TWI508239B - Chip package and manufacturing method thereof - Google Patents

Chip package and manufacturing method thereof Download PDF

Info

Publication number
TWI508239B
TWI508239B TW098128009A TW98128009A TWI508239B TW I508239 B TWI508239 B TW I508239B TW 098128009 A TW098128009 A TW 098128009A TW 98128009 A TW98128009 A TW 98128009A TW I508239 B TWI508239 B TW I508239B
Authority
TW
Taiwan
Prior art keywords
insulating layer
wafer
chip package
semiconductor substrate
forming
Prior art date
Application number
TW098128009A
Other languages
Chinese (zh)
Other versions
TW201108361A (en
Inventor
Ying Nan Wen
Baw Ching Perng
Wei Ming Chen
Shu Ming Chang
Original Assignee
Xintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xintec Inc filed Critical Xintec Inc
Priority to TW098128009A priority Critical patent/TWI508239B/en
Publication of TW201108361A publication Critical patent/TW201108361A/en
Application granted granted Critical
Publication of TWI508239B publication Critical patent/TWI508239B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

晶片封裝體及其形成方法Chip package and method of forming same

本發明係有關於晶片封裝體,且特別是有關於具有多種晶片之晶片封裝體。This invention relates to wafer packages, and more particularly to chip packages having a plurality of wafers.

隨著電子產品朝向輕、薄、短、小發展的趨勢,半導體晶片的封裝結構也朝向多晶片封裝(multi-chip package,MCP)結構發展,以達到多功能和高性能要求。多晶片封裝結構係將不同類型的半導體晶片,例如邏輯晶片、類比晶片、控制晶片或記憶體晶片,整合在單一封裝基底之上。As electronic products are moving toward light, thin, short, and small trends, the packaging structure of semiconductor wafers is also moving toward multi-chip package (MCP) structures to meet versatility and high performance requirements. Multi-chip package structures integrate different types of semiconductor wafers, such as logic wafers, analog wafers, control wafers or memory chips, onto a single package substrate.

然而,隨著需整合的晶片數量上升,將多晶片二維地整合在封裝基底(如矽基底)上會造成封裝體體積無法有效縮小,且亦會佔去過多面積而造成製作成本增加。此外,習知封裝方式還有訊號傳遞速度不佳的問題。However, as the number of wafers to be integrated increases, the two-dimensional integration of the multi-wafer on the package substrate (such as a germanium substrate) causes the package volume to be effectively reduced, and also takes up too much area, resulting in an increase in manufacturing cost. In addition, the conventional packaging method also has a problem of poor signal transmission speed.

此外,由於需於有限面積中整合多個晶片,晶片設置位置之精準度,以及晶片封裝體的材質可靠度亦亟需獲得改善。In addition, due to the need to integrate multiple wafers in a limited area, the accuracy of the placement of the wafer and the material reliability of the chip package are also in need of improvement.

本發明一實施例提供一種晶片封裝體,包括半導體基底,具有上表面及相反之下表面;穿孔,貫穿半導體基底之上表面及下表面;第一晶片,設置於半導體基底之上表面上;導電層,位於穿孔之側壁上,且電性連接至第一晶片;第一絕緣層,位於半導體基底之上表面上;第二絕緣層,位於半導體基底之下表面上,其中第二絕緣層之材質不同於第一絕緣層;以及接合結構,設置於半導體基底之下表面上。An embodiment of the present invention provides a chip package including a semiconductor substrate having an upper surface and an opposite lower surface; a through hole penetrating the upper surface and the lower surface of the semiconductor substrate; and a first wafer disposed on the upper surface of the semiconductor substrate; conductive a layer on the sidewall of the via and electrically connected to the first wafer; a first insulating layer on the upper surface of the semiconductor substrate; and a second insulating layer on the lower surface of the semiconductor substrate, wherein the material of the second insulating layer Different from the first insulating layer; and the bonding structure is disposed on a lower surface of the semiconductor substrate.

本發明一實施例提供一種晶片封裝體的形成方法,包括提供半導體基底,具有上表面及相反之下表面;於半導體基底中形成穿孔,穿孔貫穿半導體基底之上表面及下表面;於穿孔之側壁上形成導電層;於半導體基底之上表面上設置第一晶片,第一晶片與導電層電性連接;於半導體基底之上表面上形成第一絕緣層;於半導體基底之下表面上形成第二絕緣層,其中第二絕緣層之材質不同於第一絕緣層;以及於半導體基底之下表面上設置接合結構。An embodiment of the present invention provides a method of forming a chip package, comprising: providing a semiconductor substrate having an upper surface and an opposite lower surface; forming a through hole in the semiconductor substrate, the through hole penetrating the upper surface and the lower surface of the semiconductor substrate; and the sidewall of the through hole Forming a conductive layer thereon; disposing a first wafer on the upper surface of the semiconductor substrate, the first wafer is electrically connected to the conductive layer; forming a first insulating layer on the upper surface of the semiconductor substrate; forming a second surface on the lower surface of the semiconductor substrate An insulating layer, wherein a material of the second insulating layer is different from the first insulating layer; and a bonding structure is disposed on a lower surface of the semiconductor substrate.

以下將詳細說明本發明實施例之製作與使用方式。然應注意的是,本發明提供許多可供應用的發明概念,其可以多種特定型式實施。文中所舉例討論之特定實施例僅為製造與使用本發明之特定方式,非用以限制本發明之範圍。此外,在不同實施例中可能使用重複的標號或標示。這些重複僅為了簡單清楚地敘述本發明,不代表所討論之不同實施例及/或結構之間具有任何關連性。再者,當述及一第一材料層位於一第二材料層上或之上時,包括第一材料層與第二材料層直接接觸或間隔有一或更多其他材料層之情形。The manner of making and using the embodiments of the present invention will be described in detail below. It should be noted, however, that the present invention provides many inventive concepts that can be applied in various specific forms. The specific embodiments discussed herein are merely illustrative of specific ways of making and using the invention, and are not intended to limit the scope of the invention. Moreover, repeated numbers or labels may be used in different embodiments. These repetitions are merely for the purpose of simplicity and clarity of the invention and are not to be construed as a limitation of the various embodiments and/or structures discussed. Furthermore, when a first material layer is referred to or on a second material layer, the first material layer is in direct contact with or separated from the second material layer by one or more other material layers.

第1A-1K圖顯示本發明一實施例之晶片封裝體的一系列製程剖面圖。如第1A圖所示,提供半導體基底100,其具有上表面100a及相反之下表面100b。半導體基底100可包括矽基底、矽晶圓、或其他半導體材質之基底。或者,半導體基底亦可為半導體晶片,例如包括邏輯運算晶片、微機電系統晶片、微流體系統晶片、或利用熱、光線及壓力等物理變化量來測量的物理感測器晶片、射頻元件晶片、加速計晶片、陀螺儀晶片、微制動器晶片、表面聲波元件晶片、壓力感測器晶片、噴墨頭晶片、發光元件晶片、或太陽能電池晶片等。1A-1K is a cross-sectional view showing a series of processes of a chip package in accordance with an embodiment of the present invention. As shown in FIG. 1A, a semiconductor substrate 100 is provided having an upper surface 100a and an opposite lower surface 100b. The semiconductor substrate 100 can include a germanium substrate, a germanium wafer, or a substrate of other semiconductor materials. Alternatively, the semiconductor substrate can also be a semiconductor wafer, such as a logic processing chip, a microelectromechanical system wafer, a microfluidic system wafer, or a physical sensor wafer, a radio frequency component wafer, measured by physical variations such as heat, light, and pressure. Accelerometer chips, gyroscope wafers, micro-brake wafers, surface acoustic wave element wafers, pressure sensor wafers, inkjet head wafers, light-emitting element wafers, or solar cell wafers, and the like.

接著,於半導體基底中形成貫穿上表面及下表面之穿孔。在一實施例中,可例如以微影蝕刻之方式直接形成貫穿上表面及下表面之穿孔。或者,亦可如第1A圖與第1B圖所示,先自半導體基底100之上表面100a形成朝下表面100b延伸之孔洞102a。接著,自半導體基底100之下表面100b薄化半導體基底100而使孔洞102a自下表面100b露出,而形成穿孔102。即採先蝕刻再薄化的兩段式製程形成貫穿半導體基底100之上表面100a及下表面100b之穿孔102。雖然,顯示於第1B圖之穿孔102的側壁大抵與上表面100a及下表面100b垂直,然在其他實施例中,可視需求,透過製程條件之調整(例如,蝕刻劑及/或蝕刻方式的選擇)而使穿孔102之側壁傾斜於上表面100a及/或下表面100b。Next, a through hole penetrating the upper surface and the lower surface is formed in the semiconductor substrate. In one embodiment, the perforations through the upper surface and the lower surface may be formed directly, for example by lithographic etching. Alternatively, as shown in FIGS. 1A and 1B, the hole 102a extending toward the lower surface 100b may be formed from the upper surface 100a of the semiconductor substrate 100. Next, the semiconductor substrate 100 is thinned from the lower surface 100b of the semiconductor substrate 100 to expose the holes 102a from the lower surface 100b, thereby forming the through holes 102. That is, the two-stage process of etching and thinning is performed to form the through holes 102 penetrating the upper surface 100a and the lower surface 100b of the semiconductor substrate 100. Although the sidewalls of the perforations 102 shown in FIG. 1B are substantially perpendicular to the upper surface 100a and the lower surface 100b, in other embodiments, adjustments to process conditions (eg, etchant and/or etching methods) may be selected as desired. The side walls of the perforations 102 are inclined to the upper surface 100a and/or the lower surface 100b.

請接著參照第1C圖,由於在後續製程中,將於穿孔102之側壁上形成導電層,為避免後續形成之導電層與半導體基底100之間發生短路或彼此污染,可先行於穿孔102之側壁上形成介電層104。然應注意的是,介電層104之形成並非必須,僅為選擇性製程。介電層104之形成方式例如採用化學氣相沉積法、熱氧化法或塗布絕緣薄膜等。在第1C圖所示實施例中,係採用熱氧化法於半導體基底100所露出之表面形成介電層104,其材質可例如為氧化矽或其他半導體氧化物。在其他實施例中,介電層104之材質可例如包括氧化物、氮化物、氮氧化物、高分子材料、或前述之組合。Referring to FIG. 1C, since a conductive layer is formed on the sidewall of the via 102 in the subsequent process, in order to avoid short-circuit or contamination between the subsequently formed conductive layer and the semiconductor substrate 100, the sidewall of the via 102 may be advanced. A dielectric layer 104 is formed thereon. It should be noted that the formation of the dielectric layer 104 is not required and is only a selective process. The dielectric layer 104 is formed by, for example, chemical vapor deposition, thermal oxidation, or coating of an insulating film. In the embodiment shown in FIG. 1C, a dielectric layer 104 is formed on the exposed surface of the semiconductor substrate 100 by thermal oxidation, and the material thereof may be, for example, yttrium oxide or other semiconductor oxide. In other embodiments, the material of the dielectric layer 104 may include, for example, an oxide, a nitride, an oxynitride, a polymer material, or a combination thereof.

接著,於穿孔102之側壁上形成導電層106。如第1D圖所示,在此實施例中,導電層106除了形成於穿孔102之側壁上,還進一步延伸至半導體基底100之上表面100a及下表面100b上。導電層106之形成方式可包括物理氣相沉積、化學氣相沉積、電鍍、或無電鍍等。導電層106之材質可為金屬材質,例如銅、鋁、金、或前述之組合。導電層106之材質還可包括導電氧化物,例如氧化銦錫(ITO)、氧化銦鋅(IZO)、或前述之組合。在一實施例中,係於整個半導體基底100上順應性形成一導電層,接著將導電層圖案化為例如第1D圖所示之分佈。Next, a conductive layer 106 is formed on the sidewalls of the vias 102. As shown in FIG. 1D, in this embodiment, the conductive layer 106 is formed on the sidewalls of the vias 102 and further extends onto the upper surface 100a and the lower surface 100b of the semiconductor substrate 100. The manner in which the conductive layer 106 is formed may include physical vapor deposition, chemical vapor deposition, electroplating, or electroless plating, and the like. The material of the conductive layer 106 may be a metal material such as copper, aluminum, gold, or a combination thereof. The material of the conductive layer 106 may further include a conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), or a combination thereof. In one embodiment, a conductive layer is formed conformally over the entire semiconductor substrate 100, and then the conductive layer is patterned into, for example, the distribution shown in FIG.

接著,在半導體基底100將設置晶片之表面上(例如,上表面100a上)形成自對準阻擋牆107。自對準阻擋牆107將有助於後續所設置於半導體基底100上之晶片得以自動而準確地設置於設定的位置上。如第1D圖所示,在此實施例中,自對準阻擋牆107較佳由形成導電層106之同一導電層圖案化而得。因此,在此實施例中,自對準阻擋牆107係與導電層106同時形成,且與導電層106之材質皆包括導電材料。在其他實施例中,自對準阻擋牆107可獨立形成,而不與導電層106於同一道製程中完成,在此情形下,自對準阻擋牆107之材質可不同於導電層106。自對準阻擋牆107之材質可包括金屬材料、陶瓷材料、高分子材料、半導體材料、或前述之組合。Next, a self-aligned barrier wall 107 is formed on the surface of the semiconductor substrate 100 where the wafer is to be placed (for example, on the upper surface 100a). The self-aligned barrier wall 107 will facilitate the automatic and accurate placement of the wafers subsequently disposed on the semiconductor substrate 100 at a set location. As shown in FIG. 1D, in this embodiment, the self-aligned barrier wall 107 is preferably patterned from the same conductive layer forming the conductive layer 106. Therefore, in this embodiment, the self-aligned barrier wall 107 is formed simultaneously with the conductive layer 106, and the material of the conductive layer 106 includes a conductive material. In other embodiments, the self-aligned barrier wall 107 can be formed independently of the conductive layer 106 in the same process, in which case the material of the self-aligned barrier wall 107 can be different from the conductive layer 106. The material of the self-aligned barrier wall 107 may include a metal material, a ceramic material, a polymer material, a semiconductor material, or a combination thereof.

接著,於半導體基底100之上表面100a上設置晶片108。如第1E圖所示,透過晶片108與半導體基底100之間的黏著層110,晶片108可固定在半導體基底100之上表面100a上。晶片108可例如包括邏輯運算晶片、微機電系統晶片、微流體系統晶片、或利用熱、光線及壓力等物理變化量來測量的物理感測器晶片、射頻元件晶片、加速計晶片、陀螺儀晶片、微制動器晶片、表面聲波元件晶片、壓力感測器晶片、噴墨頭晶片、發光元件晶片、或太陽能電池晶片等。晶片108可包括至少一接墊108a,用以與其他線路或元件電性連接。Next, a wafer 108 is placed on the upper surface 100a of the semiconductor substrate 100. As shown in FIG. 1E, the wafer 108 can be attached to the upper surface 100a of the semiconductor substrate 100 through the adhesive layer 110 between the wafer 108 and the semiconductor substrate 100. Wafer 108 may, for example, comprise a logic operational wafer, a microelectromechanical system wafer, a microfluidic system wafer, or a physical sensor wafer, radio frequency component wafer, accelerometer wafer, gyroscope wafer measured using physical variations such as heat, light, and pressure. , micro-brake wafer, surface acoustic wave element wafer, pressure sensor wafer, inkjet head wafer, light-emitting element wafer, or solar cell wafer, and the like. The wafer 108 can include at least one pad 108a for electrically connecting to other lines or components.

由於晶片封裝體的製程期間可能經歷較高溫度而易使黏著層110具流動性,可能會使晶片108移動而偏離原本的預設位置,嚴重時將造成晶片封裝失敗。在第1E圖所示之實施例中,由於已預先形成自對準阻擋牆107,此時自對準阻擋牆107可將晶片108之移動侷限於自對準阻擋牆107所限定之範圍之內,因而使晶片之封裝製程得以順利進行。Since the adhesive layer 110 may be fluid due to the possibility of experiencing higher temperatures during the process of the chip package, the wafer 108 may be moved away from the original preset position, which may cause wafer package failure. In the embodiment shown in FIG. 1E, since the self-aligned barrier wall 107 has been formed in advance, the self-aligned barrier wall 107 can limit the movement of the wafer 108 to the extent defined by the self-aligned barrier wall 107. Therefore, the packaging process of the wafer can be smoothly carried out.

自對準阻擋牆107與晶片108之間的相對位置及配置型式可有各種變化,舉凡可使晶片108不因黏著層110於較高溫時之流動性而過度偏移其預設位置的自對準阻擋牆107設置方式,都在本發明實施例所涵蓋的範圍之內。舉例而言,第2A-2C圖顯示本發明實施例中,自對準阻擋牆107與晶片108之配置方式的上視示意圖。The relative position and configuration between the self-aligning barrier wall 107 and the wafer 108 can be varied, such that the wafer 108 can be over-biased by its preset position due to the fluidity of the adhesive layer 110 at higher temperatures. The manner in which the quasi-blocking wall 107 is disposed is within the scope of the embodiments of the present invention. For example, FIG. 2A-2C shows a top view of the arrangement of the self-aligned barrier wall 107 and the wafer 108 in the embodiment of the present invention.

如第2A圖所示,自對準阻擋牆107係鄰近於或可輕微接觸晶片108。在一實施例中,自對準阻擋牆107為一連續結構,例如一環狀結構,其包圍晶片108而防止其過度偏離其預設位置。如第2B圖所示,在另一實施例中,自對準擋牆107為一非連續結構,至少包括第一部分107a及不與第一部分107a連接之第二部分107b。在此實施例中,第一部分107a與第二部分107b相對設置於晶片108之兩側,可防止晶片108過度偏離其預設位置。此外,在另一實施例中,自對準擋牆107可包括第三部分107c和第四部分107d,其可設置於晶片108的角落,並例如藉由L型的結構抵住晶片以避免晶片過度位移。如第2C圖所示,在又一實施例中,自對準擋牆107為一非連續結構,且包括多個部分,在此實施例中,分別是第一、二、三、及四部分107a、107b、107c、及107d,且這些部分之形狀可彼此不同,例如可有正方形、長方形、或弧形等等。As shown in FIG. 2A, the self-aligned barrier wall 107 is adjacent to or may be in slight contact with the wafer 108. In one embodiment, the self-aligned barrier wall 107 is a continuous structure, such as an annular structure that surrounds the wafer 108 to prevent it from excessively deviating from its predetermined position. As shown in FIG. 2B, in another embodiment, the self-aligning retaining wall 107 is a discontinuous structure including at least a first portion 107a and a second portion 107b that is not coupled to the first portion 107a. In this embodiment, the first portion 107a and the second portion 107b are disposed opposite to each other on the wafer 108 to prevent the wafer 108 from being excessively offset from its predetermined position. Moreover, in another embodiment, the self-aligned retaining wall 107 can include a third portion 107c and a fourth portion 107d that can be disposed at a corner of the wafer 108 and that resists the wafer, for example, by an L-shaped structure against the wafer. Excessive displacement. As shown in FIG. 2C, in still another embodiment, the self-aligning retaining wall 107 is a discontinuous structure and includes a plurality of portions, in this embodiment, the first, second, third, and fourth portions, respectively. 107a, 107b, 107c, and 107d, and the shapes of the portions may be different from each other, for example, may have a square, a rectangle, or an arc or the like.

接著,請參照第1F圖,於半導體基底100之上表面100a上形成第一絕緣層110a,以及於下表面100b上形成第二絕緣層110b,其中第一絕緣層110a之材質不同於第二絕緣層110b。在後續製程中,將於第二絕緣層110b上形成露出導電層106之開口,並於開口中形成接合結構(例如,形成銲球),且申請人於研究中發現,由於第二絕緣層110b與第一絕緣層110a相比,常需與外界環境接觸。因此,第二絕緣層110b之耐環境性較佳選擇優於第一絕緣層110a。例如,可採用第二絕緣層110b之抗酸性高於第一絕緣層110a,或者採用第二絕緣層110b之防水性高於第一絕緣層110a。舉例而言,第一絕緣層110a之材質可包括液態絕緣薄膜材料(liquid type material),例如液態之環氧樹脂、聚醯亞胺樹脂(polyimide)、苯環丁烯(BCB)等、或前述之組合,而第二絕緣層110b之材質則可選擇阻銲材料(solder mask)、氧化矽層或氮化矽層、或前述之組合。Next, referring to FIG. 1F, a first insulating layer 110a is formed on the upper surface 100a of the semiconductor substrate 100, and a second insulating layer 110b is formed on the lower surface 100b, wherein the material of the first insulating layer 110a is different from the second insulating layer. Layer 110b. In a subsequent process, an opening exposing the conductive layer 106 is formed on the second insulating layer 110b, and a bonding structure (for example, forming a solder ball) is formed in the opening, and the applicant has found in the research that the second insulating layer 110b Compared with the first insulating layer 110a, it is often required to be in contact with the external environment. Therefore, the environmental resistance of the second insulating layer 110b is preferably selected to be superior to the first insulating layer 110a. For example, the second insulating layer 110b may be made higher in acid resistance than the first insulating layer 110a, or the second insulating layer 110b may be more waterproof than the first insulating layer 110a. For example, the material of the first insulating layer 110a may include a liquid type material such as a liquid epoxy resin, a polyimide, a benzocyclobutene (BCB), or the like, or the foregoing. The combination of the second insulating layer 110b may be selected from a solder mask, a tantalum oxide layer or a tantalum nitride layer, or a combination thereof.

此外,在另一實施例中,由於後續製程需於第一絕緣層110a形成多個尺寸較小之開口,而第二絕緣層之開口尺寸較大,因此可選擇曝光解析度較佳之感光絕緣材料作為第一絕緣層110a,並選擇一般曝光解析度之感光絕緣材料作為第二絕緣層即可,上述製程由於不需另外形成光阻圖案,因此可以降低成本。舉例而言,第一絕緣層110a之材質可包括解析度較佳之感光絕緣材料,例如液態之環氧樹脂、聚醯亞胺樹脂(polyimid)、苯環丁烯(BCB)等、或前述之組合,而第二絕緣層110b之材質則選擇一般解析度之感光絕緣材料即可,如阻銲材料(solder mask)。In addition, in another embodiment, since a plurality of small-sized openings are formed in the first insulating layer 110a and the opening size of the second insulating layer is large, a photosensitive insulating material having a better exposure resolution may be selected. As the first insulating layer 110a, a photosensitive insulating material having a general exposure resolution can be selected as the second insulating layer, and the above process can reduce the cost since it is not necessary to separately form a photoresist pattern. For example, the material of the first insulating layer 110a may include a photosensitive insulating material with better resolution, such as a liquid epoxy resin, a polyimid, a benzocyclobutene (BCB), or the like, or a combination thereof. The material of the second insulating layer 110b may be selected from a general resolution photosensitive insulating material, such as a solder mask.

在第1F圖所示實施例中,第一絕緣層110a及第二絕緣層110b進一步延伸至穿孔102之側壁上的導電層106之上。在一實施例中,第一絕緣層110a及第二絕緣層110b將穿孔102填滿。在一實施例中,第一絕緣層110a延伸進入穿孔102之深度大於第二絕緣層110b的延伸深度。在此情形中,第一絕緣層110a所選用之材質的填洞能力可優於第二絕緣層110b之填洞能力。舉例而言,在一實施例中,第一絕緣層110a之材質包括選擇填洞能力較佳之乾膜絕緣材料(dry film),例如乾膜型之環氧樹脂、矽膠(silicone)或前述之組合,而第二絕緣層110b之材質可選擇一般填洞能力之絕緣材料,例如阻銲材料(solder mask)、氧化矽層或氮化矽層、或前述之組合。In the embodiment shown in FIG. 1F, the first insulating layer 110a and the second insulating layer 110b further extend over the conductive layer 106 on the sidewall of the via 102. In an embodiment, the first insulating layer 110a and the second insulating layer 110b fill the through holes 102. In an embodiment, the depth of the first insulating layer 110a extending into the through hole 102 is greater than the extending depth of the second insulating layer 110b. In this case, the hole filling ability of the material selected for the first insulating layer 110a may be superior to the hole filling ability of the second insulating layer 110b. For example, in an embodiment, the material of the first insulating layer 110a includes a dry film having a better hole filling ability, such as a dry film type epoxy resin, a silicone or a combination thereof. The material of the second insulating layer 110b may be selected from an insulating material generally filled with a hole, such as a solder mask, a tantalum oxide layer or a tantalum nitride layer, or a combination thereof.

第一絕緣層110a與第二絕緣層110b之形成方式例如可包括旋轉塗佈(spin coating)、噴塗(spray coating)、或淋幕塗佈(curtain coating),或其他適合之沈積方式,例如,液相沈積、物理氣相沈積、化學氣相沈積、低壓化學氣相沈積、電漿增強式化學氣相沈積、快速熱化學氣相沈積、或常壓化學氣相沈積等製程。The manner in which the first insulating layer 110a and the second insulating layer 110b are formed may include, for example, spin coating, spray coating, or curtain coating, or other suitable deposition methods, for example, Liquid deposition, physical vapor deposition, chemical vapor deposition, low pressure chemical vapor deposition, plasma enhanced chemical vapor deposition, rapid thermal chemical vapor deposition, or atmospheric chemical vapor deposition.

在一實施例中,第一絕緣層110a與第二絕緣層110b之形成方式較佳透過於半導體基底100之上表面110a及下表面110b上分別貼附乾膜,再將乾膜軟化使填入穿孔,最後透過熱處理使軟化之乾膜固化。上述較佳實施例的形成方式顯示於第3A-3B圖中。In one embodiment, the first insulating layer 110a and the second insulating layer 110b are formed by attaching a dry film to the upper surface 110a and the lower surface 110b of the semiconductor substrate 100, respectively, and softening the dry film to fill it. The perforation is finally cured by heat treatment to soften the dry film. The formation of the above preferred embodiment is shown in Figures 3A-3B.

如第3A圖所示,分別於半導體基底100之上表面100a及下表面100b上貼附第一絕緣膜111a及第二絕緣膜111b。在此實施例中,第一絕緣膜111a係與上表面100a上之介電層104及導電層106直接接觸,而第二絕緣膜111b係與下表面100b上之介電層104及導電層106直接接觸。As shown in FIG. 3A, the first insulating film 111a and the second insulating film 111b are attached to the upper surface 100a and the lower surface 100b of the semiconductor substrate 100, respectively. In this embodiment, the first insulating film 111a is in direct contact with the dielectric layer 104 and the conductive layer 106 on the upper surface 100a, and the second insulating film 111b is connected to the dielectric layer 104 and the conductive layer 106 on the lower surface 100b. direct contact.

接著,如第3B圖所示,加熱第一絕緣膜111a及第二絕緣膜111b,此時可將溫度提升至超過第一絕緣膜111a及第二絕緣膜111b的軟化點,而使第一絕緣膜111a及第二絕緣膜111b軟化,軟化後的第一絕緣膜111a’及軟化後的第二絕緣膜111b’因具有一定程度的流動性,因而延伸進入穿孔102,而位於穿孔102之側壁上的導電層106之上。在一實施例中,第一絕緣膜111a’之軟化點可低於第二絕緣膜111b’;或選擇第一絕緣膜111a’之流動性高於第二絕緣膜111b’。Next, as shown in FIG. 3B, the first insulating film 111a and the second insulating film 111b are heated, and at this time, the temperature can be raised to exceed the softening point of the first insulating film 111a and the second insulating film 111b, and the first insulating layer is made. The film 111a and the second insulating film 111b are softened, and the softened first insulating film 111a' and the softened second insulating film 111b' extend into the perforations 102 on the side walls of the perforations 102 because of a certain degree of fluidity. Above the conductive layer 106. In an embodiment, the softening point of the first insulating film 111a' may be lower than that of the second insulating film 111b'; or the fluidity of the first insulating film 111a' may be higher than that of the second insulating film 111b'.

在第3B圖所示之實施例中,軟化後的第一絕緣膜111a’所延伸進入穿孔102之深度因此大於軟化後的第二絕緣膜111b’之延伸深度。然在其他實施例中,可透過製程條件的控制(例如,控制加熱溫度),來調整個別軟化後絕緣膜之延伸深度。或者,可例如選用軟化點差異較大之第一絕緣膜與第二絕緣膜,並僅將溫度加熱至僅高於其中一絕緣膜之軟化點,使得穿孔102中僅大抵填入單一材質之軟化後絕緣膜,並於稍後回復為固態,接著實施硬化步驟,以形成第1F圖所示之第一絕緣層110a及第二絕緣層110b。在一實施例中,當第一絕緣層110a及第二絕緣層110b為高分子材料時,可透過熱處理使高分子材料發生交聯反應而硬化,例如可於150℃至300℃下持溫約0.5小時以上。In the embodiment shown in Fig. 3B, the depth of the softened first insulating film 111a' extending into the through hole 102 is thus greater than the depth of extension of the softened second insulating film 111b'. However, in other embodiments, the depth of extension of the individual softened insulating film can be adjusted by control of process conditions (eg, controlling the heating temperature). Alternatively, for example, the first insulating film and the second insulating film having a large difference in softening point may be selected, and only the temperature is heated to be higher than the softening point of only one of the insulating films, so that the perforation 102 is only largely filled with a softening of a single material. The rear insulating film is returned to a solid state later, and then a hardening step is performed to form the first insulating layer 110a and the second insulating layer 110b shown in FIG. In one embodiment, when the first insulating layer 110a and the second insulating layer 110b are polymer materials, the polymer material may be cross-linked by a heat treatment to be hardened, for example, at a temperature of 150 ° C to 300 ° C. More than 0.5 hours.

請接著參照第1F圖,在形成第一絕緣層110a及第二絕緣層110b之後,分別將第一絕緣層110a及第二絕緣層110b圖案化以分別於其中形成數個開口。第一絕緣層110a中,由於需形成較多且尺寸較小之開口,因此第一絕緣層110a可選擇具有較高的曝光解析度之感光絕緣材料。而第二絕緣層110b因需承受後續形成接合結構之製程,需具較佳的耐環境性。圖案化後之第一絕緣層110a之開口可露出延伸在上表面100a上之導電層106及晶片108之接墊108a。圖案化後之第二絕緣層110b之開口可露出延伸在下表面100a上之導電層106。Referring to FIG. 1F, after the first insulating layer 110a and the second insulating layer 110b are formed, the first insulating layer 110a and the second insulating layer 110b are respectively patterned to form a plurality of openings therein. In the first insulating layer 110a, since a large number of openings having a small size are required, the first insulating layer 110a may be selected from a photosensitive insulating material having a high exposure resolution. The second insulating layer 110b needs to have better environmental resistance because it needs to withstand the subsequent process of forming the bonding structure. The opening of the patterned first insulating layer 110a exposes the conductive layer 106 extending on the upper surface 100a and the pads 108a of the wafer 108. The opening of the patterned second insulating layer 110b exposes the conductive layer 106 extending on the lower surface 100a.

接著,如第1G圖所示,於第一絕緣層110a中之開口的底部及側壁上形成線路重佈層112。在此實施例中,線路重佈層112透過開口而分別與導電層106及晶片108之接墊108a直接接觸,因而電性連接晶片108及導電層106。線路重佈層112之形成方式可包括物理氣相沉積、化學氣相沉積、電鍍、或無電鍍等。線路重佈層112之材質可為金屬材質,例如銅、鋁、金、或前述之組合。線路重佈層112之材質還可包括導電氧化物,例如氧化銦錫(ITO)、氧化銦鋅(IZO)、或前述之組合。Next, as shown in FIG. 1G, a line redistribution layer 112 is formed on the bottom and side walls of the opening in the first insulating layer 110a. In this embodiment, the circuit redistribution layer 112 is in direct contact with the conductive layer 106 and the pads 108a of the wafer 108 through the openings, thereby electrically connecting the wafer 108 and the conductive layer 106. The formation of the line redistribution layer 112 may include physical vapor deposition, chemical vapor deposition, electroplating, or electroless plating. The material of the line redistribution layer 112 may be a metal material such as copper, aluminum, gold, or a combination thereof. The material of the line redistribution layer 112 may further include a conductive oxide such as indium tin oxide (ITO), indium zinc oxide (IZO), or a combination thereof.

如第1H圖所示,接著於半導體基底100上形成第三絕緣層114。第三絕緣層114可例如為防銲材料、或其他適合之絕緣物質。第三絕緣層114亦可採用類似於第3A-3B圖所示之貼附乾膜的方式形成。As shown in FIG. 1H, a third insulating layer 114 is then formed on the semiconductor substrate 100. The third insulating layer 114 can be, for example, a solder resist material, or other suitable insulating material. The third insulating layer 114 may also be formed in a manner similar to the attached dry film shown in Figs. 3A-3B.

接著,如第1I圖所示,在第三絕緣層114上設置至少一晶片116。晶片116可例如透過銲球116a、形成於第三絕緣層114中之線路重佈層(未顯示)、及線路重佈層112而電性連接至晶片108。因此,晶片116可與晶片108彼此訊號傳遞而偕同運作。Next, as shown in FIG. 1I, at least one wafer 116 is disposed on the third insulating layer 114. Wafer 116 can be electrically coupled to wafer 108 via, for example, solder balls 116a, a line redistribution layer (not shown) formed in third insulating layer 114, and a line redistribution layer 112. Therefore, the wafer 116 can be operated in conjunction with the wafer 108 to transmit signals to each other.

晶片116之功能可與晶片108不同,可包括邏輯運算晶片、微機電系統晶片、微流體系統晶片、或利用熱、光線及壓力等物理變化量來測量的物理感測器晶片、射頻元件晶片、加速計晶片、陀螺儀晶片、微制動器晶片、表面聲波元件晶片、壓力感測器晶片、噴墨頭晶片、發光元件晶片、或太陽能電池晶片等。此外,可進一步設置更多具其他功能性之晶片。透過如第1I圖所示之堆疊方式,可於有限面積中,整合各種功能性之晶片,而獲得所需之產品。除了可因晶圓面積之節省而降低成本外,透過垂直方向之電性連接,還可縮短訊號傳遞距離,進一步增加訊號傳遞的速度而提升產品性能。The function of the wafer 116 may be different from that of the wafer 108, and may include a logic operational wafer, a microelectromechanical system wafer, a microfluidic system wafer, or a physical sensor wafer, a radio frequency component wafer, measured using physical variations such as heat, light, and pressure. Accelerometer chips, gyroscope wafers, micro-brake wafers, surface acoustic wave element wafers, pressure sensor wafers, inkjet head wafers, light-emitting element wafers, or solar cell wafers, and the like. In addition, more wafers with other functions can be further provided. Through the stacking method as shown in FIG. 1I, various functional wafers can be integrated in a limited area to obtain desired products. In addition to reducing the cost of wafer area, the electrical connection in the vertical direction can shorten the signal transmission distance and further increase the speed of signal transmission to improve product performance.

如第1J圖所示,接著於晶片116下形成底膠(underfill)118,以固定並保護晶片116。接著,如第1K圖所示,於第二絕緣層110b中之開口中形成接合結構120。在此實施例中,接合結構120為一導電接合結構,例如是一銲球。接合結構120可透過第二絕緣層110b中之開口而與導電層106電性連接。因此,當接合結構120為導電接合結構時,其可透過導電層106及線路重佈層112而分別或同時與晶片108及晶片106電性連接。此外,可透過接合結構120,進一步將本發明實施例之晶片封裝體設置於其他電子元件上,例如可以覆晶之方式設置於電路板上。As shown in FIG. 1J, an underfill 118 is then formed under the wafer 116 to secure and protect the wafer 116. Next, as shown in FIG. 1K, the bonding structure 120 is formed in the opening in the second insulating layer 110b. In this embodiment, the bonding structure 120 is a conductive bonding structure, such as a solder ball. The bonding structure 120 can be electrically connected to the conductive layer 106 through an opening in the second insulating layer 110b. Therefore, when the bonding structure 120 is a conductive bonding structure, it can be electrically and electrically connected to the wafer 108 and the wafer 106 respectively through the conductive layer 106 and the line redistribution layer 112. In addition, the chip package of the embodiment of the present invention can be further disposed on other electronic components through the bonding structure 120, for example, can be flip-chip mounted on the circuit board.

此外,在其他實施例中,可透過接合結構而於半導體基底之下表面上設置蓋板。例如,第4圖所示一實施例之晶片封裝體中,係透過接合結構120a(例如,為一金屬凸塊)而將蓋板406設置於半導體基底100之下表面100b上。蓋板406上可預先形成金屬墊404,用以與接合結構120a接合。例如,當接合結構120a之材質為金屬時,可透過加熱製程而使接合結構與金屬墊404之間發生共晶接合(eutectic bonding)或擴散接合(diffusion bonding)。然當不需於蓋板406與晶片封裝體之間形成導電通路時,亦可採用其他非金屬材質來完成接合。Further, in other embodiments, a cover plate may be disposed on a lower surface of the semiconductor substrate through the bonding structure. For example, in the chip package of an embodiment shown in FIG. 4, the cap plate 406 is disposed on the lower surface 100b of the semiconductor substrate 100 through the bonding structure 120a (for example, a metal bump). A metal pad 404 may be pre-formed on the cover plate 406 for engaging the engagement structure 120a. For example, when the material of the bonding structure 120a is metal, eutectic bonding or diffusion bonding may occur between the bonding structure and the metal pad 404 through a heating process. However, when it is not necessary to form a conductive path between the cover 406 and the chip package, other non-metal materials may be used to complete the bonding.

在一實施例中,蓋板406可例如是一透明蓋板,其材質例如是玻璃、石英、蛋白石(opal)、塑膠或其它任何可供光線進出的透明基板。此時,半導體基底100可例如是(或包括)感光晶片或發光晶片,例如是影像擷取晶片、發光二極體晶片、或太陽能電池晶片等。In one embodiment, the cover 406 can be, for example, a transparent cover, such as glass, quartz, opal, plastic or any other transparent substrate that allows light to enter and exit. At this time, the semiconductor substrate 100 may be, for example, (or include) a photosensitive wafer or a light emitting wafer, such as an image capturing wafer, a light emitting diode wafer, or a solar cell wafer.

以上,配合圖式敘述本發明實施例之晶片封裝體的形成過程。然應注意的是,上述各製程的順序僅為舉例說明用,可在不脫離本發明精神的情形下,掉換部分製程的順序。或者,可視情況於各製程之間穿插其他的所需製程。The formation process of the chip package of the embodiment of the present invention is described above in conjunction with the drawings. It should be noted that the order of the above various processes is for illustrative purposes only, and the order of partial processes may be reversed without departing from the spirit of the present invention. Alternatively, other required processes may be interspersed between the various processes as appropriate.

本發明實施例之晶片封裝體,透過穿孔而形成垂直方向的導電通路,可使多種晶片於垂直方向上作整合,可節省製作成本、縮小產品尺寸、並增進產品效能。透過於半導體基底之上、下表面上形成兩種材質彼此不同的絕緣層,可兼顧製程需求與封裝體可靠度。透過自對準擋牆之設置,可使晶片設置位置獲得控制,增進封裝體的良率。The chip package of the embodiment of the invention forms a vertical conductive path through the through hole, so that a plurality of types of wafers can be integrated in the vertical direction, which can save manufacturing cost, reduce product size, and improve product performance. By forming two insulating layers different in material from above and below the semiconductor substrate, the process requirements and package reliability can be achieved. Through the setting of the self-aligning retaining wall, the position of the wafer can be controlled to improve the yield of the package.

雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

100...半導體基底100. . . Semiconductor substrate

100a、100b...表面100a, 100b. . . surface

102...穿孔102. . . perforation

102a...孔洞102a. . . Hole

104...介電層104. . . Dielectric layer

106...導電層106. . . Conductive layer

107...自對準阻擋牆107. . . Self-aligning barrier wall

107a、107b、107c、107d...部分107a, 107b, 107c, 107d. . . section

108、116...晶片108, 116. . . Wafer

108a...接墊108a. . . Pad

110a、110b、114...絕緣層110a, 110b, 114. . . Insulation

111a、111a’、111b、111b’...絕緣膜111a, 111a', 111b, 111b'. . . Insulating film

112...線路重佈層112. . . Line redistribution

116a...銲球116a. . . Solder ball

118...底膠118. . . Primer

120、120a...接合結構120, 120a. . . Joint structure

404...金屬墊404. . . Metal pad

406...蓋板406. . . Cover

第1A-1K圖顯示本發明一實施例之晶片封裝體的一系列製程剖面圖。1A-1K is a cross-sectional view showing a series of processes of a chip package in accordance with an embodiment of the present invention.

第2A-2C圖顯示本發明實施例中,自對準阻擋牆與晶片之配置方式的上視示意圖。2A-2C is a top plan view showing the arrangement of the self-aligned barrier wall and the wafer in the embodiment of the present invention.

第3A-3B圖顯示本發明一實施例中之晶片封裝體中,形成絕緣層之製程剖面圖。3A-3B is a cross-sectional view showing a process for forming an insulating layer in a chip package in an embodiment of the present invention.

第4圖顯示本發明一實施例之晶片封裝體的剖面圖。Fig. 4 is a cross-sectional view showing a chip package according to an embodiment of the present invention.

100...半導體基底100. . . Semiconductor substrate

100a、100b...表面100a, 100b. . . surface

104...介電層104. . . Dielectric layer

106...導電層106. . . Conductive layer

107...自對準阻擋牆107. . . Self-aligning barrier wall

108、116...晶片108, 116. . . Wafer

108a...接墊108a. . . Pad

110a、110b、114...絕緣層110a, 110b, 114. . . Insulation

112...線路重佈層112. . . Line redistribution

118...底膠118. . . Primer

120...接合結構120. . . Joint structure

Claims (34)

一種晶片封裝體,包括:一半導體基底,具有一上表面及相反之一下表面;一穿孔,貫穿該半導體基底之該上表面及該下表面;一第一晶片,設置於該半導體基底之該上表面上;一導電層,位於該穿孔之側壁上,且電性連接至該第一晶片;一第一絕緣層,位於該半導體基底之該上表面上;一第二絕緣層,位於該半導體基底之該下表面上,其中該第二絕緣層之材質及耐環境性不同於該第一絕緣層;以及一接合結構,設置於該半導體基底之該下表面上。 A chip package comprising: a semiconductor substrate having an upper surface and an opposite lower surface; a through hole penetrating the upper surface and the lower surface of the semiconductor substrate; a first wafer disposed on the semiconductor substrate a conductive layer on the sidewall of the via and electrically connected to the first wafer; a first insulating layer on the upper surface of the semiconductor substrate; and a second insulating layer on the semiconductor substrate The lower surface of the second insulating layer is different from the first insulating layer; and a bonding structure is disposed on the lower surface of the semiconductor substrate. 如申請專利範圍第1項所述之晶片封裝體,其中該第二絕緣層之耐環境性優於該第一絕緣層。 The chip package of claim 1, wherein the second insulating layer is superior to the first insulating layer in environmental resistance. 如申請專利範圍第2項所述之晶片封裝體,其中該第一絕緣層及該第二絕緣層分別延伸至該穿孔內。 The chip package of claim 2, wherein the first insulating layer and the second insulating layer extend into the through holes, respectively. 如申請專利範圍第2項所述之晶片封裝體,其中該第一絕緣層延伸進入該穿孔之深度大於該第二絕緣層。 The chip package of claim 2, wherein the first insulating layer extends into the through hole to a depth greater than the second insulating layer. 如申請專利範圍第4項所述之晶片封裝體,其中該第一絕緣層之軟化點低於該第二絕緣層或該第一絕緣層之流動性高於該第二絕緣層。 The chip package of claim 4, wherein a softening point of the first insulating layer is lower than a mobility of the second insulating layer or the first insulating layer is higher than the second insulating layer. 如申請專利範圍第1項所述之晶片封裝體,其中該第一絕緣層之曝光解析度高於該第二絕緣層。 The chip package of claim 1, wherein the first insulating layer has a higher exposure resolution than the second insulating layer. 如申請專利範圍第1項所述之晶片封裝體,其中 該第二絕緣層之抗酸性或防水性高於該第一絕緣層。 The chip package of claim 1, wherein The second insulating layer is more resistant to acid or water repellency than the first insulating layer. 如申請專利範圍第1項所述之晶片封裝體,更包括一自對準擋牆,位於該半導體基底之該上表面上,且鄰近於或接觸該第一晶片。 The chip package of claim 1, further comprising a self-aligning barrier on the upper surface of the semiconductor substrate adjacent to or in contact with the first wafer. 如申請專利範圍第8項所述之晶片封裝體,其中該自對準擋牆為一連續環狀結構,包圍該第一晶片。 The chip package of claim 8, wherein the self-aligning retaining wall is a continuous annular structure surrounding the first wafer. 如申請專利範圍第8項所述之晶片封裝體,其中該自對準擋牆為一非連續結構,至少包括一第一部分及一第二部分,該第一部分與該第二部分相對設置於該第一晶片之兩側。 The chip package of claim 8, wherein the self-aligning retaining wall is a discontinuous structure comprising at least a first portion and a second portion, the first portion being disposed opposite to the second portion Both sides of the first wafer. 如申請專利範圍第8項所述之晶片封裝體,其中該自對準擋牆之材質包括導電材料。 The chip package of claim 8, wherein the material of the self-aligning retaining wall comprises a conductive material. 如申請專利範圍第1項所述之晶片封裝體,更包括一第二晶片,設置於該第一絕緣層及該第一晶片之上,且該第二晶片與該第一晶片電性連接。 The chip package of claim 1, further comprising a second wafer disposed on the first insulating layer and the first wafer, wherein the second wafer is electrically connected to the first wafer. 如申請專利範圍第12項所述之晶片封裝體,更包括一第三絕緣層,形成於該第二晶片與該第一晶片之間。 The chip package of claim 12, further comprising a third insulating layer formed between the second wafer and the first wafer. 如申請專利範圍第1項所述之晶片封裝體,更包括:一開口,形成於該第一絕緣層之中;以及一線路重佈層,形成於該開口之底部與側壁上,且該線路重佈層電性連接該第一晶片與該導電層。 The chip package of claim 1, further comprising: an opening formed in the first insulating layer; and a line redistribution layer formed on the bottom and the sidewall of the opening, and the line The redistribution layer electrically connects the first wafer and the conductive layer. 如申請專利範圍第8項所述之晶片封裝體,其中該自對準擋牆與該導電層為同時形成之金屬材料。 The chip package of claim 8, wherein the self-aligned retaining wall and the conductive layer are simultaneously formed metal materials. 如申請專利範圍第1項所述之晶片封裝體,其中該半導體基底為一晶片。 The chip package of claim 1, wherein the semiconductor substrate is a wafer. 如申請專利範圍第16項所述之晶片封裝體,更包括一蓋板,透過該接合結構而設置在該半導體基底之該下表面上。 The chip package of claim 16, further comprising a cover plate disposed on the lower surface of the semiconductor substrate through the bonding structure. 一種晶片封裝體的形成方法,包括:提供一半導體基底,具有一上表面及相反之一下表面;於該半導體基底中形成一穿孔,該穿孔貫穿該半導體基底之該上表面及該下表面;於該穿孔之側壁上形成一導電層,並延伸至該半導體基底上;於該半導體基底之該上表面上設置一第一晶片,該第一晶片與該導電層電性連接;於該半導體基底之該上表面上形成一第一絕緣層;於該半導體基底之該下表面上形成一第二絕緣層,其中該第二絕緣層之材質及耐環境性不同於於該第一絕緣層;以及於該半導體基底之該下表面上設置一接合結構。 A method for forming a chip package, comprising: providing a semiconductor substrate having an upper surface and an opposite lower surface; forming a through hole in the semiconductor substrate, the through hole penetrating the upper surface and the lower surface of the semiconductor substrate; a conductive layer is formed on the sidewall of the via and extends to the semiconductor substrate; a first wafer is disposed on the upper surface of the semiconductor substrate, the first wafer is electrically connected to the conductive layer; and the semiconductor substrate is Forming a first insulating layer on the upper surface; forming a second insulating layer on the lower surface of the semiconductor substrate, wherein a material and environmental resistance of the second insulating layer are different from the first insulating layer; An engagement structure is disposed on the lower surface of the semiconductor substrate. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第一絕緣層及該第二絕緣層之形成包括:分別於該半導體基底之該上表面及該下表面上貼附一第一絕緣膜及一第二絕緣膜;加熱該第一絕緣膜及該第二絕緣膜,使該第一絕緣膜及該第二絕緣膜軟化並延伸至該穿孔之側壁上的該導 電層之上;以及將軟化的該第一絕緣膜及該第二絕緣膜分別硬化為該第一絕緣層及該第二絕緣層。 The method for forming a chip package according to claim 18, wherein the forming of the first insulating layer and the second insulating layer comprises: attaching respectively to the upper surface and the lower surface of the semiconductor substrate a first insulating film and a second insulating film; heating the first insulating film and the second insulating film to soften and extend the first insulating film and the second insulating film to the sidewall of the through hole Above the electrical layer; and curing the softened first insulating film and the second insulating film into the first insulating layer and the second insulating layer, respectively. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第二絕緣層之耐環境性優於該第一絕緣層。 The method of forming a chip package according to claim 18, wherein the second insulating layer is superior in environmental resistance to the first insulating layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第一絕緣層及該第二絕緣層分別延伸至該穿孔內,且該第一絕緣層延伸進入該穿孔之深度大於該第二絕緣層。 The method for forming a chip package according to claim 18, wherein the first insulating layer and the second insulating layer respectively extend into the through hole, and the depth of the first insulating layer extending into the through hole is greater than the Second insulating layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第一絕緣層之軟化點低於該第二絕緣層或該第一絕緣層之流動性高於該第二絕緣層。 The method of forming a chip package according to claim 18, wherein a softening point of the first insulating layer is lower than a mobility of the second insulating layer or the first insulating layer is higher than the second insulating layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第一絕緣層之曝光解析度高於該第二絕緣層。 The method of forming a chip package according to claim 18, wherein the first insulating layer has a higher exposure resolution than the second insulating layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該第二絕緣層之抗酸性或防水性高於該第一絕緣層。 The method for forming a chip package according to claim 18, wherein the second insulating layer is higher in acid resistance or water repellency than the first insulating layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,更包括於該半導體基底之該上表面上形成一自對準擋牆,該自對準擋牆鄰近於或輕微接觸該第一晶片。 The method for forming a chip package according to claim 18, further comprising forming a self-aligning retaining wall on the upper surface of the semiconductor substrate, the self-aligning retaining wall being adjacent to or slightly contacting the first Wafer. 如申請專利範圍第25項所述之晶片封裝體的形成方法,其中該自對準擋牆為一連續環狀結構,包圍該第一晶片。 The method of forming a chip package according to claim 25, wherein the self-aligning barrier is a continuous annular structure surrounding the first wafer. 如申請專利範圍第25項所述之晶片封裝體的形成方法,其中該自對準擋牆為一非連續結構,至少包括一第一部分及一第二部分,該第一部分與該第二部分相對設置於該第一晶片之兩側。 The method for forming a chip package according to claim 25, wherein the self-aligning retaining wall is a discontinuous structure comprising at least a first portion and a second portion, the first portion being opposite to the second portion Provided on both sides of the first wafer. 如申請專利範圍第25項所述之晶片封裝體的形成方法,其中該自對準擋牆之材質包括導電材料。 The method for forming a chip package according to claim 25, wherein the material of the self-aligning barrier comprises a conductive material. 如申請專利範圍第25項所述之晶片封裝體的形成方法,其中該自對準擋牆與該導電層同時形成。 The method of forming a chip package according to claim 25, wherein the self-aligning barrier is formed simultaneously with the conductive layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,更包括於該第一絕緣層及該第一晶片上設置一第二晶片,且該第二晶片與該第一晶片電性連接。 The method for forming a chip package according to claim 18, further comprising: providing a second wafer on the first insulating layer and the first wafer, and electrically connecting the second wafer to the first wafer . 如申請專利範圍第30項所述之晶片封裝體的形成方法,更包括於該第二晶片與該第一晶片之間形成一第三絕緣層。 The method for forming a chip package according to claim 30, further comprising forming a third insulating layer between the second wafer and the first wafer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,更包括:於該第一絕緣層中形成一開口;以及於該開口之底部及側壁上形成一線路重佈層,該線路重佈層電性連接該第一晶片與該導電層。 The method for forming a chip package according to claim 18, further comprising: forming an opening in the first insulating layer; and forming a line redistribution layer on the bottom and the sidewall of the opening, the line is heavy The layer is electrically connected to the first wafer and the conductive layer. 如申請專利範圍第18項所述之晶片封裝體的形成方法,其中該半導體基底為一晶片。 The method of forming a chip package according to claim 18, wherein the semiconductor substrate is a wafer. 如申請專利範圍第33項所述之晶片封裝體的形成方法,更包括一蓋板,透過該接合結構而設置在該半導體基底之該下表面上。 The method of forming a chip package according to claim 33, further comprising a cover plate disposed on the lower surface of the semiconductor substrate through the bonding structure.
TW098128009A 2009-08-20 2009-08-20 Chip package and manufacturing method thereof TWI508239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098128009A TWI508239B (en) 2009-08-20 2009-08-20 Chip package and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098128009A TWI508239B (en) 2009-08-20 2009-08-20 Chip package and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201108361A TW201108361A (en) 2011-03-01
TWI508239B true TWI508239B (en) 2015-11-11

Family

ID=44835594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098128009A TWI508239B (en) 2009-08-20 2009-08-20 Chip package and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI508239B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI426570B (en) * 2011-08-08 2014-02-11 矽品精密工業股份有限公司 Method of manufacturing package substrate
US9570398B2 (en) * 2012-05-18 2017-02-14 Xintec Inc. Chip package and method for forming the same
TWI571983B (en) * 2014-11-25 2017-02-21 矽品精密工業股份有限公司 Electronic package and method of manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200522284A (en) * 2003-12-31 2005-07-01 Siliconware Precision Industries Co Ltd A carrier for stacked chips and a method for fabricating the same and a semiconductor package with the chip carrier
TWI290755B (en) * 2004-07-07 2007-12-01 Nec Corp Wiring substrate for mounting semiconductors, method of manufacturing the same, and semiconductor package
TW200901435A (en) * 2007-03-12 2009-01-01 Micron Technology Inc Apparatus for packaging semiconductor devices, packaged semiconductor components, methods of manufacturing apparatus for packaging semiconductor devices, and methods of manufacturing semiconductor components

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200522284A (en) * 2003-12-31 2005-07-01 Siliconware Precision Industries Co Ltd A carrier for stacked chips and a method for fabricating the same and a semiconductor package with the chip carrier
TWI290755B (en) * 2004-07-07 2007-12-01 Nec Corp Wiring substrate for mounting semiconductors, method of manufacturing the same, and semiconductor package
TW200901435A (en) * 2007-03-12 2009-01-01 Micron Technology Inc Apparatus for packaging semiconductor devices, packaged semiconductor components, methods of manufacturing apparatus for packaging semiconductor devices, and methods of manufacturing semiconductor components

Also Published As

Publication number Publication date
TW201108361A (en) 2011-03-01

Similar Documents

Publication Publication Date Title
TWI700753B (en) Chip package and method for forming the same
US9691696B2 (en) Interposers with circuit modules encapsulated by moldable material in a cavity, and methods of fabrication
US8564133B2 (en) Chip package and method for forming the same
TWI512932B (en) Chip package and fabrication method thereof
TWI512930B (en) Chip package and method for forming the same
TWI710073B (en) Semiconductor package with antenna and fabrication method thereof
US9287191B2 (en) Semiconductor device package and method
TWI529821B (en) Chip package and method for forming the same
US10985138B2 (en) Semiconductor package having a plurality of chips and method of manufacturing the same
TW201714275A (en) Semiconductor package structure and method for forming the same
US10163854B2 (en) Package structure and method for manufacturing thereof
US9397081B2 (en) Fabrication method of semiconductor package having embedded semiconductor elements
US10872850B2 (en) Package structure and method of forming thereof
CN105428329A (en) Package with UBM and Methods of Forming
US10460959B2 (en) Package structure and manufacturing method thereof
US20190006305A1 (en) Semiconductor package structure and manufacturing method thereof
US20220278087A1 (en) Semiconductor device package and methods of manufacture
TW201806113A (en) Method of manufacturing redistribution circuit structure
KR102238309B1 (en) Semiconductor device and method of manufacture
TW201715662A (en) Chip package and method for forming the same
TW201806049A (en) Manufacturing method of package structure
TWI508239B (en) Chip package and manufacturing method thereof
TWI593069B (en) Chip package and method for forming the same
TWI485825B (en) Chip package and manufacturing method thereof
TW202129780A (en) Semiconductor device and methods of manufacture