TWI515772B - Manufacturing method for forming substrate with silicon-germanium epitaxial layer - Google Patents

Manufacturing method for forming substrate with silicon-germanium epitaxial layer Download PDF

Info

Publication number
TWI515772B
TWI515772B TW102131816A TW102131816A TWI515772B TW I515772 B TWI515772 B TW I515772B TW 102131816 A TW102131816 A TW 102131816A TW 102131816 A TW102131816 A TW 102131816A TW I515772 B TWI515772 B TW I515772B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
germanium
epitaxial layer
ruthenium
Prior art date
Application number
TW102131816A
Other languages
Chinese (zh)
Other versions
TW201511087A (en
Inventor
李勝偉
張宏臺
李侃融
李佩雯
辛正倫
Original Assignee
國立中央大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學 filed Critical 國立中央大學
Priority to TW102131816A priority Critical patent/TWI515772B/en
Publication of TW201511087A publication Critical patent/TW201511087A/en
Application granted granted Critical
Publication of TWI515772B publication Critical patent/TWI515772B/en

Links

Description

具有矽鍺磊晶之基板之製造方法 Method for manufacturing substrate with germanium epitaxial crystal

本發明係關於一種具有矽鍺磊晶層之基板之製造方法,尤指一種利用電化學方法使矽鍺磊晶層形成於基板上之方法。 The present invention relates to a method for fabricating a substrate having a germanium epitaxial layer, and more particularly to a method for forming a germanium epitaxial layer on a substrate by electrochemical methods.

矽鍺(SiGe)磊晶為近年來相當重要之一新興技術,矽鍺磊晶具有較矽大之能隙以及較大之電子/電洞移動率,可產生較大之驅動電流,因此適用於微型化的電子或光電元件,且可進一步的改善元件特性。 矽锗(SiGe) epitaxy is one of the most important emerging technologies in recent years. 矽锗 晶 has a relatively large energy gap and a large electron/hole mobility, which can generate a large driving current, so it is suitable for Miniaturized electronic or optoelectronic components and further improved component characteristics.

由於鍺原子的半徑較矽原子的半徑大,且純鍺之晶格常數(lattice constant)約為5.65Å,純矽之晶格常數為5.43Å,因此當鍺原子取代部分之矽原子進入矽的晶格中時,因為鍺與矽之間的晶格不匹配,導致整體的晶格結構被扭曲,而扭曲的晶格結構使得當電荷攜帶者的密度相同時,晶格扭曲之矽鍺磊晶之電子/電洞移動率較單晶矽增加5至10倍左右,如此便能降低元件電阻值,提高電子元件或光電元件之效能,其操作速度能夠更快,且可提高積體電路 之積集度,進而發展下一代之電子產品及光電產品。 Since the radius of the germanium atom is larger than the radius of the germanium atom, and the lattice constant of pure germanium is about 5.65Å, the lattice constant of pure germanium is 5.43Å, so when the germanium atom replaces the partial atom, it enters the germanium. In the lattice, because the lattice mismatch between 锗 and 矽, the overall lattice structure is distorted, and the distorted lattice structure makes the crystal lattice distortion when the density of the charge carriers is the same. The electron/hole mobility rate is increased by about 5 to 10 times compared with the single crystal germanium, so that the component resistance value can be lowered, the performance of the electronic component or the photovoltaic component can be improved, the operation speed can be faster, and the integrated circuit can be improved. The integration of the next generation of electronic products and optoelectronic products.

然而,一般傳統的成長矽鍺磊晶層之技術,多於矽基板上以成份漸變式成長矽鍺磊晶層,此法所需之成長時間長,磊晶層表面之粗糙度較大,容易損壞元件之操作特性,且以成份漸變式方法成長之矽鍺磊晶層,若需具有理想的應變鬆弛效果,則所需形成之矽鍺磊晶層之厚度會過厚,除了應用上的不便,其製備所需的時間太長,不易於大量生產。 However, the conventional technique of growing the epitaxial layer is more than the epitaxial growth of the epitaxial layer on the germanium substrate. The growth time required for this method is long, and the surface roughness of the epitaxial layer is large and easy. If the elliptical layer is damaged by the gradual change of the component, and the desired strain relaxation effect is required, the thickness of the epitaxial layer to be formed may be too thick, in addition to the inconvenience of application. The time required for its preparation is too long to be easily produced in large quantities.

因此,目前亟需一種成本低,步驟簡單,且可製備出100nm以下厚度之矽鍺磊晶層之製備方法,以改善傳統矽鍺磊晶成長時間過久以及磊晶層表面粗糙之缺點,以提高矽鍺磊晶於電子元件或光電元件中之可應用性。 Therefore, there is a need for a method for preparing a germanium epitaxial layer having a thickness of less than 100 nm, which is low in cost and simple in steps, so as to improve the long-term growth time of the conventional germanium epitaxial crystal and the surface roughness of the epitaxial layer. Improve the applicability of germanium epitaxial in electronic components or optoelectronic components.

本發明提供了一種具有矽鍺磊晶層之基板之製造方法,所形成之矽鍺磊晶層具有緻密、低缺陷、厚度薄等特點,且製程簡單,可應用於高載子遷移路之電晶體、金氧半電晶體、三五族半導體之光電元件用之初始材料。 The invention provides a method for manufacturing a substrate with a germanium epitaxial layer. The formed germanium epitaxial layer has the characteristics of compactness, low defect, thin thickness, and the like, and the process is simple, and can be applied to the high carrier migration path. A starting material for a photovoltaic element of a crystal, a gold oxide semi-transistor, or a tri-five semiconductor.

本發明之目的係在於提供一種具有矽鍺磊晶層之基板之製造方法,該製造方法包括:(A)提供一第一基板,該第一基板係包括一矽鍺磊晶層以及一矽層,其中,該矽鍺磊晶層矽形成於該矽層上;提供一第二基板,該第二基板係與該第一基板之該矽鍺磊晶層直接接觸;(B)進行一電化學反應,使該第一基板之矽層轉換為一多孔性矽層;以及(C)移除該多孔性矽層。 The object of the present invention is to provide a method for manufacturing a substrate having a germanium epitaxial layer, the method comprising: (A) providing a first substrate, the first substrate comprising a germanium epitaxial layer and a germanium layer Wherein the germanium epitaxial layer is formed on the germanium layer; a second substrate is provided, the second substrate is in direct contact with the germanium epitaxial layer of the first substrate; (B) performing an electrochemical Reacting to convert the ruthenium layer of the first substrate into a porous ruthenium layer; and (C) removing the porous ruthenium layer.

根據本發明之一實施態樣,於步驟(A)中,更包括一步驟(A1)加熱該第一基板以及該第二基板,使該第一基板之該矽鍺磊晶層與該第二基板接合。其中,於步驟(A1)中,該加熱之溫度係於300℃以上,較佳為300℃至700℃。 According to an embodiment of the present invention, in the step (A), the method further includes a step (A1) of heating the first substrate and the second substrate to make the germanium epitaxial layer of the first substrate and the second The substrate is bonded. Wherein, in the step (A1), the heating temperature is 300 ° C or higher, preferably 300 ° C to 700 ° C.

根據本發明所提供之一種具有矽鍺磊晶層之基板之製造方法中,於步驟(A)中之該第一基板為經摻雜之矽層,並以經IIIA族或VA族元素摻雜之矽層為較佳,其中又以經硼、鋁、鎵等元素摻雜之矽層為更佳。另外,於步驟(A)中,該矽鍺磊晶層為Si1-XGeX,其中,0<X<1,較佳為0<X≦0.5,且該矽鍺磊晶層之厚度為200nm或以下,較佳為50nm至200nm。 In the method for manufacturing a substrate having a germanium epitaxial layer according to the present invention, the first substrate in the step (A) is a doped germanium layer and is doped with a group IIIA or VA element. The ruthenium layer is preferably further, and the ruthenium layer doped with an element such as boron, aluminum or gallium is more preferable. In addition, in the step (A), the germanium epitaxial layer is Si 1-X Ge X , wherein 0<X<1, preferably 0<X≦0.5, and the thickness of the germanium epitaxial layer is 200 nm or less, preferably 50 nm to 200 nm.

根據本發明所提供之一種具有矽鍺磊晶層之基板之製造方法,於步驟(A)中,該第二基板係選自由矽基板、玻璃基板、金屬基板、陶瓷基板、塑膠基板所組成之群組,然而本發明不受限於此,且根據本發明之一較佳實施態樣,該第二基板可更包括至少一選自由一氧化矽層(SiO2)以及一氮化矽層(Si3N4)所組成之群組於該第二基板之至少一表面上,且於步驟(A)中,該氧化矽層或該氮化矽層係與該第一基板中之該矽鍺磊晶層直接接觸。 According to the method for manufacturing a substrate having a germanium epitaxial layer according to the present invention, in the step (A), the second substrate is selected from the group consisting of a germanium substrate, a glass substrate, a metal substrate, a ceramic substrate, and a plastic substrate. The present invention is not limited thereto, and according to a preferred embodiment of the present invention, the second substrate may further comprise at least one selected from the group consisting of a hafnium oxide layer (SiO 2 ) and a tantalum nitride layer ( a group consisting of Si 3 N 4 ) on at least one surface of the second substrate, and in the step (A), the yttrium oxide layer or the tantalum nitride layer and the lanthanum in the first substrate The epitaxial layer is in direct contact.

