TWI514742B - Power controllers and related control methods - Google Patents

Power controllers and related control methods Download PDF

Info

Publication number
TWI514742B
TWI514742B TW103124356A TW103124356A TWI514742B TW I514742 B TWI514742 B TW I514742B TW 103124356 A TW103124356 A TW 103124356A TW 103124356 A TW103124356 A TW 103124356A TW I514742 B TWI514742 B TW I514742B
Authority
TW
Taiwan
Prior art keywords
time
oscillating
signal
switching
valley
Prior art date
Application number
TW103124356A
Other languages
Chinese (zh)
Other versions
TW201605161A (en
Inventor
Yi Lun Shen
Yu Yun Huang
Original Assignee
Grenergy Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Grenergy Opto Inc filed Critical Grenergy Opto Inc
Priority to TW103124356A priority Critical patent/TWI514742B/en
Application granted granted Critical
Publication of TWI514742B publication Critical patent/TWI514742B/en
Publication of TW201605161A publication Critical patent/TW201605161A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Description

電源控制器以及相關之控制方法Power controller and related control methods

本發明之實施例係相關於開關式電源供應器(switched mode power supply)。Embodiments of the invention are related to a switched mode power supply.

開關式電源供應器一般採用一功率開關來控制流經一電感元件之一電流。跟其他一般電源供應器相較之下,開關式電源供應器具有較小的產品體積以及較優越的轉換效率,所以廣受業界的歡迎與採用。Switched power supplies typically employ a power switch to control the flow of current through an inductive component. Compared with other general power supplies, the switch power supply has a small product volume and superior conversion efficiency, so it is widely welcomed and adopted by the industry.

在眾多中開關式電源供應器中,有一種操作於準諧振(quasi-resonance,QR)模式,稱為QR開關式電源供應器。QR開關式電源供應器可以使一功率開關,於其跨壓大致在最低時,從一關閉狀態,而變成導通狀態,所以理論上能降低該功率開關的開關損耗(switching loss)。因此,QR開關式電源供應器的轉換效率,尤其是重載時,一般是相當優秀的。Among the many switch-mode power supplies, one operates in a quasi-resonance (QR) mode called a QR switching power supply. The QR switching power supply can make a power switch to change from a closed state to a conducting state when its voltage across the bridge is substantially at a minimum, so theoretically, the switching loss of the power switch can be reduced. Therefore, the conversion efficiency of the QR switching power supply, especially at heavy loads, is generally quite excellent.

第1圖顯示一習知的QR開關式電源供應器10,其中變壓器為一電感元件,具有相電感耦合的一次側繞組PRM、二次側繞組SEC以及一輔助繞組AUX。QR開關式電源供應器10由輸入電壓VIN 所供電,提供負載24一輸出電壓VOUT 以及一輸出電流IOUT 。QR控制器26產生脈波寬度調變(PWM)信號VGATE ,透過驅動端GATE,來週期性的開關功率開關34。透過 分壓電阻28與30,QR控制器26偵測輔助繞組AUX的跨壓VAUX 。第2圖顯示第1圖中的PWM信號VGATE 以及跨壓VAUX 。在第2圖中,PWM信號VGATE 的兩個上升緣之間為一個開關週期,其間的時間稱為週期時間TCYC ,其由一個開啟時間TON 與一個關閉時間TOFF 所構成。開啟時間TON 是功率開關34在一週期時間TCYC 內的持續維持開啟的時間長度,也是PWM信號VGATE 中的脈波寬度。如同第2圖所示,在關閉時間TOFF 的後半部,因為電感元件放電完畢,跨壓VAUX 開始震盪而有兩個信號波谷VL1 與VL2 。QR控制器26可使週期時間TCYC 大約結束於信號波谷VL2 出現時。這樣在信號波谷出現時使週期時間TCYC 結束的控制方式,一般稱為波谷切換(valley switching)。1 shows a conventional QR switching power supply 10 in which the transformer is an inductive component having a phase inductively coupled primary side winding PRM, a secondary side winding SEC, and an auxiliary winding AUX. The QR switching power supply 10 is powered by the input voltage V IN , providing a load 24 - an output voltage V OUT and an output current I OUT . The QR controller 26 generates a pulse width modulation (PWM) signal V GATE that periodically switches the power switch 34 through the drive terminal GATE. Through the voltage dividing resistors 28 and 30, the QR controller 26 detects the voltage across the auxiliary winding AUX V AUX . Figure 2 shows the PWM signal V GATE and the voltage across V AUX in Figure 1. In Fig. 2, there is a switching period between the two rising edges of the PWM signal V GATE , and the time in between is called the cycle time T CYC , which is composed of an on time T ON and a off time T OFF . The turn-on time T ON is the length of time that the power switch 34 remains on for a period of time T CYC and is also the pulse width in the PWM signal V GATE . As shown in FIG. 2, the off time T OFF of the rear half, as the inductance element discharged, cross voltage V AUX signals begin to oscillate while two trough VL 1 and VL 2. The QR controller 26 can cause the cycle time T CYC to end approximately when the signal valley VL 2 occurs. Thus, the control method that ends the cycle time T CYC when the signal trough occurs is generally referred to as valley switching.

QR開關式電源供應器10中,位於補償端COMP,有一補償信號VCOMP ,其受控於運算放大器20,而運算放大器20比較輸出電壓VOUT 與目標電壓VTAR 之間的差異。習知的QR控制器26中,補償信號VCOMP 大致同時決定了開啟時間TON 以及遮蔽時間TBLOCK 。在遮蔽時間TBLOCK 結束之後,QR控制器26才允許結束週期時間TCYC ,以避免過早的波谷切換,導致開關頻率fCYC (=1/TCYC )過高而降低了轉換效率。所以,遮蔽時間TBLOCK 等於定義了最大開關頻率fCYC-MAX (=1/TBLOCK )。In the QR switching power supply 10, at the compensation terminal COMP, there is a compensation signal V COMP controlled by the operational amplifier 20, and the operational amplifier 20 compares the difference between the output voltage V OUT and the target voltage V TAR . In the conventional QR controller 26, the compensation signal V COMP substantially simultaneously determines the on time T ON and the mask time T BLOCK . After the end of the masking time T BLOCK , the QR controller 26 allows the end of the cycle time T CYC to avoid premature valley switching, resulting in a switching frequency f CYC (=1/T CYC ) that is too high and reduces conversion efficiency. Therefore, the masking time T BLOCK is equal to the defined maximum switching frequency f CYC-MAX (=1/T BLOCK ).

習知的QR開關式電源供應器10有兩個可能的問題。The conventional QR switching power supply 10 has two possible problems.

1.電磁波干擾難以解決。在一個固定負載24時,補償信號VCOMP 可能是固定的一個值,功率開關34在固定的一個信號波谷結束一週期時間TCYC ,這便意味著固定的一個開關頻率fCYC ,以及相當強烈的電磁波干擾。一種習知的解決方式是對於補償信號VCOMP 進行微小干擾,但是運算放大器20所提供的負回饋機制往往自動地把所提供的干擾抵銷,因此 成效不明顯。1. Electromagnetic wave interference is difficult to solve. At a fixed load 24, the compensation signal V COMP may be a fixed value, and the power switch 34 ends at a fixed signal valley for a cycle time T CYC , which means a fixed switching frequency f CYC and a fairly strong Electromagnetic interference. One conventional solution is to make small interference to the compensation signal V COMP , but the negative feedback mechanism provided by the operational amplifier 20 tends to automatically offset the provided interference, so the effect is not obvious.

2.異音(audible noise)的出現。在一個固定的負載24時,補償信號VCOMP 可能震盪,使得QR控制器26一會兒在一個信號波谷進行波谷切換,而在另一會兒在另一個相鄰的信號波谷進行波谷切換。這樣波谷切換不穩定的結果,可能使得QR開關式電源供應器10產生擾人的異音。會產生異音的電源供應器,一般是很難讓市場接受的。2. The appearance of audible noise. At a fixed load 24, the compensation signal V COMP may oscillate such that the QR controller 26 performs valley switching in one signal valley at a time and valley switching in another adjacent signal valley at another. As a result of such unstable valley switching, the QR switching power supply 10 may cause disturbing abnormal sound. A power supply that produces an abnormal sound is generally difficult for the market to accept.

實施例揭示有一種電源控制器,適用於一開關式電源供應器。該開關式電源供應器包含有串聯在一起的一電感元件以及一功率開關。該電感元件之一跨壓可震盪而產生至少一信號波谷。該功率開關受一脈波寬度調變信號所控制。該脈波寬度調變信號具有一開啟時間以及一關閉時間。該電源控制器包含有一波谷偵測器、一遮蔽時間產生器、以及一關閉時間控制器。該波谷偵測器耦接至該電感元件,用以產生一波谷指示信號,以指出該至少一信號波谷出現的時間。該遮蔽時間產生器提供一遮蔽時間。該關閉時間控制器紀錄有一震盪時間紀錄,其代表一前震盪時間,關聯於一前開關週期;依據該震盪時間紀錄、該遮蔽時間以及該波谷指示信號,來結束該關閉時間;以及,依據一震盪時間,更新該震盪時間紀錄。該震盪時間係由該跨壓開始震盪後之一起點開始,而與該關閉時間一同結束。The embodiment discloses a power supply controller suitable for a switching power supply. The switched power supply includes an inductive component and a power switch connected in series. One of the inductive elements can be oscillated across the voltage to produce at least one signal valley. The power switch is controlled by a pulse width modulation signal. The pulse width modulation signal has an on time and a off time. The power controller includes a valley detector, a masking time generator, and a shutdown time controller. The valley detector is coupled to the inductive component for generating a valley indication signal to indicate a time at which the at least one signal trough occurs. The masking time generator provides a masking time. The shutdown time controller records a oscillating time record, which represents a front oscillating time, associated with a front switching period; the closing time is terminated according to the oscillating time record, the occlusion time, and the trough indication signal; and, according to The shock time is updated to update the shock time record. The oscillating time begins with one of the starting points after the sway begins to oscillate, and ends with the closing time.

實施例揭示有一種控制方法,適用於一電源供應器,其包含有一電感元件以及一功率開關。該功率開關受一脈波寬度調變信號所控制。該脈波寬度調變信號具有數個開關週期。每一開關週期的週期時間具 有一開啟時間以及一關閉時間。該電感元件之一跨壓可震盪而具有一震盪週期,並產生至少一信號波谷。該控制方法包含有:提供一震盪時間紀錄,其代表一前震盪時間,關聯於一前開關週期;於一開關週期內,依據該前震盪時間,控制該功率開關,使該關閉時間結束;以及,依據一震盪時間,更新該震盪時間紀錄。該震盪時間與該前震盪時間都從該跨壓開始震盪後之一起點開始,且該震盪時間與該關閉時間同時結束。該震盪時間與該前震盪時間之差,小於該震盪週期,以使該前開關週期與該開關週期其中之一操作於波谷切換,另一操作於非波谷切換。The embodiment discloses a control method suitable for a power supply comprising an inductive component and a power switch. The power switch is controlled by a pulse width modulation signal. The pulse width modulation signal has several switching periods. Cycle time per switching cycle There is an open time and a close time. One of the inductive elements can be oscillated across the voltage to have an oscillation period and generate at least one signal valley. The control method includes: providing an oscillating time record, which represents a front oscillating time, associated with a front switching period; and controlling the power switch to end the closing time according to the previous oscillating time during a switching period; According to a shock time, the shock time record is updated. The oscillating time and the previous oscillating time start from a starting point after the sway of the cross-pressure, and the oscillating time ends at the same time as the closing time. The difference between the oscillating time and the previous oscillating time is less than the oscillating period, so that one of the front switching period and the switching period operates in a valley switching, and the other operates in a non-valley switching.

10‧‧‧QR開關式電源供應器10‧‧‧QR Switching Power Supply

20‧‧‧運算放大器20‧‧‧Operational Amplifier

24‧‧‧負載24‧‧‧load

26‧‧‧QR控制器26‧‧‧QR controller

28、30‧‧‧分壓電阻28, 30‧‧ ‧ voltage divider resistor

34‧‧‧功率開關34‧‧‧Power switch

36‧‧‧電阻36‧‧‧resistance

80‧‧‧QR控制器80‧‧‧QR controller

82‧‧‧波谷偵測器82‧‧‧ Valley Detector

84‧‧‧放電時間偵測器84‧‧‧Discharge time detector

86‧‧‧輸出電流估算器86‧‧‧Output current estimator

88‧‧‧及閘88‧‧‧ and gate

90‧‧‧遮蔽時間產生器90‧‧‧Shading time generator

92‧‧‧頻率抖動器92‧‧‧ Frequency Jitter

94‧‧‧脈波寬度調變器94‧‧‧ Pulse width modulator

100‧‧‧CS峰值電壓偵測器100‧‧‧CS peak voltage detector

102‧‧‧電壓控制電流源102‧‧‧Voltage Control Current Source

104‧‧‧開關104‧‧‧ switch

190‧‧‧轉導器190‧‧‧Transducer

192‧‧‧電位轉換器192‧‧‧potentiometer

196‧‧‧更新電路196‧‧‧Update circuit

198‧‧‧收集電容198‧‧‧ collecting capacitor

199‧‧‧電容199‧‧‧ Capacitance

200‧‧‧電源控制器200‧‧‧Power Controller

300‧‧‧QR控制器300‧‧‧QR controller

302‧‧‧關閉時間控制器302‧‧‧Close time controller

304、305、306、308、310、312、314、315、316、318、320、322、324‧‧‧步驟304, 305, 306, 308, 310, 312, 314, 315, 316, 318, 320, 322, 324 ‧ ‧ steps

ACC‧‧‧收集端ACC‧‧‧ Collector

AUX‧‧‧輔助繞組AUX‧‧‧Auxiliary winding

COMP‧‧‧補償端COMP‧‧‧Compensation end

CS‧‧‧電流偵測端CS‧‧‧current detection terminal

fCYC ‧‧‧開關頻率f CYC ‧‧‧Switching frequency

fCYC-MAX ‧‧‧最大開關頻率f CYC-MAX ‧‧‧Maximum switching frequency

GATE‧‧‧驅動端GATE‧‧‧ drive side

ICHARGE ‧‧‧充電電流I CHARGE ‧‧‧Charging current

ICS ‧‧‧電流I CS ‧‧‧current

IDIS ‧‧‧放電電流I DIS ‧‧‧discharge current

IL ‧‧‧預設電流I L ‧‧‧Preset current

IH ‧‧‧預設電流I H ‧‧‧Preset current

IOUT ‧‧‧輸出電流I OUT ‧‧‧Output current

IPRM ‧‧‧電流I PRM ‧‧‧current

PRM‧‧‧一次側繞組PRM‧‧‧ primary side winding

PTS-VL ‧‧‧前震盪時間PT S-VL ‧‧‧ before shock time

QRD‧‧‧偵測端QRD‧‧‧Detector

SBLOCK ‧‧‧遮蔽信號S BLOCK ‧‧‧shadow signal

SEC‧‧‧二次側繞組SEC‧‧‧secondary winding

SJITTER ‧‧‧抖動控制信號S JITTER ‧‧‧Jitter control signal

SLOCK ‧‧‧鎖定信號S LOCK ‧‧‧Lock signal

STDIS ‧‧‧放電時間信號S TDIS ‧‧‧discharge time signal

SUPDATE ‧‧‧更新信號S UPDATE ‧‧‧Update signal

SVD ‧‧‧波谷指示信號S VD ‧‧‧ trough indication signal

tSTR 、t1 、t2 、t3 、t4 、tRELEASE 、tEND 、tAB-1ST 、tW-S 、tW-E ‧‧‧時間點t STR , t 1 , t 2 , t 3 , t 4 , t RELEASE , t END , t AB-1ST , t WS , t WE ‧‧‧

TBLOCK ‧‧‧遮蔽時間T BLOCK ‧‧‧Shading time

TCYC ‧‧‧週期時間T CYC ‧‧‧ cycle time

TAUX-CYC ‧‧‧震盪週期T AUX-CYC ‧‧‧ oscillation period

TDIS ‧‧‧放電時間T DIS ‧‧‧Discharge time

TOFF ‧‧‧關閉時間T OFF ‧‧‧Closed time

TON ‧‧‧開啟時間T ON ‧‧‧Opening time

TS-VL ‧‧‧震盪時間T S-VL ‧‧‧ shock time

TW‧‧‧時窗TW‧‧‧ hour window

VACC ‧‧‧回饋電壓V ACC ‧‧‧ feedback voltage

VAUX ‧‧‧跨壓V AUX ‧‧‧cross pressure

VCOMP ‧‧‧補償信號V COMP ‧‧‧compensation signal

VCOMP-SCALED ‧‧‧比例補償信號V COMP-SCALED ‧‧‧Proportional compensation signal

VCS ‧‧‧電流偵測信號V CS ‧‧‧ current detection signal

VCS-PEAK ‧‧‧電壓V CS-PEAK ‧‧‧ voltage

VGATE ‧‧‧PWM信號V GATE ‧‧‧PWM signal

VIN ‧‧‧輸入電壓V IN ‧‧‧ input voltage

VL1 、VL2 、VL3 ‧‧‧信號波谷VL 1 , VL 2 , VL 3 ‧‧‧Signal troughs

VL-EST ‧‧‧負載代表信號V L-EST ‧‧‧Load representative signal

VM ‧‧‧電壓V M ‧‧‧ voltage

VOUT ‧‧‧輸出電壓V OUT ‧‧‧ output voltage

VQRD ‧‧‧偵測電壓V QRD ‧‧‧Detection voltage

VREF ‧‧‧預設參考電壓V REF ‧‧‧Preset reference voltage

VTAR ‧‧‧目標電壓V TAR ‧‧‧target voltage

第1圖顯示一習知的QR開關式電源供應器。Figure 1 shows a conventional QR switching power supply.

第2圖顯示第1圖中的PWM信號VGATE 以及跨壓VAUX ;第3圖顯示依據本發明所實施的一QR控制器;第4圖顯示一依據本發明所實施的QR開關式電源供應器中的一些信號波形;第5圖舉例一輸出電流估算器;第6圖顯示負載代表信號VL-EST 與輸出電流IOUT 的關係;第7圖顯示負載代表信號VL-EST 與一最大開關頻率fCYC-MAX (=1/TBLOCK )之間的關係;第8圖顯示依據本發明所實施的一電源控制器;第9圖顯示可以實施轉轉換的一QR控制器;第10圖顯示QR控制器300取代了第1圖之QR控制器26後,電路中的一些 信號波形;第11圖為一實施例中,關閉時間控制器302所採用的控制方法;第12圖顯示當負載由重轉輕時,一些連續開關週期中的跨壓VAUX ,以及一些信號的時序;第13圖顯示當負載由輕轉重時,一些連續開關週期中的跨壓VAUX ,以及一些信號的時序;第14圖顯示習知技術中,震盪時間TS-VL 的一種可能變化;以及第15圖顯示依據本發明之一實施例中,震盪時間TS-VL 的一種可能變化。Figure 2 shows the PWM signal V GATE and the voltage across the V AUX in Figure 1; Figure 3 shows a QR controller implemented in accordance with the present invention; and Figure 4 shows a QR switched power supply implemented in accordance with the present invention. Some signal waveforms in the device; Figure 5 shows an output current estimator; Figure 6 shows the relationship between the load representative signal V L-EST and the output current I OUT ; Figure 7 shows the load representative signal V L-EST and a maximum Relationship between switching frequency f CYC-MAX (=1/T BLOCK ); FIG. 8 shows a power supply controller implemented in accordance with the present invention; and FIG. 9 shows a QR controller that can implement conversion; FIG. Some signal waveforms in the circuit after the QR controller 300 replaces the QR controller 26 of FIG. 1; FIG. 11 is a control method used by the shutdown time controller 302 in an embodiment; The crossover voltage V AUX in some continuous switching cycles, and the timing of some signals when re-turning light; Figure 13 shows the crossover voltage V AUX in some continuous switching cycles when the load is lightly weighted, and some signals Timing; Figure 14 shows the oscillating time T in the prior art One possible variation of S-VL ; and Figure 15 shows one possible variation of the oscillating time T S-VL in one embodiment of the invention.

本發明的一實施例所舉例的一電源控制器中,一補償信號VCOMP 只有決定一開啟時間TON 。該電源控制器會去偵測一輔助繞組AUX的一放電時間TDIS ,然後利用電流偵測信號VCS 以及放電時間TDIS ,去推算出一負載代表信號VL-EST 。該負載代表信號VL-EST 大致可代表了當下的電源供應器,對一負載所提供的輸出電流IOUT 。該電源控制器依據該負載代表信號VL-EST 來決定一遮蔽時間TBLOCK 。在該遮蔽時間TBLOCK 過去之後,該電源控制器才允許結束週期時間TCYCIn a power controller as exemplified in an embodiment of the present invention, a compensation signal V COMP only determines an on time T ON . The power controller detects a discharge time T DIS of the auxiliary winding AUX, and then uses the current detection signal V CS and the discharge time T DIS to derive a load representative signal V L-EST . The load representative signal V L-EST can represent approximately the current supply I OUT provided to a load by the current power supply. The power controller determines a masking time T BLOCK according to the load representative signal V L-EST . After the occlusion time T BLOCK has elapsed, the power controller allows the end cycle time T CYC to be ended.

簡單的說,在本發明的一實施例中,開啟時間TON 是由補償信號VCOMP 所決定,而遮蔽時間TBLOCK 是由代表該輸出電流IOUT 的該負載代表信號VL-EST 所決定。Briefly, in an embodiment of the invention, the turn-on time T ON is determined by the compensation signal V COMP , and the mask time T BLOCK is determined by the load representative signal V L-EST representing the output current I OUT .

這樣的設計下,只要在該負載不變的一穩態條件下,該輸出電流IOUT 是一固定的常數,而對應的該遮蔽時間TBLOCK 就會大約是一個定值。此時,該補償信號VCOMP 會自動的被調整,而產生適切的開啟時間TON 。 結果就是該電源供應器的功率開關可以在一個固定的信號波谷進行波谷切換,不再會有習知技術中波谷切換不穩定的問題發生。所以可能可以消除異音。Under such a design, the output current I OUT is a fixed constant under a steady state condition in which the load is constant, and the corresponding masking time T BLOCK is approximately a constant value. At this time, the compensation signal V COMP is automatically adjusted to produce a suitable turn-on time T ON . The result is that the power switch of the power supply can perform valley switching in a fixed signal valley, and there is no longer a problem of unstable valley switching in the prior art. So it is possible to eliminate the abnormal sound.

在本發明的一實施例中,為了消除固定之波谷切換所可能造成的電磁波干擾,因此一電源控制器對於該遮蔽時間TBLOCK 進行抖動(jittering)。該遮蔽時間TBLOCK 的抖動結果,當然會影響到補償信號VCOMP 。但是,在該實施例中,補償信號VCOMP 並不會影響到遮蔽時間TBLOCK ,因為該遮蔽時間TBLOCK 大致只有被該輸出電流IOUT 以及該抖動所影響,而測量電磁波干擾時,該輸出電流IOUT 為定值。因此,可以確定該遮蔽時間TBLOCK 的抖動結果,大致可以忠實地也有效地,將該遮蔽時間TBLOCK 變化於一定小範圍內,可能可以將開關頻率fCYC 變化於相對應一小範圍內,來解決電磁波干擾的問題。In an embodiment of the invention, in order to eliminate electromagnetic interference caused by fixed valley switching, a power controller performs jittering on the masking time T BLOCK . The jitter result of the masking time T BLOCK will of course affect the compensation signal V COMP . However, in this embodiment, the compensation signal V COMP does not affect the occlusion time T BLOCK because the occlusion time T BLOCK is substantially only affected by the output current I OUT and the jitter, and when the electromagnetic wave interference is measured, the output The current I OUT is constant. Accordingly, jitter may be determined that the masking time T BLOCK results in substantially faithfully also effective, and the masking time T BLOCK changes within a certain small range, it may be possible to change the switching frequency f CYC in a corresponding small scale To solve the problem of electromagnetic interference.

第3圖顯示依據本發明所實施的一QR控制器80,在一實施例中,其取代了第1圖中的QR控制器26。如同第3圖所示,QR控制器80包含有波谷偵測器82、放電時間偵測器84、輸出電流估算器86、及閘88、遮蔽時間產生器90、頻率抖動器92、以及脈波寬度調變器94。第4圖顯示QR控制器80取代了第1圖之QR控制器26後,電路中的一些信號波形。以下的說明,請同時參照第1、3與4圖。Figure 3 shows a QR controller 80 implemented in accordance with the present invention, which in one embodiment replaces the QR controller 26 of Figure 1. As shown in FIG. 3, the QR controller 80 includes a valley detector 82, a discharge time detector 84, an output current estimator 86, and a gate 88, a masking time generator 90, a frequency jitterer 92, and a pulse wave. Width modulator 94. Figure 4 shows some of the signal waveforms in the circuit after the QR controller 80 replaces the QR controller 26 of Figure 1. For the following description, please refer to the figures 1, 3 and 4.

放電時間偵測器84,透過偵測端QRD以及分壓電阻30與28,耦接至輔助繞組AUX。放電時間偵測器84依據輔助繞組AUX之跨壓VAUX ,來產生放電時間信號STDIS ,其可以指示出輔助繞組AUX的一放電時間TDIS 。舉例來說,如同第4圖中的放電時間信號STDIS 之波形所示,放電時 間TDIS 大約為在開啟時間TON 結束後,跨壓VAUX 的第1個上升緣(於時間點t1 )到第1個下降緣之間(於時間點t2 )的時間。The discharge time detector 84 is coupled to the auxiliary winding AUX through the detection terminal QRD and the voltage dividing resistors 30 and 28. Discharge time detector 84 based on the voltage across the auxiliary winding V AUX AUX, the discharge time to generate a signal S TDIS, which may indicate AUX auxiliary winding of a discharge time T DIS. For example, as shown by the waveform of the discharge time signal S TDIS in FIG. 4, the discharge time T DIS is approximately the first rising edge of the cross voltage V AUX after the end of the ON time T ON (at time point t 1 ) to the time between the first falling edge (at time point t 2 ).

波谷偵測器82透過偵測端QRD,來偵測在放電時間TDIS 後,跨壓VAUX 上所出現的信號波谷。偵測端QRD上有偵測電壓VQRD 。波谷偵測器82會產生一波谷指示信號SVD ,其具有數個脈衝,每個表示一對應信號波谷出現的時間。舉例來說,當跨壓VAUX 下降交越過0V後一固定時間,波谷指示信號SVD 就有一個脈衝。如同第4圖中的跨壓VAUX 與波谷指示信號SVD 之波形所舉例的,跨壓VAUX 在關閉時間TOFF 內第一次下降交越過0V(時間點t3 )後,表示信號波谷VL1 出現,所以導致在時間點t4 ,波谷指示信號SVD 具有一個脈衝。類似的,信號波谷VL2 出現後一固定時間,波谷指示信號SVD 具有另一個脈衝。The valley detector 82 detects the signal trough appearing across the voltage V AUX after the discharge time T DIS through the detection terminal QRD. There is a detection voltage V QRD on the detection terminal QRD . The valley detector 82 produces a valley indication signal S VD having a plurality of pulses, each representing the time at which a corresponding signal trough occurs. For example, the valley indication signal S VD has a pulse when the voltage across the voltage V AUX drops past 0V for a fixed time. As exemplified by the waveforms of the voltage across the V AUX and the valley indication signal S VD in FIG. 4 , the voltage across the voltage V AUX after the first drop in the off time T OFF crosses 0V (time point t 3 ), indicating a signal valley VL 1 appears, so that at time point t 4 , the valley indication signal S VD has one pulse. Similarly, a fixed time after the occurrence of the signal valley VL 2 , the valley indication signal S VD has another pulse.

如第3圖所示,輸出電流估算器86接收電流偵測信號VCS 以及放電時間信號STDIS ,據以產生負載代表信號VL-EST 。電流偵測信號VCS 位於電流偵測端CS,其表示流經電阻36的電流ICS ,其也是流經一次側繞組PRM的電流IPRM 。雖然負載代表信號VL-EST 是個預估的結果,但是它大致可以代表供應給負載24的輸出電流IOUT 。稍後將舉例細部說明輸出電流估算器86。As shown in FIG. 3, the output current estimator 86 receives the current detection signal V CS and the discharge time signal S TDIS to generate a load representative signal V L-EST . The current detection signal V CS is located at the current detection terminal CS, which represents the current I CS flowing through the resistor 36, which is also the current I PRM flowing through the primary side winding PRM . Although the load representative signal V L-EST is an estimated result, it can roughly represent the output current I OUT supplied to the load 24. The output current estimator 86 will be described in detail later by way of example.

遮蔽時間產生器90,依據負載代表信號VL-EST ,產生一遮蔽信號SBLOCK ,以提供遮蔽時間TBLOCK 。舉例來說,當負載代表信號VL-EST 越大時,遮蔽時間TBLOCK 越大。如同第4圖之遮蔽信號SBLOCK 的波形所舉例,遮蔽時間TBLOCK 與週期時間TCYC 大致同步開始(於時間點tSTR ),而遮蔽時間TBLOCK 結束於時間點tRELEASEThe masking time generator 90 generates a masking signal S BLOCK according to the load representative signal V L-EST to provide a masking time T BLOCK . For example, when the load representative signal VL -EST is larger, the occlusion time T BLOCK is larger. As exemplified by the waveform of the masking signal S BLOCK of FIG. 4, the masking time T BLOCK starts substantially synchronously with the cycle time T CYC (at the time point t STR ), and the masking time T BLOCK ends at the time point t RELEASE .

頻率抖動器92,連接至遮蔽時間產生器90,提供一抖動控制 信號SJITTER ,用以些許的改變遮蔽時間TBLOCK 。舉例來說,在負載24不變的一穩態下,抖動控制信號SJITTER 為一週期性信號,其變化頻率為400Hz,且抖動控制信號SJITTER 可使遮蔽時間TBLOCK 變化於1/(27.5kHz)~1/(25kHz)之間,所以開關頻率fCYC 將可能會大約變化於25kHz~27.5kHz之間。換言之,此時,抖動控制信號SJITTER 的變化週期(=1/400),遠大於週期時間TCYC (介於1/(27.5kHz)與1/(25kHz))。A frequency ditherer 92, coupled to the masking time generator 90, provides a dithering control signal S JITTER for a slight change in masking time T BLOCK . For example, in a steady state where the load 24 is constant, the jitter control signal S JITTER is a periodic signal whose frequency of change is 400 Hz, and the jitter control signal S JITTER can change the masking time T BLOCK to 1/(27.5). Between kHz)~1/(25kHz), so the switching frequency f CYC will probably vary between 25kHz and 27.5kHz. In other words, at this time, the period of change of the jitter control signal S JITTER (=1/400) is much larger than the cycle time T CYC (between 1/(27.5 kHz) and 1/(25 kHz)).

及閘88之兩個輸入分別連接至遮蔽時間產生器90以及波谷偵測器82。只有在遮蔽時間TBLOCK 結束後,及閘88才會傳遞波谷指示信號SVD ,而波谷指示信號SVD 中的脈衝才能設置(set)脈波寬度調變器94。如同第4圖之波谷指示信號SVD 與遮蔽信號SBLOCK 之波形所舉例的,在遮蔽時間TBLOCK 結束(tRELEASE )後的時間點tEND ,波谷指示信號SVD 出現了一個脈衝,而這個脈衝設置了脈波寬度調變器94,使得PWM信號VGATE 被設置為邏輯上的”1”。及閘88使週期時間TCYC 結束於遮蔽時間TBLOCK 後的第一個信號波谷出現時(時間點tEND )。此開關週期的時間點tEND ,等於下一開關週期的時間點tSTRThe two inputs of the AND gate 88 are coupled to the masking time generator 90 and the valley detector 82, respectively. Only after the end of the masking time T BLOCK , the gate 88 transmits the valley indication signal S VD , and the pulse in the valley indication signal S VD sets the pulse width modulator 94. As exemplified by the waveforms of the valley indication signal S VD and the mask signal S BLOCK of FIG. 4, at the time point t END after the end of the masking time T BLOCK (t RELEASE ), a trough indication signal S VD exhibits a pulse, and this The pulse width modulator 94 is pulsed such that the PWM signal V GATE is set to a logical "1". The gate 88 causes the cycle time T CYC to end when the first signal valley after the masking time T BLOCK appears (time point t END ). The time point t END of this switching cycle is equal to the time point t STR of the next switching cycle.

如同第4圖中的時間點tSTR 與tEND 所舉例的,當PWM信號VGATE 一被設置為邏輯上的”1”時,功率開關34被開啟,開始一週期時間TCYC 以及一開啟時間TON 。脈波寬度調變器94依據補償信號VCOMP 與電流偵測信號VCS ,決定開啟時間TON 的長度。舉例來說,第4圖中有顯示一比例補償信號VCOMP-SCALED ,其大致為比例於補償信號VCOMP 。如同第4圖中的電流偵測信號VCS 之波形所示,當電流偵測信號VCS 超過比例補償信號VCOMP-SCALED 時(時間點t1 ),PWM信號VGATE 被變更為邏輯上的”0”,開啟時間TON 結束,關 閉時間TOFF 開始。As exemplified by the time points t STR and t END in FIG. 4, when the PWM signal V GATE is set to a logical "1", the power switch 34 is turned on, starting a cycle time T CYC and an opening time. T ON . The pulse width modulator 94 determines the length of the turn-on time T ON based on the compensation signal V COMP and the current detection signal V CS . For example, Figure 4 shows a proportional compensation signal V COMP-SCALED that is roughly proportional to the compensation signal V COMP . As shown by the waveform of the current detecting signal V CS in FIG. 4, when the current detecting signal V CS exceeds the proportional compensation signal V COMP-SCALED (time point t 1 ), the PWM signal V GATE is changed to logical "0", the on time T ON is ended, and the off time T OFF is started.

第5圖舉例輸出電流估算器86,其具有轉導器190、電位轉換器(level shifter)192、一更新電路196、一收集電容198、一開關104、一電壓控制電流源(voltage-controlled current source)102、以及一CS峰值電壓偵測器100。Figure 5 illustrates an output current estimator 86 having a transducer 190, a level shifter 192, an update circuit 196, a collection capacitor 198, a switch 104, and a voltage-controlled current source. Source) 102, and a CS peak voltage detector 100.

CS峰值電壓偵測器100產生電壓VCS-PEAK ,其代表了電流偵測信號VCS 的一峰值。舉例來說,美國專利申請公開號US20100321956A1中的第10圖就提供了CS峰值電壓偵測器100之一例子。在一些實施例中,CS峰值電壓偵測器100可以用美國專利申請公開號US20100321956A1之第17圖或18圖中所舉例之平均電流偵測器所取代。電壓控制電流源102將電壓VCS-PEAK 轉換成放電電流IDIS ,其僅有在放電時間信號STDIS 為邏輯上之”1”時,對收集端ACC放電。換言之,放電電流IDIS 對收集端ACC的放電時間,等效上大約等於放電時間TDIS 。在一些實施例中,第5圖中的開關104可以省略,取而代之的,放電時間信號STDIS 用來啟動(activate)或是關閉(deactivate)電壓控制電流源102。在電容199上的電壓VM ,被位移轉換後,成為負載代表信號VL-EST ,送給轉導器190,用來跟一預設參考電壓VREF 比較。轉導器190依據比較結果,來輸出充電電流ICHARGE ,對收集端ACC持續地充電。更新電路196受更新信號SUPDATE 所觸發,對收集端ACC上的回饋電壓VACC 取樣,來更新電壓VM ,可以每一個週期時間TCYC 來更新一次。更新信號SUPDATE 並不必要每個週期時間TCYC 就使得更新電路196執行更新一次,舉例來說,也可以每兩個週期時間TCYC 執行更新一次。在一實施例中,更新信號SUPDATE 可以等同於脈波寬度調變信號VGATE ,意味著更新的動作在關閉時間TOFF 一 開始時被執行。電壓VM 平時都是保持在一個定值,直到更新電路196對它更新後,才會變成另一個定值。從以上說明可以發現,當電壓VM 不變時,充電電流ICHARGE 也會維持不變。The CS peak voltage detector 100 generates a voltage V CS-PEAK that represents a peak of the current detection signal V CS . An example of a CS peak voltage detector 100 is provided, for example, in FIG. 10 of U.S. Patent Application Publication No. US20100321956A1. In some embodiments, the CS peak voltage detector 100 can be replaced with an average current detector as exemplified in FIG. 17 or FIG. 18 of US Patent Application Publication No. US20100321956A1. The voltage controlled current source 102 converts the voltage V CS-PEAK into a discharge current I DIS which discharges the collector terminal ACC only when the discharge time signal S TDIS is logically "1". In other words, the discharge time of the discharge current I DIS to the collector terminal ACC is equivalently approximately equal to the discharge time T DIS . In some embodiments, the switch 104 in FIG. 5 can be omitted. Instead, the discharge time signal S TDIS is used to activate or deactivate the voltage controlled current source 102. The voltage V M on the capacitor 199 is shifted and converted into a load representative signal V L-EST , which is supplied to the transducer 190 for comparison with a predetermined reference voltage V REF . The transducer 190 outputs a charging current I CHARGE according to the comparison result, and continuously charges the collecting terminal ACC. The update circuit 196 is triggered by the update signal S UPDATE and samples the feedback voltage V ACC on the collector ACC to update the voltage V M , which can be updated once every cycle time T CYC . The update signal S UPDATE does not necessarily require the update circuit 196 to perform an update once per cycle time T CYC , for example, it may be performed once every two cycle times T CYC . In an embodiment, the update signal S UPDATE may be equivalent to the pulse width modulation signal V GATE , meaning that the updated action is performed at the beginning of the off time T OFF . The voltage V M is always maintained at a constant value until the update circuit 196 updates it to become another constant value. From the above description, it can be found that when the voltage V M is constant, the charging current I CHARGE will remain unchanged.

在一週期時間TCYC 內,收集電容198紀錄且收集了充電電流ICHARGE 於週期時間TCYC 的一充電積分結果,與放電電流IDIS 於放電時間TDIS 的一放電積分結果,兩個積分結果的差異。During a cycle time T CYC , the collection capacitor 198 records and collects a charge integration result of the charge current I CHARGE at the cycle time T CYC , and a discharge integration result of the discharge current I DIS at the discharge time T DIS , two integration results The difference.

類似美國專利申請公開號US20100321956A1中所分析的,當充電電流ICHARGE 為一個定值,且回饋電壓VACC 在被取樣時的值,等於上一次被取樣時的值,那充電電流ICHARGE 就會是跟輸出到負載24的輸出電流IOUT 成比例。為了使充電電流ICHARGE 跟輸出電流IOUT 成比例,所以回饋電壓VACC 每次被取樣時的值,必須要一樣或是穩定。更新電路196、電位轉換器192、以及轉導器190一起形成了具有負迴路增益(negative loop gain)的一迴路,而這個迴路最後可以使得回饋電壓VACC 每次被取樣時的值,穩定在一個值。舉例來說,如果充電電流ICHARGE 大於跟輸出電流IOUT 成比例的一期望值,那回饋電壓VACC 在下次的取樣時,就會變大,造成更新後的電壓VM 也隨著變大,因此,充電電流ICHARGE 就會變小。反之亦然。所以,在負載24不變的穩態時,電壓VM 可停止於一相對的固定值,而充電電流ICHARGE 最後可以變的大約跟輸出電流IOUT 成比例。Similar to the analysis in U.S. Patent Application Publication No. US20100321956A1, when the charging current I CHARGE is a fixed value and the value of the feedback voltage V ACC when being sampled is equal to the value of the previous sampling, the charging current I CHARGE will be It is proportional to the output current I OUT output to the load 24. In order to make the charging current I CHARGE proportional to the output current I OUT , the value of the feedback voltage V ACC every time it is sampled must be the same or stable. The update circuit 196, the potential converter 192, and the transducer 190 together form a loop having a negative loop gain, and this loop can finally stabilize the value of the feedback voltage V ACC each time it is sampled. A value. For example, if the charging current I CHARGE is greater than a desired value proportional to the output current I OUT , the feedback voltage V ACC will become larger at the next sampling, causing the updated voltage V M to become larger as well. Therefore, the charging current I CHARGE becomes small. vice versa. Therefore, at a steady state where the load 24 is constant, the voltage V M can be stopped at a relatively fixed value, and the charging current I CHARGE can eventually become approximately proportional to the output current I OUT .

第6圖顯示在一實施例中,負載代表信號VL-EST 與輸出電流IOUT 的關係。如同第6圖所示,負載代表信號VL-EST 與輸出電流IOUT 大致為一對一的關係,所以負載代表信號VL-EST 可以大致代表輸出電流IOUTFigure 6 shows, in one embodiment, the load representative signal VL -EST versus output current IOUT . As shown in FIG. 6, the load representative signal V L-EST is approximately in a one-to-one relationship with the output current I OUT , so the load representative signal V L-EST can roughly represent the output current I OUT .

負載代表信號VL-EST 大致決定一遮蔽時間TBLOCK ,所以輸出 電流IOUT 大致決定了遮蔽時間TBLOCK ,也就是最大開關頻率fCYC-MAX (=1/TBLOCK )。第7圖顯示在一實施例中,輸出電流IOUT 與一最大開關頻率fCYC-MAX (=1/TBLOCK )之間的關係。當輸出電流IOUT 偏大,舉例來說,大於預設電流IH ,表示負載24為一重載,最大開關頻率fCYC-MAX 以抖動控制信號SJITTER 的變化頻率,調變改變於60kHz~66kHz之間。當輸出電流IOUT 偏小時,舉例來說,小於預設電流IL ,表示負載24為一輕載,最大開關頻率fCYC-MAX 以抖動控制信號SJITTER 的變化頻率,調變變化於25kHz~27.5kHz之間。The load representative signal V L-EST roughly determines a masking time T BLOCK , so the output current I OUT roughly determines the masking time T BLOCK , that is, the maximum switching frequency f CYC-MAX (=1/T BLOCK ). Figure 7 shows the relationship between the output current I OUT and a maximum switching frequency f CYC-MAX (=1/T BLOCK ) in one embodiment. When the output current I OUT is too large, for example, greater than the preset current I H , the load 24 is a heavy load, and the maximum switching frequency f CYC-MAX is changed by the frequency of the jitter control signal S JITTER , and the modulation is changed to 60 kHz. Between 66kHz. When the output current I OUT is small, for example, less than the preset current I L , indicating that the load 24 is a light load, and the maximum switching frequency f CYC-MAX is changed by the variation frequency of the jitter control signal S JITTER to 25 kHz~ Between 27.5kHz.

從第3圖與第4圖可以發現,開啟時間TON 是由補償信號VCOMP 所決定,而遮蔽時間TBLOCK 是由代表輸出電流IOUT 的負載代表信號VL-EST 所決定。It can be seen from FIGS. 3 and 4 that the turn-on time T ON is determined by the compensation signal V COMP , and the mask time T BLOCK is determined by the load representative signal V L-EST representing the output current I OUT .

如同先前所述的,這樣的設計下,只要在負載24不變的一穩態條件下,輸出電流IOUT 是一固定的常數,而對應的遮蔽時間TBLOCK 就大約是一個定值,不會隨著補償信號VCOMP 的變化而被改變。結果就是該電源供應器的功率開關34可以在一個固定的信號波谷進行波谷切換,不再會有習知技術中波谷切換不穩定的問題發生。所以可能可以消除異音。As previously stated, in such a design, as long as the load 24 is constant, the output current I OUT is a fixed constant, and the corresponding masking time T BLOCK is approximately a fixed value. It is changed as the compensation signal V COMP changes. The result is that the power switch 34 of the power supply can perform valley switching in a fixed signal valley, and there is no longer a problem of unstable valley switching in the prior art. So it is possible to eliminate the abnormal sound.

而且,如同第3圖與第7圖所舉例的,遮蔽時間TBLOCK 大致只有被輸出電流IOUT 以及抖動控制信號SJITTER 所影響,而測量電磁波干擾時,該輸出電流IOUT 為定值。因此,可以確定抖動控制信號SJITTER 大致可以忠實地也有效地,將遮蔽時間TBLOCK 變化於一定小範圍內,也就是開關頻率fCYC 將變化於相對應一小範圍內。如此,可能可以解決電磁波干擾的問題。Moreover, as exemplified in FIGS. 3 and 7, the masking time T BLOCK is substantially only affected by the output current I OUT and the jitter control signal S JITTER , and when the electromagnetic wave interference is measured, the output current I OUT is a constant value. Therefore, it can be determined that the jitter control signal S JITTER can substantially faithfully and effectively change the masking time T BLOCK within a certain small range, that is, the switching frequency f CYC will vary within a corresponding small range. In this way, it is possible to solve the problem of electromagnetic interference.

以上舉例的均為QR開關式電源供應器,但是本發明並不限於此。第8圖顯示依據本發明所實施的一電源控制器200。電源控制器200不 是操作在QR模式,但在一實施例中,可以取代第1圖中的QR控制器26。電源控制器200沒有第3圖中的波谷偵測器82與及閘88,而遮蔽信號SBLOCK 的反向,直接連接到脈波寬度調變器94的設定端。當遮蔽時間TBLOCK 結束時,脈波寬度調變器94就立刻被設定,而立刻開始下一個開關週期內的週期時間TCYC 以及開啟時間TON 。換言之,在電源控制器200的控制之下,週期時間TCYC 大約等於遮蔽時間TBLOCKThe above examples are all QR switching power supplies, but the invention is not limited thereto. Figure 8 shows a power supply controller 200 implemented in accordance with the present invention. The power controller 200 is not operating in the QR mode, but in an embodiment, the QR controller 26 in Figure 1 can be replaced. The power controller 200 does not have the valley detector 82 and the AND gate 88 in FIG. 3, and the reverse of the mask signal S BLOCK is directly connected to the set terminal of the pulse width modulator 94. When the masking time T BLOCK ends, the pulse width modulator 94 is set immediately, and the cycle time T CYC and the opening time T ON in the next switching cycle are immediately started. In other words, under the control of the power supply controller 200, the cycle time T CYC is approximately equal to the occlusion time T BLOCK .

在本發明的另一個實施例中,電源供應器大部分時間是操作於波谷切換,只是,在從一個信號波谷的波谷切換轉換到另一個信號波谷的波谷切換的過程中,有些開關週期並非操作於波谷切換。舉例來說,該電源供應器一開始是操作於第3個信號波谷的波谷切換,接著可能因為負載變大或是其他可能的原因,之後的開關週期的切換時間漸進式的往前一個信號波谷(也就是第2個信號波谷)接近,經過幾個開關週期後,才會操作於第2個信號波谷的波谷切換。這樣的轉換過程,在此稱之為波谷切換的軟轉換(soft transition for valley switching),其表示兩個操作於位於不同信號波谷之波谷切換的開關週期之間,可以容許有至少一個或是數個非波谷切換的開關週期。In another embodiment of the invention, the power supply is operated for valley switching most of the time, except that during switching from valley switching of one signal valley to valley switching of another signal valley, some switching cycles are not operational. Switch to the valley. For example, the power supply initially operates in a valley shift of the third signal valley, and then may be due to a larger load or other possible causes, and the switching time of the subsequent switching cycle is progressively forward. (that is, the second signal trough) is close, and after a few switching cycles, the valley switching of the second signal trough is performed. Such a conversion process, referred to herein as soft transition for valley switching, means that two operations are between switching cycles located in valley switching of different signal valleys, and at least one or a number can be tolerated. The switching period of non-valley switching.

第9圖顯示可以實施轉轉換的一QR控制器300,可以取代第1圖中的QR控制器26,作為本發明的一實施例。第9圖中的QR控制器300與第3圖中的QR控制器80彼此相似或是一樣的地方,可以透過先前教導而得知,在此不再累述。QR控制器300以關閉時間控制器302取代了QR控制器80中的及閘88。關閉時間控制器302可以使一電源供應器在遮蔽時間TBLOCK 結束後的第一個信號波谷出現時,來結束一關閉時間TOFF ,進行波谷切換。但是, 在一些條件下,關閉時間控制器302也可以不進行波谷切換,稍後將細部說明。Fig. 9 shows a QR controller 300 in which conversion can be implemented, which can be substituted for the QR controller 26 in Fig. 1, as an embodiment of the present invention. The QR controller 300 in Fig. 9 and the QR controller 80 in Fig. 3 are similar or identical to each other, and can be known from the prior teachings, and will not be described here. The QR controller 300 replaces the AND gate 88 in the QR controller 80 with a shutdown time controller 302. The shutdown time controller 302 can cause a power supply to end a turn-off time TOFF and perform a valley shift when the first signal trough after the end of the masking time T BLOCK occurs. However, under some conditions, the off-time controller 302 may also not perform valley switching, as will be described in detail later.

第10圖顯示QR控制器300取代了第1圖之QR控制器26後,電路中的一些信號波形。第10圖與第4圖相同的部分,可以參考第4圖與其說明而得知,不再累述。Figure 10 shows some of the signal waveforms in the circuit after the QR controller 300 replaces the QR controller 26 of Figure 1. The same parts of Fig. 10 and Fig. 4 can be referred to with reference to Fig. 4 and its description, and will not be described again.

震盪時間TS-VL 在一開關週期中放電時間TDIS 結束後的一個固定的時間點,到關閉時間TOFF 結束(tEND )之間的時間長度。在第10中的例子裡,震盪時間TS-VL 是從時間點t2 到tEND 。在另一個實施例中,其可以是從時間點t3 到tEND ,或是從時間點t4 到tEND 。在較佳的例子裡,震盪時間TS-VL 的開始時間點不得晚於時間點t4 ,也就是波谷指示信號SVD 在放電時間TDIS 結束後第一個脈衝出現的時間。震盪時間TS-VL 可以大致上視為跨壓VAUX 震盪了多久,當下的週期時間TCYC 或是關閉時間TOFF 才結束。The oscillating time T S-VL is the length of time between a fixed time point after the end of the discharge time T DIS and the end of the closing time T OFF (t END ) in one switching cycle. In the example of the tenth, the oscillation time T S-VL is from the time point t 2 to t END . In another embodiment, it may be from time point t 3 to t END or from time point t 4 to t END . In a preferred example, the start time of the oscillating time T S-VL must be no later than the time point t 4 , that is, the time at which the trough indication signal S VD appears after the end of the discharge time T DIS . The oscillating time T S-VL can be roughly regarded as how long the voltage V AUX oscillates, and the current cycle time T CYC or the closing time T OFF ends.

在一些狀況中,前震盪時間PTS-VL 則是前一個開關週期中的震盪時間TS-VL 。舉例來說,當下的開關週期中的震盪時間TS-VL ,就是下一個開關週期中的前震盪時間PTS-VL 。在其他的一些狀況中,前震盪時間PTS-VL 是數個開關週期前的一震盪時間TS-VLIn some cases, the front oscillating time PT S-VL is the oscillating time T S-VL in the previous switching cycle. For example, the oscillation time T S-VL in the current switching cycle is the pre-oscillation time PT S-VL in the next switching cycle. In other cases, the front oscillating time PT S-VL is an oscillating time T S-VL before several switching cycles.

時窗TW為介於時間點tW-S 與tW-E 之間的時間,是依據前震盪時間PTS-VL 所產生。舉例來說,時間點tW-S 是位於前震盪時間PTS-VL 結束的前一預定時間,而時間點tW-E 位於前震盪時間PTS-VL 結束後的另一預定時間。這兩個預定時間可以一樣或是不同。時窗TW的長度最好小於跨壓VAUX 的一個震盪週期TAUX-CYC 。一個震盪週期TAUX-CYC 大約是兩個信號波谷底部之間的時間,也大約等於跨壓VAUX 連續兩個下降緣掉過0V之間的時間。The time window TW is the time between the time points t WS and t WE and is generated according to the front oscillation time PT S-VL . For example, the time point t WS is the previous predetermined time at the end of the front oscillating time PT S-VL , and the time point t WE is located at another predetermined time after the end of the front oscillating time PT S-VL . These two predetermined times can be the same or different. The length of the time window TW is preferably less than an oscillation period T AUX-CYC across the voltage V AUX . An oscillating period T AUX-CYC is approximately the time between the bottoms of the two signal troughs, and is also approximately equal to the time between the two falling edges of the cross-voltage V AUX falling through 0V.

時間點tAB-1ST 為時間點tRELEASE (遮蔽時間TBLOCK 結束)之後,波谷指示信號SVD 所產生的第一脈衝出現的時間點。換言之,也大約就是遮蔽時間TBLOCK 結束後,第一個信號波谷出現的時間點。時間點tAB-1ST 與時間點tEND 不必然如同第10圖所示的同時出現。也就是下一個開關週期不必然開始於時間點tAB-1STThe time point t AB-1ST is the time point at which the first pulse generated by the valley indication signal S VD appears after the time point t RELEASE (the end of the masking time T BLOCK ). In other words, it is also the time point at which the first signal trough appears after the end of the masking time T BLOCK . The time point t AB-1ST and the time point t END do not necessarily appear simultaneously as shown in FIG. That is, the next switching cycle does not necessarily start at time point t AB-1ST .

第11圖為一實施例中,關閉時間控制器302所採用的控制方法。關閉時間控制器302有一紀錄器,紀錄並提供數位的鎖定信號SLOCK 。當鎖定信號SLOCK 為邏輯上的”1”時(判別於步驟305),表示要波谷鎖定,意味著波谷切換要鎖定在一樣的信號波谷;反之,鎖定信號SLOCK 為邏輯上的”0”,表示不波谷鎖定,意味著發生波谷切換的信號波谷可以改變。Figure 11 is a diagram showing the control method employed by the off-time controller 302 in one embodiment. The close time controller 302 has a recorder that records and provides a digital lock signal S LOCK . When the lock signal S LOCK is logically "1" (determined in step 305), indicating that the valley is locked, means that the valley switching is locked in the same signal valley; otherwise, the lock signal S LOCK is logically "0". , indicating that the valley is not locked, meaning that the signal valley of the valley shift can be changed.

關閉時間控制器302中紀錄有一震盪時間紀錄RT,其可以代表前震盪時間PTS-VL 。步驟306依據前震盪時間PTS-VL ,提供時窗TW,也就是決定時間點tW-S 與tW-E 。換言之,步驟306依據震盪時間紀錄RT,決定時間點tW-S 與tW-EThe off time controller 302 records an oscillating time record RT, which may represent the front oscillating time PT S-VL . Step 306 provides time window TW according to the previous oscillation time PT S-VL , that is, determines time points t WS and t WE . In other words, step 306 determines the time points t WS and t WE based on the oscillating time record RT.

在不波谷鎖定時,步驟308使時間點tEND 只能發生在時窗TW內,也就是不可以早於時間點tW-S ,不可以晚於時間點tW-E 。至於確切的時間點tEND 則視時間點tAB-1ST 的相對位置而定。如果時間點tAB-1ST 在視窗TW之前,也就是時間點tAB-1ST 早於時間點tW-S 出現,那時間點tEND 就是時間點tW-S 。如果時間點tAB-1ST 出現於視窗TW之內,則時間點tEND 就是時間點tAB-1ST 。如果時間點tW-E 早於時間點tAB-1ST ,那週期時間TCYC 與關閉時間TOFF 立刻結束,時間點tEND 等於時間點tW-E 。在時間點tEND ,PWM信號VGATE 會有一個上昇緣,來結束週期時間TCYC 與關閉時間TOFF 。震盪時間紀錄RT,在關閉時間 TOFF 結束時,會被更新,將這開關週期的震盪時間TS-VL 之訊息,帶到下一個開關週期去,成為下一週期的前震盪時間PTS-VL 。在此實施例中,關閉時間TOFF 結束的時間點,取決於視窗TW與時間點tAB-1ST ,而視窗TW由震盪時間紀錄RT決定,時間點tAB-1ST 由遮蔽時間TBLOCK 與波谷指示信號SVD 所決定。In the absence of trough lock, step 308 causes time point t END to occur only within time window TW, that is, not earlier than time point t WS , and not later than time point t WE . As for the exact time point t END, it depends on the relative position of the time point t AB-1ST . If the time point t AB-1ST occurs before the window TW, that is, the time point t AB-1ST appears earlier than the time point t WS , the time point t END is the time point t WS . If the time point t AB-1ST appears within the window TW, the time point t END is the time point t AB-1ST . If the time point t WE is earlier than the time point t AB-1ST , the cycle time T CYC and the closing time T OFF are immediately ended, and the time point t END is equal to the time point t WE . At time t END , the PWM signal V GATE has a rising edge to end the cycle time T CYC and the off time T OFF . The oscillating time record RT, when the closing time T OFF ends, will be updated, and the signal of the oscillating time T S-VL of the switching cycle is brought to the next switching cycle to become the pre-oscillation time PT S- of the next cycle. VL . In this embodiment, the off time T OFF time point of the end, depending on the point of time windows TW t AB-1ST, the TW window record time RT is determined by the shock, the time point AB-1ST masking time T BLOCK and trough t The indication signal S VD is determined.

在波谷鎖定時,步驟316使時間點tEND 就是前震盪時間PTS-VL 結束時。如此當下的開關週期結束關閉時間TOFF 時所在的信號波谷,會跟前一個開關週期結束關閉時間TOFF 時所在的信號波谷,一模一樣,達到波谷鎖定的目的。When the valley is locked, step 316 causes the time point t END to be the end of the front oscillation time PT S-VL . The signal valley at which the current switching period ends and the closing time T OFF is the same as the signal valley where the closing time T OFF is ended at the end of the previous switching cycle, and the trough locking is achieved.

關閉時間控制器302也有一計數器,提供一計數值,大致上用來計算波谷鎖定的次數,如同步驟320所示。計數器也可以視為一種計時器,用來計算波谷鎖定的總時間。步驟322顯示,當波谷鎖定的次數達到一預設值N時,鎖定信號SLOCK 會從邏輯上的”1”,變成邏輯上的”0”,解除波谷鎖定。換言之,鎖定信號SLOCK 為”1”至少會持續有N個週期時間。波谷鎖定解除後,當時間點tAB-1ST 根本不在時窗TW內時,表示已經不是波谷切換,所以步驟315使計數值得歸零。當時間點tAB-1ST 又進入時窗TW內時,表示應該進入波谷鎖定,所以步驟314使鎖定信號SLOCK 為邏輯上的”1”,使計數值增加1,計數器開始計數。The shutdown time controller 302 also has a counter that provides a count value that is generally used to calculate the number of trough locks, as shown in step 320. The counter can also be thought of as a timer that calculates the total time of the valley lock. Step 322 shows that when the number of valley locks reaches a predetermined value N, the lock signal S LOCK will change from a logical "1" to a logical "0" to cancel the valley lock. In other words, the lock signal S LOCK is "1" for at least N cycle times. After the valley lock is released, when the time point t AB-1ST is not in the time window TW at all, it indicates that it is not a valley shift, so step 315 returns the count value to zero. When the time point t AB-1ST enters the time window TW again, it indicates that the valley lock should be entered, so step 314 makes the lock signal S LOCK logically "1", increments the count value by 1, and the counter starts counting.

請同時參閱第1圖、第9圖、第11圖與第12圖。第12圖顯示當負載由重轉輕時,一些連續開關週期中的跨壓VAUX ,以及一些信號的時序。Please also refer to Figure 1, Figure 9, Figure 11, and Figure 12. Figure 12 shows the cross-over voltage V AUX in some successive switching cycles, as well as the timing of some of the signals, when the load is lightly re-turned.

如同第12圖中第X開關週期中的跨壓VAUX 所示,假定在第X開關週期之前,是處於一穩定狀態,關閉時間控制器302穩定的使波谷切換發生於第2信號波谷出現時。在第X開關週期中,時間點tAB-1ST 也就是時間點 tEND (週期時間TCYC 的結束),震盪時間TS-VL 將與前震盪時間PTS-VL 相同,鎖定信號SLOCK 為”0”,計數值為N。在第11圖中,第X開關週期中的關閉時間TOFF 是依循步驟304、305、306、308、310、312與324,這樣的步驟流程來決定。As shown by the voltage across the voltage V AUX in the Xth switching period in FIG. 12, it is assumed that before the Xth switching period, it is in a steady state, and the off time controller 302 is stable to cause the valley switching to occur when the second signal trough occurs. . In the Xth switching period, the time point t AB-1ST is also the time point t END (the end of the cycle time T CYC ), the oscillation time T S-VL will be the same as the front oscillation time PT S-VL , and the lock signal S LOCK is "0", the count value is N. In Fig. 11, the closing time of the X switching period T OFF is following the steps 304,305,306,308,310,312 and 324, the step of the process is determined.

第12圖中的第X+1開關週期開始時,可能因為負載由重轉輕,所以時間點tRELEASE 突然被延後,導致到時窗TW結束時,時間點tAB-1ST 依然沒有出現。第X+1開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、315與324,這樣的步驟流程來決定。所以,如同第12圖所示,第X+1開關週期的時間點tEND 會與時間點tW-E 大約同時,鎖定信號SLOCK 為”0”,計數值為0。震盪時間TS-VL ,將會比前震盪時間PTS-VL ,多出了一預定時間,如同第12圖所示。這個預定時間只是跨壓VAUX 的震盪週期TAUX-CYC 之一部分,在第12圖中,這個預定時間小於跨壓VAUX 的震盪週期TAUX-CYC 之二分之一。所以,如同第12圖明顯顯示的,第X+1開關週期並非波谷切換。At the beginning of the X+1th switching period in Fig. 12, the time point t RELEASE is suddenly delayed because the load is lightly re-rotated, so that the time point t AB-1ST still does not appear when the time window TW ends. The off time T OFF in the X+1th switching cycle is determined in accordance with the flow of steps 304, 305, 306, 308, 310, 315 and 324. Therefore, as shown in Fig. 12, the time point t END of the X+1th switching period is approximately the same as the time point t WE , the lock signal S LOCK is "0", and the count value is 0. The oscillating time T S-VL will be a predetermined time longer than the previous oscillating time PT S-VL , as shown in Figure 12. This predetermined time is only one part of the oscillating period T AUX-CYC across the voltage V AUX , and in FIG. 12 , this predetermined time is less than one-half of the oscillating period T AUX-CYC across the voltage V AUX . Therefore, as clearly shown in Fig. 12, the X+1th switching period is not a valley switching.

第12圖中的第X+2開關週期中,到時窗TW結束時,時間點tAB-1ST 依然沒有出現。因此,第X+2開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、315與324。第X+2開關週期的時間點tEND 會與時間點tW-E 大約同時,鎖定信號SLOCK 為”0”,計數值為0。第X+2開關週期也非波谷切換。In the X+2 switching cycle in Fig. 12, when the time window TW ends, the time point t AB-1ST still does not appear. Therefore, the off time T OFF in the X+2 switching cycle follows steps 304, 305, 306, 308, 310, 315, and 324. The time point t END of the X+2 switching cycle is approximately the same as the time point t WE , the lock signal S LOCK is “0”, and the count value is 0. The X+2 switching cycle is also not a valley switch.

第12圖中的第X+3開關週期中,時間點tAB-1ST 在時窗TW內出現。因此,第X+3開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、312與314。如同第12圖所示,第X+3開關週期的時間點tEND 會與時間點tAB-1ST 大約同時,鎖定信號SLOCK 變成”1”,計數值為1。第X+3開關週期為波谷切換。In the X+3 switching cycle in Fig. 12, the time point t AB-1ST appears in the time window TW. Therefore, the off time T OFF in the X+3 switching cycle follows steps 304, 305, 306, 308, 310, 312, and 314. As shown in Fig. 12, the time point t END of the X+3 switching cycle is approximately the same as the time point t AB-1ST , the lock signal S LOCK becomes "1", and the count value is 1. The X+3 switching cycle is a valley switching.

第12圖中的第X+4開關週期中,因為鎖定信號SLOCK 為”1”,所以時間點tEND 出現在前震盪時間PTS-VL 結束時。第X+4開關週期中的關閉時間TOFF 會依循步驟304、305、316、318與320。前震盪時間PTS-VL 不會被更新,而震盪時間TS-VL 會跟前震盪時間PTS-VL 一樣。鎖定信號SLOCK 仍為”1”,計數值成為2。第X+4開關週期為波谷切換。In the X+4 switching cycle in Fig. 12, since the lock signal S LOCK is "1", the time point t END appears at the end of the front oscillation time PT S-VL . The off time T OFF in the X+4 switching cycle follows steps 304, 305, 316, 318 and 320. The front oscillating time PT S-VL will not be updated, and the oscillating time T S-VL will be the same as the previous oscillating time PT S-VL . The lock signal S LOCK remains "1" and the count value becomes 2. The X+4 switching cycle is a valley switching.

從第X開關週期到第X+4開關週期的過程中,可以發現,震盪時間TS-VL 是隨著開關週期而增加。震盪時間TS-VL 的結束時間點,是從第2信號波谷出現的時間點,漸漸的增加,最後停在第3信號波谷出現的時間點,如同第12圖所示。關閉時間控制器302強迫震盪時間TS-VL 與前震盪時間PTS-VL 之間的差,小於跨壓VAUX 之震盪週期TAUX-CYCDuring the period from the Xth switching period to the X+4 switching period, it can be found that the oscillating time T S-VL is increased with the switching period. The end time of the oscillating time T S-VL is gradually increased from the time point when the second signal trough occurs, and finally stops at the time point when the third signal trough appears, as shown in Fig. 12. The closing time controller 302 forces the difference between the oscillating time T S-VL and the front oscillating time PT S-VL to be less than the oscillating period T AUX-CYC across the voltage V AUX .

第12圖中的第X+4開關週期之後,前震盪時間PTS-VL 與震盪時間TS-VL 一直維持不變,也大約相等,每個關閉時間TOFF 會依循第11圖中的步驟304、305、316、318與320而決定。如同第12圖中所示,計數值會隨著每個開關週期而增加1,直到計數值成為N後,鎖定信號SLOCK 才會變更為”0”,從而解除波谷鎖定。After the X+4 switching cycle in Figure 12, the front oscillating time PT S-VL and the oscillating time T S-VL remain unchanged and approximately equal, and each closing time T OFF follows the steps in Figure 11 304, 305, 316, 318 and 320 are determined. As shown in Fig. 12, the count value increases by 1 with each switching cycle until the count value becomes N, and the lock signal S LOCK is changed to "0", thereby canceling the valley lock.

請同時參閱第1圖、第9圖、第11圖與第13圖。第13圖顯示當負載由輕轉重時,一些連續開關週期中的跨壓VAUX ,以及一些信號的時序。Please also refer to Figure 1, Figure 9, Figure 11, and Figure 13. Figure 13 shows the crossover voltage V AUX in some successive switching cycles, as well as the timing of some of the signals when the load is lightly weighted.

如同第13圖中第Y開關週期中的跨壓VAUX 所示,假定在第Y開關週期之前,是處於一穩定狀態,關閉時間控制器302穩定的使波谷切換發生於第3信號波谷VL3 出現時。在第Y開關週期中,時間點tAB -1ST 也就是時間點tEND (週期時間TCYC 的結束),震盪時間TS-VL 將與前震盪時間PTS-VL 相同,鎖定信號SLOCK 為”0”,計數值為N。在第11圖中,第Y開關週期中的關閉時 間TOFF 是依循步驟304、305、306、308、310、312與324,這樣的步驟流程來決定。As shown by the voltage across the voltage V AUX in the Y-th switching period in Fig. 13, assuming that the state is in a steady state before the Y-th switching period, the off-time controller 302 stably causes the valley switching to occur in the third signal valley VL 3 . When it appears. In the Yth switching cycle, the time point t AB - 1ST is also the time point t END (the end of the cycle time T CYC ), the oscillation time T S-VL will be the same as the front oscillation time PT S-VL , and the lock signal S LOCK is "0", the count value is N. In Fig. 11, the first Y switch off time T OFF is a period following the steps 304,305,306,308,310,312 and 324, the step of the process is determined.

第13圖中的第Y+1開關週期中,可能因為輕載轉重載,所以時間點tRELEASE 突然被提早到信號波谷VL1 附近,導致到時間點tAB-1ST 出現時,時窗TW尚未沒有出現。第Y+1開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、315與324,這樣的步驟流程來決定。所以,第Y+1開關週期的時間點tEND 會與時間點tW-S 大約同時,鎖定信號SLOCK 為”0”,計數值為0。震盪時間TS-VL ,將會比前震盪時間PTS-VL ,少了一預定時間,如同第12圖所示。這個預定時間只是跨壓VAUX 的震盪週期TAUX-CYC 之一部分,在第13圖中,這個預定時間小於跨壓VAUX 的震盪週期TAUX-CYC 之二分之一。第13圖明顯的顯示,第Y+1開關週期並非波谷切換。In the Y+1 switching cycle in Fig. 13, it may be due to light load to heavy load, so the time point t RELEASE is suddenly advanced to the vicinity of the signal valley VL 1 , resulting in the time window TW when the time point t AB-1ST appears. Not yet appearing. The off time T OFF in the Y+1th switching cycle is determined by the step flow following steps 304, 305, 306, 308, 310, 315 and 324. Therefore, the time point t END of the Y+1th switching period is approximately the same as the time point t WS , the lock signal S LOCK is “0”, and the count value is 0. The oscillating time T S-VL will be less than the previous oscillating time PT S-VL , as shown in Figure 12. This predetermined time is only a part of the oscillating period T AUX-CYC across the voltage V AUX , and in FIG. 13 , this predetermined time is less than one-half of the oscillating period T AUX-CYC of the voltage across the voltage V AUX . Figure 13 clearly shows that the Y+1 switching period is not a valley switching.

第13圖中的第Y+2開關週期中,到時間點tAB-1ST 發生時,時窗TW結束依然沒有出現。因此,第Y+2開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、315與324。第Y+2開關週期的時間點tEND 會與時間點tW-S 大約同時,鎖定信號SLOCK 為”0”,計數值為0。第Y+2開關週期也非波谷切換。In the Y+2 switching cycle in Fig. 13, when the time point t AB-1ST occurs, the end of the time window TW still does not appear. Therefore, the off time T OFF in the Y+2 switching cycle follows steps 304, 305, 306, 308, 310, 315, and 324. The time point t END of the Y+2 switching cycle is approximately the same as the time point t WS , the lock signal S LOCK is “0”, and the count value is 0. The Y+2 switching cycle is also not a valley switch.

第13圖中的第Y+3開關週期中,時間點tAB-1ST 在時窗TW內出現。因此,第Y+3開關週期中的關閉時間TOFF 會依循步驟304、305、306、308、310、312與314。第Y+3開關週期的時間點tEND 會與時間點tAB-1ST 大約同時,鎖定信號SLOCK 變成”1”,計數值為1。第Y+3開關週期為波谷切換。In the Y+3 switching cycle in Fig. 13, the time point t AB-1ST appears in the time window TW. Therefore, the off time T OFF in the Y+3 switching cycle follows steps 304, 305, 306, 308, 310, 312, and 314. Y + 3 of the switching cycle will be the time point t END time point t AB-1ST about the same time, the lock signal S LOCK becomes "1", the count value is 1. The Y+3 switching cycle is a valley switching.

第13圖中的第Y+4開關週期中,因為鎖定信號SLOCK 為”1”,所以時間點tEND 出現在前震盪時間PTS-VL 結束時。第Y+4開關週期中的關閉 時間TOFF 會依循步驟304、305、316、318與320而決定。前震盪時間PTS-VL 不會被更新,而震盪時間TS-VL 會跟前震盪時間PTS-VL 一樣。鎖定信號SLOCK 仍為”1”,計數值成為2。In the Y+4 switching cycle in Fig. 13, since the lock signal S LOCK is "1", the time point t END appears at the end of the front oscillation time PT S-VL . The off time T OFF in the Y+4 switching cycle is determined in accordance with steps 304, 305, 316, 318 and 320. The front oscillating time PT S-VL will not be updated, and the oscillating time T S-VL will be the same as the previous oscillating time PT S-VL . The lock signal S LOCK remains "1" and the count value becomes 2.

從第Y開關週期到第Y+4開關週期的過程中,可以發現,震盪時間TS-VL 是隨著開關週期而減少。震盪時間TS-VL 的結束時間點,是從第3信號波谷出現的時間點,漸漸的減少,最後停在第2信號波谷出現的時間點。From the Yth switching period to the Y+4 switching period, it can be found that the oscillation time T S-VL is reduced with the switching period. The end time of the oscillating time T S-VL is gradually decreased from the time point when the third signal trough occurs, and finally stops at the time point when the second signal trough appears.

第13圖中的第Y+4開關週期之後,前震盪時間PTS-VL 與震盪時間TS-VL 一直維持不變,每個關閉時間TOFF 會依循第11圖中的步驟304、305、316、318與320而決定。如同第13圖中所示,計數值會隨著每個開關週期而增加1,直到計數值成為預定的N後,鎖定信號SLOCK 才會變更為”0”,解除波谷鎖定。After the Y+4 switching cycle in Figure 13, the front oscillating time PT S-VL and the oscillating time T S-VL remain unchanged, and each closing time T OFF follows steps 304 and 305 in FIG. 11 . 316, 318 and 320 are decided. As shown in Fig. 13, the count value increases by 1 with each switching cycle until the count value becomes a predetermined N, and the lock signal S LOCK is changed to "0" to cancel the valley lock.

從第11圖、第12圖與第13圖可知,在本發明的一實施例中,一旦進入某一信號波谷的波谷切換後,就會發生波谷鎖定。也就是這信號波谷的波谷切換將會持續至少N個開關週期,才可以允許另一信號波谷的波谷切換發生。而且,實施例中也提供了波谷切換的軟轉換,也就是兩個位於不同信號波谷之波谷切換的開關週期之間,會有至少一個不是操作於波谷切換的開關週期。As can be seen from Fig. 11, Fig. 12, and Fig. 13, in one embodiment of the present invention, trough lock occurs upon switching of a valley that enters a certain signal trough. That is, the valley switching of this signal valley will last for at least N switching cycles before the valley switching of another signal valley can be allowed to occur. Moreover, the soft transition of the valley switching is also provided in the embodiment, that is, between two switching periods of valley switching in different signal valleys, there is at least one switching period that is not operating in valley switching.

第14圖顯示習知技術中,震盪時間TS-VL 的一種可能變化。先前技術沒有所謂波谷切換的軟轉換,因此一個開關週期的震盪時間TS-VL ,與另一個開關週期的震盪時間TS-VL ,一定是跨壓VAUX 的震盪週期TAUX-CYC 的整數倍,如同第14圖所示。震盪週期TAUX-CYC 大約就是兩個連續信號波谷底部出現的時間差。這樣大的震盪時間TS-VL 變化,容易造成整個 系統的不穩定,也會造成輸出電壓VOUT 較大的抖動(ripple)。Figure 14 shows a possible variation of the oscillating time T S-VL in the prior art. Prior art does not convert the so-called soft handover valley, therefore an oscillation of the switching period T S-VL, and another switching cycle oscillation time T S-VL, is an integer of oscillation cycle must cross voltage V AUX of the T AUX-CYC Times, as shown in Figure 14. The oscillating period T AUX-CYC is approximately the time difference between the bottoms of two consecutive signal troughs. Such a large oscillation time T S-VL changes easily causes instability of the entire system, and also causes a large jitter of the output voltage V OUT .

而且,先前技術的電源供應器也沒有所謂波谷鎖定。因此,可能發生如同第14圖中所顯示的情形,隨著開關週期的前進,波谷切換在兩個信號波谷快速地跳來跳去。Moreover, prior art power supplies do not have so-called valley locks. Therefore, as in the case shown in Fig. 14, it may happen that as the switching period advances, the valley switching jumps and jumps rapidly in the two signal valleys.

第15圖顯示依據本發明之一實施例中,震盪時間TS-VL 的一種可能變化。第15圖顯示了軟轉換,所以從第4信號波谷VL4 的波谷切換,變遷到第3信號波谷VL3 的波谷切換之過程中,經歷三個非波谷切換的開關週期。第15圖也顯示了波谷鎖定的效果,第3信號波谷VL3 的波谷切換一定要經歷了至少8個開關週期,才可以往到另一個信號波谷的波谷切換前進。從第14圖與第15圖比較可知,第15圖中的震盪時間TS-VL 變化比較平順,比較不會產生系統不穩定的結果。Figure 15 shows a possible variation of the oscillating time T S-VL in one embodiment of the invention. Fig. 15 shows the soft transition, so during the valley switching of the fourth signal valley VL 4 and the transition to the valley of the third signal valley VL 3 , three switching periods of non-valley switching are experienced. Figure 15 also shows the effect of valley lock. The valley switching of the third signal valley VL 3 must go through at least 8 switching cycles before it can switch to the valley of another signal valley. Comparing Fig. 14 with Fig. 15, it can be seen that the oscillating time T S-VL in Fig. 15 is relatively smooth, and the system instability is not produced.

第9圖中的QR控制器300同時有1)遮蔽時間TBLOCK 由負載代表信號VL-EST 所決定;2)波谷切換的軟轉換;以及3)波谷鎖定,這三種技術特點,但本發明不限於此。這三個技術特點可以個別獨立實施,或是倆倆互相組合實施。舉例來說,一個本發明的實施例可以實施1)遮蔽時間TBLOCK 由負載代表信號VL-EST 所決定;與2)波谷切換的軟轉換,這兩個技術特點,但沒有實施波谷鎖定。另一個實施例則實施了波谷切換的軟轉換以及波谷鎖定,但遮蔽時間TBLOCK 由補償信號VCOMP 所決定,而非負載代表信號VL-ESTThe QR controller 300 in FIG. 9 has 1) the masking time T BLOCK is determined by the load representative signal V L-EST ; 2) the soft transition of the valley switching; and 3) the trough locking, the three technical features, but the present invention Not limited to this. These three technical features can be implemented independently or in combination. For example, an embodiment of the present invention may implement 1) the masking time T BLOCK is determined by the load representative signal V L-EST ; and 2) the soft transition of the valley switching, both technical features, but no trough locking is implemented. Another embodiment implements a soft transition of valley switching and valley lock, but the masking time T BLOCK is determined by the compensation signal V COMP , rather than the load representative signal V L-EST .

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

304、305、306、308、310、312、314、315、316、318、320、322、324‧‧‧步驟304, 305, 306, 308, 310, 312, 314, 315, 316, 318, 320, 322, 324 ‧ ‧ steps

PTS-VL ‧‧‧前震盪時間PT S-VL ‧‧‧ before shock time

SLOCK ‧‧‧鎖定信號S LOCK ‧‧‧Lock signal

tAB-1ST ‧‧‧時間點t AB-1ST ‧‧‧ time

TCYC ‧‧‧週期時間T CYC ‧‧‧ cycle time

TOFF ‧‧‧關閉時間T OFF ‧‧‧Closed time

TS-VL ‧‧‧震盪時間T S-VL ‧‧‧ shock time

TW‧‧‧時窗TW‧‧‧ hour window

Claims (11)

一種電源控制器,適用於一開關式電源供應器,該開關式電源供應器包含有串聯在一起的一電感元件以及一功率開關,該電感元件之一跨壓可震盪而產生至少一信號波谷,該功率開關受一脈波寬度調變信號所控制,該脈波寬度調變信號具有一開啟時間以及一關閉時間,該電源控制器包含有:一波谷偵測器,耦接至該電感元件,用以產生一波谷指示信號,以指出該至少一信號波谷出現的時間;一遮蔽時間產生器,提供一遮蔽時間;以及一關閉時間控制器(OFF-time controller),紀錄有一震盪時間紀錄,其代表一前震盪時間,關聯於一前開關週期;依據該震盪時間紀錄、該遮蔽時間以及該波谷指示信號,來結束該關閉時間;以及,依據一震盪時間,更新該震盪時間紀錄;其中,該震盪時間係由該跨壓開始震盪後之一起點開始,而與該關閉時間一同結束。 A power controller is provided for a switching power supply, the switch power supply includes an inductance component connected in series and a power switch, and one of the inductance components can be oscillated across the voltage to generate at least one signal valley. The power switch is controlled by a pulse width modulation signal having an on time and a off time. The power controller includes: a valley detector coupled to the inductive component, Generating a trough indication signal to indicate the time at which the at least one signal trough occurs; a masking time generator providing an obscuration time; and an OFF-time controller recording an oscillating time record, Representing a front oscillating time associated with a front switching period; ending the closing time according to the oscillating time record, the occlusion time, and the trough indication signal; and updating the oscillating time record according to an oscillating time; wherein The oscillating time begins with one of the starting points after the sway begins to oscillate, and ends with the closing time. 如申請專利範圍第1項之電源控制器,其中,該關閉時間控制器可依據該震盪時間記錄提供一時窗,且該前震盪時間結束於該時窗之內。 The power controller of claim 1, wherein the off time controller can provide a time window according to the oscillating time record, and the front oscillating time ends within the time window. 如申請專利範圍第2項之電源控制器,其中,該關閉時間控制器限制該關閉時間結束於該時窗內。 The power controller of claim 2, wherein the shutdown time controller limits the closing time to end in the time window. 如申請專利範圍第2項之電源控制器,其中:該遮蔽時間大致與該開啟時間一起開始;該遮蔽時間結束後的第一無遮蔽信號波谷係出現於一第一時間點; 當該第一時間點早於該時窗時,該關閉時間結束於該時窗的一起始點;當該第一時間點晚於該時窗時,該關閉時間結束於該時窗的一結束點;以及當該第一時間點位於該時窗內時,該關閉時間結束於該第一時間點。 The power controller of claim 2, wherein: the shielding time starts substantially together with the opening time; the first unmasked signal trough after the shielding time ends appears at a first time point; When the first time point is earlier than the time window, the closing time ends at a starting point of the time window; when the first time point is later than the time window, the closing time ends at an end of the time window a point; and when the first time point is within the time window, the closing time ends at the first time point. 如申請專利範圍第2項之電源控制器,其中,該時窗的一長度小於該跨壓之一震盪週期。 The power controller of claim 2, wherein a length of the time window is less than one of the span voltages. 如申請專利範圍第1項之電源控制器,其中,該關閉時間控制器強迫該震盪時間與該前震盪時間之間的差,小於該跨壓之一震盪週期。 The power controller of claim 1, wherein the off-time controller forces the difference between the oscillating time and the previous oscillating time to be less than one of the cross-pressure oscillating periods. 如申請專利範圍第6項之電源控制器,其中,該關閉時間控制器具有一計時器,用來記錄波谷切換鎖定發生於一相同信號波谷的時間。 The power controller of claim 6, wherein the off-time controller has a timer for recording a time when the valley switching lock occurs in a same signal trough. 一種控制方法,適用於一電源供應器,其包含有一電感元件以及一功率開關,該功率開關受一脈波寬度調變信號所控制,該脈波寬度調變信號具有數個開關週期,每一開關週期的週期時間具有一開啟時間以及一關閉時間,該電感元件之一跨壓可震盪而具有一震盪週期,並產生至少一信號波谷,該控制方法包含有:提供一震盪時間紀錄,其代表一前震盪時間,關聯於一前開關週期;於一開關週期內,依據該前震盪時間,控制該功率開關,使該關閉時間結束;以及依據一震盪時間,更新該震盪時間紀錄,其中,該震盪時間與該前震盪時間都從該跨壓開始震盪後之一起點開始,且該震盪時間與該關閉時間同時結束;其中,該震盪時間與該前震盪時間之差,小於該震盪週期,以使該前開 關週期與該開關週期其中之一操作於波谷切換,另一操作於非波谷切換。 A control method is applicable to a power supply comprising an inductive component and a power switch, the power switch being controlled by a pulse width modulation signal having a plurality of switching cycles, each The cycle time of the switching cycle has an on time and a turn-off time. One of the inductive components can be oscillated across the voltage to have an oscillation period and generate at least one signal valley. The control method includes: providing an oscillation time record, which represents a front oscillating time associated with a front switching cycle; controlling the power switch to end the closing time according to the previous oscillating time during a switching cycle; and updating the oscillating time record according to an oscillating time, wherein The oscillating time and the previous oscillating time start from a starting point after the swaying of the sag, and the oscillating time ends at the same time as the closing time; wherein the difference between the oscillating time and the previous oscillating time is less than the oscillating period, Make the front open One of the off period and the switching period operates on a valley switch, and the other operates on a non-valley switch. 如申請專利範圍第8項之控制方法,另包含有:依據該前震盪時間,提供一時窗,其中,該前震盪時間結束於該時窗內;以及使該關閉時間結束於該時窗內。 For example, in the control method of claim 8, the method further includes: providing a time window according to the front oscillating time, wherein the front oscillating time ends in the time window; and ending the closing time in the time window. 如申請專利範圍第9項之控制方法,另包含有:提供一遮蔽時間,其大致與該開啟時間一起開始;於該遮蔽時間結束後,指出一第一無遮蔽信號波谷出現於一第一時間點;該遮蔽時間結束後的第一無遮蔽信號波谷係出現於一第一時間點;當該第一時間點早於該時窗時,該關閉時間結束於該時窗的一起始點;當該第一時間點晚於該時窗時,該關閉時間結束於該時窗的一結束點;以及當該第一時間點位於該時窗內時,該關閉時間結束於該第一時間點。 The control method of claim 9 further includes: providing a masking time, which starts substantially together with the opening time; after the masking time ends, indicating that a first unmasked signal trough occurs at a first time Point; the first unmasked signal trough after the end of the masking time occurs at a first time point; when the first time point is earlier than the time window, the closing time ends at a starting point of the time window; When the first time point is later than the time window, the closing time ends at an end point of the time window; and when the first time point is located in the time window, the closing time ends at the first time point. 如申請專利範圍第8項之控制方法,另包含有:提供一鎖定信號,使該電源供應器持續在該前震盪時間結束時,結束該關閉時間;以及維持該鎖定信號至少一持續時間後,才解除該鎖定信號;其中該持續時間為預定之數個開關週期。The control method of claim 8 further includes: providing a lock signal to cause the power supply to continue at the end of the previous oscillating time, ending the closing time; and maintaining the lock signal for at least one duration, The lock signal is released; wherein the duration is a predetermined number of switching cycles.
TW103124356A 2014-07-16 2014-07-16 Power controllers and related control methods TWI514742B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103124356A TWI514742B (en) 2014-07-16 2014-07-16 Power controllers and related control methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103124356A TWI514742B (en) 2014-07-16 2014-07-16 Power controllers and related control methods

Publications (2)

Publication Number Publication Date
TWI514742B true TWI514742B (en) 2015-12-21
TW201605161A TW201605161A (en) 2016-02-01

Family

ID=55407916

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103124356A TWI514742B (en) 2014-07-16 2014-07-16 Power controllers and related control methods

Country Status (1)

Country Link
TW (1) TWI514742B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030479A (en) * 2018-10-09 2020-04-17 通嘉科技股份有限公司 Active clamp flyback power converter and related control method
TWI842569B (en) * 2023-03-13 2024-05-11 大陸商艾科微電子(深圳)有限公司 Asymmetric half-bridge power supplies and control methods thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678059B (en) * 2018-05-14 2019-11-21 通嘉科技股份有限公司 Switching-mode power supplies and power controllers capable of jittering switching frequency
TWI681612B (en) * 2018-12-14 2020-01-01 通嘉科技股份有限公司 Power controller with frequency jittering, and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200838110A (en) * 2007-03-02 2008-09-16 Richtek Techohnology Corp Adaptive leading edge blanking circuit of switching mode power converter and method thereof
US20100265742A1 (en) * 2009-04-17 2010-10-21 Jin Hu Switching regulator with frequency limitation and method thereof
TW201101691A (en) * 2009-06-16 2011-01-01 Grenergy Opto Inc Method and device to detect the voltage of quasi-resonant wave trough
TW201145790A (en) * 2010-06-07 2011-12-16 Neoenergy Microelectronics Inc Digital dynamic delay modulator and the method thereof for flyback converter
CN102301578A (en) * 2008-12-20 2011-12-28 阿祖雷科技有限公司 Energy Conversion Systems With Power Control
TW201406016A (en) * 2012-07-31 2014-02-01 Leadtrend Tech Corp Power controllers, power supplies and control methods therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200838110A (en) * 2007-03-02 2008-09-16 Richtek Techohnology Corp Adaptive leading edge blanking circuit of switching mode power converter and method thereof
CN102301578A (en) * 2008-12-20 2011-12-28 阿祖雷科技有限公司 Energy Conversion Systems With Power Control
US20100265742A1 (en) * 2009-04-17 2010-10-21 Jin Hu Switching regulator with frequency limitation and method thereof
TW201101691A (en) * 2009-06-16 2011-01-01 Grenergy Opto Inc Method and device to detect the voltage of quasi-resonant wave trough
TW201145790A (en) * 2010-06-07 2011-12-16 Neoenergy Microelectronics Inc Digital dynamic delay modulator and the method thereof for flyback converter
TW201406016A (en) * 2012-07-31 2014-02-01 Leadtrend Tech Corp Power controllers, power supplies and control methods therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111030479A (en) * 2018-10-09 2020-04-17 通嘉科技股份有限公司 Active clamp flyback power converter and related control method
CN111030479B (en) * 2018-10-09 2022-09-27 通嘉科技股份有限公司 Active clamping flyback power converter and related control method
TWI842569B (en) * 2023-03-13 2024-05-11 大陸商艾科微電子(深圳)有限公司 Asymmetric half-bridge power supplies and control methods thereof

Also Published As

Publication number Publication date
TW201605161A (en) 2016-02-01

Similar Documents

Publication Publication Date Title
TWI835957B (en) Power converter, frequency controller, and method for controlling constant on-time
CN106688172B (en) Method for controlling DC-DC converter
JP6356140B2 (en) Slope compensation module
US7868600B2 (en) Adaptive PWM pulse positioning for fast transient response
TWI601368B (en) Switched mode power supplies capable of operating at valley switching, and relevant control methods
TWI514742B (en) Power controllers and related control methods
KR101265387B1 (en) Method of controlling a dc-dc converter in discontinuous mode
US20150177756A1 (en) Switching regulator and control circuit and control method therefor
US20120032658A1 (en) Buck-Boost Converter Using Timers for Mode Transition Control
US20070001655A1 (en) Switching power supply control with phase shift
JP6767867B2 (en) Resonant power converter and control method
US11601044B2 (en) Method for driving an electronic switch in a power converter circuit and control circuit
TWI514740B (en) Power controllers and related control methods
US6930526B1 (en) Quasi-feedforward PWM modulator
TW201600949A (en) Control circuit for switching regulator and method for regulating electrical signal
US8232787B2 (en) Pulse time detector, a controller for a switched mode power supply, and a switched mode power supply including such a controller
US8686767B1 (en) Apparatus and method for a programmable timing in peak current mode controlled power converters
CN105305825A (en) Power controller and related control method
JP6858725B2 (en) DC / DC converter and DC / DC converter control method
JPH04317561A (en) No-voltage changing dc-dc converter
US11336179B2 (en) DC/DC converter, and control method for DC/DC converter
US9209696B1 (en) Switching mode power supply capable of achieving soft transition for valley switching, or performing valley locking
CN105262340B (en) Power-supply controller of electric and relevant control method
KR101224511B1 (en) Circuit arrangement and method for controlling a pulsed power supply
KR102113406B1 (en) Phase locked loop calibration for synchronizing non-constant frequency switching regulators

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees