TWI508535B - Fast dynamic range compression method - Google Patents

Fast dynamic range compression method Download PDF

Info

Publication number
TWI508535B
TWI508535B TW102127939A TW102127939A TWI508535B TW I508535 B TWI508535 B TW I508535B TW 102127939 A TW102127939 A TW 102127939A TW 102127939 A TW102127939 A TW 102127939A TW I508535 B TWI508535 B TW I508535B
Authority
TW
Taiwan
Prior art keywords
pixel
value
image
gradation
intensity
Prior art date
Application number
TW102127939A
Other languages
English (en)
Other versions
TW201507446A (zh
Inventor
Yu Jung Tsai
Original Assignee
Senao Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senao Networks Inc filed Critical Senao Networks Inc
Priority to TW102127939A priority Critical patent/TWI508535B/zh
Publication of TW201507446A publication Critical patent/TW201507446A/zh
Application granted granted Critical
Publication of TWI508535B publication Critical patent/TWI508535B/zh

Links

Landscapes

  • Image Processing (AREA)

Description

快速動態範圍壓縮方法
本發明是有關於一種影像處理,特別是指一種快速動態範圍壓縮方法。
在攝影領域中所稱的動態範圍,是指感光元件能夠紀錄的光度範圍,由於一般的相機所具有的動態範圍遠小於自然界真實的光度範圍,因此攝取的影像在較亮與較暗的區域的可見度較差。為了克服有限的動態範圍所造成的資訊損失,現有一些壓縮自然景像真實的光度範圍之方式,大體上可分為以下兩種。
第一種是色調映射,利用不同的映射算符,而在低動態範圍的顯示裝置上重製高動態範圍的影像。雖然這一類方式效果好、效率佳,但是會有色彩不一致的問題。第二種是使用視網膜皮層(Retinex,retina(視網膜)+cortex(皮層))演算法加強低動態範圍的影像,以非線性程序模擬人眼對於光線及色彩的感知,雖然處理結果令人滿意,但非線性程序耗費龐大的計算成本,並且還有可能產生人造暈圈。
最近,一種快速動態壓縮格式FDRCLCP(具局 部對比保留之快速動態範圍壓縮格式,fast dynamic range compression format with a local-contrast-preservation)以及一強度映射函數被提出以解決前述非線性程序的問題。其演算法為:,左式為該演算法的基本方程式,其中:
該Lout (x,y)及Lin (x,y)分別是在(x,y)像素之壓縮後與壓縮前的光線強度。T[.]即是該強度映射函數,(x,y)是壓縮前(x,y)像素周圍的局部平均值。N(x,y)是歸一化函數,目的是保持壓縮前後的光線強度分佈範圍(例如:畫素值分佈在0到255之間)。壓縮量主要是由參數m(x,y)控制,該參數m(x,y)是計算壓縮前的影像所容許的最大強度(通常為255)、該影像的局部平均值(x,y)及兩個調控參數mmax 及mmin 而得。此方式不會產生人造暈圈,加強了局部對比,並且還維持色彩一致性。然而,由於此方式引進了兩個調控參數mmax 及mmin ,使用此方式時可能需對每張不同的影像進行調控,來產生因應的不同的強度映射函數T[.]。因此,如何於進行快速動態範圍壓縮時避免需要對不同影像進行人工調控,就成為一個值得研究的主題。
因此,本發明之目的,即在提供一種可因應不同影像而自動調控的快速動態範圍壓縮方法。
於是,本發明快速動態範圍壓縮方法,由一處理器執行,該方法包含以下步驟:讀取一強度影像,該強度影像包括多個畫素,各畫素的值為一代表光線強度的強度值,且該強度值是在一色階最小值與一色階最大值之間的所有可容許的色階值當中的一個,並定義一色階中間值,該色階中間值實質等於所有可容許的色階值的中位數。
對每一畫素計算一局部平均值,代表該畫素周圍局部的畫素的強度值的平均值。
計算一權重影像,該權重影像的每一畫素代表一權重值,各該畫素的該權重值等於一映射函數除以各該畫素的該局部平均值,該映射函數等於一底數的一指數次方,其中該底數是各該畫素的該局部平均值,該指數是一雙向收歛的具有一自變數的S型函數,該S型函數的自變數是該色階中間值減各該畫素的該局部平均值後的結果再除以該色階中間值。
較佳地,其中,該權重值以W (.)表示,其方程式 為,其中,T [.]為該映射函數,L avg (x,y )為該局部平均值,而該映射函數的方程式為T [L avg (x,y )]=,其中,sigmoid(.)為該S型函數,L med 為該色階中間值。
較佳地,其中,該局部平均值的計算方式包括 以下步驟:計算一積分影像,計算方式是對該強度影像中的每一畫素分別進行以下計算:每一畫素所在的位置以一(x,y)座標數值對表示,將x值小於等於該畫素之x值且y值小於等於該畫素之y值的所有畫素,包括該畫素本身,之強度值進行加總,而得到該畫素的一積分值;及對該積分影像的每一畫素計算該局部平均值,定義一局部範圍,該局部範圍是以欲計算的該畫素為中心,朝±x、±y方向延伸的一選定數量q的個數的畫素所在的邊長為2q+1個畫素之範圍,該局部平均值的計算方式是將該局部範圍的其中二頂點(x-q,y-q)、(x+q,y+q)的積分值之和,減去另二個頂點(x-q,y+q)、(x+q,y-q)的積分值之和,再除以該局部範圍的總畫素數量(2q+1)2
較佳地,配合一影像擷取單元執行,其中,在讀取該強度影像前還自該影像擷取單元接收一原始影像,並將該原始影像進行灰階處理後產生該強度影像供讀取。
較佳地,該方法還配合一影像輸出單元執行,其中,該原始影像的每個畫素包括一紅色畫素值、一綠色畫素值,及一藍色畫素值,該處理器在計算出每個畫素的該權重值後,還將每個畫素的該權重值分別乘上該畫素的該紅色畫素值、該綠色畫素值,及該藍色畫素值,而以相乘後的結果進行影像輸出。
較佳地,其中,該色階最小值為0,該色階中間值為128,該色階最大值為255。
本發明之功效在於:透過本發明所提出的映射函數,在快速動態壓縮格式FDRCLCP的基礎上進行改良,自動對每張不同的影像進行對應的調整,而不需人工調控,即能完成快速動態範圍壓縮。
1‧‧‧影像擷取單元
2‧‧‧影像輸出單元
3‧‧‧處理器
S1-S6‧‧‧步驟
本發明之其他的特徵及功效,將於參照圖式的較佳實施例詳細說明中清楚地呈現,其中:圖1是一系統方塊圖,說明本發明快速動態範圍壓縮方法的一較佳實施例;及圖2是一流程示意圖,說明該較佳實施例。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚地呈現。
參閱圖1及圖2,本發明快速動態範圍壓縮方法之一較佳實施例由一處理器3配合分別與該處理器3相連結的一影像擷取單元1及一影像輸出單元2執行,該方法包含以下步驟:步驟S1-自影像擷取單元1接收一原始影像。該原始影像的維度是M×N×3,其中M×N是畫素的數量,3則是由於每一畫素是以三原色表現。將每一畫素所在的位置以一(x,y)座標數值對表示,以Sin 表示該原始影像,每個畫素包括一紅色畫素值(x,y)、一綠色畫素值(x,y),及 一藍色畫素值(x,y)。
該等畫素值是落在一色階最小值Lmin 與一色階最大值Lmax 之間的整數,在一般使用256色階的規格中,色階最小值Lmin 為0,色階最大值Lmax 為255,本實施例是使用256色階的三原色,因此每個畫素所包括的三原色的三個畫素值所容許的最小值即是0,所容許的最大值即是255。
此外,並定義一色階中間值Lmed ,該色階中間值Lmed 實質等於所有可容許的色階值的中位數。在本實施例所有可容許的0至255的色階值中,是定義該色階中間值等於128,但不以此為限,只要大於該色階中間值的所有可容許的色階值的數量大約等於小於該色階中間值的所有可容許的色階值的數量即可。
步驟S2-將該原始影像進行灰階處理後產生一強度影像。該強度影像包括多個畫素,該強度影像的各畫素的值為一強度值,數值越高表示該畫素代表的光線強度越高。其中該灰階處理是依照下式計算:L(x,y)=0.299×(x,y)+0.587×(x,y)+0.114×(x,y),其中L代表該強度影像。該強度影像的維度是M×N。
步驟S3-計算一積分影像。計算方式是對該強度影像中的每一畫素分別進行以下計算:將x值小於等於該畫素之x值且y值小於等於該畫素之y值的所有畫素,包括該畫素本身,之強度值進行加總,而得到該畫素的一積分值。以方程式表示即為:,其中G 代表該積分影像。
步驟S4-對該積分影像的每一畫素計算一局部平均值。定義一局部範圍,該局部範圍是以欲計算的該畫素為中心,朝±x、±y方向延伸的一選定數量q的個數的畫素所在的邊長為2q+1個畫素之範圍。在本實施例中q=5會有較佳的結果,如果選定的q值或範圍太大,會無法代表局部的特性,如果選定的q值或範圍太小,則可能會使結果太容易受到少數雜訊的影響,喪失局部平均的意義。值得一提的是,經實驗,上述q=5是可以適用在各種常見影像尺寸的影像上,例如1080×1920維度的影像。
該局部平均值的計算方式是將該局部範圍的其中最接近及最遠離原點的二頂點(x-q,y-q)、(x+q,y+q)的積分值之和,減去另二個頂點(x-q,y+q)、(x+q,y-q)的積分值之和,最後再除以該局部範圍的總畫素數量(2q+1)2 ,如以下方程式:Lavg (x,y)=[G(x-q,y-q)+G(x+q,y+q)-G(x-q,y+q)-G(x+q,y-q)]/(2q+1)2 。補充說明的是,步驟S3及S4可快速利用範圍之頂點計算出局部平均的原理可參考美國專利US20110063517A1(公開於2011年3月17日)。
步驟S5-計算一權重影像。該權重影像的任一畫素代表一權重值W (x,y ),該權重值W (x,y )等於本發明所提出的一映射函數T [L avg (x,y )]除以該局部平均值L avg (x,y ):
其中,該映射函數T [ Lavg (x,y )]是一伽瑪函數 (gamma function),即是等於一底數的一指數次方,其中該底數是該畫素的該局部平均值,該指數是一雙向收歛的具有一自變數t的S型函數(sigmoid function),舉例而言,可以是sigmoid(t)=tanh(t)或sigmoid(t)=1/(1+e-t ),使用S型函數可避免轉換過程中使數值變得太大或太小,而所述自變數t是該色階中間值Lmed 減該畫素的該局部平均值Lavg (x,y)後的結果再除以該色階中間值Lmed ,如以下方程式:
步驟S6-進行線性色彩還原映射的計算(Linear color remapping)。在計算出任一畫素的權重後,再將該權重分別乘上該畫素的紅色畫素值(x,y)、綠色畫素值(x,y),及藍色畫素值(x,y),得到三個欲輸出的畫素值,最後傳送至該影像輸出單元2進行輸出,輸出的值如下方程式所示:
其中(x,y)、(x,y)、(x,y)即為調整後影像的三原色的三個畫素值。至此,即完成動態範圍的壓縮。該處理器3將相乘後的結果傳送到該影像輸出單元2進行影像輸出
需要說明的是,由於該映射函數使用了該局部平均值,而能對每張不同的影像進行對應的調整,相較於 一般以固定指數的伽瑪函數進行映射,會有更佳的效果,此外,所使用的該映射函數並不需要再以人工針對不同的影像進行調整,是在先前技術中所提到之快速動態壓縮格式FDRCLCP的基礎上進行改良,使用FDRCLCP的基本方程式,但取代其映射函數。
綜上所述,透過本發明所提出的映射函數,在快速動態壓縮格式FDRCLCP的基礎上進行改良,自動對每張不同的影像進行對應的調整,而不需人工調控,即能完成快速動態範圍壓縮,故確實能達成本發明之目的。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
S1-S6‧‧‧步驟

Claims (6)

  1. 一種快速動態範圍壓縮方法,由一處理器執行,該方法包含以下步驟:讀取一強度影像,該強度影像包括多個畫素,各畫素的值為一代表光線強度的強度值,且該強度值是在一色階最小值與一色階最大值之間的所有可容許的色階值當中的一個,並定義一色階中間值,該色階中間值實質等於所有可容許的色階值的中位數;對每一畫素計算一局部平均值,代表該畫素周圍局部的畫素的強度值的平均值;及計算一權重影像,該權重影像的每一畫素代表一權重值,各該畫素的該權重值等於一映射函數除以各該畫素的該局部平均值,該映射函數等於一底數的一指數次方,其中該底數是各該畫素的該局部平均值,該指數是一雙向收歛的具有一自變數的S型函數,該S型函數的自變數是該色階中間值減各該畫素的該局部平均值後的結果再除以該色階中間值。
  2. 如請求項1所述快速動態範圍壓縮方法,其中,該權重 值以W (.)表示,其方程式為,其中,T [.]為該映射函數,L avg (x,y )為該局部平均值,而該映射函數的方程式為,其中,sigmoid(.)為該S型函數,L med 為該色階中間值。
  3. 如請求項1所述快速動態範圍壓縮方法,其中,該局部平均值的計算方式包括以下步驟: 計算一積分影像,計算方式是對該強度影像中的每一畫素分別進行以下計算:每一畫素所在的位置以一(x,y)座標數值對表示,將x值小於等於該畫素之x值且y值小於等於該畫素之y值的所有畫素,包括該畫素本身,之強度值進行加總,而得到該畫素的一積分值;及對該積分影像的每一畫素計算該局部平均值,定義一局部範圍,該局部範圍是以欲計算的該畫素為中心,朝±x、±y方向延伸的一選定數量q的個數的畫素所在的邊長為2q+1個畫素之範圍,該局部平均值的計算方式是將該局部範圍的其中二頂點(x-q,y-q)、(x+q,y+q)的積分值之和,減去另二個頂點(x-q,y+q)、(x+q,y-q)的積分值之和,再除以該局部範圍的總畫素數量(2q+1)2
  4. 如請求項1或2或3所述快速動態範圍壓縮方法,配合一影像擷取單元執行,其中,在讀取該強度影像前還自該影像擷取單元接收一原始影像,並將該原始影像進行灰階處理後產生該強度影像供讀取。
  5. 如請求項4所述快速動態範圍壓縮方法,還配合一影像輸出單元執行,其中,該原始影像的每個畫素包括一紅色畫素值、一綠色畫素值,及一藍色畫素值,該處理器在計算出每個畫素的該權重值後,還將每個畫素的該權重值分別乘上該畫素的該紅色畫素值、該綠色畫素值,及該藍色畫素值,而以相乘後的結果傳送到該影像輸出單元進行影像輸出。
  6. 如請求項1或2或3所述快速動態範圍壓縮方法,其中 ,該色階最小值為0,該色階中間值為128,該色階最大值為255。
TW102127939A 2013-08-05 2013-08-05 Fast dynamic range compression method TWI508535B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102127939A TWI508535B (zh) 2013-08-05 2013-08-05 Fast dynamic range compression method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102127939A TWI508535B (zh) 2013-08-05 2013-08-05 Fast dynamic range compression method

Publications (2)

Publication Number Publication Date
TW201507446A TW201507446A (zh) 2015-02-16
TWI508535B true TWI508535B (zh) 2015-11-11

Family

ID=53019573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102127939A TWI508535B (zh) 2013-08-05 2013-08-05 Fast dynamic range compression method

Country Status (1)

Country Link
TW (1) TWI508535B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639893B2 (en) * 2006-05-17 2009-12-29 Xerox Corporation Histogram adjustment for high dynamic range image mapping
US8447132B1 (en) * 2009-12-09 2013-05-21 CSR Technology, Inc. Dynamic range correction based on image content

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7639893B2 (en) * 2006-05-17 2009-12-29 Xerox Corporation Histogram adjustment for high dynamic range image mapping
US8447132B1 (en) * 2009-12-09 2013-05-21 CSR Technology, Inc. Dynamic range correction based on image content

Also Published As

Publication number Publication date
TW201507446A (zh) 2015-02-16

Similar Documents

Publication Publication Date Title
CN105046663B (zh) 一种模拟人类视觉感知的自适应低照度图像增强方法
US8965120B2 (en) Image processing apparatus and method of controlling the same
US10892166B2 (en) System and method for light field correction of colored surfaces in an image
JP5457652B2 (ja) 画像処理装置およびその方法
JP2007310887A (ja) 画像データの自動マッピング方法及び画像処理デバイス
US20210368088A1 (en) Systems and methods of image enhancement
JP2004165840A (ja) 画像処理プログラム
CN109427041B (zh) 一种图像白平衡方法及系统、存储介质及终端设备
CN103702116B (zh) 一种图像的宽动态压缩方法和装置
TW201541408A (zh) 美化影像中人體膚色的方法、美化影像中人體膚色的裝置、調整影像中人體膚色亮度的方法及調整影像中人體膚色亮度的裝置
JP2013254390A (ja) 画像処理装置及び画像処理方法
JP5410378B2 (ja) 映像信号補正装置および映像信号補正プログラム
JP2008011286A (ja) 画像処理プログラムおよび画像処理装置
US8164650B2 (en) Image processing apparatus and method thereof
KR101828180B1 (ko) 디지털 영상의 톤 맵핑 방법 및 장치
KR101642034B1 (ko) 입력 영상의 동적 범위를 변환하는 방법 및 장치
TWI508535B (zh) Fast dynamic range compression method
US9858654B2 (en) Image manipulation
JP2013179485A (ja) 画像処理装置及びその制御方法
Kalyan et al. A New Concatenated Method for Deep Curve Estimation Using Low Weight CNN for Low Light Image Enhancement
EP3054416B1 (en) Method, system and device for generating more natural images
Liu et al. An adaptive tone mapping algorithm based on gaussian filter
CN107292829A (zh) 图像处理方法及装置
JP2005039458A (ja) 画像処理装置および方法
Cyriac et al. Perceptual dynamic range for in-camera image processing.

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees