electronic device using the microelectronic imager is rather disadvantageous.

因此,本發明之目的係在提供晶圓級微電子成像器,其中影像感測晶粒在與光學透鏡堆疊接合之前,並未以一如玻璃基板之元件加以覆蓋封裝,故此影像感測晶粒在與光學透鏡堆疊接合之後,係直接鄰設在光學透鏡堆疊之一側。Therefore, the object of the present invention is to provide a wafer level microelectronic imager, wherein the image sensing die is not covered by a component such as a glass substrate before being bonded to the optical lens stack, so the image sensing die After being bonded to the optical lens stack, it is directly adjacent to one side of the optical lens stack.

根據本發明之一實施例,提供一種適用於電子裝置之晶圓級微電子成像器,其包含具有內部空間的殼體、固定地設置於上述內部空間中的光學透鏡堆疊、鄰設於光學透鏡堆疊之一側的影像感測晶粒、以及透明接合介質。上述光學透鏡堆疊包含沿著光軸堆疊之多個光學透鏡、以及設置於光學透鏡之間之至少一第一間隔元件。上述第一間隔元件使得多個光學透鏡之相鄰二者之間形成密閉之第一空間。此外,上述殼體、影像感測晶粒、與多個光學透鏡其中一者定義出第二空間,而上述透明接合介質則填滿此第二空間。According to an embodiment of the present invention, a wafer level microelectronic imager suitable for an electronic device includes a housing having an internal space, an optical lens stack fixedly disposed in the internal space, and an optical lens disposed adjacent to the optical lens The image sensing die on one side of the stack, and the transparent bonding medium. The optical lens stack includes a plurality of optical lenses stacked along an optical axis, and at least one first spacer element disposed between the optical lenses. The first spacer element forms a sealed first space between adjacent ones of the plurality of optical lenses. In addition, the housing, the image sensing die, and one of the plurality of optical lenses define a second space, and the transparent bonding medium fills the second space.

根據本發明之另一實施例,在上述之晶圓級微電子成像器模組中,透明接合介質為接合膠。In accordance with another embodiment of the present invention, in the wafer level microelectronic imager module described above, the transparent bonding medium is a bonding paste.

本發明之優點為,透過減少影像感測晶粒之封裝元件,可縮小晶圓級微電子成像器之整體厚度,故有利於採用此晶圓級微電子成像器之電子裝置的薄型化。而減少封裝元件更可進一步減少晶圓級微電子成像器的製造成本。The invention has the advantages that the overall thickness of the wafer level microelectronic imager can be reduced by reducing the package components of the image sensing die, thereby facilitating the thinning of the electronic device using the wafer level microelectronic imager. Reducing the package components further reduces the manufacturing cost of the wafer level microelectronic imager.

此外,由於殼體、影像感測晶粒、與多個光學透鏡其中一者所定義出之空間中填滿了透明接合介質,故可為影像感測晶粒與光學透鏡堆疊之間帶來更好的接合強度,藉此提高晶圓級微電子成像器的耐用度。In addition, since the space defined by the housing, the image sensing die, and one of the plurality of optical lenses is filled with the transparent bonding medium, the image sensing die and the optical lens stack can be brought more. Good bond strength, thereby increasing the durability of wafer level microelectronic imagers.

請參照第1圖,其係繪示根據本發明之一實施例之晶圓級微電子成像器的剖面示意圖。晶圓級微電子成像器100適用於電子裝置,例如可攜式之平板電腦、掌上型遊戲裝置或手機。在一般之情況下,多個晶圓級微電子成像器100係先形成於一晶圓上,並藉由晶圓鋸予以切片以產生單一之晶圓級微電子成像器100。Please refer to FIG. 1 , which is a cross-sectional view showing a wafer level microelectronic imager according to an embodiment of the present invention. The wafer level microelectronic imager 100 is suitable for use in electronic devices such as portable tablets, handheld game devices or cell phones. In the general case, a plurality of wafer level microelectronic imagers 100 are first formed on a wafer and sliced by a wafer saw to produce a single wafer level microelectronic imager 100.

在本實施例中,晶圓級微電子成像器100包含殼體102、光學透鏡堆疊104、影像感測晶粒106以及透明接合介質114。在殼體102中,其具有內部空間102a。此殼體102之主要功能係用以包覆固定以下即將說明之光學透鏡堆疊104的各個組件、以及影像感測晶粒106,藉此形成單一晶圓級微電子成像器100。In the present embodiment, the wafer level microelectronic imager 100 includes a housing 102, an optical lens stack 104, image sensing dies 106, and a transparent bonding medium 114. In the housing 102, it has an internal space 102a. The primary function of the housing 102 is to cover and secure the various components of the optical lens stack 104 to be described below, as well as the image sensing die 106, thereby forming a single wafer level microelectronic imager 100.

如上所述,光學透鏡堆疊104係固定地設置於上述殼體102之內部空間102a中。此外,光學透鏡堆疊104包含多個光學透鏡108a與108b以及至少一第一間隔元件110。在本實施例中,光學透鏡堆疊104僅包含二個光學透鏡108a與108b。而在特定之實施例中,光學透鏡之數量可視需要加以調整,其並不以本實施例為限。此外,在本實施例中,光學透鏡108a與108b係沿著其自身之光軸108c進行堆疊,具體來說,此二個光學透鏡108a與108b所具有之二個光軸108c係互相重疊的。然而,在特定之實施例中,多個光學透鏡具有之多個光軸108c彼此之間並未重疊,這些光軸108c之間僅以互相平行方式進行排列。As described above, the optical lens stack 104 is fixedly disposed in the internal space 102a of the above-described housing 102. In addition, optical lens stack 104 includes a plurality of optical lenses 108a and 108b and at least a first spacer element 110. In the present embodiment, optical lens stack 104 includes only two optical lenses 108a and 108b. In a particular embodiment, the number of optical lenses can be adjusted as needed, which is not limited to this embodiment. Further, in the present embodiment, the optical lenses 108a and 108b are stacked along their own optical axis 108c. Specifically, the two optical axes 108c of the two optical lenses 108a and 108b overlap each other. However, in a particular embodiment, the plurality of optical lenses have a plurality of optical axes 108c that do not overlap each other, and the optical axes 108c are arranged only in a mutually parallel manner.

至於第一間隔元件110,其主要係設置於上述二個光學透鏡108a與108b之間,使得相鄰二個光學透鏡108a與108b之間形成密閉之第一空間110a。而第一間隔元件110之數量,主要係根據光學透鏡之數量加以調整,第一間隔元件110之數量至少需為光學透鏡之數量減一,藉此使得相鄰二個光學透鏡之間均可形成如第1圖所示之密閉的第一空間110a。然而,在本實施例中,光學透鏡堆疊104除包含設置於二個光學透鏡108a與108b之間的第一間隔元件110外,更包含二個設置在光學透鏡108a與108b之外的第二間隔元件116以及第二間隔元件118。此二個額外之第二間隔元件116及第二間隔元件118與其他元件之相對位置與作用將於以下做進一步之說明。As for the first spacer element 110, it is mainly disposed between the two optical lenses 108a and 108b such that a sealed first space 110a is formed between the adjacent two optical lenses 108a and 108b. The number of the first spacer elements 110 is mainly adjusted according to the number of optical lenses. The number of the first spacer elements 110 needs to be at least one less than the number of optical lenses, thereby forming an adjacent optical lens. The sealed first space 110a is shown in Fig. 1. However, in the present embodiment, the optical lens stack 104 includes, in addition to the first spacer element 110 disposed between the two optical lenses 108a and 108b, two second spacers disposed outside the optical lenses 108a and 108b. Element 116 and second spacer element 118. The relative position and effect of the two additional second spacer elements 116 and second spacer elements 118 with other elements will be further described below.

針對影像感測晶粒106,其係鄰設於上述光學透鏡堆疊104之一側,其中此影像感測晶粒106主要係用以接收來自於光學透鏡堆疊104的影像光源,並將此影像光源轉換成數位訊號。在本實施例中,影像感測晶粒106、殼體102、與光學透鏡108b三者共同定義出第二空間120,而其中第二空間120主要係用以容設上述之透明接合介質114,亦即使得透明接合介質114填滿上述第二空間120。此外,由於殼體102、影像感測晶粒106、與光學透鏡108b所定義出之第二空間120中填滿了透明接合介質114,故可為影像感測晶粒106與光學透鏡堆疊104之間帶來更好的接合強度,藉此提高晶圓級微電子成像器100的耐用度。The image sensing die 106 is disposed adjacent to one side of the optical lens stack 104, wherein the image sensing die 106 is mainly used to receive an image light source from the optical lens stack 104, and the image light source is Convert to digital signal. In this embodiment, the image sensing die 106, the housing 102, and the optical lens 108b define a second space 120, and the second space 120 is mainly used to accommodate the transparent bonding medium 114. That is, the transparent bonding medium 114 fills the second space 120. In addition, since the housing 102, the image sensing die 106, and the second space 120 defined by the optical lens 108b are filled with the transparent bonding medium 114, the image sensing die 106 and the optical lens stack 104 may be This results in better bond strength, thereby increasing the durability of the wafer level microelectronic imager 100.

如第1圖所示,在影像感測晶粒106與殼體102之間,由於透明接合介質114的填充,使得影像感測晶粒106與殼體102之間具有一特定之距離。然而,在特定之實施例中,可減少透明接合介質114的填充量,使得影像感測晶粒106與殼體102直接接觸。此外,在其他之實施例中,亦可縮小影像感測晶粒106之體積,僅須使得影像感測晶粒106能夠接收來自於光學透鏡堆疊104的影像光源即可。As shown in FIG. 1 , between the image sensing die 106 and the housing 102 , the image sensing die 106 has a specific distance from the housing 102 due to the filling of the transparent bonding medium 114 . However, in certain embodiments, the amount of fill of the transparent bonding medium 114 can be reduced such that the image sensing die 106 is in direct contact with the housing 102. In addition, in other embodiments, the volume of the image sensing die 106 can be reduced, and only the image sensing die 106 can receive the image light source from the optical lens stack 104.

在習知之製程中,在將影像感測晶粒106接合至光學透鏡堆疊104之一側之前,通常會先以如玻璃基材之封裝元件對影像感測晶粒106進行封裝,接著將封裝後之影像感測晶粒106接合至光學透鏡堆疊104。然而,相較於習知之製程,採用本發明之晶圓級微電子成像器100,則省略上述之封裝元件,故可有效地縮小晶圓級微電子成像器100之整體厚度,故有利於採用此晶圓級微電子成像器100之電子裝置的薄型化。此外,省略上述之封裝元件,可省略以封裝元件對影像感測晶粒106進行封裝之製程,進而減少晶圓級微電子成像器100的製造成本。In a conventional process, before the image sensing die 106 is bonded to one side of the optical lens stack 104, the image sensing die 106 is typically packaged with a package component such as a glass substrate, and then packaged. The image sensing die 106 is bonded to the optical lens stack 104. However, compared with the conventional process, the wafer-level microelectronic imager 100 of the present invention omits the above-mentioned package components, so that the overall thickness of the wafer-level microelectronic imager 100 can be effectively reduced, which is advantageous for adoption. The electronic device of the wafer level microelectronic imager 100 is thinned. In addition, the above-described package components are omitted, and the process of packaging the image sensing die 106 by the package components can be omitted, thereby reducing the manufacturing cost of the wafer-level microelectronic imager 100.

另外,在特定之實施例中,影像感測晶粒106可為CCD晶粒或CMOS晶粒。而在特定之實施例中,上述透明接合介質114為接合膠。Additionally, in certain embodiments, image sensing die 106 can be a CCD die or a CMOS die. In a particular embodiment, the transparent bonding medium 114 is a bonding glue.

如第1圖所示,在本實施例中,晶圓級微電子成像器100之光學透鏡堆疊104更包含第二間隔元件116與第二間隔元件118。其中,第二間隔元件116係設置在殼體102之內部空間102a之中,且與殼體102之內側面接觸。此外,第二間隔元件116更鄰設於光學透鏡堆疊104與設置上述影像感測晶粒106之一側相對的另一側。再者,第二間隔元件116的設置可用來強化殼體102的強度,提高殼體102的抗壓性。As shown in FIG. 1 , in the present embodiment, the optical lens stack 104 of the wafer level microelectronic imager 100 further includes a second spacer element 116 and a second spacer element 118 . The second spacer element 116 is disposed in the inner space 102a of the housing 102 and is in contact with the inner side surface of the housing 102. In addition, the second spacer element 116 is disposed adjacent to the other side of the optical lens stack 104 opposite to one side of the image sensing die 106. Furthermore, the arrangement of the second spacer element 116 can be used to enhance the strength of the housing 102 and increase the pressure resistance of the housing 102.

而上述之第二間隔元件118係設置在由影像感測晶粒106、殼體102、與光學透鏡108b三者共同定義出之第二空間120之中,且第二間隔元件118與殼體102之內側面接觸。其中,第二間隔元件118係類似於第二間隔元件116,同樣可用來強化殼體102的強度,藉此提高殼體102的抗壓性。然而,第二間隔元件118的設置,更可減少透明接合介質114的使用量,同時可增加透明接合介質114能夠黏附接合的接觸面積,進而提高晶圓級微電子成像器100的耐用度。The second spacer element 118 is disposed in the second space 120 defined by the image sensing die 106, the housing 102, and the optical lens 108b, and the second spacer component 118 and the housing 102. Side contact. Wherein, the second spacer element 118 is similar to the second spacer element 116 and can also be used to strengthen the strength of the housing 102, thereby increasing the pressure resistance of the housing 102. However, the arrangement of the second spacer elements 118 can further reduce the amount of use of the transparent bonding medium 114 while increasing the contact area of the transparent bonding medium 114 that can be adhered, thereby improving the durability of the wafer level microelectronic imager 100.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100...晶圓級微電子成像器100. . . Wafer-level microelectronic imager

102...殼體102. . . case

102a...內部空間102a. . . Internal space

104...光學透鏡堆疊104. . . Optical lens stack

106...影像感測晶粒106. . . Image sensing grain

108a-108b...光學透鏡108a-108b. . . optical lens

108c...光軸108c. . . Optical axis

110...第一間隔元件110. . . First spacer element

110a...第一空間110a. . . First space

114...透明接合介質114. . . Transparent bonding medium

116...第二間隔元件116. . . Second spacer element

118...第三間隔元件118. . . Third spacer element

120...第二空間120. . . Second space

為了能夠對本發明之觀點有較佳之理解,請參照上述之詳細說明並配合相應之圖式。要強調的是,根據工業之標準常規,附圖中之各種特徵並未依比例繪示。事實上,為清楚說明上述實施例,可任意地放大或縮小各種特徵之尺寸。相關圖式內容說明如下。For a better understanding of the present invention, reference is made to the above detailed description and the accompanying drawings. It is emphasized that, in accordance with the standard of the industry, the various features in the drawings are not to scale. In fact, the dimensions of the various features may be arbitrarily enlarged or reduced in order to clearly illustrate the above embodiments. The relevant schema description is as follows.

第1圖係繪示根據本發明之一實施例之晶圓級微電子成像器的剖面示意圖。1 is a cross-sectional view of a wafer level microelectronic imager in accordance with an embodiment of the present invention.

100...晶圓級微電子成像器100. . . Wafer-level microelectronic imager

102...殼體102. . . case

102a...內部空間102a. . . Internal space

104...光學透鏡堆疊104. . . Optical lens stack

106...影像感測晶粒106. . . Image sensing grain

108a-108b...光學透鏡108a-108b. . . optical lens

108c...光軸108c. . . Optical axis

110...第一間隔元件110. . . First spacer element

110a...第一空間110a. . . First space

114...透明接合介質114. . . Transparent bonding medium

116...第二間隔元件116. . . Second spacer element

118...第三間隔元件118. . . Third spacer element

120...第二空間120. . . Second space

Claims (4)

一種晶圓級微電子成像器,適用於電子裝置,其中該晶圓級微電子成像器包含:一殼體,具有一內部空間;一光學透鏡堆疊,固定地設置於該內部空間中,其中該光學透鏡堆疊包含:複數個光學透鏡,沿著該些光學透鏡之光軸堆疊;以及至少一第一間隔元件,設置於該些光學透鏡之間,使得該些光學透鏡相鄰二者之間形成密閉之一第一空間;一影像感測晶粒,鄰設於該光學透鏡堆疊之一側,其中該殼體、該影像感測晶粒、與該些光學透鏡其中一者定義出一第二空間;以及一透明接合介質,填滿該第二空間,用以接合該光學透鏡堆疊與該影像感測晶粒,其中該透明接合介質為一接合膠。 A wafer level microelectronic imager for an electronic device, wherein the wafer level microelectronic imager comprises: a housing having an internal space; and an optical lens stack fixedly disposed in the internal space, wherein the The optical lens stack includes: a plurality of optical lenses stacked along an optical axis of the optical lenses; and at least one first spacer element disposed between the optical lenses such that the optical lenses are formed adjacent to each other One of the first spatial spaces is sealed; an image sensing die is disposed adjacent to one side of the optical lens stack, wherein the housing, the image sensing die, and one of the optical lenses define a second And a transparent bonding medium filling the second space for bonding the optical lens stack and the image sensing die, wherein the transparent bonding medium is a bonding glue. 如請求項1所述之晶圓級微電子成像器,其中該光學透鏡堆疊更包含:一第二間隔元件,設置於該第二空間之中,且與該殼體之內側面接觸。 The wafer level microelectronic imager of claim 1, wherein the optical lens stack further comprises: a second spacer element disposed in the second space and in contact with an inner side surface of the housing. 如請求項1所述之晶圓級微電子成像器,其中該光 學透鏡堆疊更包含:一第二間隔元件,設置於該殼體之該內部空間之中,與該殼體之內側面接觸,且該第二間隔元件鄰設於該光學透鏡堆疊之另一側。 A wafer level microelectronic imager as claimed in claim 1, wherein the light The lens stack further includes: a second spacer element disposed in the inner space of the housing, in contact with an inner side surface of the housing, and the second spacer element is disposed adjacent to the other side of the optical lens stack . 如請求項1所述之晶圓級微電子成像器,其中該影像感測晶粒係選自於由一電荷耦合元件晶粒及一互補式金屬氧化物半導體晶粒所組成之一群組。 The wafer level microelectronic imager of claim 1, wherein the image sensing die is selected from the group consisting of a charge coupled device die and a complementary metal oxide semiconductor die.
TW100109393A 2011-03-18 2011-03-18 Wafer level microelectronic imager TWI515879B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100109393A TWI515879B (en) 2011-03-18 2011-03-18 Wafer level microelectronic imager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109393A TWI515879B (en) 2011-03-18 2011-03-18 Wafer level microelectronic imager

Publications (2)

Publication Number Publication Date
TW201240070A TW201240070A (en) 2012-10-01
TWI515879B true TWI515879B (en) 2016-01-01

Family

ID=47599697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109393A TWI515879B (en) 2011-03-18 2011-03-18 Wafer level microelectronic imager

Country Status (1)

Country Link
TW (1) TWI515879B (en)

Also Published As

Publication number Publication date
TW201240070A (en) 2012-10-01

Similar Documents

Publication Publication Date Title
KR101208215B1 (en) Camera module and method for manufacturing the same
US20200035731A1 (en) Solid-state imaging apparatus
US8125042B2 (en) Semiconductor package and method of manufacturing the same
TWI437700B (en) Manufacturing method forwafer level image sensor package structure
US20180012069A1 (en) Fingerprint sensor, fingerprint sensor package, and fingerprint sensing system using light sources of display panel
TWI337500B (en) Image sensor module package structure with supporting element
US7521790B2 (en) Semiconductor device module and manufacturing method of semiconductor device module
US8500344B2 (en) Compact camera module and method for fabricating the same
TWI467747B (en) Solid photographic apparatus and method of manufacturing the same
JP5818455B2 (en) Solid-state imaging device and manufacturing method thereof
CN104078479A (en) Wafer level encapsulation method for image sensor and encapsulation structure for image sensor
US20160005778A1 (en) Semiconductor Package and Method for Manufacturing the Same
CN104409464A (en) High-reliability image sensor packaging structure with stress protection structure
US20160172401A1 (en) Solid-state imaging device, camera module, and method for manufacturing solid-state imaging device
JP2011187482A (en) Solid-state imaging apparatus, module for optical device, and method of manufacturing solid-state imaging apparatus
TWM470285U (en) Image capturing module and image sensing unit
KR20120076286A (en) Lens module, lens wafer module, and method for manufacturing lens module
CN210628284U (en) Image sensing chip packaging structure
TWI515879B (en) Wafer level microelectronic imager
CN203941902U (en) Image sensor package structure
US20130057750A1 (en) Image sensing device
JP2009044494A (en) Imaging device
TWI437306B (en) Wafer level optical module and wafer level microelectronic imager
JP2013085095A (en) Imaging device
KR100945445B1 (en) Wafer level camera module and method of manufacturing the same