TWI513999B - Stereoscopic microscope system - Google Patents

Stereoscopic microscope system Download PDF

Info

Publication number
TWI513999B
TWI513999B TW102131226A TW102131226A TWI513999B TW I513999 B TWI513999 B TW I513999B TW 102131226 A TW102131226 A TW 102131226A TW 102131226 A TW102131226 A TW 102131226A TW I513999 B TWI513999 B TW I513999B
Authority
TW
Taiwan
Prior art keywords
light
module
emitting surface
image capturing
central axis
Prior art date
Application number
TW102131226A
Other languages
Chinese (zh)
Other versions
TW201508324A (en
Inventor
Chien Yue Chen
Qing Long Deng
Original Assignee
Univ Nat Yunlin Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yunlin Sci & Tech filed Critical Univ Nat Yunlin Sci & Tech
Priority to TW102131226A priority Critical patent/TWI513999B/en
Publication of TW201508324A publication Critical patent/TW201508324A/en
Application granted granted Critical
Publication of TWI513999B publication Critical patent/TWI513999B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Description

立體顯微鏡系統Stereo microscope system

本發明係有關一種顯微鏡,尤指一種立體顯微鏡系統。The present invention relates to a microscope, and more particularly to a stereoscopic microscope system.

為了加強顯微鏡的顯示技術,傳統的單眼顯微鏡更進一步的發展出雙眼的顯微鏡技術,其中美國專利第6313952號之「Adapter lens system for a greenough-type stereomicroscope」與美國專利第7777941號之「Greenough-type stereomicroscope」所揭露之「Greenough」技術的立體顯微技術,其係將傳統顯微鏡中的單物鏡以雙物鏡取代,且兩物鏡夾有10-17度以模擬人眼視覺所產生的立體感。其中,其主要架構是利用兩個目鏡和物鏡進行精確的組裝而形成兩個對稱式的光學系統。「Greenough」的立體顯微鏡的設計概念與一般複式顯微鏡相似,可以選擇高數值孔徑的物鏡,改變其放大率,但是此系統卻因兩物鏡在觀測物體時帶有傾斜的角度,導致從目鏡觀測的實驗結果圖會有梯形失真現象,且在組裝顯微鏡時雙物鏡的倍率將會被固定,因此放大率會有所限制。
另外,如PCT專利第WO1997031282號所揭露之「Confocal microscope」,係利用精密的掃描裝置獲得多個三維物體的二維平面影像,再將這些的二維影像結合起來之後即可重建出完整的3D影像,雖然可以利用多層二維影像訊息重建三維物體,但需要使用昂貴的掃描器,並非使用者的最佳選擇。
再者,如美國專利第6717739號之「Objective for stereomicroscopes of the telescope type」及美國專利第7605975號之「Stereomicroscope」中,所揭露之「Common Main Objective Stereomicroscope」技術,物體影像資訊透過單鏡頭後會分送至左右通道,將左右影像對傳達至雙眼,該技術解決了需要使用雙鏡頭的問題,但是在光路分為兩道光後面時,仍然需要兩組變焦透鏡設置於後,並且亦需要精準的對位,不僅設置複雜度無法有效降低,同樣也會造成成本的提高。
總結以上現今的三種立體顯微鏡技術,各有其缺點存在,實有改進之必要。
In order to enhance the display technology of the microscope, the conventional monocular microscope further develops the binocular microscope technology, among which the "Adapter lens system for a greenough-type stereomicroscope" of US Pat. No. 6,313,952 and "Greenough-" of US Pat. No. 7,777,941. The stereomicroscopic technique of the "Greenough" technique disclosed by the type stereomicroscope is to replace the single objective lens in the conventional microscope with a dual objective lens, and the two objective lenses are sandwiched by 10-17 degrees to simulate the stereoscopic effect produced by human eye vision. Among them, the main structure is to use two eyepieces and an objective lens for precise assembly to form two symmetrical optical systems. The design concept of "Greenough" stereo microscope is similar to that of a general duplex microscope. The objective lens with a high numerical aperture can be selected to change its magnification. However, this system has a tilt angle due to the observation of the object by the two objective lenses, resulting in observation from the eyepiece. The result of the experiment will have trapezoidal distortion, and the magnification of the dual objective lens will be fixed when the microscope is assembled, so the magnification will be limited.
In addition, the "Confocal microscope" disclosed in PCT Patent No. WO1997031282 uses a sophisticated scanning device to obtain two-dimensional planar images of a plurality of three-dimensional objects, and then combines these two-dimensional images to reconstruct a complete 3D image. Imagery, although it is possible to reconstruct a three-dimensional object using multiple layers of 2D imagery, it requires an expensive scanner and is not the best choice for the user.
In addition, the "Common Main Objective Stereomicroscope" technology disclosed in the "Objective for stereomicroscopes of the telescope type" of the US Patent No. 6717739 and the "Stereomicroscope" of the US Patent No. 7605975, the object image information will pass through a single lens. Distribute to the left and right channels and transmit the left and right image pairs to both eyes. This technology solves the problem of using dual lenses, but when the light path is divided into two lights, two sets of zoom lenses are still needed, and precision is also required. The alignment is not only effective in reducing the complexity, but also in the cost.
Summarizing the above three stereo microscope technologies, each has its own shortcomings, and it is necessary to improve.

本發明之主要目的,在於解決立體顯微鏡之鏡組過於複雜造成成本無法降低的問題。
本發明之另一目的,在於解決立體顯微鏡之鏡組設置複雜造成影像失真的問題。
為達上述目的,本發明提供一種立體顯微鏡系統,其係用以取得一觀測物之立體影像並進行放大後,成像於一取像模組上,該取像模組包含有一第一取像元件以及一第二取像元件,該立體顯微鏡系統設置於該觀測物與該取像模組之間,並由該觀測物往該取像模組方向依序包含有一放大物鏡模組、一分光透鏡以及一聚光鏡模組。其中定義該放大物鏡模組之中心往該觀測物及該取像模組方向延伸為一中心軸,該觀測物係位於該中心軸上,該放大物鏡模組設置於取得該觀測物之一光影像並放大,於該放大物鏡模組遠離該觀測物的一側以一平行光輸出;該分光透鏡具有一接收該平行光的接收面,以及分別進行光線輸出的至少一第一出光面與至少一第二出光面,該至少一第一出光面與該至少一第二出光面以該中心軸對稱設置,並該至少一第一出光面及該至少一第二出光面分別與該中心軸之夾角皆小於90度,該分光透鏡接收該平行光之後,由該至少一第一出光面與該至少一第二出光面分別輸出一第一光線與一第二光線,該第一光線與該第二光線相互不平行;該聚光鏡模組之中心設於該中心軸上,該聚光鏡模組接收該第一光線與該第二光線並進行聚焦,使該第一光線及該第二光線分別聚焦於該第一取像元件及該第二取像元件。
由上述說明可知,本發明具有下列特點:
一、利用該分光透鏡以及該聚光鏡模組之配合,分別取得對應於左右眼的第一光線以及第二光線並進行聚焦,減少光學鏡組的設置,進而降低顯微鏡系統的製作成本。
二、鏡組結構簡單,減少光學對位的複雜度,亦有效的減少失真問題。
The main object of the present invention is to solve the problem that the lens group of the stereo microscope is too complicated and the cost cannot be reduced.
Another object of the present invention is to solve the problem that the lens set of the stereo microscope is complicated to cause image distortion.
In order to achieve the above object, the present invention provides a stereoscopic microscope system for acquiring a stereoscopic image of an observation object and amplifying the image on an image capturing module, the image capturing module including a first image capturing component. And a second image capturing device, the stereoscopic microscope system is disposed between the observation object and the image capturing module, and the observation object includes a magnifying objective lens module and a beam splitting lens in sequence toward the image capturing module. And a condenser module. The center of the magnifying objective lens module is defined as a central axis extending toward the object and the image capturing module. The object is located on the central axis, and the magnifying objective lens module is disposed on the light of the object. The image is enlarged and outputted by a parallel light on a side of the magnifying objective module away from the object; the spectroscopic lens has a receiving surface for receiving the parallel light, and at least one first light emitting surface for performing light output and at least a second light-emitting surface, the at least one first light-emitting surface and the at least one second light-emitting surface are symmetrically disposed on the central axis, and the at least one first light-emitting surface and the at least one second light-emitting surface are respectively associated with the central axis The first light and the second light output are respectively outputted by the at least one first light emitting surface and the at least one second light emitting surface, and the first light and the second light are respectively received by the splitting lens. The two light rays are not parallel to each other; the center of the concentrating mirror module is disposed on the central axis, and the concentrating mirror module receives the first light and the second light and performs focusing, so that the first light and the second light are divided Focused on the first imaging device and the second imaging element.
As can be seen from the above description, the present invention has the following features:
First, the first light and the second light corresponding to the left and right eyes are respectively obtained and focused by the combination of the splitting lens and the condensing mirror module, thereby reducing the setting of the optical lens group, thereby reducing the manufacturing cost of the microscope system.
Second, the mirror group has a simple structure, reduces the complexity of the optical alignment, and effectively reduces the distortion problem.

11‧‧‧觀測物
12‧‧‧取像模組
121‧‧‧第一取像元件
122‧‧‧第二取像元件
13‧‧‧中心軸
14‧‧‧平行光
20‧‧‧放大物鏡模組
30、30a‧‧‧分光透鏡
31‧‧‧接收面
32、32a‧‧‧第一出光面
33、33a‧‧‧第二出光面
40‧‧‧聚光鏡模組
51‧‧‧第一光線
52‧‧‧第二光線
61‧‧‧第一位移單元
62‧‧‧第二位移單元
63‧‧‧第三位移單元
11‧‧‧ Observations
12‧‧‧Image capture module
121‧‧‧First image taking component
122‧‧‧Second image taking component
13‧‧‧ center axis
14‧‧‧Parallel light
20‧‧・Magnifying objective lens module
30, 30a‧‧ ‧ split lens
31‧‧‧ Receiving surface
32, 32a‧‧‧The first shiny surface
33, 33a‧‧‧ second shiny surface
40‧‧‧Condenser module
51‧‧‧First light
52‧‧‧second light
61‧‧‧First displacement unit
62‧‧‧Second displacement unit
63‧‧‧ third displacement unit

圖1,為本發明之鏡組結構示意圖。
圖2,為本發明另一實施例之鏡組結構示意圖。
圖3,為本發明再一實施例之鏡組結構示意圖。
FIG. 1 is a schematic structural view of a mirror assembly of the present invention.
FIG. 2 is a schematic structural view of a lens assembly according to another embodiment of the present invention.
FIG. 3 is a schematic structural view of a mirror group according to still another embodiment of the present invention.

有關本發明之詳細說明及技術內容,現就配合圖示說明如下:
請參閱「圖1」所示,本發明係為一種立體顯微鏡系統,其係用以取得一觀測物11之立體影像並進行放大後,成像於一取像模組12上,該取像模組12包含有一第一取像元件121以及一第二取像元件122,該立體顯微鏡系統設置於該觀測物11與該取像模組12之間,並由該觀測物11往該取像模組12方向依序包含有一放大物鏡模組20、一分光透鏡30以及一聚光鏡模組40。其中定義該放大物鏡模組20之中心往該觀測物11及該取像模組12方向延伸為一中心軸13,該觀測物11係位於該中心軸13上,該放大物鏡模組20設置於取得該觀測物11之一光影像並放大,於該放大物鏡模組20遠離該觀測物11的一側以一平行光14輸出,於本實施例中,該放大物鏡模組20係為單一的無限遠透鏡,因而可為一凸透鏡,而放大物鏡模組20之中心是指光線穿過透鏡而不會發生偏折的位置,因此,先將該觀測物11設置於該放大物鏡模組20的焦距與兩倍焦距之間,而可將該觀測物11的影像以平行光14的方式進行輸出,並具有消像差的功能,且其放大倍率可為2X、4X至100X,需說明的是,本發明所指的放大物鏡模組20可指單個透鏡片或多個透鏡之組合,但所有鏡片之中心皆必須對應於該中心軸13之位置。
該分光透鏡30具有一接收該平行光14的接收面31,以及分別進行光線輸出的至少一第一出光面32與至少一第二出光面33,該至少一第一出光面32與該至少一第二出光面33以該中心軸13對稱設置,並該至少一第一出光面32及該至少一第二出光面33分別與該中心軸13之夾角皆小於90度,該分光透鏡30接收該平行光14之後,由該第一出光面32與該第二出光面33分別輸出一第一光線51與一第二光線52,該第一光線51與該第二光線52相互不平行。換句話說,該分光透鏡30係接收了對應於該觀測物11的平行光14,並透過該分光透鏡30而將該平行光14所分成之第一光線51及第二光線52,其分別對應於觀測物11的左邊影像以及右邊影像。舉例來說,該分光透鏡30係可為一稜鏡。
該聚光鏡模組40之中心設於該中心軸13上,該聚光鏡模組40接收該第一光線51與該第二光線52並進行聚焦,使該第一光線51及該第二光線52分別聚焦於該第一取像元件121及該第二取像元件122,該第一取像元件121及該第二取像元件122可直接代表進行觀測的眼睛,該第一取像元件121與該第二取像元件122亦可為攝影裝置如CCD影像擷取裝置,進而將所觀測的影像轉換為數位訊號而進行輸出。同樣需說明的,該聚光鏡模組40可指單個鏡片或多個透鏡之組合,但所有透鏡之中心皆必須對應於該中心軸13之位置。除此之外,於該第一取像元件121及該第二取像元件122之位置亦可再設置目鏡,以配合該放大物鏡模組20進行放大倍率的調整。
除了上述以三角稜鏡作為分光透鏡30的實施方式之外,亦可如「圖2」所示,其中該分光透鏡30a之該第一出光面32a與該第二出光面33a分別具有複數個,且該些第一出光面32a與該些第二出光面33a分別以該中心軸13往遠離該中心軸13方向進行週期性的排列,且該些第一出光面32a係相互平行,該些第二出光面33a亦相互平行,藉此形成如鋸尺狀的對稱結構,並且該些第一出光面32a與該些第二出光面33a亦以該中心軸13為中心對稱,於本實施例中,該些第一出光面32a與該些第二出光面33a之法線方向皆遠離該中心軸13。
請再配合參閱「圖3」所示,其中該放大物鏡模組20、該分光透鏡30以及該聚光鏡模組40分別連接有一第一位移單元61、一第二位移單元62及一第三位移單元63,而分別可控制該放大物鏡模組20與該觀測物11之間的距離、該分光透鏡30與該放大物鏡模組20之間的距離,以及該聚光鏡模組40與該分光透鏡30之間的距離。藉此達到聚焦的目的,並根據該放大物鏡模組20、該分光透鏡30以及該聚光鏡模組40進行個別置換後的放大倍率而調整不同的距離,以取得適當的焦距,進行清晰的檢視。
於本發明之一較佳實施例中,係設定該觀測物11至該放大物鏡模組20之距離為2.2cm,而該放大物鏡模組20至該分光透鏡30之距離為7.5cm,該分光透鏡30至該聚光鏡模組40之距離為2.7cm,該聚光鏡模組40至該取像模組12之距離為27.9cm。該放大物鏡模組20之焦距為1.9cm,放大倍率為10X;該分光透鏡30之第一出光面31及該第二出光面32分別與該接收面31之夾角為3度;該聚光鏡模組40為雙凸透鏡且其焦距為20cm。由上述之光學設置方式及規格,可藉由該取像模組12取得放大後的該觀測物11的立體影像。
綜上所述,本發明具有下列特點:
一、利用該分光透鏡以及該聚光鏡模組之配合,分別取得對應於左右眼的第一光線以及第二光線並進行聚焦,減少光學鏡組的設置,進而降低顯微鏡系統的製作成本。
二、鏡組結構簡單,減少光學對位的複雜度,亦有效的減少失真問題。
三、鏡組可進行替換而調整放大倍率,而配合該第一位移單元、該第二位移單元及該第三位移單元進行對應位置的調整,以取得適當的焦距,顯示清楚的影像。
The detailed description and technical content of the present invention will now be described as follows:
Referring to FIG. 1 , the present invention is a stereoscopic microscope system for acquiring a stereoscopic image of an observation object 11 and amplifying it, and imaging the image capturing module 12 on the image capturing module 12 . 12 includes a first image capturing component 121 and a second image capturing component 122. The stereoscopic microscope system is disposed between the object 11 and the image capturing module 12, and the object 11 is directed to the image capturing module. The 12-direction includes a magnifying objective lens module 20, a beam splitting lens 30, and a concentrating mirror module 40. The center of the magnifying objective lens module 20 is defined as a central axis 13 extending toward the object 11 and the image capturing module 12 . The object 11 is located on the central axis 13 , and the magnifying objective lens module 20 is disposed on the central axis 13 . Obtaining a light image of the object 11 and amplifying it, and outputting the parallel light 14 on the side of the magnifying objective lens module 20 away from the object of the object 11. In the embodiment, the magnifying objective lens module 20 is single. The infinity lens can be a convex lens, and the center of the magnifying objective lens module 20 refers to a position where the light passes through the lens without being deflected. Therefore, the observation object 11 is first disposed on the magnifying objective lens module 20. The focal length is between the focal length and the double focal length, and the image of the observation object 11 can be outputted as the parallel light 14 and has the function of aberrance, and the magnification can be 2X, 4X to 100X, which is illustrated. The magnifying objective lens module 20 referred to in the present invention may refer to a single lens sheet or a combination of a plurality of lenses, but the centers of all the lenses must correspond to the position of the central axis 13.
The beam splitting lens 30 has a receiving surface 31 for receiving the parallel light 14 and at least one first light emitting surface 32 and at least one second light emitting surface 33 for respectively outputting light, and the at least one first light emitting surface 32 and the at least one The second light-emitting surface 33 is symmetrically disposed on the central axis 13 , and the at least one first light-emitting surface 32 and the at least one second light-emitting surface 33 are respectively less than 90 degrees from the central axis 13 , and the spectroscopic lens 30 receives the After the parallel light 14 , a first light ray 51 and a second light ray 52 are respectively output from the first light absorbing surface 32 and the second light absorbing surface 33 . The first light ray 51 and the second light ray 52 are not parallel to each other. In other words, the spectroscopic lens 30 receives the parallel light 14 corresponding to the observation object 11 and transmits the parallel light 14 into the first light ray 51 and the second light ray 52 through the beam splitting lens 30, respectively. The image on the left side of the observation object 11 and the image on the right side. For example, the beam splitting lens 30 can be a single turn.
The center of the concentrating mirror module 40 is disposed on the central axis 13. The concentrating mirror module 40 receives the first ray 51 and the second ray 52 and focuses the first ray 51 and the second ray 52 respectively. In the first image capturing component 121 and the second image capturing component 122, the first image capturing component 121 and the second image capturing component 122 can directly represent an eye for observation, and the first image capturing component 121 and the first image capturing component 121 The second image capturing device 122 can also be a photographing device such as a CCD image capturing device, and further convert the observed image into a digital signal for output. Also, the concentrating mirror module 40 may refer to a single lens or a combination of a plurality of lenses, but the centers of all the lenses must correspond to the position of the central axis 13. In addition, an eyepiece may be further disposed at the position of the first image capturing element 121 and the second image capturing element 122 to adjust the magnification of the magnification of the objective lens module 20 .
In addition to the above-described embodiment in which the triangular aperture is used as the spectral lens 30, as shown in FIG. 2, the first light-emitting surface 32a and the second light-emitting surface 33a of the beam splitting lens 30a respectively have a plurality of The first light-emitting surface 32a and the second light-emitting surface 33a are periodically arranged in a direction away from the central axis 13 with the central axis 13 respectively, and the first light-emitting surfaces 32a are parallel to each other. The two light-emitting surfaces 33a are also parallel to each other, thereby forming a symmetrical structure such as a saw-tooth shape, and the first light-emitting surfaces 32a and the second light-emitting surfaces 33a are also symmetric about the central axis 13 in this embodiment. The normal directions of the first light-emitting surface 32a and the second light-emitting surfaces 33a are far from the central axis 13.
Please refer to FIG. 3 again, wherein the magnifying objective lens module 20, the beam splitting lens 30 and the concentrating mirror module 40 are respectively connected with a first displacement unit 61, a second displacement unit 62 and a third displacement unit. 63. The distance between the magnifying objective lens module 20 and the observation object 11 , the distance between the spectroscopic lens 30 and the magnifying objective lens module 20 , and the concentrating mirror module 40 and the spectroscopic lens 30 are respectively controlled. The distance between them. Thereby, the purpose of focusing is achieved, and the different distances are adjusted according to the magnifications of the magnifying objective lens module 20, the spectroscopic lens 30, and the condensing mirror module 40 after the individual replacement, to obtain an appropriate focal length, and to perform a clear inspection.
In a preferred embodiment of the present invention, the distance between the object 11 and the magnifying objective lens module 20 is set to be 2.2 cm, and the distance between the magnifying objective lens module 20 and the spectroscopic lens 30 is 7.5 cm. The distance from the lens 30 to the concentrating mirror module 40 is 2.7 cm, and the distance from the concentrating mirror module 40 to the image capturing module 12 is 27.9 cm. The magnification of the objective lens module 20 is 1.9 cm, and the magnification is 10X; the angle between the first light-emitting surface 31 and the second light-emitting surface 32 of the beam splitting lens 30 and the receiving surface 31 is 3 degrees; the concentrating mirror module 40 is a lenticular lens and has a focal length of 20 cm. The stereoscopic image of the observed object 11 can be obtained by the image capturing module 12 by the above optical setting method and specification.
In summary, the present invention has the following features:
First, the first light and the second light corresponding to the left and right eyes are respectively obtained and focused by the combination of the splitting lens and the condensing mirror module, thereby reducing the setting of the optical lens group, thereby reducing the manufacturing cost of the microscope system.
Second, the mirror group has a simple structure, reduces the complexity of the optical alignment, and effectively reduces the distortion problem.
3. The mirror group can be replaced to adjust the magnification, and the first displacement unit, the second displacement unit and the third displacement unit are adjusted to corresponding positions to obtain an appropriate focal length and display a clear image.

 

11‧‧‧觀測物11‧‧‧ Observations

12‧‧‧取像模組12‧‧‧Image capture module

121‧‧‧第一取像元件121‧‧‧First image taking component

122‧‧‧第二取像元件122‧‧‧Second image taking component

13‧‧‧中心軸13‧‧‧ center axis

14‧‧‧平行光14‧‧‧Parallel light

20‧‧‧放大物鏡模組20‧‧・Magnifying objective lens module

30‧‧‧分光透鏡30‧‧‧Splitting lens

31‧‧‧接收面31‧‧‧ Receiving surface

32‧‧‧第一出光面32‧‧‧The first glazing

33‧‧‧第二出光面33‧‧‧Second glazing

40‧‧‧聚光鏡模組40‧‧‧Condenser module

51‧‧‧第一光線51‧‧‧First light

52‧‧‧第二光線52‧‧‧second light

Claims (7)

一種立體顯微鏡系統,其係用以取得一觀測物之立體影像並進行放大後,成像於一取像模組上,該取像模組包含有一第一取像元件以及一第二取像元件,該立體顯微鏡系統係設置於該觀測物與該取像模組之間,並包含有:
一放大物鏡模組,定義該放大物鏡模組之中心往該觀測物及該取像模組方向延伸為一中心軸,該觀測物係位於該中心軸上,該放大物鏡模組取得該觀測物之一光影像並放大,於該放大物鏡模組遠離該觀測物的一側以一平行光輸出;
一設置於該放大物鏡模組與該取像模組之間的分光透鏡,該分光透鏡具有一接收該平行光的接收面,以及分別進行光線輸出的至少一第一出光面與至少一第二出光面,該至少一第一出光面與該至少一第二出光面以該中心軸對稱設置,並該至少一第一出光面及該至少一第二出光面分別與該中心軸之夾角皆小於90度,該分光透鏡接收該平行光之後,由該至少一第一出光面與該至少一第二出光面分別輸出一第一光線與一第二光線,該第一光線與該第二光線相互不平行;以及
一設置於該分光透鏡與該取像模組之間的聚光鏡模組,該聚光鏡模組之中心設於該中心軸上,該聚光鏡模組接收該第一光線與該第二光線並進行聚焦,使該第一光線及該第二光線分別聚焦於該第一取像元件及該第二取像元件。
A stereoscopic microscope system for acquiring a stereoscopic image of an observation object and amplifying it, and imaging the same on an image capturing module, the image capturing module comprising a first image capturing component and a second image capturing component. The stereo microscope system is disposed between the observation object and the image capturing module, and includes:
An enlarged objective lens module defines a center of the magnifying objective lens module extending toward the observation object and the image capturing module as a central axis, the observation object is located on the central axis, and the magnifying objective lens module obtains the observation object a light image is amplified and outputted by a parallel light on a side of the magnifying objective lens module away from the object;
a beam splitting lens disposed between the magnifying objective lens module and the image capturing module, the beam splitting lens having a receiving surface for receiving the parallel light, and at least one first light emitting surface and at least a second light for respectively outputting light The light emitting surface, the at least one first light emitting surface and the at least one second light emitting surface are symmetrically disposed on the central axis, and the angle between the at least one first light emitting surface and the at least one second light emitting surface and the central axis are respectively smaller than After the spectroscopic lens receives the parallel light, a first light and a second light are respectively output from the at least one first light emitting surface and the at least one second light emitting surface, and the first light and the second light are mutually And a concentrating mirror module disposed between the spectroscopic lens and the image capturing module, the center of the concentrating mirror module is disposed on the central axis, and the concentrating mirror module receives the first light and the second light And focusing, the first light and the second light are respectively focused on the first image capturing element and the second image capturing element.
如申請專利範圍第1項所述之立體顯微鏡系統,其中該分光透鏡之該第一出光面與該第二出光面分別具有複數個,且該些第一出光面與該些第二出光面分別以該中心軸往遠離該中心軸方向進行週期性的排列,且該些第一出光面係相互平行,該些第二出光面亦相互平行。The stereoscopic microscope system of claim 1, wherein the first light-emitting surface and the second light-emitting surface of the light-splitting lens respectively have a plurality of, and the first light-emitting surface and the second light-emitting surface respectively The central axis is periodically arranged away from the central axis, and the first light emitting surfaces are parallel to each other, and the second light emitting surfaces are also parallel to each other. 如申請專利範圍第2項所述之立體顯微鏡系統,其中該些第一出光面與該些第二出光面之法線方向皆遠離該中心軸。The stereoscopic microscope system of claim 2, wherein the normal directions of the first light-emitting surface and the second light-emitting surfaces are far from the central axis. 如申請專利範圍第1項所述之立體顯微鏡系統,其中該第一出光面與該第二出光面之法線方向皆遠離該中心軸。The stereoscopic microscope system of claim 1, wherein a normal direction of the first light-emitting surface and the second light-emitting surface are away from the central axis. 如申請專利範圍第1項所述之立體顯微鏡系統,其中更具有一連接該放大物鏡模組的第一位移單元,其係控制該放大物鏡模組與該觀測物之間的距離。The stereoscopic microscope system of claim 1, further comprising a first displacement unit connected to the magnifying objective lens module for controlling a distance between the magnifying objective lens module and the observation object. 如申請專利範圍第1項所述之立體顯微鏡系統,其中更具有一連接該分光透鏡的第二位移單元,其係控制該分光透鏡與該放大物鏡模組之間的距離。The stereoscopic microscope system of claim 1, further comprising a second displacement unit connected to the spectroscopic lens for controlling a distance between the spectroscopic lens and the magnifying objective lens module. 如申請專利範圍第1項所述之立體顯微鏡系統,其中更具有一連接該聚光鏡模組的第三位移單元,其係控制該聚光鏡模組與該分光透鏡之間的距離。
The stereoscopic microscope system of claim 1, further comprising a third displacement unit connected to the concentrating mirror module for controlling a distance between the concentrating mirror module and the beam splitting lens.
TW102131226A 2013-08-30 2013-08-30 Stereoscopic microscope system TWI513999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102131226A TWI513999B (en) 2013-08-30 2013-08-30 Stereoscopic microscope system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102131226A TWI513999B (en) 2013-08-30 2013-08-30 Stereoscopic microscope system

Publications (2)

Publication Number Publication Date
TW201508324A TW201508324A (en) 2015-03-01
TWI513999B true TWI513999B (en) 2015-12-21

Family

ID=53186181

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131226A TWI513999B (en) 2013-08-30 2013-08-30 Stereoscopic microscope system

Country Status (1)

Country Link
TW (1) TWI513999B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2567439A (en) * 2017-10-10 2019-04-17 Vision Eng Stereo microscope with single objective

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198089A (en) * 2000-01-21 2001-07-24 Topcon Corp Stereomicroscope
US6313952B1 (en) * 1998-09-14 2001-11-06 Nikon Corporation Adapter lens system for a greenough-type stereomicroscope
JP2002207170A (en) * 2001-01-10 2002-07-26 Nikon Corp Transmission illuminator for stereomicroscope
US20030227672A1 (en) * 2002-06-06 2003-12-11 Klaus-Peter Zimmer Objective for stereomicroscopes of the telescope type
US20070047072A1 (en) * 2005-08-26 2007-03-01 Leica Microsystems (Schweiz) Ag Greenough-type stereomicroscope
TW201104344A (en) * 2009-07-30 2011-02-01 Univ Nat Yunlin Sci & Tech Three-dimensional image retrieval apparatus and its applied symmetrical prism array
TW201219850A (en) * 2010-11-05 2012-05-16 Univ Nat Yunlin Sci & Tech for real-time displaying different images within one display device without using multiple display devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313952B1 (en) * 1998-09-14 2001-11-06 Nikon Corporation Adapter lens system for a greenough-type stereomicroscope
JP2001198089A (en) * 2000-01-21 2001-07-24 Topcon Corp Stereomicroscope
JP2002207170A (en) * 2001-01-10 2002-07-26 Nikon Corp Transmission illuminator for stereomicroscope
US20030227672A1 (en) * 2002-06-06 2003-12-11 Klaus-Peter Zimmer Objective for stereomicroscopes of the telescope type
US20070047072A1 (en) * 2005-08-26 2007-03-01 Leica Microsystems (Schweiz) Ag Greenough-type stereomicroscope
TW201104344A (en) * 2009-07-30 2011-02-01 Univ Nat Yunlin Sci & Tech Three-dimensional image retrieval apparatus and its applied symmetrical prism array
TW201219850A (en) * 2010-11-05 2012-05-16 Univ Nat Yunlin Sci & Tech for real-time displaying different images within one display device without using multiple display devices

Also Published As

Publication number Publication date
TW201508324A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
JP5066349B2 (en) Stereo microscope
JP5066350B2 (en) Greenough-type stereomicroscope
JP5102986B2 (en) Optical device with extended depth of field
JP5910739B2 (en) Imaging device
US10674136B2 (en) Device for capturing a stereoscopic image
US20160120397A1 (en) Endoscope image-acquisition device
US9910257B2 (en) Stereoscopic microscope
US9046688B2 (en) Surgical microscope with enlarged working distance
JP2009512887A (en) Microscope system
US20150160448A1 (en) Stereo microscope system
US4492441A (en) Variable stereomicroscope
CN103399410A (en) Single-lens three-dimensional spectroscope imaging device
WO2017073292A1 (en) Endoscopic imaging unit
JP5593401B2 (en) Variable 3D stereo microscope assembly
TWI513999B (en) Stereoscopic microscope system
JP2012145747A (en) Stereo microscope apparatus
KR101608404B1 (en) Single lens Microscope for three dimensional image
CN105723269A (en) Viewer with enhanced depth perception
JP6072381B1 (en) Imaging device
KR102554488B1 (en) Image acquisition device
US20160363852A1 (en) Single axis stereoscopic imaging apparatus with dual sampling lenses
JP2012141470A (en) Imaging optical system and microscope device
JP2018159853A (en) Objective optical system
WO2020095444A1 (en) Microscope
TWM596349U (en) Wedge optical structure

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees