TWI511373B - Radio frequency antenna - Google Patents

Radio frequency antenna Download PDF

Info

Publication number
TWI511373B
TWI511373B TW100135536A TW100135536A TWI511373B TW I511373 B TWI511373 B TW I511373B TW 100135536 A TW100135536 A TW 100135536A TW 100135536 A TW100135536 A TW 100135536A TW I511373 B TWI511373 B TW I511373B
Authority
TW
Taiwan
Prior art keywords
radio frequency
frequency antenna
microgroove
metal piece
metamaterial
Prior art date
Application number
TW100135536A
Other languages
Chinese (zh)
Other versions
TW201244251A (en
Inventor
Ruopeng Liu
Guanxiong Xu
Songtao Yang
Yuefeng Li
Nenghui Fang
Original Assignee
Kuang Chi Intelligent Photonic Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110111234.XA external-priority patent/CN102760941B/en
Priority claimed from CN201110202094.7A external-priority patent/CN102891358B/en
Application filed by Kuang Chi Intelligent Photonic Technology Ltd filed Critical Kuang Chi Intelligent Photonic Technology Ltd
Publication of TW201244251A publication Critical patent/TW201244251A/en
Application granted granted Critical
Publication of TWI511373B publication Critical patent/TWI511373B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • H01Q21/205Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path providing an omnidirectional coverage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Landscapes

  • Details Of Aerials (AREA)

Description

一種射頻天線 Radio frequency antenna

本發明涉及通信領域,更具體地說,涉及一種射頻天線。 The present invention relates to the field of communications, and more particularly to a radio frequency antenna.

隨著半導體製程的高度發展,對當今的電子系統集成度提出了越來越高的要求,器件的小型化成為了整個產業非常關注的技術問題。然而,不同於IC芯片遵循“摩爾定律”的發展,作為電子系統的另外重要組成-射頻模塊,卻面臨著器件小型化的高難度技術挑戰。射頻模塊主要包括了混頻、功放、濾波、射頻信號傳輸、匹配網絡與天線等主要器件。其中,天線作為最終射頻信號的輻射單元和接收器件,其工作特性將直接影響整個電子系統的工作性能。然而天線的尺寸、帶寬、增益等重要指標卻受到了基本物理原理的限制(固定尺寸下的增益極限、帶寬極限等)。這些指標極限的基本原理使得天線的小型化技術難度遠遠超過了其它器件,而由於射頻器件的電磁場分析的複雜性,逼近這些極限值都成為了巨大的技術挑戰。 With the rapid development of semiconductor manufacturing, higher and higher requirements have been placed on the integration of electronic systems today, and the miniaturization of devices has become a technical issue of great concern to the entire industry. However, unlike IC chips that follow the development of Moore's Law, as an important component of electronic systems - RF modules, they face the difficult technical challenges of device miniaturization. The RF module mainly includes main components such as mixing, power amplifier, filtering, RF signal transmission, matching network and antenna. Among them, the antenna acts as the radiating unit and receiving device of the final RF signal, and its working characteristics will directly affect the working performance of the entire electronic system. However, important dimensions such as antenna size, bandwidth, and gain are limited by basic physical principles (gain limit, bandwidth limit, etc. at fixed size). The basic principle of the limits of these indicators makes the antenna miniaturization technology far more difficult than other devices, and due to the complexity of the electromagnetic field analysis of RF devices, approaching these limits has become a huge technical challenge.

同時,隨著現代電子系統的複雜化,多模服務的需求在無線通信、無線接入、衛星通信、無線數據網絡等系統中變得越來越重要。而多模服務的需求進一步增大了小型化天線多模設計的複雜度。除去小型化的技術挑戰,天線的多模阻抗匹配也成為了天線技術的瓶頸。另一方面,多輸入多輸出系統(MIMO)在無線通信、無線數據服務領域的高速發展更進一步苛刻地要求了天線尺寸的小型化並同時保證良好的隔離 度、輻射性能以及抗干擾能力。然而,傳統的終端通信天線主要基於電單極子或偶極子的輻射原理進行設計,比如最常用的平面反F天線(PIFA)。傳統天線的輻射工作頻率直接和天線的尺寸正相關,帶寬和天線的面積正相關,使得天線的設計通常需要半波長的物理長度。在一些更為複雜的電子系統中,天線需要多模工作,就需要在饋入天線前額外的阻抗匹配網絡設計。但阻抗匹配網絡額外的增加了電子系統的饋線設計、增大了射頻系統的面積同時匹配網絡還引入了不少的能量損耗,很難滿足低功耗的系統設計要求。因此,小型化、多模式的新型天線技術成為了當代電子集成系統的一個重要技術瓶頸。 At the same time, with the complication of modern electronic systems, the demand for multi-mode services is becoming more and more important in systems such as wireless communication, wireless access, satellite communications, and wireless data networks. The demand for multimode services further increases the complexity of miniaturized antenna multimode designs. In addition to the technical challenges of miniaturization, multimode impedance matching of antennas has become a bottleneck in antenna technology. On the other hand, the rapid development of multi-input and multi-output systems (MIMO) in the field of wireless communication and wireless data services has further demanded the miniaturization of antenna sizes while ensuring good isolation. Degree, radiation performance and anti-interference ability. However, conventional terminal communication antennas are mainly designed based on the radiation principle of electric monopoles or dipoles, such as the most commonly used planar anti-F antenna (PIFA). The radiated operating frequency of a conventional antenna is directly related to the size of the antenna, and the bandwidth is positively correlated with the area of the antenna, so that the design of the antenna usually requires a physical length of half a wavelength. In some more complex electronic systems, where the antenna requires multimode operation, additional impedance matching network design is required before feeding the antenna. However, the impedance matching network additionally increases the feeder design of the electronic system, increases the area of the RF system, and introduces a lot of energy loss in the matching network, which is difficult to meet the system design requirements of low power consumption. Therefore, the miniaturized, multi-mode new antenna technology has become an important technical bottleneck of contemporary electronic integrated systems.

本發明要解決的技術問題在於,針對現有技術的上述寬帶多模、小體積、低工作頻率、高輻射效率等缺陷,提供一種射頻天線。 The technical problem to be solved by the present invention is to provide an RF antenna for the above-mentioned defects of the broadband multimode, small volume, low operating frequency, high radiation efficiency and the like in the prior art.

本發明解決其技術問題所採用的技術方案是:構造一種射頻天線,射頻天線包括多面體結構和附著在多面體結構上的多個超材料射頻天線單元,每個超材料射頻天線單元包括附著介質、饋線和金屬片,饋線通過耦合方式饋入金屬片,且金屬片上形成有微槽結構,所述微槽結構包括第一微槽結構和第二微槽結構,且所述第一微槽結構和所述第二微槽結構為非對稱設置,使得兩個位置上的電容與電感有所不同,從而產生至少兩個不同的諧振點,並且諧振點不易抵消,以利於實現天線豐富的多模化,其中,所述第一微槽結構和所述第二微槽結構的結 構形式一樣。 The technical solution adopted by the present invention to solve the technical problem is to construct an RF antenna, which comprises a polyhedral structure and a plurality of metamaterial RF antenna units attached to the polyhedral structure, each of the metamaterial RF antenna units including an attachment medium and a feeder And a metal piece, the feed line is fed into the metal piece by coupling, and the metal piece is formed with a micro groove structure, the micro groove structure includes a first micro groove structure and a second micro groove structure, and the first micro groove structure and the The second micro-slot structure is asymmetrically arranged such that the capacitance and inductance at the two locations are different, thereby generating at least two different resonance points, and the resonance points are not easily offset, so as to facilitate the antenna multi-mode, Wherein the junction of the first microgroove structure and the second microgroove structure The structure is the same.

進一步地,多個超材料射頻天線單元設置在多面體結構的每一個側面上。 Further, a plurality of metamaterial RF antenna units are disposed on each side of the polyhedral structure.

進一步地,多面體結構為四面體結構、六面體結構或八面體結構。 Further, the polyhedral structure is a tetrahedral structure, a hexahedral structure or an octahedral structure.

進一步地,金屬片為銅片或銀片。 Further, the metal piece is a copper piece or a silver piece.

進一步地,微槽結構通過蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻形成。 Further, the microgroove structure is formed by etching, electroplating, drilling, photolithography, electron engraving or ion etching.

進一步地,超材料射頻天線單元包括附著介質,附著介質設置於多面體結構的表面上,且金屬片和饋線設置於附著介質上。 Further, the metamaterial radio frequency antenna unit includes an attachment medium disposed on a surface of the polyhedral structure, and the metal piece and the feed line are disposed on the attachment medium.

進一步地,附著介質為陶瓷基板、環氧樹脂基板或聚四氟乙烯基板。 Further, the adhesion medium is a ceramic substrate, an epoxy substrate or a polytetrafluoroethylene plate.

進一步地,每個超材料射頻天線單元的饋線相互連接,並一起連接到基帶信號處理器上。 Further, the feed lines of each metamaterial RF antenna unit are connected to each other and connected together to the baseband signal processor.

進一步地,微槽結構為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 Further, the microgroove structure is one of a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure, or one of the first five structures. A structure derived from a structure in which a plurality of structural composites or one of the structural arrays is obtained.

本發明採用的另一個技術方案是:提供一種射頻天線,射頻天線包括多面體結構和附著在多面體結構上的多個超材料射頻天線單元,多個超材料射頻天線單元設置在多面體結構的每一個側面上,每個超材料射頻天線單元包括設置於多面體結構表面上的附著介質、設置於附著介質上的饋線和金屬片,饋 線通過耦合方式饋入所述金屬片,且金屬片上形成有微槽結構,所述微槽結構包括第一微槽結構和第二微槽結構,且所述第一微槽結構和所述第二微槽結構為非對稱設置,使得兩個位置上的電容與電感有所不同,從而產生至少兩個不同的諧振點,並且諧振點不易抵消,以利於實現天線豐富的多模化,其中,所述第一微槽結構和所述第二微槽結構的結構形式一樣。 Another technical solution adopted by the present invention is to provide an RF antenna including a polyhedral structure and a plurality of metamaterial RF antenna units attached to the polyhedral structure, and a plurality of metamaterial RF antenna units are disposed on each side of the polyhedral structure. Each of the metamaterial RF antenna units includes an attachment medium disposed on a surface of the polyhedral structure, a feeder line and a metal piece disposed on the attachment medium, and feeding The wire is fed into the metal piece by coupling, and the metal piece is formed with a micro groove structure, the micro groove structure includes a first micro groove structure and a second micro groove structure, and the first micro groove structure and the first The two micro-slot structures are asymmetrically arranged, so that the capacitances and inductances at the two positions are different, thereby generating at least two different resonance points, and the resonance points are not easily offset, so as to facilitate the antenna multi-modulation, wherein The first microgroove structure and the second microgroove structure have the same structural form.

進一步地,多面體結構為四面體結構、六面體結構或八面體結構。 Further, the polyhedral structure is a tetrahedral structure, a hexahedral structure or an octahedral structure.

進一步地,金屬片為銅片或銀片。 Further, the metal piece is a copper piece or a silver piece.

進一步地,微槽結構通過蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻形成。 Further, the microgroove structure is formed by etching, electroplating, drilling, photolithography, electron engraving or ion etching.

進一步地,附著介質為陶瓷基板、環氧樹脂基板或聚四氟乙烯基板。 Further, the adhesion medium is a ceramic substrate, an epoxy substrate or a polytetrafluoroethylene plate.

進一步地,每個超材料射頻天線單元的饋線相互連接,並一起連接到基帶信號處理器上。 Further, the feed lines of each metamaterial RF antenna unit are connected to each other and connected together to the baseband signal processor.

進一步地,微槽結構為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 Further, the microgroove structure is one of a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure, or one of the first five structures. A structure derived from a structure in which a plurality of structural composites or one of the structural arrays is obtained.

根據本發明的射頻天線,多面體的側面設置有多個超材料射頻天線單元,使得多面體各個側面上的超材料射頻天線單元可以獨立覆蓋特定的區域,通過設計各個超材料射頻天線單元的方向性特徵、增益等,可以實現一定空間或全空間較好的信號覆蓋,能夠較大提高射頻天線的整體輻射效率。 According to the radio frequency antenna of the present invention, a plurality of metamaterial RF antenna units are disposed on the side of the polyhedron, so that the metamaterial RF antenna unit on each side of the polyhedron can independently cover a specific area, and the directional characteristics of each super material RF antenna unit are designed. , gain, etc., can achieve better signal coverage in a certain space or in the whole space, and can greatly improve the overall radiation efficiency of the RF antenna.

如圖1所示,根據本發明的射頻天線,該射頻天線包括多面體結構201和附著在多面體結構上的多個超材料射頻天線單元100。其中,多面體結構201的材料可以是陶瓷、環氧樹脂基板或聚四氟乙烯,且多面體結構201可以是中空結構也可以是實體結構。 As shown in FIG. 1, a radio frequency antenna according to the present invention includes a polyhedral structure 201 and a plurality of metamaterial radio frequency antenna units 100 attached to the polyhedral structure. The material of the polyhedral structure 201 may be ceramic, epoxy substrate or polytetrafluoroethylene, and the polyhedral structure 201 may be a hollow structure or a solid structure.

請結合圖2所示,為本發明的超材料射頻天線單元的第一實施方式的結構示意圖。本實施方式中,超材料射頻天線單元100包括附著介質1、設置在附著介質1上的金屬片4以及與金屬片4電容性耦合的饋線2,所述金屬片4上形成有微槽結構41。 Please refer to FIG. 2, which is a schematic structural view of a first embodiment of a metamaterial radio frequency antenna unit of the present invention. In the present embodiment, the metamaterial radio frequency antenna unit 100 includes an attachment medium 1, a metal piece 4 disposed on the attachment medium 1, and a feed line 2 capacitively coupled to the metal piece 4, and the metal piece 4 is formed with a microgroove structure 41. .

超材料射頻天線單元100具有結構簡單,製造加工難度低的特點。優選地,多個超材料射頻天線單元100設置在多面體結構201的每一個側面上。 The metamaterial RF antenna unit 100 has the characteristics of simple structure and low manufacturing difficulty. Preferably, a plurality of metamaterial RF antenna units 100 are disposed on each side of the polyhedral structure 201.

多面體結構201可以是四面體結構、六面體結構或八面體結構。多面體結構201的每一個側面至少具有一個超材料射頻天線單元100。每個超材料射頻天線單元100的饋線相互連接,並一起連接到基帶信號處理器(圖未示)上。 The polyhedral structure 201 may be a tetrahedral structure, a hexahedral structure, or an octahedral structure. Each side of the polyhedral structure 201 has at least one metamaterial RF antenna unit 100. The feed lines of each metamaterial RF antenna unit 100 are connected to each other and connected together to a baseband signal processor (not shown).

本實施方式中,通過對金屬片4進行蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻處理形成微槽結構41。 In the present embodiment, the microgroove structure 41 is formed by etching, plating, drilling, photolithography, electron engraving or ion etching of the metal piece 4.

本實施方式中,附著介質1為陶瓷基板、環氧樹脂基板或聚四氟乙烯基板。 In the present embodiment, the adhesion medium 1 is a ceramic substrate, an epoxy resin substrate, or a polytetrafluoroethylene plate.

本實施方式中,金屬片4為銅片或銀片。優選為銅片,價 格低廉,導電性能好。 In the present embodiment, the metal piece 4 is a copper piece or a silver piece. Preferred is copper sheet, price Low cost and good electrical conductivity.

本實施方式中,饋線2選用與金屬片4同樣的材料製成,優選為銅。 In the present embodiment, the feed line 2 is made of the same material as the metal piece 4, preferably copper.

如圖3所示,為本發明的超材料射頻天線單元的第二實施方式的結構示意圖。本實施方式中,超材料射頻天線單元100包括附著介質1、設置在附著介質1上的金屬片4以及與金屬片4電容性耦合的饋線2,所述金屬片4上形成有非對稱的第一微槽結構41及第二微槽結構42。 FIG. 3 is a schematic structural view of a second embodiment of a metamaterial radio frequency antenna unit according to the present invention. In the present embodiment, the metamaterial radio frequency antenna unit 100 includes an adhesion medium 1, a metal piece 4 disposed on the adhesion medium 1, and a feed line 2 capacitively coupled to the metal piece 4, and the metal piece 4 is formed with an asymmetric first A microgroove structure 41 and a second microgroove structure 42.

其中,上文所說的“非對稱的第一微槽結構41與第二微槽結構42”是指,第一微槽結構41與第二微槽結構42兩者不構成軸對稱結構。換句話說,即在第一微槽結構41與第二微槽結構42所附著的表面找不到一根對稱軸,使得第一微槽結構41與第二微槽結構42相對該對稱軸對稱設置。 Here, the "asymmetric first microgroove structure 41 and the second microgroove structure 42" as described above mean that neither the first microgroove structure 41 nor the second microgroove structure 42 constitute an axisymmetric structure. In other words, no symmetry axis is found on the surface to which the first microgroove structure 41 and the second microgroove structure 42 are attached, so that the first microgroove structure 41 and the second microgroove structure 42 are symmetric with respect to the symmetry axis. Settings.

本實施方式中,由於第一微槽結構41與第二微槽結構42結構非對稱,因此兩個位置上的電容與電感會有所不同,從而產生至少兩個不同的諧振點,而且諧振點不易抵消,有利於實現天線豐富的多模化。 In this embodiment, since the first microgroove structure 41 and the second microgroove structure 42 are asymmetric in structure, the capacitance and the inductance at the two locations are different, thereby generating at least two different resonance points, and the resonance point. It is not easy to cancel, which is conducive to the rich multi-mode of the antenna.

本發明的第一微槽結構41與第二微槽結構42的結構形式可以一樣,也可以不一樣。並且第一微槽結構41與第二微槽結構42的非對稱程度可以根據需要調節。從而實現豐富的可調節的多模諧振。 The first microgroove structure 41 and the second microgroove structure 42 of the present invention may have the same structural form or may be different. And the degree of asymmetry of the first microgroove structure 41 and the second microgroove structure 42 can be adjusted as needed. This enables a rich, adjustable multimode resonance.

本實施方式中,微槽結構41,42通過蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻形成。 In the present embodiment, the microgroove structures 41, 42 are formed by etching, electroplating, drilling, photolithography, electron engraving or ion etching.

本實施方式中,附著介質1為陶瓷基板、環氧樹脂基板或 聚四氟乙烯基板。 In the embodiment, the adhesion medium 1 is a ceramic substrate, an epoxy substrate, or Polytetrafluoroethylene plate.

本實施方式中,金屬片4為銅片或銀片。優選為銅片,價格低廉,導電性能好。 In the present embodiment, the metal piece 4 is a copper piece or a silver piece. It is preferably a copper sheet, which is inexpensive and has good electrical conductivity.

本實施方式中,饋線2選用與金屬片4同樣的材料製成,優選為銅。 In the present embodiment, the feed line 2 is made of the same material as the metal piece 4, preferably copper.

此外,本發明中的微槽結構41,42可以是圖4所示的互補式開口諧振環結構、圖5所示的互補式螺旋線結構、圖6所示的開口螺旋環結構、圖7所示的雙開口螺旋環結構、圖8所示的互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的微槽結構。 In addition, the microgroove structures 41, 42 in the present invention may be the complementary open resonant ring structure shown in FIG. 4, the complementary spiral structure shown in FIG. 5, the open spiral ring structure shown in FIG. 6, and FIG. One of the two-opening spiral ring structure shown in FIG. 8 or one of the complementary bent line structures shown in FIG. 8 or a micro-groove structure obtained by one of the first five structures, wherein a plurality of structural composites or one of the structural arrays is obtained. .

其中,衍生分為兩種,一種是幾何形狀衍生,另一種是擴展衍生,此處的幾何形狀衍生是指功能類似、形狀不同的結構衍生,例如由方框類結構衍生到曲線類結構、三角形類結構及其它不同的多邊形類結構;此處的擴展衍生即在圖4至圖8的基礎上開設新的槽以形成新的微槽結構;以圖4所示的互補式開口諧振環結構為例,圖9為其幾何形狀衍生示意圖,圖10為其擴展衍生示意圖。 Among them, there are two kinds of derivation, one is geometric shape derivation, and the other is extended derivation. Here, geometric derivation refers to structural derivation with similar functions and different shapes, for example, derived from a box structure to a curve structure, a triangle. Class structure and other different polygon-like structures; the extended derivative here is to open a new groove on the basis of FIG. 4 to FIG. 8 to form a new micro-groove structure; the complementary open-resonance ring structure shown in FIG. 4 is For example, FIG. 9 is a schematic diagram of its geometry derivation, and FIG. 10 is a schematic diagram of its extended derivation.

此處的複合是指,圖4至圖8的微槽結構多個叠加形成一個新的微槽結構,如圖11所示,為三個圖4所示的互補式開口諧振環結構複合後的結構示意圖;如圖12所示,為兩個圖4所示的互補式開口諧振環結構與圖5所示為互補式螺旋線結構共同複合後的結構示意圖。 The composite here means that the microgroove structures of FIGS. 4 to 8 are superposed to form a new microgroove structure, as shown in FIG. 11, which is a composite of the three complementary open resonant ring structures shown in FIG. Schematic diagram of the structure; as shown in FIG. 12, it is a structural schematic diagram of the complementary open resonant ring structure shown in FIG. 4 and the complementary spiral structure shown in FIG.

此處的組陣是指由多個圖4至圖8所示的微槽結構在同一 金屬片上陣列形成一個整體的微槽結構,如圖13所示,為多個如圖4所示的互補式開口諧振環結構組陣後的結構示意圖。 The array here means that the microgroove structures shown in FIG. 4 to FIG. 8 are in the same The array on the metal sheet forms an integral microgroove structure, as shown in FIG. 13, which is a structural schematic diagram of a plurality of complementary open resonant ring structure arrays as shown in FIG.

圖2和圖3所示的實施方式中均以圖6所示的開口螺旋環結構為例闡述本發明。 Both of the embodiments shown in Figs. 2 and 3 illustrate the present invention by taking the open spiral ring structure shown in Fig. 6 as an example.

圖2-圖3中,金屬片4上畫剖面線的部分為金屬部分,金屬片4上的空白部分(鏤空的部分)表示微槽結構41。另外,饋線也用剖面線表示。 In Figs. 2 to 3, the portion on which the hatching is drawn on the metal piece 4 is a metal portion, and the blank portion (the hollow portion) on the metal piece 4 indicates the microgroove structure 41. In addition, the feeder line is also indicated by a hatching.

在圖2及圖3中,饋線2圍繞金屬片4設置以實現信號耦合。另外金屬片4與饋線2可以接觸,也可以不接觸。當金屬片4與饋線2接觸時,饋線2與金屬片4之間為電感性耦合;當金屬片4與饋線2不接觸時,饋線2與金屬片4之間為電容性耦合。 In Figures 2 and 3, the feed line 2 is placed around the metal sheet 4 to effect signal coupling. In addition, the metal piece 4 may or may not be in contact with the feed line 2. When the metal piece 4 is in contact with the feed line 2, the feed line 2 and the metal piece 4 are inductively coupled; when the metal piece 4 is not in contact with the feed line 2, the feed line 2 and the metal piece 4 are capacitively coupled.

當然,在本發明的其他實施方式中,金屬片4及饋線2可以是省去附著介質直接設置在多面體結構201的側面上,有利於節省成本。 Of course, in other embodiments of the present invention, the metal piece 4 and the feed line 2 may be disposed directly on the side of the polyhedral structure 201 without the attachment medium, which is advantageous in cost saving.

儘管上文藉由較佳實施例揭示了本發明,但並不意圖限制本發明。本領域熟知此項技藝者可在不脫離本發明的精神及範圍的情況下進行一些潤飾及變化。因而,本發明的保護範圍落入所附的申請專利範圍內。 Although the invention has been disclosed above by way of preferred embodiments, it is not intended to limit the invention. Those skilled in the art will be able to make some modifications and variations without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is intended to fall within the scope of the appended claims.

1‧‧‧附著介質 1‧‧‧ Attachment medium

2‧‧‧饋線 2‧‧‧ feeder

4‧‧‧金屬片 4‧‧‧metal pieces

41‧‧‧第一微槽結構 41‧‧‧First microgroove structure

42‧‧‧第二微槽結構 42‧‧‧Second microgroove structure

100‧‧‧超材料射頻天線單元 100‧‧‧Supermaterial RF antenna unit

201‧‧‧多面體結構 201‧‧‧ Polyhedral structure

圖1為本發明射頻天線的結構示意圖;圖2為第一種形式的超材料射頻天線單元的結構示意圖;圖3為第二種形式的超材料射頻天線單元的結構示意圖; 圖4為互補式開口諧振環結構的示意圖;圖5所示為互補式螺旋線結構的示意圖;圖6所示為開口螺旋環結構的示意圖;圖7所示為雙開口螺旋環結構的示意圖;圖8所示為互補式彎折線結構的示意圖;圖9為圖4所示的互補式開口諧振環結構其幾何形狀衍生示意圖;圖10為圖4所示的互補式開口諧振環結構其擴展衍生示意圖;圖11為三個圖4所示的互補式開口諧振環結構的複合後的結構示意圖;圖12為兩個圖4所示的互補式開口諧振環結構與圖5所示為互補式螺旋線結構的複合示意圖;圖13為四個圖4所示的互補式開口諧振環結構組陣後的結構示意圖。 1 is a schematic structural view of a radio frequency antenna according to the present invention; FIG. 2 is a schematic structural view of a first form of a super material radio frequency antenna unit; and FIG. 3 is a schematic structural view of a second form of a super material radio frequency antenna unit; 4 is a schematic view of a complementary open resonant ring structure; FIG. 5 is a schematic view of a complementary spiral structure; FIG. 6 is a schematic view of an open spiral ring structure; FIG. 7 is a schematic view of a double open spiral ring structure; 8 is a schematic view showing a complementary bending line structure; FIG. 9 is a schematic diagram showing the geometrical derivative of the complementary open resonant ring structure shown in FIG. 4; FIG. 10 is an expanded derivative of the complementary open resonant ring structure shown in FIG. FIG. 11 is a schematic structural view of a composite open resonant ring structure shown in FIG. 4; FIG. 12 is a complementary open resonant ring structure shown in FIG. 4 and a complementary spiral shown in FIG. A composite schematic diagram of a line structure; FIG. 13 is a schematic diagram of the structure of four complementary open resonant ring structure arrays shown in FIG.

2‧‧‧饋線 2‧‧‧ feeder

4‧‧‧金屬片 4‧‧‧metal pieces

100‧‧‧超材料射頻天線單元 100‧‧‧Supermaterial RF antenna unit

201‧‧‧多面體結構 201‧‧‧ Polyhedral structure

Claims (16)

一種射頻天線,其中,所述射頻天線包括多面體結構和附著在多面體結構上的多個超材料射頻天線單元,每個超材料射頻天線單元包括饋線和金屬片,所述饋線通過耦合方式饋入所述金屬片,且所述金屬片上形成有微槽結構,所述微槽結構包括第一微槽結構和第二微槽結構,且所述第一微槽結構和所述第二微槽結構為非對稱設置,使得兩個位置上的電容與電感有所不同,從而產生至少兩個不同的諧振點,並且諧振點不易抵消,以利於實現天線豐富的多模化,其中,所述第一微槽結構和所述第二微槽結構的結構形式一樣。 An RF antenna, wherein the RF antenna comprises a polyhedral structure and a plurality of metamaterial RF antenna units attached to the polyhedral structure, each of the metamaterial RF antenna units comprising a feed line and a metal piece, the feed line being fed into the coupling a metal piece, and a microgroove structure is formed on the metal piece, the micro groove structure includes a first micro groove structure and a second micro groove structure, and the first micro groove structure and the second micro groove structure are The asymmetry is set such that the capacitances and inductances at the two locations are different, thereby generating at least two different resonance points, and the resonance points are not easily offset, so as to facilitate the antenna multi-mode, wherein the first micro The groove structure is the same as that of the second microgroove structure. 根據申請專利範圍第1項所述之射頻天線,其中,所述多個超材料射頻天線單元設置在多面體結構的每一個側面上。 The radio frequency antenna according to claim 1, wherein the plurality of metamaterial radio frequency antenna units are disposed on each side of the polyhedral structure. 根據申請專利範圍第2項所述之射頻天線,其中,所述多面體結構為四面體結構、六面體結構或八面體結構。 The radio frequency antenna according to claim 2, wherein the polyhedral structure is a tetrahedral structure, a hexahedral structure or an octahedral structure. 根據申請專利範圍第1項所述之射頻天線,其中,所述金屬片為銅片或銀片。 The radio frequency antenna according to claim 1, wherein the metal piece is a copper piece or a silver piece. 根據申請專利範圍第1項所述之射頻天線,其中,所述微槽結構通過蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻形成。 The radio frequency antenna according to claim 1, wherein the microgroove structure is formed by etching, electroplating, drilling, photolithography, electron engraving or ion etching. 根據申請專利範圍第1項所述之射頻天線,其中,所述超材料射頻天線單元包括附著介質,所述附著介質設置於所述多面體結構的表面上,且所述金屬片和所述饋線設置於所述附著介質上。 The radio frequency antenna according to claim 1, wherein the metamaterial radio frequency antenna unit comprises an attachment medium, the attachment medium is disposed on a surface of the polyhedral structure, and the metal piece and the feeder line are disposed. On the attachment medium. 根據申請專利範圍第6項所述之射頻天線,其中,所述附著介質為陶瓷基板、環氧樹脂基板或聚四氟乙烯基板。 The radio frequency antenna according to claim 6, wherein the attachment medium is a ceramic substrate, an epoxy substrate or a polytetrafluoroethylene plate. 根據申請專利範圍第1項所述之射頻天線,其中,所述每個超材料射頻天線單元的饋線相互連接,並一起連接到基帶信號處理器上。 The radio frequency antenna according to claim 1, wherein the feed lines of each of the metamaterial RF antenna units are connected to each other and connected to the baseband signal processor. 根據申請專利範圍第1項所述之射頻天線,其中,所述微槽結構為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 The radio frequency antenna according to claim 1, wherein the microgroove structure is a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure. One of them, or a structure obtained by one of the first five structures, a plurality of structural composites or one of the structural arrays. 一種射頻天線,其中,所述射頻天線包括多面體結構和附著在多面體結構上的多個超材料射頻天線單元,所述多個超材料射頻天線單元設置在多面體結構的每一個側面上,每個所述超材料射頻天線單元包括設置於所述多面體結構表面上的附著介質、設置於所述附著介質上的饋線和金屬片,所述饋線通過耦合方式饋入所述金屬片,且所述金屬片上形成有微槽結構,所述微槽結構包括第一微槽結構和第二微槽結構,且所述第一微槽結構和所述第二微槽結構為非對稱設置,使得兩個位置上的電容與電感有所不同,從而產生至少兩個不同的諧振點,並且諧振點不易抵消,以利於實現天線豐富的多模化,其中,所述第一微槽結構和所述第二微槽結構的結構形式一樣。 An RF antenna, wherein the RF antenna comprises a polyhedral structure and a plurality of metamaterial RF antenna units attached to the polyhedral structure, the plurality of metamaterial RF antenna units being disposed on each side of the polyhedral structure, each of the The super material radio frequency antenna unit includes an adhesion medium disposed on a surface of the polyhedral structure, a feed line disposed on the adhesion medium, and a metal piece, and the feed line is fed into the metal piece by coupling, and the metal piece is Forming a microgroove structure comprising a first microgroove structure and a second microgroove structure, and the first microgroove structure and the second microgroove structure are asymmetrically disposed such that the two locations are The capacitance is different from the inductance, thereby generating at least two different resonance points, and the resonance point is not easy to cancel, so as to facilitate rich multi-modeization of the antenna, wherein the first micro-slot structure and the second micro-slot The structure of the structure is the same. 根據申請專利範圍第10項所述之射頻天線,其中,所述多面體結構為四面體結構、六面體結構或八面體結構。 The radio frequency antenna according to claim 10, wherein the polyhedral structure is a tetrahedral structure, a hexahedral structure or an octahedral structure. 根據申請專利範圍第10項所述之射頻天線,其中,所述金屬片為銅片或銀片。 The radio frequency antenna according to claim 10, wherein the metal piece is a copper piece or a silver piece. 根據申請專利範圍第10項所述之射頻天線,其中,所述微槽結構通過蝕刻、電鍍、鑽刻、光刻、電子刻或離子刻形成。 The radio frequency antenna according to claim 10, wherein the microgroove structure is formed by etching, electroplating, drilling, photolithography, electron engraving or ion etching. 根據申請專利範圍第10項所述之射頻天線,其中,所述附著介質為陶瓷基板、環氧樹脂基板或聚四氟乙烯基板。 The radio frequency antenna according to claim 10, wherein the attachment medium is a ceramic substrate, an epoxy substrate or a polytetrafluoroethylene plate. 根據申請專利範圍第10項所述之射頻天線,其中,所述每個超材料射頻天線單元的饋線相互連接,並一起連接到基帶信號處理器上。 The radio frequency antenna according to claim 10, wherein the feed lines of each of the metamaterial RF antenna units are connected to each other and connected to the baseband signal processor. 根據申請專利範圍第10項所述之射頻天線,其中,所述微槽結構為互補式開口諧振環結構、互補式螺旋線結構、開口螺旋環結構、雙開口螺旋環結構以及互補式彎折線結構中的一種,或者是通過前面五種結構的其中一種結構衍生、其中多種結構複合或其中一種結構組陣得到的結構。 The radio frequency antenna according to claim 10, wherein the microgroove structure is a complementary open resonant ring structure, a complementary spiral structure, an open spiral ring structure, a double open spiral ring structure, and a complementary bent line structure. One of them, or a structure obtained by one of the first five structures, a plurality of structural composites or one of the structural arrays.
TW100135536A 2011-04-29 2011-09-30 Radio frequency antenna TWI511373B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110111234.XA CN102760941B (en) 2011-04-29 2011-04-29 A kind of radiofrequency antenna made of metamaterial with multi layer substrate and preparation method thereof
CN201110202094.7A CN102891358B (en) 2011-07-19 2011-07-19 A kind of radio-frequency antenna

Publications (2)

Publication Number Publication Date
TW201244251A TW201244251A (en) 2012-11-01
TWI511373B true TWI511373B (en) 2015-12-01

Family

ID=47071588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100135536A TWI511373B (en) 2011-04-29 2011-09-30 Radio frequency antenna

Country Status (2)

Country Link
TW (1) TWI511373B (en)
WO (1) WO2012145995A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845379A (en) * 2005-04-08 2006-10-11 中国科学院微电子研究所 Microstrip antenna array with high gain and wide angle field lobe
CN101667680A (en) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 Monopole radio frequency antenna
CN201490337U (en) * 2009-08-31 2010-05-26 深圳市启汉科技有限公司 Monopole radio-frequency antenna
CN101958460A (en) * 2009-07-17 2011-01-26 捷讯研究有限公司 Multiple-grooved antenna and mobile device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1845379A (en) * 2005-04-08 2006-10-11 中国科学院微电子研究所 Microstrip antenna array with high gain and wide angle field lobe
CN101958460A (en) * 2009-07-17 2011-01-26 捷讯研究有限公司 Multiple-grooved antenna and mobile device
CN101667680A (en) * 2009-08-31 2010-03-10 深圳市启汉科技有限公司 Monopole radio frequency antenna
CN201490337U (en) * 2009-08-31 2010-05-26 深圳市启汉科技有限公司 Monopole radio-frequency antenna

Also Published As

Publication number Publication date
TW201244251A (en) 2012-11-01
WO2012145995A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
CN201655979U (en) Combined type multi-input multi-output antenna module and system thereof
US9525212B2 (en) Feeding network, antenna, and dual-polarized antenna array feeding circuit
WO2015120779A1 (en) Antenna and mobile terminal
TWI517498B (en) Antenna device
WO2018040839A1 (en) Low-profile base station antenna radiation unit and antenna
CN102075205A (en) Mobile communication device
US20130082897A1 (en) Unipolar, bipolar and hybrid mimo antennae
TWM584024U (en) Antenna device
WO2020140824A1 (en) Radiation enhancer of wireless apparatus, radiation system and wireless apparatus
TWI517492B (en) Antenna and wireless communication device
CN102800948B (en) Antenna and wireless communication apparatus
CN101707284B (en) LTCC electrically small integrated antenna for radio-frequency front-end system
TWI511373B (en) Radio frequency antenna
CN202094288U (en) Antenna and MIMO (Multiple Input Multiple Output) antenna with same
CN102891358B (en) A kind of radio-frequency antenna
CN102810736A (en) Antenna and wireless communication device
CN201741806U (en) Low temperature co-fired ceramic (LTCC) electric small-integrated antenna for radio frequency (RF) front end system
TWI487199B (en) Dual-band antenna, mimo antenna device and dual-band wireless communication device
TWI501468B (en) Asymmetric antenna and a mimo antenna
TWI523320B (en) An antenna and mimo antenna with the antenna
TWI515959B (en) Antenna and mimo antenna with the antenna
TWI502806B (en) Metamaterial radio frequency antenna and mimo antenna
WO2022135239A1 (en) Antenna, antenna module, and network device
TWI517491B (en) An antenna and mimo antenna with the antenna
CN206585066U (en) A kind of PCB antenna and wifi turn serial port module