TWI509768B - Esd protection circuit - Google Patents
Esd protection circuit Download PDFInfo
- Publication number
- TWI509768B TWI509768B TW101147992A TW101147992A TWI509768B TW I509768 B TWI509768 B TW I509768B TW 101147992 A TW101147992 A TW 101147992A TW 101147992 A TW101147992 A TW 101147992A TW I509768 B TWI509768 B TW I509768B
- Authority
- TW
- Taiwan
- Prior art keywords
- doped region
- well
- electrostatic discharge
- protection circuit
- conductivity type
- Prior art date
Links
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
本發明是有關於一靜電放電保護電路,特別是針對具有低漏電流的靜電放電保護電路。The present invention relates to an electrostatic discharge protection circuit, and more particularly to an electrostatic discharge protection circuit having low leakage current.
保護元件避免受到靜電放電的破壞對於熟悉技藝的人士而言一直是個挑戰,傳統的靜電放電保護電路主要包含一二極體聯結的一端與輸出入墊進行電耦接,另一端與接地端相連以用來散逸通過電路的高電流。一般而言,二極體聯結具有一與基板電性相反的井用來容置二極體的兩端,然而,二極體的一端和井與基板會形成一寄生的雙極電晶體(BJT),成為在正常操作時,例如在輸出入墊加一10伏的偏壓時所不欲見的的漏電通道,因此靜電放電保護電路所造成的能耗成了一個主要的缺點。Protecting components from electrostatic discharge has been a challenge for those skilled in the art. Conventional ESD protection circuits mainly include a diode-coupled end electrically coupled to the input-in pad and the other end connected to the ground. Used to dissipate high current through the circuit. In general, the diode junction has a well opposite to the substrate for receiving the two ends of the diode. However, one end of the diode and the well and the substrate form a parasitic bipolar transistor (BJT). It becomes a leakage path that is undesired during normal operation, for example, when a voltage of 10 volts is applied to the input pad, and thus the power consumption caused by the electrostatic discharge protection circuit becomes a major disadvantage.
除了漏電之外,另外對於傳統的靜電放電保護電路設計的挑戰是逐漸縮減的佈局面積,由於對於小尺寸電子元件的追求,對於電路設計人員的限制也漸増,除了要保護自輸出入墊所進入的靜電放電,對於逆向的負壓的靜電放電也是有必要存在,因此通常在設計時需將額外區域保留用以加入一個逆向二極體來散逸負壓的靜電放電。然而,所犧牲的區域將會對電晶體的密度造成縮減。In addition to leakage, the challenge for traditional ESD protection circuit design is to gradually reduce the layout area. Due to the pursuit of small-sized electronic components, the limitations of circuit designers are gradually reduced, in addition to protecting the input pads. The electrostatic discharge is also necessary for the reverse negative voltage electrostatic discharge, so it is usually necessary to reserve an additional area for adding an antistatic discharge to dissipate the negative voltage. However, the sacrificed area will reduce the density of the transistor.
因此,如何能避免不必要的漏電流自靜電放電保護電路流出與如何在最小面積下設計出一可供負壓的靜電放電 是一重要課題。Therefore, how to avoid unnecessary leakage current from the electrostatic discharge protection circuit and how to design a negative electrostatic discharge under the minimum area It is an important issue.
本發明的目的是要提供一靜電放電保護電路,此靜電放電保護電路具有一井嵌於一基板中,該井所具有的導電型與基板的導電型相反,且該井環繞一二極體用來散逸靜電放電電流。另外,一摻雜區形成於該井中並電耦接於一輸入墊,二極體的一端也同時電耦接於所述的輸入墊,因此可形成一電位阻障以防止漏電流自二極體流入井中。進一步言,所述的井與基板形成一額外通道供散逸自接地端而來的靜電放電電流,因此,設計一可供負壓的靜電放電所需的面積可減少。The object of the present invention is to provide an electrostatic discharge protection circuit having a well embedded in a substrate having a conductivity type opposite to that of the substrate, and the well surrounding the diode To dissipate the electrostatic discharge current. In addition, a doped region is formed in the well and electrically coupled to an input pad. One end of the diode is also electrically coupled to the input pad at the same time, so that a potential barrier can be formed to prevent leakage current from the diode. The body flows into the well. Further, the well and the substrate form an additional channel for dissipating the electrostatic discharge current from the ground terminal, and therefore, the area required for designing an electrostatic discharge for negative pressure can be reduced.
本發明為了達到以上目的可藉由提供一靜電放電保護電路電耦接於一輸入(或輸出入)墊,所述的電路可包含一可為PNP BJT的第一元件,具有一射極電耦接於輸入墊。保護電路也可具有一第二元件,例如為一二極體,第二元件的第一極電耦接於第一元件的射極與輸入墊。第二元件也可為一二極體聯結,並有一第二極與接地端電耦接。電路可進一步具有一第三元件,其一端與輸入墊電耦接,另一端與接地端電耦接,第三元件可以一二極體為代表,自輸入墊的角度來看第三元件是與第二元件的方向相反。保護電路可進一步包含一具有接地閘極NMOS結構的第四元件,所述NMOS結構的一端電耦接於第二元件的第二極,而另一端接於地。In order to achieve the above object, the present invention can be electrically coupled to an input (or input/output) pad by providing an electrostatic discharge protection circuit, and the circuit can include a first component which can be a PNP BJT, having an emitter electrical coupling. Connect to the input pad. The protection circuit can also have a second component, such as a diode, the first pole of the second component being electrically coupled to the emitter of the first component and the input pad. The second component can also be a diode bond, and a second pole is electrically coupled to the ground. The circuit may further have a third component, one end of which is electrically coupled to the input pad, the other end is electrically coupled to the ground, and the third component may be represented by a diode, and the third component is The second element is in the opposite direction. The protection circuit can further include a fourth component having a grounded gate NMOS structure, one end of the NMOS structure being electrically coupled to the second pole of the second component and the other end being coupled to ground.
本發明為了達到以上目的可藉由提供一靜電放電保護電路電耦接於一輸入(或輸出入)墊,所述的電路包含一具有第一導電型的基板,一位於基板中具有第二導電型的第一井,與一位於第一井中具有第一導電型的第二井。 所述的保護電路進一步有一在第一井中的一N+的第三摻雜區電耦接於輸入墊,與在基板中有一P+的第四摻雜區電耦接於接地端。實施例可有多於一個的第二井位於第一井中並排列於第一個第二井之後。每一個第二井都有一第一端與一第二端,其中第一個第二井的第一端電耦接於輸入墊,第二端電耦接後續第二井的第一端,並以此接續連接排列於後之第二井,最後一個第二井電耦接於接地端。In order to achieve the above object, the present invention can be electrically coupled to an input (or input/output) pad by providing an electrostatic discharge protection circuit, the circuit comprising a substrate having a first conductivity type, and a second conductivity in the substrate. A first well of the type, and a second well having a first conductivity type in the first well. The protection circuit further has a third doped region of N+ in the first well electrically coupled to the input pad, and is electrically coupled to the ground via a fourth doped region having a P+ in the substrate. Embodiments may have more than one second well located in the first well and arranged after the first second well. Each of the second wells has a first end and a second end, wherein the first end of the first second well is electrically coupled to the input pad, and the second end is electrically coupled to the first end of the subsequent second well, and The second well is arranged in the succeeding connection, and the last second well is electrically coupled to the ground.
以下所述的為本發明中所例述的實施例與所附圖示,以各種例示的方式針對本發明做更充分的闡述。所提出的各種例示應整體觀之而不應該斷章取義或以此對本發明所欲保護的範圍加以限縮,所揭露的內容是可供熟悉此領域的技藝人士完整了解。在說明書中所用的"或"字為一連接用語,可是為"和/或"。另外,冠詞"一"可視為單數或複數。"耦接"或"連接"一詞可代表元件間直接連接或間接地透過其他元件進行連接。The invention is described more fully hereinafter with reference to the embodiments of the invention and the accompanying drawings. The various exemplifications set forth herein are intended to be considered as a contin The word "or" used in the specification is a connection term, but is "and/or". In addition, the article "a" can be regarded as singular or plural. The term "coupled" or "connected" may mean that the elements are connected directly or indirectly through other elements.
圖1用來表示根據本揭露中所述的一實施例有關一靜電放電保護電路10的等效電路圖。所述的電路10可被加入 一半導體電路中且電耦接於一輸入墊(或輸出入墊)110、一內部電路120與接地130,因此內部電路120可被保護免於受到靜電放電的破壞或其它的電撃。電路10至少包含一第一元件101,此第一元件101可為但不限於是一PNP BJT,具有一射極電耦接於輸入墊110。電路10也可具有一第二元件102,可例示為一二極體,第二元件102的第一極電耦接於第一元件101的射極與輸入墊110。第二元件102也可為如圖一中的一二極體聯結102'並有一第二極1022'與接地端電耦接。電路10可進一步具有一第三元件103,其一端1032與輸入墊110電耦接,其另一端1031與接地端電耦接,第三元件103可選擇性地以一二極體為代表。電路10可進一步包含一具有接地閘極NMOS結構的第四元件104,所述NMOS結構的一端電耦接於第二元件102的第二極1022,而另一端接於地。在本實施例中,若有一靜電放電電流導入輸入墊110,靜電放電電流的放電路徑會自第二元件102至第四元件104,再自第四元件104至接地端130。相反地,若靜電放電電流是自接地端130導入,則靜電放電電流的放電路徑會自接地端130至第三元件103,再自第三元件103至輸入墊110。因此,本實施例提供了至少兩條靜電放電電流的主要放電路徑,一條是供從輸入墊110流入,一條是供從接地端130流入,後者通常稱之為負壓(negative stress)靜電放電。本實施例的另外一個目的是減少內部電路120在正常操作下的漏電流,正常操作時會在輸入墊110施加一偏壓,如10.5伏以用來驅動內部電路120,因此對於自並接的靜電放電保 護電路10所流出的漏電流應避免或降低,然而第一元件101若未被適當地設計,有可能成為一主要的漏電路徑。在本實施例中,由於如圖1所示的將第一元件101設計為在輸入墊110施加一偏壓的情形下可處在一切斷狀態(對於第一元件101所示的PNP BJT的兩個PN介面而言,均為逆向偏壓或零偏壓),因此自輸入墊110至接地端130的路徑可被切斷以禁止漏電流產生。1 is a diagram showing an equivalent circuit diagram of an electrostatic discharge protection circuit 10 in accordance with an embodiment of the present disclosure. The circuit 10 can be added A semiconductor circuit is electrically coupled to an input pad (or input/output pad) 110, an internal circuit 120, and a ground 130, so that the internal circuit 120 can be protected from electrostatic discharge or other electrical discharge. The circuit 10 includes at least a first component 101. The first component 101 can be, but is not limited to, a PNP BJT having an emitter electrically coupled to the input pad 110. The circuit 10 can also have a second component 102, which can be exemplified as a diode. The first pole of the second component 102 is electrically coupled to the emitter of the first component 101 and the input pad 110. The second component 102 can also be a diode bond 102' as shown in FIG. 1 and has a second pole 1022' electrically coupled to the ground. The circuit 10 can further have a third component 103 having one end 1032 electrically coupled to the input pad 110 and the other end 1031 electrically coupled to the ground terminal. The third component 103 can be selectively represented by a diode. The circuit 10 can further include a fourth component 104 having a grounded gate NMOS structure, one end of the NMOS structure being electrically coupled to the second pole 1022 of the second component 102 and the other end being coupled to ground. In this embodiment, if an electrostatic discharge current is introduced into the input pad 110, the discharge path of the electrostatic discharge current will flow from the second component 102 to the fourth component 104, and then from the fourth component 104 to the ground terminal 130. Conversely, if the electrostatic discharge current is introduced from the ground terminal 130, the discharge path of the electrostatic discharge current will flow from the ground terminal 130 to the third component 103, and then from the third component 103 to the input pad 110. Thus, this embodiment provides a primary discharge path for at least two electrostatic discharge currents, one for inflow from input pad 110 and one for inflow from ground terminal 130, the latter commonly referred to as negative stress electrostatic discharge. Another object of the present embodiment is to reduce the leakage current of the internal circuit 120 under normal operation, and a bias voltage, such as 10.5 volts, is applied to the input pad 110 during normal operation to drive the internal circuit 120, thus for self-coupling Electrostatic discharge protection The leakage current flowing out of the protection circuit 10 should be avoided or reduced. However, if the first element 101 is not properly designed, it may become a main leakage path. In the present embodiment, since the first element 101 is designed to apply a bias voltage to the input pad 110 as shown in FIG. 1, it can be in a cut-off state (two for the PNP BJT shown for the first element 101). For the PN interface, both are reverse biased or zero biased, so the path from the input pad 110 to the ground terminal 130 can be cut off to prevent leakage current generation.
圖2描述的是本揭露內容所述的另一實施例的一靜電放電保護電路20的半導體結構。所述的靜電放電保護電路20電耦接於一可為輸出入用的輸入墊110或是一高電壓輸入墊,靜電放電保護電路20包含一第一導電型的基板100,一位於基板100中並具有第二導電型的第一井200,與一位於第一井200中並具有第一導電型的第二井210。在此實施例中,第一導電型是P型,第一井200是一N型井,而第二井210是一P型井。保護電路20具有一二極體聯結220其包含至少一二極體元件225、一在第一井200中並電耦接於輸入墊110的N+第一摻雜區240與一在基板100中可為P型摻雜的第二摻雜區290,第二摻雜區290電耦接於接地端130。在本實施例中,基板100為P型,而二極體元件225為二極體聯結220中的第一個二極體。二極體聯結220形成於第二井210中並包含一第一端222與一第二端224,其中第一端222電耦接於輸入墊110,在本實施例中,第一端222是一P+區,第二端224是一N+區。2 depicts a semiconductor structure of an electrostatic discharge protection circuit 20 in accordance with another embodiment of the present disclosure. The ESD protection circuit 20 is electrically coupled to an input pad 110 for input and output or a high voltage input pad. The ESD protection circuit 20 includes a substrate 100 of a first conductivity type, and a substrate 100 is disposed in the substrate 100. And having a first well 200 of a second conductivity type, and a second well 210 located in the first well 200 and having a first conductivity type. In this embodiment, the first conductivity type is a P-type, the first well 200 is an N-type well, and the second well 210 is a P-type well. The protection circuit 20 has a diode junction 220 including at least one diode element 225, an N+ first doping region 240 in the first well 200 and electrically coupled to the input pad 110, and a substrate 100 The second doped region 290 is electrically coupled to the ground terminal 130. In the present embodiment, the substrate 100 is P-type, and the diode element 225 is the first diode of the diode junction 220. The first end 222 is electrically coupled to the input pad 110. In this embodiment, the first end 222 is a second end 222. The first end 222 is electrically coupled to the input pad 110. In this embodiment, the first end 222 is A P+ zone, the second end 224 is an N+ zone.
基板100與第一井200的接觸面另外形成了一個二極體 ,其中所述的二極體自輸入墊110的角度來看是與二極體聯結220的方向相反(二極體聯結220為P-N,在此所述的為N-P)。The contact surface of the substrate 100 and the first well 200 additionally forms a diode The diode is opposite to the direction of the diode junction 220 from the perspective of the input pad 110 (the diode junction 220 is P-N, N-P is described herein).
在本實施例中提供了至少兩條靜電放電電流的主要放電路徑使來自不同方向的靜電放電電流得以散逸,當一靜電放電電流自輸入墊110導入,或可稱為正向靜電放電,靜電放電電流的放電路徑會自二極體聯結220至接地端130。另一方面,若靜電放電電流是自接地端130導入,在此稱為負壓靜電放電,則靜電放電電流的放電路徑會自基板100,經由N+第一摻雜區240,再至輸入墊110。因此,本實施例提供了至少兩條靜電放電電流的主要放電路徑,一條是供從輸入墊110流入,一條是供從接地端130流入,後者通常稱之為負壓(negative stress)型靜電放電。本發明藉由將第一井200嵌入導電型相反的基板100中,並使其包圍二極體聯結220,因此不需要再另外保留多餘的面積來容納一用來進行負壓型靜電電流放電的二極體。In this embodiment, a main discharge path of at least two electrostatic discharge currents is provided to dissipate the electrostatic discharge currents from different directions. When an electrostatic discharge current is introduced from the input pad 110, it may be referred to as forward electrostatic discharge, electrostatic discharge. The discharge path of the current will be connected from the diode 220 to the ground terminal 130. On the other hand, if the electrostatic discharge current is introduced from the ground terminal 130, referred to herein as a negative voltage electrostatic discharge, the discharge path of the electrostatic discharge current will flow from the substrate 100, through the N+ first doping region 240, to the input pad 110. . Therefore, the present embodiment provides a main discharge path of at least two electrostatic discharge currents, one for flowing from the input pad 110 and one for flowing from the ground terminal 130, the latter being commonly referred to as a negative stress type electrostatic discharge. . The present invention embeds the first well 200 in the substrate 100 of opposite conductivity type and surrounds the diode junction 220, so that it is not necessary to additionally reserve an extra area to accommodate a negative voltage type electrostatic current discharge. Diode.
本揭露內容的另一特徵是可以減少內部電路在正常操作時從二極體聯結220到接地端130的漏電流。在正常操作時,會對輸入墊110施加一偏壓以驅動內部電路,理想狀況下與輸入墊110電耦接的保護電路20應當處於不導通以避免能耗,但不幸地,二極體聯結220的第一端222與第一井200及基板100可形成一漏電流的路徑。因此,透過N+摻雜區240與輸入墊110電耦接,P井210與N井200的介面上的電位差可以形成一阻障以避免來自P井210的漏電流進入N井 200中。對二極體聯結220中的第一個二極體225而言,在P井210與N井200的間的電位相當,但對於二極體聯結220中的第二於其他後續連接的二極體而言,其P井210與N井200的介面上的電位差異會因串聯的壓降造成彼此有更大的電位差,因此也會在二極體外形成更大的阻障。另外,藉由調整各井中的摻雜濃度或輪廓,本實施例可以提供更大的阻障來降低漏電流。圖3所示為另一實施例,具有一阻抗270介於二極體225的第一端222與輸入墊110之間以提供二極體端有較大的壓降進而降低漏電流。Another feature of the present disclosure is that leakage current from the diode junction 220 to the ground terminal 130 during normal operation can be reduced. In normal operation, a bias voltage is applied to the input pad 110 to drive the internal circuitry. Ideally, the protection circuit 20 electrically coupled to the input pad 110 should be non-conducting to avoid power consumption, but unfortunately, the diode is coupled. The first end 222 of the 220 and the first well 200 and the substrate 100 can form a path of leakage current. Therefore, the N+ doping region 240 is electrically coupled to the input pad 110, and the potential difference between the P well 210 and the N well 200 interface can form a barrier to prevent leakage current from the P well 210 from entering the N well. 200. For the first diode 225 in the diode junction 220, the potential between the P well 210 and the N well 200 is comparable, but for the second of the diode junction 220 that is second to the other subsequent connections In fact, the difference in potential between the P well 210 and the N well 200 may cause a larger potential difference from each other due to the series voltage drop, and thus a larger barrier is formed outside the dipole. Additionally, by adjusting the doping concentration or profile in each well, this embodiment can provide a larger barrier to reduce leakage current. 3 shows another embodiment having an impedance 270 between the first end 222 of the diode 225 and the input pad 110 to provide a large voltage drop across the diode terminal to reduce leakage current.
再參考圖2,本實施例可進一步具有一金屬氧化半導體結構280(以下簡稱為MOS結構)置於接地端130與二極體聯結220之間,所述的結構包含一位於基板100中具有第一導電型的第三井281,一位於第三井281中具有第二導電型的第三摻雜區286,一位於第三井281中具有第二導電型的第四摻雜區287,以及一位於第三摻雜區286與第四摻雜區287之間的閘極288。其中,第三摻雜區286電耦接於二極體元件225的第二端224,第四摻雜區287電耦接於第二摻雜區290。閘極288電耦接於接地端130且可與第四摻雜區287共同接地。MOS結構280可進一步包含一介於閘極288與第三摻雜區286之間的第二閘極289,第二閘極289可依需要選擇性地與Vdd耦接。Referring to FIG. 2, the present embodiment further has a metal oxide semiconductor structure 280 (hereinafter referred to as a MOS structure) disposed between the ground terminal 130 and the diode junction 220. The structure includes a substrate 100 having a a third well 281 of a conductivity type, a third doped region 286 having a second conductivity type in the third well 281, and a fourth doped region 287 having a second conductivity type in the third well 281, and A gate 288 between the third doped region 286 and the fourth doped region 287. The third doped region 286 is electrically coupled to the second end 224 of the diode element 225 , and the fourth doped region 287 is electrically coupled to the second doped region 290 . The gate 288 is electrically coupled to the ground terminal 130 and can be commonly grounded to the fourth doping region 287. The MOS structure 280 can further include a second gate 289 between the gate 288 and the third doped region 286. The second gate 289 can be selectively coupled to the Vdd as needed.
圖4描述一實施例具有一介於二極體聯結220與第二摻雜區290之間的保護環結構300,所述的保護環結構300也可設置於二極體聯結220與MOS結構280之間。保護環結構300 有一第四井310,一位於第四井310中的第五摻雜區320,以及一位於基板100中的第六摻雜區340。在本實施例中,第四井310是一N型井,第五摻雜區320是一N+摻雜區。第五摻雜區可電耦接於Vdd的電壓藉以捕捉在基板100中流動的電子,第六摻雜區340可為一P+摻雜區並電耦接於接地端130以用來捕捉在基板100中流動的正電荷如電洞。4 illustrates an embodiment having a guard ring structure 300 between the diode junction 220 and the second doped region 290. The guard ring structure 300 can also be disposed between the diode junction 220 and the MOS structure 280. between. Protection ring structure 300 There is a fourth well 310, a fifth doped region 320 in the fourth well 310, and a sixth doped region 340 in the substrate 100. In the present embodiment, the fourth well 310 is an N-type well and the fifth doped region 320 is an N+ doped region. The fifth doped region can be electrically coupled to the voltage of Vdd to capture electrons flowing in the substrate 100. The sixth doped region 340 can be a P+ doped region and electrically coupled to the ground terminal 130 for capturing on the substrate. A positive charge flowing in 100 is a hole.
圖5描述另一實施例,一靜電放電保護電路30至少包含一具有第一導電型的基板100,一位於基板100中具有第二導電型的第一井200,與一位於第一井200中具有第一導電型的第二井210。在本實施例中,第一導電型為P型,第二導電型為N型。在第二井210中,還有一P型的第一摻雜區222與一N型的第二摻雜區224,其中第一摻雜區222電耦接於輸入墊110。進一步言,在第一井200中有一N+的第三摻雜區240,在基板100中有一P+的第四摻雜區290,N+的第三摻雜區240電耦接於輸入墊110且P+的第四摻雜區290電耦接於接地端130。由於說明書中皆為例示,實施例可有多於一個的第二井210位於第一井200中並且排列於第一個第二井210之後。每一個第二井210都有其所對應的P型第一摻雜區222與N型的第二摻雜區224,並以如圖5所示串聯相接。對於只有一個第二井210的實施例而言,N型的第二摻雜區224電耦接於接地端130,對於一串聯連結的第二井210而言,最右邊的第二井210中的N型的第二摻雜區224電耦接於接地端130。第二井210、第一摻雜區222與第二摻雜區224形成一第一二極體225,其中第一摻雜區222是第一二極體225 的第一端,第二摻雜區224是第一二極體225的第二端。P+的第四摻雜區290、基板100、第一井200與N+的第三摻雜區240形成一第二二極體,其中P+的第四摻雜區290為所述第二二極體的第一端且N+的第三摻雜區240為所述第二二極體的第二端。5 illustrates another embodiment, an ESD protection circuit 30 includes at least a substrate 100 having a first conductivity type, a first well 200 having a second conductivity type in the substrate 100, and a first well 200 A second well 210 having a first conductivity type. In this embodiment, the first conductivity type is a P type, and the second conductivity type is an N type. In the second well 210, there is also a P-type first doped region 222 and an N-type second doped region 224, wherein the first doped region 222 is electrically coupled to the input pad 110. Further, in the first well 200, there is an N+ third doping region 240, and in the substrate 100, there is a P+ fourth doping region 290, and the N+ third doping region 240 is electrically coupled to the input pad 110 and P+ The fourth doped region 290 is electrically coupled to the ground terminal 130. As illustrated in the specification, embodiments may have more than one second well 210 located in the first well 200 and arranged after the first second well 210. Each of the second wells 210 has its corresponding P-type first doped region 222 and N-type second doped region 224, and is connected in series as shown in FIG. For an embodiment having only one second well 210, the N-type second doped region 224 is electrically coupled to the ground terminal 130, and for a series connected second well 210, the rightmost second well 210 is The second doped region 224 of the N-type is electrically coupled to the ground terminal 130. The second well 210, the first doped region 222 and the second doped region 224 form a first diode 225, wherein the first doped region 222 is the first diode 225 The first end, the second doped region 224 is the second end of the first diode 225. The fourth doped region 290 of P+, the substrate 100, the first well 200 and the third doped region 240 of N+ form a second diode, wherein the fourth doped region 290 of P+ is the second diode The first end of the N+ and the third doped region 240 of N+ are the second ends of the second diode.
本實施例提供了兩條靜電放電電流的主要放電路徑使靜電放電電流得以散逸,其中一個通道為自輸入墊110導入,到第一摻雜區222,再至第二井210中,接著到第二摻雜區224,最後到接地端130。另一個通道為自第四摻雜區290,至基板100,再至第一井200中與第三摻雜區240,最後到輸入墊110。第二種通道又稱為負壓(negative stress)型靜電放電通道以用來與自輸入墊110導入的靜電放電通道有所區別。This embodiment provides a main discharge path of two electrostatic discharge currents to dissipate the electrostatic discharge current, wherein one channel is introduced from the input pad 110, to the first doping region 222, to the second well 210, and then to the first The second doped region 224 is finally connected to the ground terminal 130. The other channel is from the fourth doped region 290 to the substrate 100, to the first well 200 and the third doped region 240, and finally to the input pad 110. The second type of channel is also referred to as a negative stress type electrostatic discharge channel for distinguishing it from the electrostatic discharge channel introduced from the input pad 110.
由於第一井200將第二井210環繞,且第三摻雜區240與第一摻雜區222共同電耦接於輸入墊110,因此當有一偏壓施加在輸入墊110上時,對於第一井200與第二井210接合面並不會產生一正向偏壓。因此,自第二井210流至第一井200的漏電流將會大幅減低。在圖6所示的另一實施例中,可進一步加入一阻抗270介於第一摻雜區222與輸入墊110之間以在第一井200與第二井210接合面上有更大的壓差,因此可有更大的電位差來防止漏電流自第二井210流至第一井200中。Since the first well 200 surrounds the second well 210, and the third doping region 240 and the first doping region 222 are electrically coupled to the input pad 110, when a bias is applied to the input pad 110, The junction of a well 200 with the second well 210 does not produce a forward bias. Therefore, the leakage current flowing from the second well 210 to the first well 200 will be greatly reduced. In another embodiment shown in FIG. 6, an impedance 270 may be further added between the first doping region 222 and the input pad 110 to have a larger interface on the first well 200 and the second well 210. The pressure differential, and thus a greater potential difference, can prevent leakage current from flowing from the second well 210 to the first well 200.
本實施例可進一步有一位於基板100中具有P型的第三井281,一位於第三井281中具有N型的第五摻雜區286,與 一位於第三井281中具有N型的第六摻雜區287。第五摻雜區286電耦接於第二摻雜區224且第六摻雜區287電耦接於第四摻雜區290。又有一介於第五與第六摻雜區之間的閘極288電耦接於接地端130。本實施例可再包含另一介於閘極288與第五摻雜區286之間的閘極289,其中閘極289電耦接於Vdd。The embodiment may further have a third well 281 having a P-type in the substrate 100, and a fifth doping region 286 having an N-type in the third well 281, and A sixth doped region 287 having an N-type in the third well 281. The fifth doped region 286 is electrically coupled to the second doped region 224 and the sixth doped region 287 is electrically coupled to the fourth doped region 290 . A gate 288 between the fifth and sixth doped regions is electrically coupled to the ground terminal 130. The embodiment may further include another gate 289 between the gate 288 and the fifth doping region 286, wherein the gate 289 is electrically coupled to Vdd.
圖7描述另一實施例進一步具有一位於基板100中的N型第四井310且第四井310介於N+第二摻雜區224與P+第四摻雜區290之間,本實施例也包含一位於第四井310中具有N型的第七摻雜區320以及一位於基板100中具有P型的第八摻雜區340,其中所述的第八摻雜區340介於第二摻雜區224與第四摻雜區290之間,或介於第二摻雜區224與五摻雜區286之間。FIG. 7 depicts another embodiment further having an N-type fourth well 310 in the substrate 100 and a fourth well 310 interposed between the N+ second doped region 224 and the P+ fourth doped region 290, also in this embodiment. A seventh doped region 320 having an N-type in the fourth well 310 and an eighth doped region 340 having a P-type in the substrate 100, wherein the eighth doped region 340 is interposed Between the second doped region 224 and the fourth doped region 290, or between the second doped region 224 and the fifth doped region 286.
本發明之技術內容及技術特點已揭示如上,然而熟悉本項技術之人士仍可能基於本發明之教示及揭示而作種種不背離本發明精神之替換及修飾。因此,本發明之保護範圍應不限於實施例所揭示者,而應包括各種不背離本發明之替換及修飾,並為以下之申請專利範圍所涵蓋。The technical and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims
10‧‧‧靜電放電保護電路10‧‧‧Electrostatic discharge protection circuit
20‧‧‧靜電放電保護電路20‧‧‧Electrostatic discharge protection circuit
30‧‧‧靜電放電保護電路30‧‧‧Electrostatic discharge protection circuit
100‧‧‧基板100‧‧‧Substrate
101‧‧‧第一元件101‧‧‧ first component
102‧‧‧第二元件102‧‧‧second component
103‧‧‧第三元件103‧‧‧ third component
104‧‧‧第四元件104‧‧‧ fourth component
110‧‧‧輸入墊110‧‧‧ input pad
120‧‧‧內部電路120‧‧‧Internal circuits
130‧‧‧接地端130‧‧‧ Grounding terminal
200‧‧‧第一井200‧‧‧First Well
210‧‧‧第二井210‧‧‧Second well
220‧‧‧二極體聯結220‧‧‧ diode junction
222‧‧‧第一端222‧‧‧ first end
224‧‧‧第二端224‧‧‧ second end
225‧‧‧第一二極體225‧‧‧ first diode
240‧‧‧摻雜區240‧‧‧Doped area
270‧‧‧阻抗270‧‧‧ Impedance
280‧‧‧MOS結構280‧‧‧MOS structure
281‧‧‧第三井281‧‧‧ third well
286‧‧‧摻雜區286‧‧‧Doped area
287‧‧‧摻雜區287‧‧‧Doped area
288‧‧‧閘極288‧‧‧ gate
289‧‧‧第二閘極289‧‧‧second gate
290‧‧‧摻雜區290‧‧‧Doped area
300‧‧‧保護環結構300‧‧‧Protection ring structure
310‧‧‧第四井310‧‧‧fourth well
320‧‧‧摻雜區320‧‧‧Doped area
340‧‧‧摻雜區340‧‧‧Doped area
1011‧‧‧射極1011‧‧‧射极
1021‧‧‧第一極1021‧‧‧ first pole
1022‧‧‧第二極1022‧‧‧second pole
102'‧‧‧二極體聯結102'‧‧‧ diode junction
1022'‧‧‧第二極1022'‧‧‧Second pole
1031‧‧‧二極體103一端1031‧‧ ‧One end of diode 103
1032‧‧‧二極體103另一端1032‧‧‧The other end of the diode 103
圖1顯示一實施例中的一靜電放電保護電路的等效電路圖;圖2描述一實施例中的一靜電放電保護電路的半導體結構; 圖3顯示圖2實施例中的靜電放電保護電路的半導體結構加入一阻抗的示意圖;圖4描述另一實施例中的靜電放電保護電路的半導體結構;;圖5顯示一實施例中的靜電放電保護電路的剖面圖;圖6顯示圖5實施例中的靜電放電保護電路加入一阻抗的示意圖;圖7顯示一實施例中的靜電放電保護電路的剖面圖。1 shows an equivalent circuit diagram of an electrostatic discharge protection circuit in an embodiment; FIG. 2 depicts a semiconductor structure of an electrostatic discharge protection circuit in an embodiment; 3 is a schematic view showing the addition of an impedance to the semiconductor structure of the ESD protection circuit of the embodiment of FIG. 2; FIG. 4 is a view showing the semiconductor structure of the ESD protection circuit of another embodiment; FIG. 5 shows the electrostatic discharge in an embodiment. A cross-sectional view of the protection circuit; FIG. 6 is a schematic view showing the addition of an impedance to the ESD protection circuit of the embodiment of FIG. 5; and FIG. 7 is a cross-sectional view showing the ESD protection circuit of an embodiment.
20‧‧‧靜電放電保護電路20‧‧‧Electrostatic discharge protection circuit
100‧‧‧基板100‧‧‧Substrate
110‧‧‧輸入墊110‧‧‧ input pad
130‧‧‧接地130‧‧‧ Grounding
200‧‧‧第一井200‧‧‧First Well
210‧‧‧第二井210‧‧‧Second well
220‧‧‧二極體聯結220‧‧‧ diode junction
222‧‧‧第一端222‧‧‧ first end
224‧‧‧第二端224‧‧‧ second end
240‧‧‧第一摻雜區240‧‧‧First doped area
281‧‧‧第三井281‧‧‧ third well
286‧‧‧摻雜區286‧‧‧Doped area
287‧‧‧摻雜區287‧‧‧Doped area
288‧‧‧閘極288‧‧‧ gate
289‧‧‧第二閘極289‧‧‧second gate
290‧‧‧摻雜區290‧‧‧Doped area
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101147992A TWI509768B (en) | 2012-12-18 | 2012-12-18 | Esd protection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101147992A TWI509768B (en) | 2012-12-18 | 2012-12-18 | Esd protection circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201426951A TW201426951A (en) | 2014-07-01 |
TWI509768B true TWI509768B (en) | 2015-11-21 |
Family
ID=51725672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101147992A TWI509768B (en) | 2012-12-18 | 2012-12-18 | Esd protection circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI509768B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI817861B (en) * | 2022-12-06 | 2023-10-01 | 世界先進積體電路股份有限公司 | Electrostatic discharge protection device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6867957B1 (en) * | 2002-10-09 | 2005-03-15 | Pericom Semiconductor Corp. | Stacked-NMOS-triggered SCR device for ESD-protection |
TW200531255A (en) * | 2004-02-06 | 2005-09-16 | Magnachip Semiconductor Ltd | Device for electrostatic discharge protection and circuit thereof |
US7525779B2 (en) * | 2004-08-30 | 2009-04-28 | Zi-Ping Chen | Diode strings and electrostatic discharge protection circuits |
US20110303947A1 (en) * | 2010-06-09 | 2011-12-15 | Analog Devices, Inc. | Apparatus and method for protecting electronic circuits |
US20120193701A1 (en) * | 2011-01-27 | 2012-08-02 | Wei-Chieh Lin | Power semiconductor device with electrostatic discharge structure and manufacturing method thereof |
-
2012
- 2012-12-18 TW TW101147992A patent/TWI509768B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6867957B1 (en) * | 2002-10-09 | 2005-03-15 | Pericom Semiconductor Corp. | Stacked-NMOS-triggered SCR device for ESD-protection |
TW200531255A (en) * | 2004-02-06 | 2005-09-16 | Magnachip Semiconductor Ltd | Device for electrostatic discharge protection and circuit thereof |
US7525779B2 (en) * | 2004-08-30 | 2009-04-28 | Zi-Ping Chen | Diode strings and electrostatic discharge protection circuits |
US20110303947A1 (en) * | 2010-06-09 | 2011-12-15 | Analog Devices, Inc. | Apparatus and method for protecting electronic circuits |
US20120193701A1 (en) * | 2011-01-27 | 2012-08-02 | Wei-Chieh Lin | Power semiconductor device with electrostatic discharge structure and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201426951A (en) | 2014-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI736548B (en) | Electro-static discharge protection devices having a low trigger voltage | |
US9881914B2 (en) | Electrostatic discharge protection device | |
JP5449676B2 (en) | ESD protection device | |
US6858901B2 (en) | ESD protection circuit with high substrate-triggering efficiency | |
US7106562B2 (en) | Protection circuit section for semiconductor circuit system | |
CN100364089C (en) | Substrate-triggered ESD circuit by using triple-well | |
US7705404B2 (en) | Electrostatic discharge protection device and layout thereof | |
US20040212936A1 (en) | Diode-string substrate-pumped electrostatic discharge protection | |
US7145204B2 (en) | Guardwall structures for ESD protection | |
JPH08288404A (en) | Cmos on-chip esd protective circuit protected perfectly in which there is not latch-up | |
JP2959528B2 (en) | Protection circuit | |
TW201310602A (en) | Electrostatic discharge protection device structure | |
US20140167169A1 (en) | Esd protection circuit | |
US20060065932A1 (en) | Circuit to improve ESD performance made by fully silicided process | |
US9633992B1 (en) | Electrostatic discharge protection device | |
KR100750588B1 (en) | Electrostatic discharge protection device | |
JP4723443B2 (en) | Semiconductor integrated circuit | |
TWI509768B (en) | Esd protection circuit | |
CN103811482B (en) | ESD protection circuit | |
CN107293537B (en) | Electrostatic discharge protection device, memory element and electrostatic discharge protection method | |
JP5010158B2 (en) | Semiconductor device | |
KR101349998B1 (en) | Electrostatic discaharge Protection Device | |
KR101006514B1 (en) | A silicon controlled rectifier for protecting the device in a electrostatic discharge | |
TW463442B (en) | Electrostatic discharge protection circuit having common discharge line | |
Do et al. | A Study of Dual-Directional SCR with Low Dynamic Resistance and High Holding Voltage for Low-Voltage Application |