根據本發明所提供之一種具有矽鍺磊晶層之基板之製造方法,於步驟(B)中,該電化學反應為陽極氧化反應,其中,陽極氧化反應係於氫氟酸及乙醇混合溶液中,施以5伏特至100伏特之電壓以進行反應,且反應時間約為0.1-10小時。且該第一基板之矽層經由陽極氧化反應後轉換 為一多孔性矽層,該多孔性矽層之孔洞直徑為10nm至1000nm之間,較佳為20nm至100nm(請提供一較佳範圍)之間。 According to the invention, there is provided a method for manufacturing a substrate having a germanium epitaxial layer. In the step (B), the electrochemical reaction is an anodizing reaction, wherein the anodizing reaction is in a mixed solution of hydrofluoric acid and ethanol. The reaction is carried out at a voltage of 5 volts to 100 volts, and the reaction time is about 0.1 to 10 hours. And the ruthenium layer of the first substrate is converted by anodization reaction In the case of a porous tantalum layer, the pores of the porous tantalum layer have a diameter of between 10 nm and 1000 nm, preferably between 20 nm and 100 nm (please provide a preferred range).

再者,於步驟(C)中,係使用一鹼性蝕刻液移除該多孔性矽層,以顯露該第一基板之該矽鍺磊晶層,其中,該鹼性蝕刻液係至少一選自由氫氧化四甲基胺(Tetramethylammonium hydroxide,TMAH)、氫氧化鈉(NaOH)、以及氫氧化鉀(KOH)所組成之群組,其中以氫氧化四甲基胺為較佳。該鹼性蝕刻液之濃度為0.000001至1M,較佳為0.001至0.01M。該鹼性蝕刻液可選擇性地移除該多孔性矽層,將該多孔性矽層移除後,所完成之具有矽鍺磊晶層之基板係包括一第二基板以及一矽鍺磊晶層,或者,當該第二基板更包括一氧化矽層或一氮化矽層的情況下,所完成之具有矽鍺磊晶層之基板中,該矽鍺磊晶層係形成於該氧化矽層或氮化矽層上,然而,目前成長矽鍺磊晶層之技術,多於矽基板上成長矽鍺磊晶層,故根據本發明所提供之具有矽鍺磊晶層之基板之製造方法,可形成一於絕緣層上具有矽鍺磊晶層之基板。 Further, in the step (C), the porous tantalum layer is removed using an alkaline etching solution to expose the tantalum epitaxial layer of the first substrate, wherein the alkaline etching liquid is at least selected A group consisting of Tetramethylammonium hydroxide (TMAH), sodium hydroxide (NaOH), and potassium hydroxide (KOH), of which tetramethylammonium hydroxide is preferred. The alkaline etching solution has a concentration of 0.000001 to 1 M, preferably 0.001 to 0.01 M. The alkaline etching solution selectively removes the porous germanium layer, and after the porous germanium layer is removed, the completed substrate having the germanium epitaxial layer includes a second substrate and a germanium epitaxial layer a layer, or, in the case where the second substrate further comprises a tantalum oxide layer or a tantalum nitride layer, in the substrate having the tantalum epitaxial layer, the tantalum epitaxial layer is formed on the tantalum oxide layer On the layer or the tantalum nitride layer, however, the current technology for growing the germanium epitaxial layer is more than the germanium epitaxial layer grown on the germanium substrate, so the method for manufacturing the substrate having the germanium epitaxial layer according to the present invention A substrate having a germanium epitaxial layer on the insulating layer can be formed.

根據本發明所提供之一種具有矽鍺磊晶層之基板之製造方法中,可更包括一步驟(D)氧化該矽鍺磊晶層,以形成一矽氧化層於該矽鍺磊晶層上。步驟(D)之氧化過程可改變該矽鍺磊晶層中矽與鍺之間之組成比例,以提高鍺於矽鍺磊晶層之含量,氧化後之該矽鍺磊晶層為Si1-YGeY,其中Y係大於X,且Y之範圍為0<Y≦1,較佳之範圍為0.5<Y≦1且氧化過程可於該矽鍺磊晶層上形成一矽氧化層,該氧 化層可作為元件中之絕緣層或保護層,並可同時薄化該矽鍺磊晶層,減少該矽鍺磊晶層之厚度,從而製備出具有理想的應變鬆弛效果且厚度薄之矽鍺磊晶層。 According to the method for fabricating a substrate having a germanium epitaxial layer, the method further includes a step (D) of oxidizing the germanium epitaxial layer to form a germanium oxide layer on the germanium epitaxial layer. . The oxidation process of the step (D) may change the composition ratio between the tantalum and the tantalum in the tantalum epitaxial layer to increase the content of the tantalum epitaxial layer, and the tantalum epitaxial layer after the oxidation is Si 1- Y Ge Y , wherein Y is greater than X, and Y is in the range of 0 < Y ≦ 1, preferably in the range of 0.5 < Y ≦ 1 and an oxidation process can form a ruthenium oxide layer on the ruthenium epitaxial layer, the oxidation The layer can be used as an insulating layer or a protective layer in the device, and the epitaxial layer can be thinned at the same time, and the thickness of the epitaxial layer can be reduced, thereby preparing a thin strain with an ideal strain relaxation effect. Crystal layer.

根據本發明,矽鍺磊晶層中之矽與鍺之間之組成比例,可藉由步驟(D)中所記載之氧化程序而調控,隨著氧化之程度,矽鍺磊晶層中的矽含量逐漸減少,而鍺的含量則逐漸提高,提高鍺含量後,具有高鍺含量之矽鍺磊晶層可具有較窄的能隙寬度以及較大的吸收係數,對於高聚光型太陽能電池等應用,可大幅提高其操作性能。因此,本發明所提供之一種具有矽鍺磊晶層之基板之製造方法,可藉由控制該矽鍺磊晶層氧化的程度,而改變該矽鍺磊晶層之特性(如能隙寬度以及電子/電洞之移動速率等)。此外,本發明所記載之製造方法簡單,可降低成本以及製備的時間,提供高品質之矽鍺磊晶晶片,從而可大幅增加其應用領域。 According to the present invention, the composition ratio between ruthenium and iridium in the ruthenium epitaxial layer can be controlled by the oxidation procedure described in the step (D), and the ruthenium in the ruthenium epitaxial layer with the degree of oxidation The content is gradually reduced, and the content of antimony is gradually increased. After increasing the antimony content, the epitaxial layer having a high antimony content can have a narrow energy gap width and a large absorption coefficient. For applications such as high concentration solar cells, Can greatly improve its operational performance. Therefore, the method for fabricating a substrate having a germanium epitaxial layer provided by the present invention can change the characteristics of the germanium epitaxial layer (such as the energy gap width) by controlling the degree of oxidation of the germanium epitaxial layer. The movement rate of the electron/hole, etc.). In addition, the manufacturing method described in the present invention is simple, and the cost and the time of preparation can be reduced, and a high-quality germanium epitaxial wafer can be provided, thereby greatly increasing the field of application thereof.

11‧‧‧第一基板 11‧‧‧First substrate

13‧‧‧第二基板 13‧‧‧second substrate

121‧‧‧矽層 121‧‧‧矽

141,142‧‧‧矽鍺磊晶層 141, 142‧‧‧矽锗 矽锗 layer

16‧‧‧氧化矽層 16‧‧‧Oxide layer

18‧‧‧矽基板 18‧‧‧矽 substrate

122‧‧‧多孔性矽層 122‧‧‧Porous layer

22‧‧‧氧化層 22‧‧‧Oxide layer

10,20‧‧‧基板 10,20‧‧‧substrate

圖1係本發明一較佳實施例之第一基板以及第二基板之結構剖面圖。 1 is a cross-sectional view showing the structure of a first substrate and a second substrate in accordance with a preferred embodiment of the present invention.

圖2係本發明一較佳實施例中,將第一基板以及第二基板彼此接合之剖面示意圖。 2 is a schematic cross-sectional view showing a first substrate and a second substrate joined to each other in a preferred embodiment of the present invention.

圖3係本發明一較佳實施例中,對於經硼摻雜之矽層進行陽極氧化反應,使矽層轉變為多孔性矽層之結構剖視 圖。 3 is a cross-sectional view showing a structure in which a boron-doped germanium layer is anodized to convert a germanium layer into a porous germanium layer in a preferred embodiment of the present invention. Figure.

圖4係本發明一較佳實施例中,使用鹼性蝕刻液移除多孔性矽層之結構剖視圖。 Figure 4 is a cross-sectional view showing the structure of the porous crucible layer removed using an alkaline etching solution in a preferred embodiment of the present invention.

圖5係本發明另一較佳實施例中,氧化基板中之矽鍺磊晶層之結構剖視圖。 Figure 5 is a cross-sectional view showing the structure of a germanium epitaxial layer in an oxidized substrate in another preferred embodiment of the present invention.

在下文中,將提供實施例以詳細說明本發明之實施態樣。本發明之其他優點以及功效將藉由本發明所揭露之內容而更為顯著。應當注意的是,該些隨附圖式為簡化之圖式,圖式中所示之組件、形狀、以及大小可根據實際條件而進行修改。本發明中也可進行其他方面之實踐或應用,且不背離本發明所定義之精神與範疇之條件下,可進行各種變化以及調整。 In the following, examples will be provided to explain in detail embodiments of the invention. Other advantages and utilities of the present invention will be more apparent from the teachings of the present invention. It should be noted that the drawings are simplified in the drawings, and the components, shapes, and sizes shown in the drawings may be modified according to actual conditions. Other variations and modifications can be made without departing from the spirit and scope of the invention as defined in the invention.

[實施例1] [Example 1]

圖1-4為根據本發明之一實施態樣中,一具有矽鍺磊晶層之基板之製造方法。如圖4所示,該基板10係包括矽基板18、形成於矽基板18上之氧化矽層16、以及形成於氧化矽層16上之矽鍺磊晶層141。 1-4 are diagrams showing a method of fabricating a substrate having a germanium epitaxial layer in accordance with an embodiment of the present invention. As shown in FIG. 4, the substrate 10 includes a tantalum substrate 18, a tantalum oxide layer 16 formed on the tantalum substrate 18, and a tantalum epitaxial layer 141 formed on the tantalum oxide layer 16.

圖1為第一基板11以及第二基板13之結構剖面圖,其中,該第一基板11係包括矽層121以及矽鍺磊晶層141,圖中所示之矽層121矽具有625μm之厚度,且為經硼摻雜之矽所組成。然而,矽層121之厚度以及其摻雜物並不受限於此,可為厚度為200μm至1000μm之經IIIA 族或VA族(如硼、鋁、鎵等)摻雜之矽層。另外,圖中所示之矽鍺磊晶層141為Si0.8Ge0.2,且具有120nm之厚度,然而於其他實施態樣中,矽鍺磊晶層141中,矽與鍺之間之含量比例並不受限於此,且矽鍺磊晶層141之厚度可為20nm至200nm。第二基板13係包括氧化矽層16以及矽基板18,圖中所示之氧化矽層16係形成於矽基板18之一表面上,且氧化矽層16之厚度為200nm。然而,於本發明之其他實施態樣中,矽基板18可為其他材料所組成之基板,如玻璃基板、金屬基板、陶瓷基板、塑膠基板等皆可使用,且氧化矽層16在某些態樣下可被省略,或可使用氮化矽層。 1 is a cross-sectional view showing a structure of a first substrate 11 and a second substrate 13, wherein the first substrate 11 includes a germanium layer 121 and a germanium epitaxial layer 141, and the germanium layer 121 shown in the drawing has a thickness of 625 μm. And consists of boron-doped ruthenium. However, the thickness of the germanium layer 121 and its dopant are not limited thereto, and may be a layer of IIIA or VA (such as boron, aluminum, gallium, etc.) doped with a thickness of 200 μm to 1000 μm. In addition, the germanium epitaxial layer 141 shown in the figure is Si 0.8 Ge 0.2 and has a thickness of 120 nm. However, in other embodiments, the germanium epitaxial layer 141 has a ratio of germanium to germanium. Without being limited thereto, the thickness of the germanium epitaxial layer 141 may be 20 nm to 200 nm. The second substrate 13 includes a tantalum oxide layer 16 and a tantalum substrate 18, and the tantalum oxide layer 16 is formed on one surface of the tantalum substrate 18, and the tantalum oxide layer 16 has a thickness of 200 nm. However, in other embodiments of the present invention, the germanium substrate 18 may be a substrate composed of other materials, such as a glass substrate, a metal substrate, a ceramic substrate, a plastic substrate, etc., and the germanium oxide layer 16 may be in some states. The sample may be omitted or a tantalum nitride layer may be used.

圖2係將第一基板11以及第二基板13彼此接合之剖面示意圖,其中,矽鍺磊晶層141與氧化矽層16直接接觸,並於氮氣氣氛下以及300℃的溫度條件下退火6小時,使矽鍺磊晶層141與氧化矽層16接合。然而,於本發明之其他實施態樣中,可經由加壓的方式使得矽鍺磊晶層141與氧化矽層16彼此接合。 2 is a schematic cross-sectional view showing the first substrate 11 and the second substrate 13 joined to each other, wherein the germanium epitaxial layer 141 is in direct contact with the tantalum oxide layer 16 and annealed under a nitrogen atmosphere at a temperature of 300 ° C for 6 hours. The germanium epitaxial layer 141 is bonded to the hafnium oxide layer 16. However, in other embodiments of the invention, the tantalum epitaxial layer 141 and the hafnium oxide layer 16 may be bonded to each other via a pressurized manner.

圖3係對於經硼摻雜之矽層121進行陽極氧化反應,使矽層121轉變為多孔性矽層122之結構剖視圖。於本實施例中,陽極氧化反應係將矽層121浸泡於體積比4:1之49%氫氟酸與乙醇混合溶液中,並施以40伏特的電壓,反應時間為8小時。 3 is a cross-sectional view showing the structure in which the boron-doped tantalum layer 121 is anodized to convert the tantalum layer 121 into the porous tantalum layer 122. In the present embodiment, the anodizing reaction was performed by immersing the ruthenium layer 121 in a mixed solution of 49% hydrofluoric acid and ethanol in a volume ratio of 4:1, and applying a voltage of 40 volts for a reaction time of 8 hours.

圖4係使用鹼性蝕刻液移除多孔性矽層122之結構剖視圖。於此實施態樣中,所使用之鹼性蝕刻液為氫氧化四甲基胺(TMAH),可選擇性地蝕刻多孔性矽層122以 顯露矽鍺磊晶層141。如圖4所示,本實施態樣所完成之具有矽鍺磊晶層之基板10係包括矽基板18、形成於矽基板18上之氧化矽層16、以及形成於氧化矽層16上之矽鍺磊晶層141。 4 is a cross-sectional view showing the structure in which the porous tantalum layer 122 is removed using an alkaline etching solution. In this embodiment, the alkaline etching solution used is tetramethylammonium hydroxide (TMAH), and the porous germanium layer 122 can be selectively etched. The germanium epitaxial layer 141 is exposed. As shown in FIG. 4, the substrate 10 having a germanium epitaxial layer completed in this embodiment includes a germanium substrate 18, a tantalum oxide layer 16 formed on the germanium substrate 18, and a germanium layer formed on the tantalum oxide layer 16.锗 晶 layer 141.

[實施例2] [Embodiment 2]

圖5係根據本發明之一實施態樣中,另一具有矽鍺磊晶層之基板之製造方法。如圖5所示,該基板20係包括矽基板18、形成於矽基板18上之氧化矽層16、形成於氧化矽層16上之矽鍺磊晶層142、以及形成於矽鍺磊晶層142上之氧化層22。圖5中所示出具有矽鍺磊晶層之基板20係經由氧化由圖4所示之基板10中之矽鍺磊晶層141而形成,於本實施例中,氧化的步驟係於900℃之純氧氣氣氛下退火10小時。圖4中所示之矽鍺磊晶層141於氧化程序中,矽與鍺之含量比例會隨著氧化的程度而改變,其中,鍺的含量會逐漸提高,且其厚度會逐漸減小,以形成圖5中所示之矽鍺磊晶層142。圖中所示之矽鍺磊晶層142之組成為Si1-yGey,其中y>0.5,且具有80nm以下之厚度,然而於其他實施態樣中,矽鍺磊晶層142中,矽與鍺之間之含量比例並不受限於此,且矽鍺磊晶層141之厚度可為20nm至200nm。圖中所示之氧化層22為矽氧化物,厚度為200nm,然而於其他實施態樣中,氧化物層22之厚度可為50nm至200nm。 Figure 5 is a diagram showing a method of fabricating another substrate having a germanium epitaxial layer in accordance with an embodiment of the present invention. As shown in FIG. 5, the substrate 20 includes a germanium substrate 18, a tantalum oxide layer 16 formed on the germanium substrate 18, a germanium epitaxial layer 142 formed on the tantalum oxide layer 16, and an epitaxial layer formed on the tantalum layer. Oxide layer 22 on 142. The substrate 20 having the germanium epitaxial layer shown in FIG. 5 is formed by oxidizing the germanium epitaxial layer 141 in the substrate 10 shown in FIG. 4. In the present embodiment, the oxidation step is performed at 900 ° C. Annealed for 10 hours in a pure oxygen atmosphere. In the oxidation process, the ratio of germanium to germanium in the germanium epitaxial layer 141 shown in FIG. 4 varies with the degree of oxidation, wherein the germanium content is gradually increased, and the thickness thereof is gradually decreased to The tantalum epitaxial layer 142 shown in FIG. 5 is formed. The composition of the germanium epitaxial layer 142 shown in the figure is Si 1-y Ge y , where y>0.5 and has a thickness of 80 nm or less. However, in other embodiments, the germanium epitaxial layer 142 is germanium. The content ratio with ruthenium is not limited thereto, and the thickness of the ruthenium epitaxial layer 141 may be 20 nm to 200 nm. The oxide layer 22 shown in the drawing is a tantalum oxide having a thickness of 200 nm, whereas in other embodiments, the oxide layer 22 may have a thickness of 50 nm to 200 nm.

上述實施例僅係為了方便說明而舉例而已,本發明所主張之權利範圍自應以申請專利範圍所述為準,而 非僅限於上述實施例。 The above embodiments are merely examples for the convenience of the description, and the scope of the claims should be based on the scope of the patent application, and It is not limited to the above embodiment.

11‧‧‧第一基板 11‧‧‧First substrate

13‧‧‧第二基板 13‧‧‧second substrate

121‧‧‧矽層 121‧‧‧矽

141,142‧‧‧矽鍺磊晶層 141, 142‧‧‧矽锗 矽锗 layer

16‧‧‧氧化矽層 16‧‧‧Oxide layer

18‧‧‧矽基板 18‧‧‧矽 substrate

122‧‧‧多孔性矽層 122‧‧‧Porous layer

22‧‧‧氧化層 22‧‧‧Oxide layer

10,20‧‧‧基板 10,20‧‧‧substrate

Claims (15)

一種具有矽鍺磊晶之基板之製造方法,包括:(A)提供一第一基板,該第一基板係包括一矽鍺磊晶層以及一矽層,其中,該矽鍺磊晶層係形成於該矽層上;提供一第二基板,將該第二基板與該第一基板之該矽鍺磊晶層直接接觸;(B)進行一電化學反應,使該第一基板之該矽層轉換為一多孔性矽層;以及(C)移除該多孔性矽層。 A method for manufacturing a substrate having germanium epitaxial crystals, comprising: (A) providing a first substrate, the first substrate comprising a germanium epitaxial layer and a germanium layer, wherein the germanium epitaxial layer is formed Providing a second substrate, the second substrate is in direct contact with the germanium epitaxial layer of the first substrate; (B) performing an electrochemical reaction to make the germanium layer of the first substrate Converting to a porous layer; and (C) removing the porous layer. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,更包括一步驟(A1)加熱該第一基板以及該第二基板,使該第一基板之該矽鍺磊晶層與該第二基板接合。 The method of claim 1, wherein the step (A) further comprises a step (A1) of heating the first substrate and the second substrate to cause the germanium epitaxial layer of the first substrate Bonded to the second substrate. 如申請專利範圍第2項所述之方法,其中,步驟(A1)中,該加熱之溫度係300℃至700℃。 The method of claim 2, wherein in the step (A1), the heating temperature is from 300 ° C to 700 ° C. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,該第一基板之該矽層為經摻雜之矽層。 The method of claim 1, wherein in the step (A), the ruthenium layer of the first substrate is a doped ruthenium layer. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,該第一基板之該矽層為經IIIA族或VA族摻雜之矽層。 The method of claim 1, wherein in the step (A), the ruthenium layer of the first substrate is a ruthenium layer doped with a group IIIA or VA group. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,該第一基板之該矽層為經硼、鋁、鎵、磷、或砷摻雜之矽層。 The method of claim 1, wherein in the step (A), the ruthenium layer of the first substrate is a ruthenium layer doped with boron, aluminum, gallium, phosphorus or arsenic. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,該矽鍺磊晶層為Si1-XGeX,其中,0<X<1。 The method of claim 1, wherein in the step (A), the germanium epitaxial layer is Si 1-X Ge X , wherein 0 < X < 1. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,該矽鍺磊晶層之厚度為50nm至200nm。 The method of claim 1, wherein in the step (A), the bismuth epitaxial layer has a thickness of 50 nm to 200 nm. 如申請專利範圍第1項所述之方法,其中,步驟(A)中,於該第二基板之至少一表面上更層疊有至少一選自由一氧化矽層或一氮化矽層所組成之群組,且該氧化矽層或該氮化矽層係與該矽鍺磊晶層直接接觸。 The method of claim 1, wherein in the step (A), at least one surface of the second substrate is further laminated with at least one layer selected from the group consisting of a hafnium oxide layer or a tantalum nitride layer. And the yttrium oxide layer or the tantalum nitride layer is in direct contact with the bismuth epitaxial layer. 如申請專利範圍第1項所述之方法,其中,步驟(B)中,該電化學反應為陽極氧化反應。 The method of claim 1, wherein in the step (B), the electrochemical reaction is anodization. 如申請專利範圍第1項所述之方法,其中,步驟(B)中,該多孔性矽層之孔洞直徑為10nm至1000nm之間。 The method of claim 1, wherein in the step (B), the porous germanium layer has a pore diameter of between 10 nm and 1000 nm. 如申請專利範圍第1項所述之方法,其中,步驟(C)中,係使用一鹼性蝕刻液移除該多孔性矽層。 The method of claim 1, wherein in the step (C), the porous tantalum layer is removed using an alkaline etching solution. 如申請專利範圍第12項所述之方法,其中,步驟(C)中,該鹼性蝕刻液係至少一選自由氫氧化四甲基胺、氫氧化鈉、以及氫氧化鉀所組成之群組。 The method of claim 12, wherein in the step (C), the alkaline etching solution is at least one selected from the group consisting of tetramethylammonium hydroxide, sodium hydroxide, and potassium hydroxide. . 如申請專利範圍第1項所述之方法,其中,更包括一步驟(D)氧化該矽鍺磊晶層,以形成一氧化層於該矽鍺磊晶層上。 The method of claim 1, further comprising the step (D) of oxidizing the bismuth epitaxial layer to form an oxide layer on the bismuth epitaxial layer. 如申請專利範圍第14項所述之方法,其中,於步驟(D)後,該矽鍺磊晶層之厚度為20nm至200nm。 The method of claim 14, wherein after the step (D), the bismuth epitaxial layer has a thickness of 20 nm to 200 nm.
TW102131816A 2013-09-04 2013-09-04 Manufacturing method for forming substrate with silicon-germanium epitaxial layer TWI515772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131816A TWI515772B (en) 2013-09-04 2013-09-04 Manufacturing method for forming substrate with silicon-germanium epitaxial layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131816A TWI515772B (en) 2013-09-04 2013-09-04 Manufacturing method for forming substrate with silicon-germanium epitaxial layer

Publications (2)

Publication Number Publication Date
TW201511087A TW201511087A (en) 2015-03-16
TWI515772B true TWI515772B (en) 2016-01-01

Family

ID=53186819

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131816A TWI515772B (en) 2013-09-04 2013-09-04 Manufacturing method for forming substrate with silicon-germanium epitaxial layer

Country Status (1)

Country Link
TW (1) TWI515772B (en)

Also Published As

Publication number Publication date
TW201511087A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
Werner et al. From polycrystalline to single crystalline silicon on glass
KR100403690B1 (en) How to separate device forming layer from gas
JP2008505482A5 (en)
EP0663688A2 (en) Semiconductor substrate and process for producing same
JP5089383B2 (en) Strained silicon-on-insulator by anodic oxidation of buried p + silicon-germanium layer
JP5730393B2 (en) Composite substrate and manufacturing method thereof
US7914619B2 (en) Thick epitaxial silicon by grain reorientation annealing and applications thereof
JP6525554B2 (en) CMOS device including substrate structure
CN101599466A (en) Graph substrate that a kind of epitaxial growth is used and preparation method thereof
CN111341839A (en) P-type nitrogen-doped gallium oxide film and preparation method thereof
CN100429761C (en) Formation of a silicon germanium-on-insulator structure by oxidation of a buried porous silicon layer
CN101728249B (en) Method for preparing single crystal transition layer of epitaxial compound semiconductor material on silicon chip
CN111312852B (en) Gallium oxide semiconductor structure, solar blind photoelectric detector and preparation method
JP2005064246A (en) Photoelectric conversion element and manufacturing method thereof, and solar cell
TWI515772B (en) Manufacturing method for forming substrate with silicon-germanium epitaxial layer
US20070111468A1 (en) Method for fabricating dislocation-free stressed thin films
US9484487B2 (en) Method for fabricating thin photovoltaic cells
JP3297600B2 (en) Manufacturing method of semiconductor substrate
CN111755576A (en) Amorphous gallium oxide etching method and application in three-terminal device and array imaging system
CN103700578B (en) A kind of manufacture method of germanium silicon nanowires laminated construction
CN104701360A (en) High concentration N type doping thin germanium material on insulating layer and manufacture method thereof
Martini et al. Improvement of seed layer smoothness for epitaxial growth on porous silicon
CN113707560A (en) Method for improving electrical contact of two-dimensional transition metal chalcogenide by inserting two-dimensional semiconductor indium selenide nanosheets
CN103700582A (en) Manufacturing method of germanium nano wire laminated structure
JP4003546B2 (en) Method for manufacturing SOI substrate and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees