TWI514730B - Ultra high step-down converter - Google Patents
Ultra high step-down converter Download PDFInfo
- Publication number
- TWI514730B TWI514730B TW103120729A TW103120729A TWI514730B TW I514730 B TWI514730 B TW I514730B TW 103120729 A TW103120729 A TW 103120729A TW 103120729 A TW103120729 A TW 103120729A TW I514730 B TWI514730 B TW I514730B
- Authority
- TW
- Taiwan
- Prior art keywords
- switch
- winding
- output
- voltage
- input
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明是有關於一種降壓轉換器,特別是指一種電路設計簡潔、控制容易、電壓轉換比呈現線性特性及若有開關不正常動作時不會產生高電壓而可保護輸出負載的低降壓轉換器。The invention relates to a buck converter, in particular to a low voltage step which is simple in circuit design, easy to control, has a linearity in voltage conversion ratio, and can prevent an output load if a switch does not operate normally and does not generate a high voltage. converter.
已知降壓轉換器常用於數位電路。例如:網路通訊系統中使用48伏的電壓匯流排提供3.3伏或更低的電壓,現有的作法是將脈波寬度控制信號的責任週期降低至10%或更低,但是此種方式易造成開關損失,因此,目前多採取兩階段降壓,第一階段由48伏降至12伏,再由12伏降壓為3.3伏、2.5伏、1.8伏、1.5伏、1.2伏或1伏,但是,如此就需要許多主動開關及多控制元件,不但電路設計複雜,也不易控制。Buck converters are known for use in digital circuits. For example, a 48 volt voltage bus in a network communication system provides a voltage of 3.3 volts or less. The existing method is to reduce the duty cycle of the pulse width control signal to 10% or lower, but this method is easy to cause. Switching losses, therefore, currently take two-stage buck, the first phase from 48 volts to 12 volts, and then 12 volts to 3.3 volts, 2.5 volts, 1.8 volts, 1.5 volts, 1.2 volts or 1 volt, but Therefore, many active switches and multiple control components are required, which is not only complicated in circuit design but also difficult to control.
因此,現有的降壓轉換器的缺失包括:電路設計複雜、控制不易、電壓轉換比呈現非線性特性,以及遇到開關失效或不正常動作時,其他開關導通時將導致輸出端出現高電壓而無法保護輸出負載。Therefore, the lack of existing buck converters includes: complicated circuit design, difficult control, non-linear characteristics of voltage conversion ratio, and when switching failure or abnormal operation occurs, other switches will cause high voltage at the output when they are turned on. Unable to protect the output load.
因此,本發明之目的,即在提供一種電路設計簡潔、控制容易、電壓轉換比呈現線性特性及若有開關不正常動作時不會產生高電壓而可保護輸出負載的低降壓轉換器。Accordingly, it is an object of the present invention to provide a low buck converter that can protect an output load without providing a high voltage if the circuit design is simple, the control is easy, the voltage conversion ratio exhibits linear characteristics, and if the switch does not operate normally.
本發明的低降壓轉換器用以將一電源之輸入電壓降壓為一輸出電壓,該低降壓轉換器包含一第一開關、一第二開關、一第三開關、一耦合電感、一能量傳遞電容及一輸出電容。The low buck converter of the present invention is used to step down an input voltage of a power supply to an output voltage. The low buck converter includes a first switch, a second switch, a third switch, a coupled inductor, and an energy. Transfer capacitor and an output capacitor.
該第一開關具有一第一輸入端、一第一控制端及一第一輸出端,該第一輸入端耦接該電源;該第二開關具有一第二輸入端、一第二控制端及一第二輸出端,該第二輸入端耦接該第一輸出端,該第二輸出端接地;該能量傳遞電容的一端電性連接該第二輸入端;該耦合電感具有一第一繞組及一第二繞組,該第一繞組之打點端電性連接該能量傳遞電容的另一端,該第一繞組之非打點端電性連接該第二繞組之打點端;該第三開關具有一第三輸入端、一第三控制端及一第三輸出端,該第三輸入端耦接該第一繞組之非打點端及該第二繞組之打點端,該第三輸出端接地;該輸出電容電性連接該第二繞組之非打點端。The first switch has a first input end, a first control end and a first output end, the first input end is coupled to the power source; the second switch has a second input end, a second control end, and a second output end coupled to the first output end, the second output end is grounded; one end of the energy transfer capacitor is electrically connected to the second input end; the coupled inductor has a first winding and a second winding, the dot end of the first winding is electrically connected to the other end of the energy transfer capacitor, and the non-tapping end of the first winding is electrically connected to the dot end of the second winding; the third switch has a third An input end, a third control end and a third output end, the third input end is coupled to the non-tapping end of the first winding and the striking end of the second winding, the third output end is grounded; the output capacitor is electrically The non-dot end of the second winding is connected.
該第一開關之第一控制端接受一波寬調變訊號控制該第一開關的導通與否,該第二開關之第二控制端及該第三開關之第三控制端接受該波寬調變訊號之反相訊號控制該第二開關及該第三開關的導通與否,藉此,在該輸出電容產生該輸入電壓降壓後的輸出電壓。The first control end of the first switch receives a wave width modulation signal to control whether the first switch is turned on or not, and the second control end of the second switch and the third control end of the third switch accept the wave width adjustment The reverse signal of the variable signal controls whether the second switch and the third switch are turned on or not, whereby the output capacitor generates an output voltage after the input voltage is stepped down.
所述的低降壓轉換器的其電壓轉換比符合下列公式:
本發明的低降壓轉換器之功效在於:其電路設計簡潔、控制容易、轉換比率具有線性特性,且當任一開關失效或不正常動作,同時,其他開關導通,輸出端不會出現高電壓而可保護輸出負載。The function of the low buck converter of the invention is that the circuit design is simple, the control is easy, the conversion ratio has linear characteristics, and when any switch fails or does not operate normally, at the same time, other switches are turned on, and high voltage does not appear at the output end. It protects the output load.
100‧‧‧低降壓轉換器100‧‧‧Low Buck Converter
1‧‧‧耦合電感1‧‧‧coupled inductor
CB ‧‧‧能量傳遞電容C B ‧‧‧ energy transfer capacitor
CO ‧‧‧輸出電容C O ‧‧‧ output capacitor
11‧‧‧第一繞組11‧‧‧First winding
12‧‧‧第二繞組12‧‧‧second winding
N1 ‧‧‧第一繞組之匝數N 1 ‧‧‧Number of turns in the first winding
N2 ‧‧‧第二繞組之匝數N 2 ‧‧‧Number of turns in the second winding
Q1 ‧‧‧第一開關Q 1 ‧‧‧First switch
Q2 ‧‧‧第二開關Q 2 ‧‧‧Second switch
Q3 ‧‧‧第三開關Q 3 ‧‧‧third switch
Vin ‧‧‧輸入電壓V in ‧‧‧ input voltage
VO ‧‧‧輸出電壓V O ‧‧‧Output voltage
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一電路圖,說明本發明的低降壓轉換器之實施例;圖2至圖8是示意圖,說明本發明的低降壓轉換器在不同狀態之電流方向;圖9是至圖11是波形圖,說明本發明的低降壓轉換器的波寬調變訊號及相關信號;圖12是一波形圖,說明本發明的低降壓轉換器從50%改變為100%負載的負載致能信號、輸出電壓及輸出電流;圖13是一波形圖,說明本發明的低降壓轉換器從100%改變為50%負載的負載致能信號、輸出電壓及輸出電流;圖14是一曲線圖,說明本發明的低降壓轉換器之額定負 載對應轉換效能。Other features and advantages of the present invention will be apparent from the embodiments of the present invention, wherein: FIG. 1 is a circuit diagram illustrating an embodiment of the low buck converter of the present invention; FIGS. 2-8 are schematic views The current direction of the low buck converter of the present invention in different states is illustrated; FIG. 9 is a waveform diagram illustrating the wave width modulation signal and related signals of the low buck converter of the present invention; FIG. Waveform diagram illustrating the load enable signal, output voltage, and output current of the low buck converter of the present invention changed from 50% to 100% load; FIG. 13 is a waveform diagram illustrating the low buck converter of the present invention from 100 % is changed to load enable signal, output voltage and output current of 50% load; FIG. 14 is a graph illustrating the rated negative of the low buck converter of the present invention Load corresponding to conversion performance.
參閱圖1與圖2,本發明之實施例中,低降壓轉換器100用以將一電源之輸入電壓Vin 降壓為一輸出電壓VO ,低降壓轉換器100包含一第一開關Q1 、一第二開關Q2 、一第三開關Q3 、一耦合電感1、一能量傳遞電容CB 及一輸出電容CO 。Referring to FIG. 1 and FIG. 2, in the embodiment of the present invention, the low buck converter 100 is configured to step down an input voltage V in a power supply to an output voltage V O , and the low buck converter 100 includes a first switch. Q 1 , a second switch Q 2 , a third switch Q 3 , a coupled inductor 1 , an energy transfer capacitor C B and an output capacitor C O .
第一開關Q1 具有一第一輸入端、一第一控制端及一第一輸出端,第一輸入端耦接該電源;第二開關Q2 具有一第二輸入端、一第二控制端及一第二輸出端,第二輸入端耦接第一輸出端,第二輸出端接地;能量傳遞電容CB 一端電性連接該第二輸入端;耦合電感1具有一第一繞組11及一第二繞組12,第一繞組11之打點端電性連接能量傳遞電容CB 的另一端,第一繞組11之非打點端電性連接第二繞組12之打點端;第三開關Q3 具有一第三輸入端、一第三控制端及一第三輸出端,第三輸入端耦接第一繞組11之非打點端及第二繞組12之打點端,第三輸出端接地;輸出電容CO 電性連接該第二繞組12之非打點端;其中,第一開關Q1 之第一控制端接受一波寬調變訊號控制第一開關Q1 的導通與否,第二開關Q2 之第二控制端及第三開關Q3 之第三控制端接受該波寬調變訊號之反相訊號,藉此控制第二開關Q2 及第三開關Q3 的導通與否,而可在輸出電容CO 產生一將輸入電壓Vin 降壓後的輸出電壓VO 。The first switch Q 1 has a first input end, a first control end and a first output end, the first input end is coupled to the power source; the second switch Q 2 has a second input end and a second control end And a second output end, the second input end is coupled to the first output end, the second output end is grounded; the end of the energy transfer capacitor C B is electrically connected to the second input end; the coupled inductor 1 has a first winding 11 and a The second winding 12, the striking end of the first winding 11 is electrically connected to the other end of the energy transfer capacitor C B , the non-injecting end of the first winding 11 is electrically connected to the striking end of the second winding 12; the third switch Q 3 has a a third input end, a third control end and a third output end, the third input end is coupled to the non-tapping end of the first winding 11 and the striking end of the second winding 12, and the third output end is grounded; the output capacitor C O electrically connected to the second winding 12 of the non-striking end; wherein the first switch Q 1 of the first control terminal receiving a wave width modulation signal controls the first switch Q 1 is turned on or not, the second switch Q 2 of and two control terminal of the third switch Q 3 of the third control terminal receiving the inverted signal of the pulse width modulation signal Whereby the control of the second switch and the third switch Q 2 Q 3 is turned on or not, and may generate the input voltage V in a stepped-down output voltage V O at the output capacitor C O.
以下參閱圖2至圖8,並配合圖1,分別說明本 實施例的第一狀態至第七狀態,並介紹相關於輸入電壓Vin 及直流輸出電壓VO 的關係式。Referring to FIG. 2 to FIG. 8 together with FIG. 1, the first to seventh states of the present embodiment will be respectively described, and the relational expressions relating to the input voltage V in and the DC output voltage V O will be described.
參考圖2,第一狀態中,第一開關Q1 不導通,第二開關Q2 及第三開關Q3 不導通,耦合電感1的第一繞組11及第二繞組12被激磁,且第一繞組11及第二繞組12的電流緩慢增加,第一繞組11的電壓如公式1所示,其中,能量傳遞電容CB 的電壓為VCB 。Referring to Figure 2, a first state, the first switch Q 1 is not turned on, the second switch and the third switch Q 2 Q 3 is not turned on, the first winding 11 of coupled inductor 1 and the second winding 12 is energized, and the first The currents of the winding 11 and the second winding 12 are slowly increased, and the voltage of the first winding 11 is as shown in Equation 1, wherein the voltage of the energy transfer capacitor C B is V CB .
公式1中,第一繞組11之匝數為N1 ,第二繞組12之匝數為N2 。In Formula 1, the number of turns of the first winding 11 is N 1 , and the number of turns of the second winding 12 is N 2 .
參考圖3,第二狀態中,原本第一開關Q1 不導通,第二開關Q2 及第三開關Q3 不導通,然而,此狀態的波寬調變訊號具有延遲時區(Dead time),第二開關Q2 及第三開關Q3 因為自體二極體而導通。Referring to Figure 3, a second state, the first switch Q 1 originally nonconductive, the second switch and the third switch Q 2 Q 3 is not turned on, however, pulse width modulation signal having this delay zone state (Dead time), The second switch Q 2 and the third switch Q 3 are turned on by the self diode.
參考圖4,第三狀態中,原本第一開關Q1 不導通,第二開關Q2 及第三開關Q3 不導通,但此狀態的波寬調變訊號具有延遲時區使得第二開關Q2 及第三開關Q3 因為自體二極體而導通。當第一繞組11釋放能量至輸出端至電壓為0而至第四狀態。4, with reference to FIG third state, the first switch Q 1 originally nonconductive, the second switch and the third switch Q 2 Q 3 is not turned on, but the pulse width modulation signal having a time delay in this state such that the second switch Q 2 zone And the third switch Q 3 is turned on by the self-diode. When the first winding 11 releases energy to the output to a voltage of zero to a fourth state.
參考圖5,第四狀態中,原本第一開關Q1 不導通,第二開關Q2 及第三開關Q3 導通,且第二開關Q2 及第三開關Q3以零電壓切換(zero voltage switching),此狀態中,能量傳遞電容CB 反方向激磁耦合電感1的第一繞組 11,耦合電感1藉由變壓器行為(transformer behavior)將能量通過第二繞組12轉移至輸出端。因此,第一繞組11的電流IN1 反方向增加及第二繞組12的電流IN2 亦增加,第一繞組11的電壓如公式2所示。5, with reference to FIG fourth state, the first switch Q 1 originally nonconductive, the second switch and the third switch Q 2 Q 3 is turned on, and the second switch Q 2 and the third switch Q3 to zero voltage switching (zero voltage switching In this state, the energy transfer capacitor C B reversely excites the first winding 11 of the coupled inductor 1 , and the coupled inductor 1 transfers energy to the output through the second winding 12 by a transformer behavior. Therefore, the current I N1 of the first winding 11 increases in the opposite direction and the current I N2 of the second winding 12 also increases, and the voltage of the first winding 11 is as shown in Equation 2.
參考圖6,第五狀態中,原本第一開關Q1 不導通,第二開關Q2 及第三開關Q3 不導通,但此狀態的波寬調變訊號具有延遲時區使得第二開關Q2 及第三開關Q3 因為自體二極體而導通。Referring to FIG 6, a fifth state, the first switch Q 1 originally nonconductive, the second switch and the third switch Q 2 Q 3 is not turned on, but the pulse width modulation signal such that the region of this state has a second switch Q 2 is retarded And the third switch Q 3 is turned on by the self-diode.
參考圖7,第六狀態中,原本第一開關Q1 、第二開關Q2 及第三開關Q3 不導通,第二開關Q2 及第三開關Q3 因為自體二極體而導通,第一繞組11的洩漏電感能量反方向去磁化,使電壓為0而至第七狀態。Referring to Figure 7, the sixth state, the original first switch Q 1, the second switch and the third switch Q 2 Q 3 is not turned on, the second switch Q 2 and Q 3 because the third switch diode autologous turned, The leakage inductance energy of the first winding 11 is demagnetized in the opposite direction, so that the voltage is 0 to the seventh state.
參考圖8,第七狀態中,第一開關Q1 以零電壓切換導通,第二開關Q2 及第三開關Q3 不導通,此狀態中,輸入電壓Vin 對於能量傳遞電容CB 進行充電,第一繞組11的電流IN1 遠低於第二繞組12的電流IN2 ,第三開關Q3 維持導通,當第一繞組11的電流IN1 等於第二繞組12的電流IN2 ,第三開關Q3 的自體二極體不導通而返回第一狀態。Referring to Figure 8, a seventh state, the first switch Q 1 is turned on with zero voltage switching, the second switch and the third switch Q 2 Q 3 is not conducting, in this state, the input voltage V in the energy charge transfer capacitance C B The current I N1 of the first winding 11 is much lower than the current I N2 of the second winding 12 , and the third switch Q 3 maintains conduction, when the current I N1 of the first winding 11 is equal to the current I N2 of the second winding 12 , the third Q switch diode from conducting body 3 does not return to the first state.
依據公式1及公式2,及依據第一繞組11的伏秒原理,推導如公式3所示。According to Equation 1 and Equation 2, and based on the volt-second principle of the first winding 11, the derivation is as shown in Equation 3.
所述的低降壓轉換器100的電壓轉換比符合下列公式:
前述公式3及4中,D為該波寬調變訊號的責任週期,由此可知,只要將第一繞組11之匝數為N1 及第二繞組12之匝數為N2 固定,只需調整波寬調變訊號的責任週期D,即可控制低降壓轉換器100的電壓轉換比。In the above formulas 3 and 4, D is the duty cycle of the wave width modulation signal, and it is understood that as long as the number of turns of the first winding 11 is N 1 and the number of turns of the second winding 12 is N 2 fixed, only By adjusting the duty cycle D of the bandwidth modulation signal, the voltage conversion ratio of the low buck converter 100 can be controlled.
本實施例中,各元件的實際規格如下:(i)輸入電壓Vin 設定為48伏;(ii)輸出電壓VO 設定為3.3V;(iii)額定輸出電流為15安培;(iv)開關頻率fs為100kHz;(v)第一繞組11之匝數N1 為24圈,第二繞組12之匝數N2 為8圈,主要電感為86μH;(vi)輸出電容Co選用容值1800μF;(vii)第一開關Q1 及第二開關Q2 的型號是PHB34NQ10T;(viii)第三開關Q3的型號是PHD96NQ3LT。In this embodiment, the actual specifications of the components are as follows: (i) the input voltage V in is set to 48 volts; (ii) the output voltage V O is set to 3.3 V; (iii) the rated output current is 15 amps; (iv) the switch The frequency fs is 100 kHz; (v) the number of turns N 1 of the first winding 11 is 24 turns, the number of turns N 2 of the second winding 12 is 8 turns, and the main inductance is 86 μH; (vi) the output capacitor Co is selected to have a capacitance of 1800 μF; (vii) The model of the first switch Q 1 and the second switch Q 2 is PHB34NQ10T; (viii) the model of the third switch Q3 is PHD96NQ3LT.
參閱圖9,顯示第一開關Q1 的波寬調變訊號Vgs1 及第二開關Q2 的波寬調變訊號Vgs2 ,以及第一繞組11之電流IN1 及第二繞組12之電流IN2 。Referring to Figure 9, a first switch Q 1 'wave width modulated signal and the second switch Q V gs1 pulse width modulation signal V gs2 2, the first winding 11 and a current of the current I and the second winding 12 of Nl I N2 .
參閱圖10,顯示第一開關Q1 的波寬調變訊號Vgs1 的正緣(positive edge)及對應的電壓Vds1 ,以及第二開關Q2 的波寬調變訊號Vgs2 的負緣(negative edge)及對應的電壓Vds2 。Referring to Figure 10, shows a positive edge of the first switch Q 1 'wave width modulated signal V gs1 of (positive edge) and the corresponding voltage V ds1, and the negative edge of the second switching pulse width modulation signal Q V gs2 2 ( Negative edge) and the corresponding voltage V ds2 .
參閱圖11,顯示第一開關Q1 的波寬調變訊號Vgs1 的負緣及對應的電壓Vds1 ,以及第二開關Q2 的波寬調變訊號Vgs2 的正緣及對應的電壓Vds2 。Referring to FIG. 11, the negative edge of the width modulation signal V gs1 of the first switch Q 1 and the corresponding voltage V ds1 , and the positive edge of the width modulation signal V gs2 of the second switch Q 2 and the corresponding voltage V are displayed . Ds2 .
參閱圖12,顯示負載暫態反應(load transient response)從50%改變為100%負載的負載致能(LOAD_EN)信號、輸出電壓VO 及輸出電流IO ;參閱圖13,顯示負載暫態反應(load transient response)從100%改變為50%負載的負載致能信號、輸出電壓VO 及輸出電流IO 。圖12及圖13並顯示過衝(undershoot或overshoot)電壓約為320毫伏且復原時間(recovery time)約為500微秒。Referring to Figure 12, the load transient response is changed from 50% to 100% load load enable (LOAD_EN) signal, output voltage V O and output current I O ; see Figure 13, showing load transient response (load transient response) A load enable signal, an output voltage V O , and an output current I O that are changed from 100% to 50% load. Figures 12 and 13 also show that the undershoot or overshoot voltage is about 320 millivolts and the recovery time is about 500 microseconds.
參閱圖14,轉換效能(efficiency)對應負載電流(load current)之關係中,顯示轉換效能均可超過84.86%且轉換效能最高可達95.78%,且額定負載(rated load)的轉換效能為88.79%。Referring to Figure 14, the conversion efficiency corresponds to the load current. The display conversion performance can exceed 84.86% and the conversion performance can reach up to 95.78%, and the rated load conversion performance is 88.79%. .
綜上所述,本發明的低降壓轉換器100的電路設計簡潔、控制容易、轉換比率具有線性特性,且當任一開關失效或不正常動作,同時,其他開關導通,輸出端不會出現高電壓而可保護輸出負載,故確實能達成本發明之目的。In summary, the low buck converter 100 of the present invention has a simple circuit design, easy control, and a linear conversion characteristic, and when any switch fails or does not operate normally, other switches are turned on, and the output terminal does not appear. The high voltage protects the output load, so the object of the present invention can be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。However, the above is only the embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and the patent specification of the present invention are still It is within the scope of the patent of the present invention.
100‧‧‧低降壓轉換器100‧‧‧Low Buck Converter
1‧‧‧耦合電感1‧‧‧coupled inductor
CB ‧‧‧能量傳遞電容C B ‧‧‧ energy transfer capacitor
CO ‧‧‧輸出電容C O ‧‧‧ output capacitor
11‧‧‧第一繞組11‧‧‧First winding
12‧‧‧第二繞組12‧‧‧second winding
N1 ‧‧‧第一繞組之匝數N 1 ‧‧‧Number of turns in the first winding
N2 ‧‧‧第二繞組之匝數N 2 ‧‧‧Number of turns in the second winding
Q1 ‧‧‧第一開關Q 1 ‧‧‧First switch
Q2 ‧‧‧第二開關Q 2 ‧‧‧Second switch
Q3 ‧‧‧第三開關Q 3 ‧‧‧third switch
Vin ‧‧‧輸入電壓V in ‧‧‧ input voltage
VO ‧‧‧輸出電壓V O ‧‧‧Output voltage
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120729A TWI514730B (en) | 2014-06-16 | 2014-06-16 | Ultra high step-down converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103120729A TWI514730B (en) | 2014-06-16 | 2014-06-16 | Ultra high step-down converter |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI514730B true TWI514730B (en) | 2015-12-21 |
TW201601426A TW201601426A (en) | 2016-01-01 |
Family
ID=55407914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103120729A TWI514730B (en) | 2014-06-16 | 2014-06-16 | Ultra high step-down converter |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI514730B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10833594B2 (en) | 2017-05-19 | 2020-11-10 | Infineon Technologies Austria Ag | System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding |
TWI696340B (en) * | 2018-10-26 | 2020-06-11 | 財團法人工業技術研究院 | Power converter system and coupled two-stage inductor |
CN111682752B (en) * | 2020-05-21 | 2021-09-03 | 西安交通大学 | Isolated type high-voltage-reduction-ratio DC-DC converter without transformer |
CN111682757B (en) * | 2020-05-21 | 2021-11-19 | 西安交通大学 | Non-isolated high-voltage-reduction-gain DC-DC converter |
TWI770838B (en) * | 2021-02-25 | 2022-07-11 | 國立勤益科技大學 | Multiple output buck converter |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7915874B1 (en) * | 2010-10-04 | 2011-03-29 | Cuks, Llc | Step-down converter having a resonant inductor, a resonant capacitor and a hybrid transformer |
TWI343696B (en) * | 2007-12-19 | 2011-06-11 | Univ Nat Taipei Technology | |
CN202068327U (en) * | 2011-05-19 | 2011-12-07 | 深圳市华星光电技术有限公司 | Boost converter |
CN102655379A (en) * | 2011-03-01 | 2012-09-05 | 江苏博力电气科技有限公司 | Device used for restraining circumfluence in inverter parallel operation system |
CN103650314A (en) * | 2011-03-22 | 2014-03-19 | 莱迪尔利恩技术股份有限公司 | Apparatus and method for efficient dc-to-dc conversion through wide voltage swings |
CN103780086A (en) * | 2014-01-23 | 2014-05-07 | 江苏杰瑞科技集团有限责任公司 | Dual-output bus type high-gain converter based on coupling inductor voltage-multiplying structure |
-
2014
- 2014-06-16 TW TW103120729A patent/TWI514730B/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI343696B (en) * | 2007-12-19 | 2011-06-11 | Univ Nat Taipei Technology | |
US7915874B1 (en) * | 2010-10-04 | 2011-03-29 | Cuks, Llc | Step-down converter having a resonant inductor, a resonant capacitor and a hybrid transformer |
CN102655379A (en) * | 2011-03-01 | 2012-09-05 | 江苏博力电气科技有限公司 | Device used for restraining circumfluence in inverter parallel operation system |
CN103650314A (en) * | 2011-03-22 | 2014-03-19 | 莱迪尔利恩技术股份有限公司 | Apparatus and method for efficient dc-to-dc conversion through wide voltage swings |
CN202068327U (en) * | 2011-05-19 | 2011-12-07 | 深圳市华星光电技术有限公司 | Boost converter |
CN103780086A (en) * | 2014-01-23 | 2014-05-07 | 江苏杰瑞科技集团有限责任公司 | Dual-output bus type high-gain converter based on coupling inductor voltage-multiplying structure |
Also Published As
Publication number | Publication date |
---|---|
TW201601426A (en) | 2016-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11411496B2 (en) | High efficiency power regulator and method | |
US7746670B2 (en) | Dual-transformer type of DC-to-DC converter | |
TWI514730B (en) | Ultra high step-down converter | |
CN106026619B (en) | Current-limiting peak value adjusting circuit, current-limiting unit, control circuit and power converter | |
US7535733B2 (en) | Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements | |
ITMI990093A1 (en) | DUAL POWER SUPPLY WITH SINGLE CONTINUOUS-CONTINUOUS CONVERTER AND CAPACITIVE TRANSLATOR | |
CN105322798A (en) | Multipath output flyback converter | |
US6744647B2 (en) | Parallel connected converters apparatus and methods using switching cycle with energy holding state | |
CN109412397A (en) | A kind of secondary slope compensation circuit of pulse-width-modulated current mode switch power supply | |
TWI538369B (en) | Dc-dc flyback converter for recycling leakage energy | |
TWI580166B (en) | Interleaved boost converter | |
US20150326133A1 (en) | Multi-mode active clamping power converter | |
KR102211454B1 (en) | Isolated DC-DC converter and driving method thereof | |
US20150171746A1 (en) | Buck type dc-to-dc converter and method of operating the same | |
Roy et al. | Comparison study on the basis of transient response between Voltage Mode Control (VMC) & Current Mode Control (CMC) of buck converter | |
TWI477049B (en) | A power conversion device with a high conversion ratio | |
TWI693783B (en) | Dc-dc converter with step-up/down ability | |
KR101456654B1 (en) | A common-core power factor correction resonant converter | |
US20160233769A1 (en) | Three-level sepic converter circuit | |
TWI516005B (en) | DC - DC power conversion device with high step - down ratio | |
TWI586092B (en) | Single-stage ac-to-dc converter | |
TWI696349B (en) | High voltage gain step-up converter | |
CN108111003B (en) | Thyristor driving circuit and method | |
TWI538376B (en) | A novel power converter device with extra step-up/down feature | |
Vinh et al. | Highly Efficient step-up Boost-Flyback coupled magnetic integrated converter for photovoltaic energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |